Size: px
Start display at page:

Download ""

Transcription

1 29 1 8

2

3 i BGO BGO BGO BGO

4 ii BGO

5 iii ( ) 2 ( ) BGO PMT PMT BGO 137 Cs ( ) ( ) BGO A( ) B( ) 137 Cs ESR PTE ( ) ( ) A( ) B( ) 137 Cs BGO ( ) ESR( ) PMT ( ) ( ) mm A( ) B( ) 137 Cs BGO

6 iv 4.2 SpaceWire BGO BGO PMT BGO BGO 137 Cs BGO ( ) BGO ( ) Cs BGO ( ) ( )X BGO BGO BGO 662 kev BGO 3 Gaussian BGO BGO 137 Cs BGO PMT 137 Cs 2 PMT BGO PMT PMT Cs BGO BGO 137 Cs R Cs H

7 v BGO R C BGO No.3 ( ) ( ) R R6231 BGO BGO ( ) ( ) 3 Gaussian BGO BGO R Cs Cs H R6231 H H Cs BGO

8 vi mm PJU-FB

9 Rossi X [1] X X X X kev MeV 1.1 X kev Newton (1999 ) Chandara (1999 ) kev kev X (HXD) [2] 213 Astro-H 8 kev X [3] MeV EGRET (1991 ) (28 ) GLAST EGRET kev MeV CGRO(Compton Gamma-Ray Observatory) COMPTEL (1991 ) 1 2

10 [4] COMPTEL MeV 1 MeV

11 X [1] X X (S/N Signal/Noise ratio) X 2.1.2

12 4 2 X X 2.2 CSA X X (HXD)

13 2.2 5 GSO(Gd 2 SiO 5 ) BGO(Bi 4 Ge 3 O 12 ) [2] ( ) ( ) 3 () NaI CsI 2.1

14 Bethe ( ) de dx ( = 2πe4 NZ m v 2 ln m v 2 ) E 2I 2 (1 β 2 ) (ln 2)(2 1 β β 2 ) (2.1) m v e N Z I 2.6 ns 2.2.3

15 [5] [nm] [µs] [photons/kev] NaI(Tl) CsI(Tl) BGO GSO YAP [6] θ c 2.2 (n 1 ) (n 2 ) 2

16 8 2 NA(Numerical Aperture) n 2 1 n2 2 n θ max ( 1) NA= n sin θ max NA n 2 n µm

17 NA kev (Ge) 1 cm [7] Ge.7 ev

18 2 Ge (CdTe) [8] Astro-H kev MeV Anger [9] 1 [] [11] CCD[12] 2.5

19 11 3 [13] Geant4 [14] BGO 3.1 Geant Z = µ 1 ɛ 1 µ 2 ɛ 2 n 1 = µ1 µ ɛ 1 ɛ and n 2 = µ2 µ ɛ 2 ɛ (3.1)

20 12 3 µ ɛ Snell () θ i θ r θ t θ i = θ r (3.2) sin θ i = n 2 sin θ t n 1 (3.3) n 1 > n 2 θ c = arcsin(n 2 /n 1 ) n 1 < n 2 n 1 > n 2 θ i < θ c E i E r E t E r = n µ 1 cos θ i 1 µ 2 n 2 2 n2 1 sin2 θ i (3.4) E i n 1 cos θ i + µ 1 n 2 2 n2 1 sin2 θ i E t E i = E r E i = E t E i = µ 2 2n 1 cos θ i (3.5) n 1 cos θ i + µ 1 µ 2 n 2 2 n2 1 sin2 θ i µ 1 µ 2 n 2 2 cos θ i n 1 n 2 2 n2 1 sin2 θ i (3.6) µ 1 µ 2 n 2 2 cos θ i + n 1 n 2 2 n2 1 sin2 θ i 2n 1 n 2 cos θ i (3.7) µ 1 µ 2 n 2 2 cos θ i + n 1 n 2 2 n2 1 sin2 θ i Poynting S J i = S i cos θ i = c 4π ɛ1 µ 1 E 2 i cos θ i (3.8) c = 1/ ɛ µ J r = c 4π ɛ1 µ 1 E 2 i cos θ r and J t = c 4π ɛ2 µ 2 E 2 i cos θ t (3.9) R = J r J i = E2 r T = J t J i = E 2 i ɛ2 µ 1 cos θ t Et 2 ɛ 1 µ 2 cos θ i Ei 2 n 2 n 1 cos θ t cos θ i E 2 t E 2 i (3.) (3.11) µ 1 R + T = G4OpBoundaryProcess

21 Lambert di r (θ r ) di i = cos θ r (3.12) θ r I i I r 2 [15] G4OpticalSurface Lambert

22 BGO 2 BGO (4 8 3cm 3 ) BGO(Bi 4 Ge 3 O 12 ) (PMT) BGO BGO 2.15 PMT R PMT 8V CP2869 ORTEC57 1 µs 5 AMPTEK 8A ADC 3.3 BGO(BGO A) PMT PMT PMT 3.3 2

23 BGO PMT BGO PMT BGO (48 nm) BGO 2.15 BGO PMT (OKEN 6262A) PMT 1.5

24 Fresnel.1% BGO m [16] Saint-Gobain 4 m BGO 3.4 PMT PMT [%] BGO [%] [%] PMT 25.1% 28.9% 1.15 PMT 7

25 BGO PMT θ θ PMT PMT BGO 43 = arcsin(1.453/2.15) θ BGO 28 θ < 43 PMT θ < 43 PMT 28 < θ < 43 PMT 1 (1 + cos cos 43 ) =.21 (3.13) 2 BGO PMT BGO PMT PMT 137 C kev 2% 15% PMT BGO 3.4

26 18 3 normalized count ADC channel 3.5 PMT BGO 137 Cs Geant4 G4OpticalSurface 2 α[rad] α = α α 3 1 PMT 2 PMT 3 α

27 (1) α 3.7 PMT θ i > θ c (α=) PMT (2),(3) α PMT PMT efficiency surface roughness 3.6 ( ) ( ) PMT 3.7 ( ) ( ) α (1)

28 mm 2 1 ( 3.8) BGO B PMT PMT % α =.12 BGO PMT BGO A B normalized count ADC channel 3.9 A( ) B( ) 137 Cs

