第1章 単 位

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "第1章 単 位"

Transcription

1 H. Hamano,. 長柱の座屈 - 長柱の座屈 長い柱は圧縮荷重によって折れてしまう場合がある. この現象を座屈といい, 座屈するときの荷重を座屈荷重という.. 換算長 長さ の柱に荷重が作用する場合, その支持方法によって, 柱の理論上の長さ L が異なる. 長柱の計算は, この L を用いて行うと都合がよい. この L を換算長 ( あるいは有効長さという ) という. 座屈荷重は一般に, L したがって, 座屈応力度は L ( L / r) これは, オイラーの公式といわれるもので, 一般に L/r> の場合に適用される. また, を細長比という.r は断面 次半径である. 換算長 L と, 実際の長柱の長さ との間に L L の関係がある. は長柱の支持方法によって決まる係数で, これを換算係数という. (.) (.) (.3) L= μ =.5 L.7 L= L=.5 μ = μ = 図. 換算長と換算係数 は荷重に対する抵抗の強さを示しており, 上図の左の系を基準 とすると, 左から : : 8 : 6 の 割合になっている. たとえば, 両端単純支持の長柱は, 一端固定他端自由の長柱の 倍の強さを持っていることを示している.. 各種長柱公式 前に求めた両端ヒンジの長柱は Hooke の法則が成り立つ範囲で成立する. すなわち, この式は比例限度 よりも小さい範囲で適用しなければならない. E より E (.) 5 この式において E. N/mm, 35N/mm とすると, は約 9 となる. すなわち, は限界細長比よりも大きい範囲で成り立つ. これ以外の範囲 では次のような実験公式を用いる.

2 H. Hamano,. 長柱の座屈 - ) 直線式 ( テトマイヤー式 ) ab (a, b: 材料の性質から定まる定数 ) ) 双曲線式 ( ゴルドン ランキン式 ) a (a, b: 材料の性質から定まる定数 ) b 3) 放物線式 ( ジョンソン式 ) ab (a, b: 材料の性質から定まる定数 ) (.5) (.6) (.7) これらの式の関係は次図のようになる. 短柱 テトマイヤーの式 オイラーの公式 ジョンソン式 ランキン式 図. 各種実験公式 わが国の鋼道路橋示方書では SS,SM に対して許容応力度を次のように設定している ( 単位は N/mm ). L / r 8 : 8 L / r 9 : 9 L / r : a a a L.8 8 r L 6 7 r (.8)

3 H. Hamano,. 長柱の座屈 -3.3 各種長柱の座屈荷重.3. 両端ヒンジ柱の座屈荷重 両端ヒンジの柱に集中荷重 が軸方向に作用している場合を考える. 支点 より の点のたわみを とすると, この点での曲げモーメントは M (.9) d M ここで k とおくと d k が得られる. 式 (.) の一般解は次のように得られる. cos k Bsin k ここに,,B は積分定数である. 境界条件を適用すると : : Bsink 式 (.) の第 式において B が であれば式 (.3) は成り立たないから B とおくと sink (.5) この式を座屈条件式という. これより k nπ ( n,, ) (.6) これを式 (8.) に代入すると n π (.7) したがって, たわみ式は式 (.3) より nπ Bsin (.8) この式の B は不定であり, 形状は決まらない. ここでは,n が最小 (n=) の場合が意味を持ち, 座屈荷重は次のようになる. π (.9) したがって, 座屈応力度は E E (.) / r この式で, r I / は断面 次半径, / r は細長比を表す. 図.3 式 (.9) は Euer の座屈荷重といわれ,Hooke の法則が成り立つ範囲で成立する. 両端ヒンジの柱 B (.) (.) (.) (.3) (.)

4 H. Hamano,. 長柱の座屈 -.3. 一端固定 他端自由の柱の座屈荷重 図において点 の曲げモーメントは ( ) M d これより次式を得る. d k k ここに k 式 (.3) の一般解は cos k Bsink この式の,B は積分定数である. 境界条件を適用すると : d : これよりたわみは B ( cos k) (.7) この式で は不定であるが, : より cos k が得られる. ここで であるから座屈条件式は cos k (.8) これを満足する最小の根は k π であるから, 座屈荷重は π ( ) 座屈応力度は σ π π E r π ( ) λ この式で, r I / は断面 次半径, / r は細長比を表す. E (.) (.) この系の強度は式 (.3) より両端ヒンジの場合の / であることが分かる. 図. B 一端固定 他端自由の柱 (.3) (.) (.5) (.6) (.9) (.3)