29 ESR ESR(Enhanced Specular Reflector) ESR ESR BGO (48 nm) [15] 3. 98% WL & HXD BGO (PTFE) PTFE 99% 1 mm 98% [17] 3 1 mm PTFE Lambert [15] 3. ESR PTE PMT

30 22 3 efficiency count reflectivity reflection count 3.11 ( ) ( ) A A B B µm BGO ESR Lambert ( ) % PMT 3.11( ) % ESR 3 98% % 18% BGO ESR BGO A B 2 BGO PMT

31 normalized count normalized count ADC channel ADC channel 3.12 A( ) B( ) 137 Cs ( 3.5 ) ESR 3.2 BGO ( µm) (3 µm) A 9% 13% 29% ESR 24% 16% 32% B 19% 15% 29% ESR 32% 18% 32% A B 9% 19% 98 % Lambert 11% 12% ESR 24% 32% 98% % ( 3.11) ESR µm ESR 3.6

32 BGO ( ) ESR( ) PMT 3.6 BGO BGO PMT PMT mm 3 µm 2 4% mm 2 3 mm ( 3 µm ) PMT 137 Cs 3.17

33 3.6 BGO 25 efficiency clearance[mm] 3.14 A A B B 3.15 ( ) ( ) 3.3 BGO ESR

34 mm mm BGO A 36% 4% ESR 41% 38% B 41% 41% ESR 42% 42% normalized count normalized count ADC channel ADC channel 3.17 A( ) B( ) 137 Cs 3 mm ESR

35 % BGO 2 ( ESR)

36 28 4 BGO 4.1 BGO BGO MeV 1 [] [18] [19] Z E σ Z 4 E 3.5 Z 3 BGO (7.13 g/cm 3 ) 83 BGO φ µm BGO [2] BGO BGO ( 4.1) 14 BGO 6µm 14 mm

37 4.1 BGO BGO BGO 3 R SpaceWire 4.2 SpaceWire (2-4 Mbps) SpaceWire SpaceWire SpaceWire SpaceWire (I/F) SpaceCubeSpaceWire I/F SpaceCube Remote Memory Access Protocol(RMAP) RMAP SpaceWire I/F FIFO 4.2 PMT 8 ADC SpaceWire I/F PC SpaceWire C++ [21] SpaceWire 4.2 SpaceCube SpaceWire TCP/IP

38 3 4 BGO 4.2 SpaceWire BGO PC ADC [22] 4 12bit ADC 8 5 MHz UserFPGA AD AD Pocket MCA BGO 4.3 PMT PMT ESR HV 9V 1 µs 137 Cs 4.4 BGO 3 BGO B

39 4.1 BGO BGO PMT count ADC channel Cs BGO 3 BGO BGO ESR 3.6 3mm BGO ADC Cs 662 kev BGO ADC BGO 84% +Gaussian 662 kev BGO 9.% = BGO 28.5% PMT ADC

40 32 4 BGO count 25 2 count ADC channel ADC channel 4.5 BGO ( ) BGO ( ) Gaussian+ (χ 2 /) (2.2/21) (61.5/4) BGO BGO ADC ( 9.8%) X (1) BGO BGO BGO (2) (3) (4) 1 cm BGO X 4.3

41 4.1 BGO 33 count ADC channel Cs BGO BGO BGO BGO ADC ( 5%) 2 BGO BGO cm BGO BGO BGO 1 1 BGO 14 mm PMT 14 mm BGO BGO

42 34 4 BGO BGO 14 BGO BGO ( 2) BGO 4.3 BGO α 1 BGO Rayleigh 3 4 m BGO (α = ) (α = 1) α % 94% BGO BGO ( ESR 44%) BGO BGO BGO % BGO % PMT BGO

43 BGO BGO BGO BGO BGO 41% efficiency roughness 4.7 BGO BGO BGO 4.8 BGO BGO 4.9 BGO (α = ) BGO α = α =.1 α = α =.1 BGO BGO α =.1 4.9

44 36 4 BGO efficiency position[mm] 4.8 α = 1 α = 1 α = Gaussian % =.11 11% 1% α X ( 3,4) X BGO 4. BGO(7.13[g/cm 3 ]) 1 MeV µm BGO X BGO

45 y[mm] count x[mm] efficiency y[mm] count x[mm] efficiency y[mm] count x[mm] efficiency 4.9 α = α =.1 α =.1 BGO

46 38 4 BGO 4. [5] X BGO Z Bi(Z = 83) X Z 4 Z Bi K α 75 kev BGO 4. *1.7 mm BGO X X BGO *1

47 Geant4 kev MeV Geant X Auger X X 4.1 G4LowEnergyPhotoElectric G4LowEnergyCompton G4LowEnergyGammaConversion G4LowEnergyRayleigh G4LowEnergyIonisation G4MultipleScattering G4LowEnergyBremsstrahlung G4eIonisation G4MultipleScattering G4eBremsstrahlung G4eplusAnnihilation kev 38% kev 662 kev Bi K 9.5 kev

48 4 4 BGO count energy(kev) 4.11 BGO 2 Bi K Auger kev Bethe 4.1 ( ) ( de = 2πe4 NZ m v 2 ) E dx m v 2 ln 2I 2 (1 β 2 ) (ln 2)(2 1 β β 2 ) (4.1) m v e N Z I 662 kev

49 4.4 BGO BGO kev Bi K α (74-77 kev) K β (87-9 kev) X BGO K-escape 662 kev K α K β Gauusian p {G(p 1, p 2 ) +.89 G(.884p 1,.884p 2 ) +.29 G(.868p 1,.868p 2 )} + p 3 x + p 4 (4.2) ) (x a)2 G(a, σ) = exp ( 2σ 2 (4.3) 662 kev K α K β 3 3 Gaussian 4.12 Gaussian PMT ADC 4.13 χ Gaussian 662 kev 662 kev K-escape kev 7.4% 662 kev 16.6% Gaussian (28.5%) BGO (9.4%) BGO 4.4 BGO BGO PMT BGO BGO BGO

50 42 4 BGO count energy(kev) count energy(kev) 4.12 BGO 662 kev X

51 4.4 BGO 43 count ADC channel 4.13 BGO 3 Gaussian+ (χ 2 / ) (53.9/4) BGO PMT 4.14 ESR BGO 137 Cs ADC 1/ 1/ BGO (α = ) BGO BGO 4.1 BGO ESR PMT

52 44 4 BGO 4.14 BGO ESR BGO BGO PMT count ADC channel 4.15 BGO 137 Cs ESR 1/ 4.4 ADC

53 4.4 BGO BGO PMT BGO PMT BGO µ PMT BGO BGO l BGO x BGO A exp( σ(l/2 x)) A exp( σ(l/2 + x)) x 2 A PMT BGO 6 µm α PMT BGO PMT 4.17 PMT 2 PMT PMT BGO α

54 46 4 BGO PMT PMT BGO PMT 137 Cs 2 PMT 2 PMT PMT2 ADC PMT 1 α 2 PMT BGO BGO α α =.2.3 α =.3 (ESR ) 13% 93% /

55 efficiency distance from PMT(mm) 4.17 BGO PMT α 3 α =.1 α =.2 α = φ = 6µm 14 mm BGO 137 Cs 662 kev 28.5% BGO 41% BGO X BGO BGO BGO

56 48 4 BGO normalized count Ratio of PMT Signals PMT (PMT1 PMT2 ) (PMT2 PMT1 ) 2 PMT α =.1 α =.2 α =.3 BGO 2 PMT

57 BGO BGO 662 kev BGO BGO 6 µm 4 BGO BGO PMT BGO BGO BGO 1 PMT PMT

58 BGO 1 BGO BGO BGO BGO (NA) NA NA PJ PJU-FB µm BGO mm

59 PJU-FB µm µm NA EPO-TEK nm 99% 589 nm BGO BGO BGO 3 cm 5.1 α 1 BGO 4.25 EPO-TEK % Lambert ( 3.1.2) BGO PMT 92% 4.1 PMT BGO BGO

60 % BGO % BGO 1 MeV 8 PMT kev.4% BGO () 5.2 EPO-TEK 31-2 BGO R cm PMT 137 Cs 5.4 BGO PMT

61 efficiency distance from PMT(mm) 5.3 BGO count ADC channel Cs BGO ( 4.4.1)

62 BGO BGO Cs % BGO 5.1 BGO BGO (75 µm) count ADC channel 5.5 BGO BGO SpaceWire

63 BGO BGO 5.7 R H95 ADC PMT PMT H95( H95) H95 3mm 3mm (256=16 16) H95 [] H H95 (SAMTEC QTE-4-3-F-D-A) 256ch 8158 IDEAS VA32TA 8 ADC FPGA I/O VA32TA 1 32 ASIC 1 2 TA

64 SpaceWire VA TA fast 32 OR VA slow VA TA TA CPU R SpaceWire (I/F) DIO R6231 ADC H95 DIO SpaceWire I/F SpaceCube 2 PC SpaceWire SpaceCube SpaceWire I/F 1 SpaceCube SpaceWire I/F PC 2

65 R6231 H95 2 VETO 2 H95 H CPU 1 CPU H95 CPU R6231 H mm (H95 3 ) H95 R R6231 BGO 9V H95-1V H R Cs R6231 H95 R BGO

66 R631 H95 7 count ADC channel BGO 137 Cs R6231

67 H H95 H95 y 16 pulse height y x x Cs H R H95 x = 12, y = BGO /

68 6 5 count ADC channel Cs % BGO Gaussian % R6231 H % BGO BGO

69 BGOfiber BGOfiber Cs 2 BGO BGO R6231 H95 BGO H95 R6231 BGO BGO R BGO R BGO Cs 662 kev

70 62 5 count hit number Cs count ADC channel BGO R C

71 BGO kev ADC 9% ( Gaussian ) 27%(FWHM) BG O H95 normalized count ADC channel 5.15 BGO No.3 ( ) ( ) 662 kev H R No.3 BGO R6231 H95 R6231

72 64 5 R6231 H95 BGO H95 BGOfiber R6231 ADC channel R Cs 662 kev 5.17 R6231 H95 BGO BGO ADC 9 kev 12 kev 5.1.3

73 efficiency ADC channel 5.17 R6231 BGO BGO 75µm 27%( ) BGO

74 mm BGO BGO BGO BGO BGO mm BGO BGO 4 4 BGO H95 23% [] BGO % 6.2 BGO 8 BGO ESR BGO PMT PMT PMT BGO 137 Cs 6.1 BGO 8 % 137 Cs 662 kev 4 Bi X

75 6.2 BGO 67 count ADC channel BGO 662 kev 4.3 BGO BGO 662 kev BGO 6.2 Bi K α K β Gaussian p {G(p 1, p 2 ) +.34 G(.884p 1,.884p 2 ) +.12 G(.868p 1,.868p 2 )} + p 3 x + p 4 (6.1) 6.2 X BGO X BGO PMT 662 kev 9.1%

76 68 6 count 22 2 count energy(kev) ADC channel Gaussian BGO BGO PJU-FB µm 98 µm µm PJU-FB75 BGO BGO BGO 3 EPO-TEK 31-2 BGO BGO BGO 5 µm EPO-TEK 31-2 BGO 1 BGO BGO R Cs R BGO 662 kev.5%(fwhm) 8 BGO 6.2

77 BGO 6.4 BGO kev X BGO X BGO 2 BGO BGO X 662 kev ADC X BGO

78 7 6 count ADC channel 6.5 BGO R Cs ( 5.9 ) H95 H Gaussian R6231 ( ) R6231 BGO ( 5.4.5) H95 R X 2 1 BGO H BGO

79 y count x ADC channel Cs H95 46 BGO ( 5. ) 8 ( 5.11 ) efficiency ADC channel 6.7 R6231 H95 ( 5.17 ) BGO BGO BGO BGO H95 H R

80 72 6 BGObar BGObar H ( 5.12 ) H95 1 R Cs H95 2 R6231 H BGO R6231 BGO 6. BGO 137 Cs 662 kev.% 662 kev BGO BGO X BGO X BGO 2 BGO

81 efficiency ADC channel ( 5.17 ) count 9 BGObar BGObar1 9 BGObar count 9 BGObar3 BGObar4 9 BGObar BGObar BGObar ADC channel ADC channel Cs