5 H. Hamano,. 長柱の座屈 両端固定の柱の座屈荷重 両端ヒンジの柱に集中荷重 と, 点,B のたわみ角が となるような曲げモーメント M が作用している場合を考える. 支点 より の点のたわみを とすると, この点での曲げモーメントは (.3) M d これより d k k ここに k 式 (.33) の一般解はつぎのようになる. cos k Bsin k ここに,,B は積分定数である. 境界条件を適用すると : d : B したがって, たわみ式は式 (.6) より ( cos k) d また, :, より cos k および sink この座屈条件式を満足する最小値は k となる. したがって, 座屈荷重は π (/ ) 座屈応力度は σ π π E r π E ( / ) λ この式で, r I / は断面 次半径, / r は細長比を表す. この系は, 式 (.) より両端ヒンジの柱の 倍の強さを示している. 図.5 両端固定の柱 B (.3) (.33) (.3) (.35) (.36) (.37) (.38) (.39) (.)

6 H. Hamano,. 長柱の座屈 一端固定 他端ヒンジの柱の座屈荷重 両端ヒンジの柱に集中荷重 と, 点 のたわみ角が となるような曲げモーメント M が作用している場合を考える. この場合, 釣合いが成立するように両端に垂直反力 Q (.) が図示のように作用する. B Q Q 図.6 一端固定 他端ヒンジの柱 支点 より の点のたわみを とすると, この点での曲げモーメントは Q( ) M d Q ( ) これより d Q k k ( ) ここに k 式 (.) の一般解は Q cosk Bsink ( ) ここに,,B は積分定数である. 境界条件を適用すると Q : d Q : B k したがって, たわみ式は式 (.6) より Q cos k sink( ) k また, : より次の座屈条件式が得られる. (.) (.3) (.) (.5) (.6) (.7) (.8) tan k k この式を満足する値は.9 k.93, π (.7). 7.75,.9,.66, π したがって, 座屈応力度は π π E π E σ (.7) λ.7 r この式で, r I / は断面 次半径, / r は細長比を表す. この系は, 式 (.5) より両端ヒンジの柱の 倍の強さを示している., このうちの最小値をとって座屈荷重は (.9) (.5) (.5)

7 H. Hamano,. 長柱の座屈 任意横分布荷重が作用するはりの座屈微分方程式 一般に横荷重の作用する座屈の微分方程式を導く. 軸方向荷重 と横荷重 q() が作用した場合を考える. q() M+dM Q B M Q+dQ (a) (b) (c) q d 図.7 任意分布荷重の作用する単純支持の柱 微小要素 を取り出し, それが変形した状態を図 (c) とする. dq V : Q q Q( dq ), q つぎに d M : M q ( Q dq ) ( M dm ) 次の微小項を無視すると Q dm d ゆえに dm d Q 回微分して d M d dq ここで, d M d d M, 式 (.57) の第 式と式 (.5) を式 (.56) に代入すると d d q ここで,q = とおくと d k d, ただし k これが横荷重の作用しないときの座屈の微分方程式である. この一般解は cos k B sin k C D 式 (.59) は横荷重 q() が作用するときの座屈微分方程式である. この式より d k d k q この式の一般解は q cosk B sink C D 式 (.6) に境界条件を適用すれば解が得られる. (.5) (.53) (.5) (.55) (.56) (.57) (.58) (.59) (.6) (.6) (.6)

8 H. Hamano,. 長柱の座屈 -8 [ 例題.] 次の座屈応力度を求めよ [ 解 ] ) の場合 : 曲げモーメント : ) M ( d M ( ) E I E I ここで k とおくと d k k この式の一般解は次のように得られる cos kbsin k ここに,,B は積分定数である. d ksin k kbcos k 境界条件 : : より B tan k EI.8 曲げ剛性の変化する柱 ) の場合 : 曲げモーメント : ) M ( d M ( ) ここで k とおくと d k k この式の一般解は次のように得られる Ccos kdsink ここに,C,D は積分定数である. d kcsin k kdcos k 境界条件 : : より C : より D したがって, cos k ) ( 連続条件 ; : より cos k cos k B sin k : より k tan k tan k k ここで, k k の特別の場合には