82 74 6 Bi X 75 ke H95 2 X BGO BGO 1.6% BGO H95 BGO BGO BGO 662 kev BGO 8 BGO BGO 6.11 R6231 H % R6231 ADC 137 Cs 662 kev 5 kev X 6.4

83 fraction energy 6.11 BGO mm BGO Cs 662 kev %

84 76 7 BGO R6231 Geant4 BGO 14 mm 6 µm BGO 662 kev Bi X BGO BGO BGO mm 3 BGO 1.5 mm % BGO

85 77 SpaceWire Geant4 BGO

86 78 1) R. Giacconi, H. Gursky, F.R. Paolini, et al. Evidence for x Rays From Sources Outside the Solar System. Physical Review Letters, 9: , December ) T. Takahashi, K. Abe, M. Endo, et al. Hard X-Ray Detector (HXD) on Board Suzaku. pasj, 59:35 51, January 27. 3) T. Takahashi, R. Kelley, K. Mitsuda, et al. The NeXT Mission. ArXiv e-prints, July 28. 4) T. Takahashi, K. Nakazawa, S. Watanabe, et al. Application of CdTe for the NeXT mission. Nuclear Instruments and Methods in Physics Research A, 541: , April 25. 5) Glenn F. Knoll,,. ( 3 )., ) M.R. Arnfield, H.E. Gaballa, R.D. Zwicker, et al. Radiation-induced light in optical fibers and plastic scintillators: application to brachytherapy dosimetry. IEEE Transactions on Nuclear Science, 43: , June ) Amman M, Luke PN, Boggs SE. Amorphous-semiconductor-contact germanium-based detectors for gamma-ray imaging and spectroscopy. Nuclear Instruments and Methods in Physics Research A, 579:886 89, September 27. 8) S. Watanabe, S.n. Ishikawa, H. Aono, et al. High energy resolution hard X-ray and gamma-ray imagers using CdTe diode devices. ArXiv e-prints, November 28. 9) Anger HO. Scintillation Camera. Review of Scientific Instruments, 29:27 33, January )..,, ). Si γ.,, ) N. Tawa, K. Ikegami, M. Aono, et al. Spectral Capability Evaluation of Thick Needlelike CsI(Tl) for Scintillator Directly Coupled Charge-Coupled Device. Japanese Journal of Applied Physics, 46:873 +, February ) Jackson J.D.. 3., ) J. Allison, K. Amako, J. Apostolakis, et al. Geant4 developments and applications. IEEE

87 79 Transactions on Nuclear Science, 53:27 278, February ) Janecek M, Moses WW. Optical Reflectance Measurements for Commonly Used Reflectors. IEEE Transactions on Nuclear Science, 55: , August ) Lecoq P, Li PJ, Rostaing B. BGO radiation damage effects: optical absorption, thermoluminescence and thermoconductivity. Nuclear Instruments and Methods in Physics Research A, 3:24 258, January ) Weidner VR, Hsia JJ. Reflection properties of pressed polytetrafluoroethylene powder. Journal of the Optical Society of America ( ), 71:856 +, July ) Ikhlef A, Skowronek M. Application of a plastic scintillating fiber array for low-energy x-ray imaging. Appl. Opt., 37(34): , ) S.B. Tang, Q. Ma, Z. Yin, et al. Mev x-ray imaging using plastic scintillating fiber area detectors: A simulation study. Applied Radiation and Isotopes, 66(2): , 28. 2) Weber MJ, Monchamp RR. Luminescence of Bi4Ge3O12 : Spectral and decay properties. Journal of Applied Physics, 44: , December ) Yuasa T. SpaceWire/SpaceCube Tutorial, July ) Yuasa T. Development of SpaceWire-based waveform-sampling pulse height analyzer and its application to a hard X-ray detector., University of Tokyo, 28.

CdTe γ 02cb059e :

CdTe γ 02cb059e : CdTe γ 02cb059e : 2006 5 2 i 1 1 1.1............................................ 1 1.2............................................. 2 1.3............................................. 2 2 3 2.1....................................

More information

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge 22 2 24 W 1983 W ± Z 0 3 10 cm 10 cm 50 MeV TAC - ADC 65000 18 ADC [ (µs)] = 0.0207[] 0.0151 (2.08 ± 0.36) 10 6 s 3 χ 2 2 1 20 µ + µ 8 = (1.20 ± 0.1) 10 5 (GeV) 2 G µ ( hc) 3 1 1 7 1.1.............................

More information

B

B B07557 0 0 (AGN) AGN AGN X X AGN AGN Geant4 AGN X X X (AGN) AGN AGN X AGN. AGN AGN Seyfert Seyfert Seyfert AGN 94 Carl Seyfert Seyfert Seyfert z < 0. Seyfert I II I 000 km/s 00 km/s II AGN (BLR) (NLR)

More information

Mott散乱によるParity対称性の破れを検証

Mott散乱によるParity対称性の破れを検証 Mott Parity P2 Mott target Mott Parity Parity Γ = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 t P P ),,, ( 3 2 1 0 1 γ γ γ γ γ γ ν ν µ µ = = Γ 1 : : : Γ P P P P x x P ν ν µ µ vector axial vector ν ν µ µ γ γ Γ ν γ

More information

Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3

Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3 19 Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3 1 1 1.1 γ ΛN................. 1 1.2 KEK J-PARC................................ 2 1.2.1 J-PARC....................................

More information

NaI(Tl) CsI(Tl) GSO(Ce) LaBr 3 (Ce) γ Photo Multiplier Tube PMT PIN PIN Photo Diode PIN PD Avalanche Photo Diode APD MPPC Multi-Pixel Photon Counter L

NaI(Tl) CsI(Tl) GSO(Ce) LaBr 3 (Ce) γ Photo Multiplier Tube PMT PIN PIN Photo Diode PIN PD Avalanche Photo Diode APD MPPC Multi-Pixel Photon Counter L 19 P6 γ 2 3 27 NaI(Tl) CsI(Tl) GSO(Ce) LaBr 3 (Ce) γ Photo Multiplier Tube PMT PIN PIN Photo Diode PIN PD Avalanche Photo Diode APD MPPC Multi-Pixel Photon Counter LaBr 3 (Ce) PMT 662keV 2.9% CsI(Tl) 7.1%

More information

Drift Chamber

Drift Chamber Quench Gas Drift Chamber 23 25 1 2 5 2.1 Drift Chamber.............................................. 5 2.2.............................................. 6 2.2.1..............................................

More information

SPECT(Single Photon Emission Computer Tomography ) SPECT FWHM 3 4mm [] MPPC SPECT MPPC LSO 6mm 67.5 photo electron 78% kev γ 4.6 photo electron SPECT

SPECT(Single Photon Emission Computer Tomography ) SPECT FWHM 3 4mm [] MPPC SPECT MPPC LSO 6mm 67.5 photo electron 78% kev γ 4.6 photo electron SPECT 3 SPECT SJ SPECT(Single Photon Emission Computer Tomography ) SPECT FWHM 3 4mm [] MPPC SPECT MPPC LSO 6mm 67.5 photo electron 78% kev γ 4.6 photo electron SPECT 9ch MPPC array 3 3 9 3 3 9.mm(sigma) . SPECT..................................................................3............

More information

3-2 PET ( : CYRIC ) ( 0 ) (3-1 ) PET PET [min] 11 C 13 N 15 O 18 F 68 Ga [MeV] [mm] [MeV]

3-2 PET ( : CYRIC ) ( 0 ) (3-1 ) PET PET [min] 11 C 13 N 15 O 18 F 68 Ga [MeV] [mm] [MeV] 3 PET 3-1 PET 3-1-1 PET PET 1-1 X CT MRI(Magnetic Resonance Imaging) X CT MRI PET 3-1 PET [1] H1 D2 11 C-doxepin 11 C-raclopride PET H1 D2 3-2 PET 0 0 H1 D2 3-1 PET 3-2 PET ( : CYRIC ) ( 0 ) 3-1-2 (3-1

More information

25 3 4

25 3 4 25 3 4 1 µ e + ν e +ν µ µ + e + +ν e + ν µ e e + TAC START STOP START veto START (2.04 ± 0.18)µs 1/2 STOP (2.09 ± 0.11)µs 1/8 G F /( c) 3 (1.21±0.09) 5 /GeV 2 (1.19±0.05) 5 /GeV 2 Weinberg θ W sin θ W

More information

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4 23 1 Section 1.1 1 ( ) ( ) ( 46 ) 2 3 235, 238( 235,238 U) 232( 232 Th) 40( 40 K, 0.0118% ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4 2 ( )2 4( 4 He) 12 3 16 12 56( 56 Fe) 4 56( 56 Ni)

More information

CsI(Tl) 2005/03/

CsI(Tl) 2005/03/ CsI(Tl) 2005/03/30 1 2 2 2 3 3 3.1............................................ 3 3.2................................... 4 3.3............................................ 5 4 6 4.1..............................................

More information

Microsoft Word - 章末問題

Microsoft Word - 章末問題 1906 R n m 1 = =1 1 R R= 8h ICP s p s HeNeArXe 1 ns 1 1 1 1 1 17 NaCl 1.3 nm 10nm 3s CuAuAg NaCl CaF - - HeNeAr 1.7(b) 2 2 2d = a + a = 2a d = 2a 2 1 1 N = 8 + 6 = 4 8 2 4 4 2a 3 4 π N πr 3 3 4 ρ = = =

More information

From Evans Application Notes

From Evans Application Notes 3 From Evans Application Notes http://www.eaglabs.com From Evans Application Notes http://www.eaglabs.com XPS AES ISS SSIMS ATR-IR 1-10keV µ 1 V() r = kx 2 = 2π µν x mm 1 2 µ= m + m 1 2 1 k ν = OSC 2

More information

2005 4 18 3 31 1 1 8 1.1.................................. 8 1.2............................... 8 1.3.......................... 8 1.4.............................. 9 1.5.............................. 9

More information

thesis.dvi

thesis.dvi 3 17 03SA210A 2005 3 1 introduction 1 1.1 Positronium............ 1 1.2 Positronium....................... 4 1.2.1 moderation....................... 5 1.2.2..................... 6 1.2.3...................

More information

Undulator.dvi

Undulator.dvi X X 1 1 2 Free Electron Laser: FEL 2.1 2 2 3 SACLA 4 SACLA [1]-[6] [7] 1: S N λ [9] XFEL OHO 13 X [8] 2 2.1 2(a) (c) z y y (a) S N 90 λ u 4 [10, 11] Halbach (b) 2: (a) (b) (c) (c) 1 2 [11] B y = n=1 B

More information

放射線化学, 92, 39 (2011)

放射線化学, 92, 39 (2011) V. M. S. V. 1 Contents of the lecture note by Prof. V. M. Byakov and Dr. S. V. Stepanov (Institute of Theoretical and Experimental Physics, Russia) are described in a series of articles. The first article

More information

PET. PET, PET., PET 1, TPC 3.,. TPC,,.

PET. PET, PET., PET 1, TPC 3.,. TPC,,. PET TPC 21 2 9 PET. PET, PET., PET 1, TPC 3.,. TPC,,. 1 6 2 PET 7 2.1........................... 7 2.1.1 PET..................... 7 2.1.2.......................... 10 2.2..............................

More information

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100 positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) 0.5 1.5MeV : thermalization 10 100 m psec 100psec nsec E total = 2mc 2 + E e + + E e Ee+ Ee-c mc

More information

21 Daya Bay θ 13 Lawrence Berkeley National Laboratory Brookhaven National Laboratory 2012 ( 24 ) Daya Bay 2011

21 Daya Bay θ 13 Lawrence Berkeley National Laboratory Brookhaven National Laboratory 2012 ( 24 ) Daya Bay 2011 21 Daya Bay θ 13 Lawrence Berkeley National Laboratory YNakajima@lbl.gov Brookhaven National Laboratory thide@bnl.gov 2012 ( 24 ) 5 16 1 Daya Bay 2011 12,, θ 13, 55 2012 3 sin 2 2θ 13 Daya Bay sin 2 2θ

More information

QMI_10.dvi

QMI_10.dvi ... black body radiation black body black body radiation Gustav Kirchhoff 859 895 W. Wien O.R. Lummer cavity radiation ν ν +dν f T (ν) f T (ν)dν = 8πν2 c 3 kt dν (Rayleigh Jeans) (.) f T (ν) spectral energy