9 H. Hamano,. 長柱の座屈 -9 tan となるから が得られる. よって座屈荷重は となる. また, 座屈応力度は r E E E / r ここに, r I / は断面 次半径, / r は細長比を表す. [ 例題.] 作用荷重 =tf, 長さ =m の H 型鋼の座屈荷重を求めよ ( 工学単位 ). H 型鋼 : Y [ 解 ] 細長比は 53. r 7.55 ) 鋼材 SS の場合 : H 型鋼の座屈 3 規格表より I I,cm 6,75cm 8.cm r 7.55cm 93 よりテトマイヤーの式を使う. 8.( ) 8.(53. ) a ゆえに, 座屈荷重は 38.kgf 3.9tf tf a ) 鋼材 SM9 の場合 : 5 8 よりテトマイヤーの式を使う. 9 3( 5) 9 3(53. 5) a a 6.8kg/cm kg/cm kgf 66.5tf tf

Microsoft PowerPoint - fuseitei_6

Microsoft PowerPoint - fuseitei_6 不静定力学 Ⅱ 骨組の崩壊荷重の計算 不静定力学 Ⅱ では, 最後の問題となりますが, 骨組の崩壊荷重の計算法について学びます 1 参考書 松本慎也著 よくわかる構造力学の基本, 秀和システム このスライドの説明には, 主にこの参考書の説明を引用しています 2 崩壊荷重 構造物に作用する荷重が徐々に増大すると, 構造物内に発生する応力は増加し, やがて, 構造物は荷重に耐えられなくなる そのときの荷重を崩壊荷重あるいは終局荷重という

More information

2011年度 筑波大・理系数学

2011年度 筑波大・理系数学 0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ O を原点とするy 平面において, 直線 y= の を満たす部分をC とする () C 上に点 A( t, ) をとるとき, 線分 OA の垂直二等分線の方程式を求めよ () 点 A が C 全体を動くとき, 線分 OA の垂直二等分線が通過する範囲を求め, それ を図示せよ -- 0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ

More information

<4D F736F F D208D7E959A82A882E682D18F498BC78BC882B B BE98C60816A2E646F63>

<4D F736F F D208D7E959A82A882E682D18F498BC78BC882B B BE98C60816A2E646F63> 降伏時および終局時曲げモーメントの誘導 矩形断面 日中コンサルタント耐震解析部松原勝己. 降伏時の耐力と変形 複鉄筋の矩形断面を仮定する また コンクリートの応力ひずみ関係を非線形 放物線型 とする さらに 引張鉄筋がちょうど降伏ひずみに達しているものとし コンクリート引張応力は無視する ⅰ 圧縮縁のひずみ

More information

2018年度 東京大・理系数学

2018年度 東京大・理系数学 08 東京大学 ( 理系 ) 前期日程問題 解答解説のページへ関数 f ( ) = + cos (0 < < ) の増減表をつくり, + 0, 0 のと sin きの極限を調べよ 08 東京大学 ( 理系 ) 前期日程問題 解答解説のページへ n+ 数列 a, a, を, Cn a n = ( n =,, ) で定める n! an qn () n とする を既約分数 an p として表したときの分母

More information

平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム A 札幌医科大学 年 P ab, を正の定数とする 平面上において ( a, を中心とする円 Q 4 C と (, b を中心とする円 C が 原点 O で外接している また P を円 C 上の点と

平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム A 札幌医科大学 年 P ab, を正の定数とする 平面上において ( a, を中心とする円 Q 4 C と (, b を中心とする円 C が 原点 O で外接している また P を円 C 上の点と 平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム 微分積分の拡張 変数関数問題へのアプローチ 予選決勝優勝法からラグランジュ未定乗数法 松本睦郎 ( 札幌北高等学校 変数関数の最大値 最小値に関する問題には多様なアプローチ法がある 文字を固定した 予選決勝優勝法, 計算のみで解法する 文字消去法, 微分積分を利用した ラグランジュ未定乗数法 がある

More information

. 実験方法 ヒノキ板を断面形状を高さ 8mm および 16mm の 種類としいずれも幅 mm として用意した 試験片長さを 1mm mm 3mm mm mm に切断し 写真 1, のように万能試験機で垂直になるように設置後 圧縮荷重をかけ最大圧縮荷重値を最大座屈荷重値としてデータを収集した 折れ曲

. 実験方法 ヒノキ板を断面形状を高さ 8mm および 16mm の 種類としいずれも幅 mm として用意した 試験片長さを 1mm mm 3mm mm mm に切断し 写真 1, のように万能試験機で垂直になるように設置後 圧縮荷重をかけ最大圧縮荷重値を最大座屈荷重値としてデータを収集した 折れ曲 研究結果報告書 公益財団法人長野県学校科学教育奨励基金 理事長小根山克雄様 1 研究テーマ 座屈現象の測定について 平成 8 年 1 月 1 日 学校名長野工業高等学校 校長森本克則印 研究グループ名 長野工業高等学校機械班 西村神之将 丸山颯斗 酒井達也 塚田郁哉 3 指導者土屋善裕 研究の動機及び目標工業 機械科の教科書 機械設計 には様々な公式が記載されているが なかには式の由来について説明もなくいきなり出てくる場合もあり日常生活の実体験とイメージしにくいものがある