More information

= hυ = h c λ υ λ (ev) = 1240 λ W=NE = Nhc λ W= N 2 10-16 λ / / Φe = dqe dt J/s Φ = km Φe(λ)v(λ)dλ THBV3_0101JA Qe = Φedt (W s) Q = Φdt lm s Ee = dφe ds E = dφ ds Φ Φ THBV3_0102JA Me = dφe ds M = dφ ds

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

main.dvi

main.dvi MICE Sci-Fi 2 15 3 7 1 1 5 1.1 MICE(Muon Ionization Cooling Experiment)............. 5 1.1.1........................... 5 1.1.2............................... 7 1.1.3 MICE.......................... 10

More information

MORALITY LEARNING AMBITION 2 KASUMIGAOKA

MORALITY LEARNING AMBITION 2 KASUMIGAOKA KASUMIGAOKA MORALITY LEARNING AMBITION 2 KASUMIGAOKA KASUMIGAOKA 3 4 KASUMIGAOKA KASUMIGAOKA 5 Super Science High School 6 KASUMIGAOKA School Life 4 April 5 May 6 June 7 July 8 August 9 September 10 October

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

1 3 1.1 PET..................................... 3 1.1.1......................................... 3 1.1.2 PET................................. 4 1.2..

1 3 1.1 PET..................................... 3 1.1.1......................................... 3 1.1.2 PET................................. 4 1.2.. 21 PET 06S2037G 2010 3 1 3 1.1 PET..................................... 3 1.1.1......................................... 3 1.1.2 PET................................. 4 1.2........................................

More information

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x Compton Scattering Beaming exp [i k x ωt] k λ k π/λ ω πν k ω/c k x ωt ω k α c, k k x ωt η αβ k α x β diag + ++ x β ct, x O O x O O v k α k α β, γ k γ k βk, k γ k + βk k γ k k, k γ k + βk 3 k k 4 k 3 k

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

untitled

untitled BELLE TOP 12 1 3 2 BELLE 4 2.1 BELLE........................... 4 2.1.1......................... 4 2.1.2 B B........................ 7 2.1.3 B CP............... 8 2.2 BELLE...................... 9 2.3

More information

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e ( ) Note 3 19 12 13 8 8.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R, µ R, τ R (1a) L ( ) ) * 3) W Z 1/2 ( - )

More information

A Study of Adaptive Array Implimentation for mobile comunication in cellular system GD133

A Study of Adaptive Array Implimentation for mobile comunication in cellular system GD133 A Study of Adaptive Array Implimentation for mobile comunication in cellular system 15 1 31 01GD133 LSI DSP CMA 10km/s i 1 1 2 LS-CMA 5 2.1 CMA... 5 2.1.1... 5 2.1.2... 7 2.1.3... 10 2.2 LS-CMA... 13 2.2.1...

More information

PDF

PDF 1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV

More information

Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE

Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE 21 2 27 Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE ) Bethe-Bloch 1 0.1..............................

More information

X線分析の進歩36 別刷

X線分析の進歩36 別刷 X X X-Ray Fluorescence Analysis on Environmental Standard Reference Materials with a Dry Battery X-Ray Generator Hideshi ISHII, Hiroya MIYAUCHI, Tadashi HIOKI and Jun KAWAI Copyright The Discussion Group

More information

24 10 10 1 2 1.1............................ 2 2 3 3 8 3.1............................ 8 3.2............................ 8 3.3.............................. 11 3.4........................ 12 3.5.........................

More information

γ γ CsI RIBF SAMURAI CsI(Tl),CsI(Na) APD γ

γ γ CsI RIBF SAMURAI CsI(Tl),CsI(Na) APD γ 2013 10 11030 2014/02/24 γ γ CsI RIBF SAMURAI CsI(Tl),CsI(Na) APD γ i 1 1 1.1................................. 1 1.2.................................. 1 2 5 2.1.................................... 5 2.2....................................

More information

untitled

untitled 27.2.9 TOF-SIMS SIMS TOF-SIMS SIMS Mass Spectrometer ABCDE + ABC+ DE + Primary Ions: 1 12 ions/cm 2 Molecular Fragmentation Region ABCDE ABCDE 1 15 atoms/cm 2 Molecular Desorption Region Why TOF-SIMS?

More information

1 1 2 2 3 3 RBS 3 K-factor 3 5 8 Bragg 15 ERDA 21 ERDA 21 ERDA 21 31 31 33 RUMP 38 42 42 42 42 42 42 4 45 45 Ti 45 Ti 61 Ti 63 Ti 67 Ti 84 i Ti 86 V 90 V 99 V 101 V 105 V 114 V 116 121 Ti 121 Ti 123 V

More information

Donald Carl J. Choi, β ( )

Donald Carl J. Choi, β ( ) :: α β γ 200612296 20 10 17 1 3 2 α 3 2.1................................... 3 2.2................................... 4 2.3....................................... 6 2.4.......................................

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

untitled

untitled 1 1-1 p-i-n 1-1 (CIS/CIGS CdTe ) (GaAs) (,,) (, ) (,,) Si Si Si (CIS/CIGS CdTe ) (GaAs) (,,) (, ) (,,) Si Si Si Si 1-2 HITHeterojunction with Intrinsic Thin layer 30 HIT 22.3NIKKEI MICRODEVICES, May,82-86(2008)

More information

150518_shin_gakujutsu

150518_shin_gakujutsu γ ( ) 3 B2 215 5 18 @ 1 KamLAND ( ) Double Chooz ( / ) CANDLES ( ) ~ Double Chooz: (θ13 ) (νe + p e + + n) BG BG CANDLES: (5-1MeV) (n,γ) 2 (n,γ) CANDLES (n,γ) Geant4 (n,γ) 3 (n,γ) : γ n + A ZX ( A+1 ZX)*

More information

Δ Δ Δ 250

Δ Δ Δ 250 高エネルギー粒子用 Si検出器 第 10 章 1 特性 1-1 1-2 1-3 有感エリア 暗電流 接合容量 応答速度 2 シンチレータ式Si検出器 3 ダイレクト式Si検出器 3-1 3-2 3-3 3-4 3-5 空乏層の厚さ チャネリング効果 出力波高のばらつき ノイズとエネルギー分解能 位置検出用Si検出器 章 4 新たな取り組み 10 高エネルギー粒子用 5 応用例 粒子衝突実験 FGST

More information

untitled

untitled masato@icrr.u-tokyo.ac.jp 996 Start 997 998 999 000 00 00 003 004 005 006 007 008 SK-I Accident Partial Reconstruction SK-II Full reconstruction ( SK-III ( ),46 (40%) 5,8 (9%),9 (40%) 5MeV 7MeV 4MeV(plan)

More information

2

2 III 0713011005 2009 3 23 2 i (Gamma-Ray Burst : GRB) 10 msec 100 sec GRB 10 52 erg 10 48 erg GRB GRB GRB GRB 2007 Ikaros (Interplanetary Kite craft Accelerated by Radiation Of the Sun) (GAmma-ray burst

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 = #A A A. F, F d F P + F P = d P F, F P F F A. α, 0, α, 0 α > 0, + α +, α + d + α + + α + = d d F, F 0 < α < d + α + = d α + + α + = d d α + + α + d α + = d 4 4d α + = d 4 8d + 6 http://mth.cs.kitmi-it.c.jp/

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information

c 2009 i

c 2009 i I 2009 c 2009 i 0 1 0.0................................... 1 0.1.............................. 3 0.2.............................. 5 1 7 1.1................................. 7 1.2..............................

More information

放射線化学, 97, 29 (2014)

放射線化学, 97, 29 (2014) 20 5 Absorption spectra of biomolecules over wide energy range are very important to study their radiation effects in terms of the optical approximation proposed by Platzman. Using synchrotron radiation

More information

news

news ETL NEWS 1999.9 ETL NEWS 1999.11 Establishment of an Evaluation Technique for Laser Pulse Timing Fluctuations Optoelectronics Division Hidemi Tsuchida e-mail:tsuchida@etl.go.jp A new technique has been

More information

4‐E ) キュリー温度を利用した消磁:熱消磁

4‐E ) キュリー温度を利用した消磁:熱消磁 ( ) () x C x = T T c T T c 4D ) ) Fe Ni Fe Fe Ni (Fe Fe Fe Fe Fe 462 Fe76 Ni36 4E ) ) (Fe) 463 4F ) ) ( ) Fe HeNe 17 Fe Fe Fe HeNe 464 Ni Ni Ni HeNe 465 466 (2) Al PtO 2 (liq) 467 4G ) Al 468 Al ( 468

More information

tsuchiya_090307

tsuchiya_090307 2/26 雷活動からのX線やガンマ線(1) 短時間バースト 継続時間:ミリ秒かそれ以下 自然の雷放電および誘来放電からの観測 衛星による大気上層からの観測(TGFs) Dwyer et al. 2003 Smith et al. 2005 長時間バースト もんじゅ 継続時間:数秒から数分 もんじゅHPより 雷放電に必ずしも同期しない おもに雷雲中 日本海側の冬季や高山で観測 される McCarthy

More information

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint ( 9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) 2. 2.1 Ĥ ψ n (r) ω n Schrödinger Ĥ ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ + Ĥint (t)] ψ (r, t), (2) Ĥ int (t) = eˆxe cos ωt ˆdE cos ωt, (3)

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

総研大恒星進化概要.dvi

総研大恒星進化概要.dvi The Structure and Evolution of Stars I. Basic Equations. M r r =4πr2 ρ () P r = GM rρ. r 2 (2) r: M r : P and ρ: G: M r Lagrange r = M r 4πr 2 rho ( ) P = GM r M r 4πr. 4 (2 ) s(ρ, P ) s(ρ, P ) r L r T

More information

美唄市広報メロディー2014年1月号

美唄市広報メロディー2014年1月号 1 2014 E-mailkouhoujouhou@city.bibai.lg.jp January May September October November December February March June July August April BIBAI CITY INFORMATION http://db.net-bibai.co.jp/bibai/

More information

untitled

untitled 2008-11/13 12 4 12 5 401 501 702 401 501 A-1 9:00-10:30 B-1 9:15-10:30 C-1 9:00-10:30 A-5 9:00-10:30 B-5 9:15-10:30 A A-2 10:45-12:15 B-2 10:45-12:15 C-2 10:45-12:15 A-6 10:45-12:15 B-6 10:45-12:15 A B

More information

報告書

報告書 (University College Dublin) 22 2 15 22 4 10 宇都宮大学オプティクス教育研究センター はじめに アイルランドのダブリンにあるアイランド国立大学ダブリン校 (University College Dublin) において 約 2 ヶ月間の短期研究留学を行った O Sullivan 教授と Dunne 准教授の研究室に滞 在し 極端紫外光 (XUV) に関する研究に従事させて頂き

More information

スーパーカミオカンデにおける 高エネルギーニュートリノ研究

スーパーカミオカンデにおける 高エネルギーニュートリノ研究 2009 11 20 Cosmic Ray PD D M P4 ? CR M f M PD MOA M1 ν ν p+p+p+p 4 He +2e - +2ν e MeV e - + p n+ ν e γ e + + e - ν x + ν x p + p, γ + p π + X π µ + ν µ e + ν µ + ν e TeV p + p π + X π µ + ν µ e + ν µ +

More information

19 /

19 / 19 / 1 1.1............................... 1. Andreev............................... 3 1.3..................................... 3 1.4..................................... 4 / 5.1......................................

More information

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 = 3 3.1 3.1.1 kg m s J = kg m 2 s 2 MeV MeV [1] 1MeV=1 6 ev = 1.62 176 462 (63) 1 13 J (3.1) [1] 1MeV/c 2 =1.782 661 731 (7) 1 3 kg (3.2) c =1 MeV (atomic mass unit) 12 C u = 1 12 M(12 C) (3.3) 41 42 3 u

More information

X ASTRO-H X (Hard X-ray Imager:HXI) X (Hard X-ray Telescope: HXT) -80 kev 2 X X (HXD) HXI 9 BGO BGO APD HXI HXI BGO APD 37 Cs

X ASTRO-H X (Hard X-ray Imager:HXI) X (Hard X-ray Telescope: HXT) -80 kev 2 X X (HXD) HXI 9 BGO BGO APD HXI HXI BGO APD 37 Cs ASTRO-H X 35-09607 20 X ASTRO-H X (Hard X-ray Imager:HXI) X (Hard X-ray Telescope: HXT) -80 kev 2 X X (HXD) HXI 9 BGO BGO APD HXI HXI BGO APD 37 Cs Introduction 6 2 8 2................................