More information

PowerPoint Presentation

PowerPoint Presentation 応用数学 Ⅱ (7) 7 連立微分方程式の立て方と解法. 高階微分方程式による解法. ベクトル微分方程式による解法 3. 演算子による解法 連立微分方程式 未知数が複数個あり, 未知数の数だけ微分方程式が与えられている場合, これらを連立微分方程式という. d d 解法 () 高階微分方程式化による解法 つの方程式から つの未知数を消去して, 未知数が つの方程式に変換 のみの方程式にするために,

More information

6 6. 圧密理論 6. 圧密理論 6.. 圧密方程式の誘導 粘土層の圧密原因とメカニズム 地下水位の低下 盛土建設 最終圧縮量と圧縮速度 6. 圧密理論 記号の統一間隙水圧 ( 絶対圧 ): u 間隙水圧 (gauge 圧 ): u u p a ( 大気圧 ) 過剰間隙水圧 : Δu ( 教科書は これを u と記している 初期状態が u p a で u の時で uδu の状態を対象にしている ) 微小の増分

More information

Microsoft PowerPoint - 10.pptx

Microsoft PowerPoint - 10.pptx m u. 固有値とその応用 8/7/( 水 ). 固有値とその応用 固有値と固有ベクトル 行列による写像から固有ベクトルへ m m 行列 によって線形写像 f : R R が表せることを見てきた ここでは 次元平面の行列による写像を調べる とし 写像 f : を考える R R まず 単位ベクトルの像 u y y f : R R u u, u この事から 線形写像の性質を用いると 次の格子上の点全ての写像先が求まる

More information

Microsoft Word - 09弾性02基礎方程式.doc

Microsoft Word - 09弾性02基礎方程式.doc 第 章基礎方程式と弾性問題の解. フックの法則 応力に対してひずみが生じ 応力をゼロに戻すとひずみも消失する性質を 弾性 という 弾性挙動を示す棒の軸方向の応力 とひずみの間には式 の関係が成り立つ これが フックの法則 であり をヤング率または弾性率と呼ぶ 棒を軸 縦 方向に引張ると直交 横 方向に収縮し 逆に縦方向に圧縮すると横方向に膨張する 棒の縦横の長さを L,d とし 縦ひずみを L L-L

More information

vecrot

vecrot 1. ベクトル ベクトル : 方向を持つ量 ベクトルには 1 方向 2 大きさ ( 長さ ) という 2 つの属性がある ベクトルの例 : 物体の移動速度 移動量電場 磁場の強さ風速力トルクなど 2. ベクトルの表現 2.1 矢印で表現される 矢印の長さ : ベクトルの大きさ 矢印の向き : ベクトルの方向 2.2 2 個の点を用いて表現する 始点 () と終点 () を結ぶ半直線の向き : ベクトルの方向

More information

今週の内容 後半全体のおさらい ラグランジュの運動方程式の導出 リンク機構のラグランジュの運動方程式 慣性行列 リンク機構のエネルギー保存則 エネルギー パワー 速度 力の関係 外力が作用する場合の運動方程式 粘性 粘性によるエネルギーの消散 慣性 粘性 剛性と微分方程式 拘束条件 ラグランジュの未

今週の内容 後半全体のおさらい ラグランジュの運動方程式の導出 リンク機構のラグランジュの運動方程式 慣性行列 リンク機構のエネルギー保存則 エネルギー パワー 速度 力の関係 外力が作用する場合の運動方程式 粘性 粘性によるエネルギーの消散 慣性 粘性 剛性と微分方程式 拘束条件 ラグランジュの未 力学 III GA 工業力学演習 X5 解析力学 5X 5 週目 立命館大学機械システム系 8 年度後期 今週の内容 後半全体のおさらい ラグランジュの運動方程式の導出 リンク機構のラグランジュの運動方程式 慣性行列 リンク機構のエネルギー保存則 エネルギー パワー 速度 力の関係 外力が作用する場合の運動方程式 粘性 粘性によるエネルギーの消散 慣性 粘性 剛性と微分方程式 拘束条件 ラグランジュの未定乗数法