More information

November 13 June 1 April 23 October 1 December 22 August 6 September 5 July 2 May 2 8 6 11 1 7 01 1516 4 23 4 1995 4 23 1999 4 23 19 2 02 88 5 2 3 03 6 1 6 1 300 4 04 100 7 2 7 2 706 15 2 5 05 8 6 86

More information

1 3 1.1.......................... 3 1............................... 3 1.3....................... 5 1.4.......................... 6 1.5........................ 7 8.1......................... 8..............................

More information

untitled

untitled (a) (b) (c) (d) Wunderlich 2.5.1 = = =90 2 1 (hkl) {hkl} [hkl] L tan 2θ = r L nλ = 2dsinθ dhkl ( ) = 1 2 2 2 h k l + + a b c c l=2 l=1 l=0 Polanyi nλ = I sinφ I: B A a 110 B c 110 b b 110 µ a 110

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C602E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C602E646F63> スピントロニクスの基礎 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/077461 このサンプルページの内容は, 初版 1 刷発行時のものです. i 1 2 ii 3 5 4 AMR (anisotropic magnetoresistance effect) GMR (giant magnetoresistance

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a 1 2 2.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a) L ( ) ) * 2) W Z 1/2 ( - ) d u + e + ν e 1 1 0 0

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t) Radiation from moving harges# Liénard-Wiehert potential Yuji Chinone Maxwell Maxwell MKS E x, t + B x, t = B x, t = B x, t E x, t = µ j x, t 3 E x, t = ε ρ x, t 4 ε µ ε µ = E B ρ j A x, t φ x, t A x, t

More information

untitled

untitled D nucleation 3 3D nucleation Glucose isomerase 10 V / nm s -1 5 0 0 5 10 C - C e / mg ml -1 kinetics µ R K kt kinetics kinetics kinetics r β π µ π r a r s + a s : β: µ πβ µ β s c s c a a r, & exp exp

More information

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

SFGÇÃÉXÉyÉNÉgÉãå`.pdf SFG 1 SFG SFG I SFG (ω) χ SFG (ω). SFG χ χ SFG (ω) = χ NR e iϕ +. ω ω + iγ SFG φ = ±π/, χ φ = ±π 3 χ SFG χ SFG = χ NR + χ (ω ω ) + Γ + χ NR χ (ω ω ) (ω ω ) + Γ cosϕ χ NR χ Γ (ω ω ) + Γ sinϕ. 3 (θ) 180

More information

Muon Muon Muon lif

Muon Muon Muon lif 2005 2005 3 23 1 2 2 2 2.1 Muon.......................................... 2 2.2 Muon........................... 2 2.3................................. 3 2.4 Muon life time.........................................

More information

2

2 Rb Rb Rb :10256010 2 3 1 5 1.1....................................... 5 1.2............................................. 5 1.3........................................ 6 2 7 2.1.........................................

More information

29

29 9 .,,, 3 () C k k C k C + C + C + + C 8 + C 9 + C k C + C + C + C 3 + C 4 + C 5 + + 45 + + + 5 + + 9 + 4 + 4 + 5 4 C k k k ( + ) 4 C k k ( k) 3 n( ) n n n ( ) n ( ) n 3 ( ) 3 3 3 n 4 ( ) 4 4 4 ( ) n n

More information

, vol.43, no.2, pp.71 77, Simultaneous Measurement of Film Thickness and Surface Profile of Film-Covered Objects by Using White-Light Interfer

, vol.43, no.2, pp.71 77, Simultaneous Measurement of Film Thickness and Surface Profile of Film-Covered Objects by Using White-Light Interfer , vol.43, no.2, pp.71 77, 2007. 1 Simultaneous Measurement of Film Thickness and Surface Profile of Film-Covered Objects by Using White-Light Interferometry 1 2 3 1 3 1 ( ) 1-1-45 2 ( ) 1 3 2-12-1 sugi@cs.titech.ac.jp

More information

JAMSTEC Rep. Res. Dev., Volume 12, March 2011, 27 _ 35 1,2* Pb 210 Pb 214 Pb MCA 210 Pb MCA MCA 210 Pb 214 Pb * 2

JAMSTEC Rep. Res. Dev., Volume 12, March 2011, 27 _ 35 1,2* Pb 210 Pb 214 Pb MCA 210 Pb MCA MCA 210 Pb 214 Pb * 2 JAMSTEC Rep. Res. Dev., Volume 12, March 2011, 27 _ 35 1,2* 1 1 1 1 210 Pb 210 Pb 214 Pb MCA 210 Pb MCA MCA 210 Pb 214 Pb 2010 10 4 2010 12 10 1 2 * 237-0061 2-15 046-867-9794 ogurik@jamstec.go.jp 27 210

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) ( 6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b

More information

LEPS

LEPS LEPS2 2016 2 17 LEPS2 SPring-8 γ 3 GeV γ 10 Mcps LEPS2 7 120 LEPS Λ(1405) LEPS2 LEPS2 Silicon Strip Detector (SSD) SSD 100 µm 512 ch 6 cm 3 x y 2 SSD 6 3072 ch APV25-s1 APVDAQ VME APV25-s1 SSD 128 ch

More information

untitled

untitled SPring-8 RFgun JASRI/SPring-8 6..7 Contents.. 3.. 5. 6. 7. 8. . 3 cavity γ E A = er 3 πε γ vb r B = v E c r c A B A ( ) F = e E + v B A A A A B dp e( v B+ E) = = m d dt dt ( γ v) dv e ( ) dt v B E v E

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

X X 0 X 4 K K 1 K 2 K 1 K 2 6[eV] 6[eV] X 3: % 23.8[eV]

X X 0 X 4 K K 1 K 2 K 1 K 2 6[eV] 6[eV] X 3: % 23.8[eV] X X X 0 X 4 K K 1 K 2 K 1 K 2 6[eV] 6[eV] X 3:0 2 10 3 1.0% 23.8[eV] 1 3 1.1 :::::::::::::::::::::::::::::::::::::::::::: 3 2 X 4 2.1 :::::::::::::::::::::::::::::::::::::::::::: 4 2.1.1 :::::::::::::::::::::::::::

More information