More information

Microsoft Word - 補論3.2

Microsoft Word - 補論3.2 補論 3. 多変量 GARC モデル 07//6 新谷元嗣 藪友良 対数尤度関数 3 章 7 節では 変量の対数尤度を求めた ここでは多変量の場合 とくに 変量について対数尤度を求める 誤差項 は平均 0 で 次元の正規分布に従うとする 単純化のため 分散と共分散は時間を通じて一定としよう ( この仮定は後で変更される ) したがって ij から添え字 を除くことができる このとき と の尤度関数は

More information

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X (

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X ( 第 週ラプラス変換 教科書 p.34~ 目標ラプラス変換の定義と意味を理解する フーリエ変換や Z 変換と並ぶ 信号解析やシステム設計における重要なツール ラプラス変換は波動現象や電気回路など様々な分野で 微分方程式を解くために利用されてきた ラプラス変換を用いることで微分方程式は代数方程式に変換される また 工学上使われる主要な関数のラプラス変換は簡単な形の関数で表されるので これを ラプラス変換表

More information

662/04-直立.indd

662/04-直立.indd l l q= / D s HTqq /L T L T l l ε s ε = D + s 3 K = αγk R 4 3 K αγk + ( α + β ) K 4 = 0 γ L L + K R K αβγ () ㅧ ర ㅧ ర (4) (5) ()ᑼ (6) (8) (9) (0) () () (3) (3) (7) Ƚˎȁ Ȇ ၑა FYDFM වႁ ޙ 䊶䊶 䊶 䊶䊶 䊶 Ƚˏȁζ υ ίυέρθ

More information

そこで ある程度の知識があれば数学と情報の練習もかねて用いてもおもしろいのではないだろうか これはある程度の下準備のされたファイルと FLSH のアプリケーションがあれば計算処理の結果をグラフなどで視覚的に表示することが可能となると思われる 環境が許せば できあがったものをいじ るだけでなく自分で作

そこで ある程度の知識があれば数学と情報の練習もかねて用いてもおもしろいのではないだろうか これはある程度の下準備のされたファイルと FLSH のアプリケーションがあれば計算処理の結果をグラフなどで視覚的に表示することが可能となると思われる 環境が許せば できあがったものをいじ るだけでなく自分で作 五心へのアプローチ札幌新川高等学校吉田奏介 数学 Ⅰ の授業のあと 生徒から 内心や外心と頂点の延長線は中点と一致しないんですか? と質問があった その生徒には角の二等分線の話や鈍角三角形のときの話をしたら納得していたが 確かに一般的な点におけることは紙面上の図を見ただけではわかりづらいだろうし 生徒が自分で描く図は都合のよい図を描いてしまいがちである そんなことを発端にして考えてみた 1 FLSH

More information

Microsoft Word - 00.マニュアル表紙.docx

Microsoft Word - 00.マニュアル表紙.docx 土木用木材の使い方 (Ver.1) - 平成 24 年 6 月 - 大分県農林水産研究指導センター林業研究部 1 2 3 4 5 樹種基準強度 (N/ mm2 ) これらの基準強度の単位は N/ mm2であり 実際の強度は 圧縮 引張り せん断強度は面 6 7 許容応力度 ( 単位 :N/ mm2 ) 8 9 (N/ mm2 ) (N/ mm2 ) (kn/ mm2 ) また 等級区分しないときの

More information

Microsoft PowerPoint - ‚æ3‘Í [„Ý−·…‡†[…h]

Microsoft PowerPoint - ‚æ3‘Í [„Ý−·…‡†[…h] 第 3 章変形と理論強度 目的 弾性変形および塑性変形に関し, 原子レベルからの理解を深める. 3. 弾性変形 (elastic defomation) 3.. 原子間に作用する力 3.. ポテンシャルエネルギー 33 3..3 フックの法則 3..4 弾性率の温度依存性 3..5 弾性変形時のポアソン比 3..6 理論強度 3. 塑性変形 (plastic defomation) 3.. すべり

More information

Microsoft PowerPoint - 熱力学Ⅱ2FreeEnergy2012HP.ppt [互換モード]

Microsoft PowerPoint - 熱力学Ⅱ2FreeEnergy2012HP.ppt [互換モード] 熱力学 Ⅱ 第 章自由エネルギー システム情報工学研究科 構造エネルギー工学専攻 金子暁子 問題 ( 解答 ). 熱量 Q をある系に与えたところ, 系の体積は膨張し, 温度は上昇した. () 熱量 Q は何に変化したか. () またこのとき系の体積がV よりV に変化した.( 圧力は変化無し.) 内部エネルギーはどのように表されるか. また, このときのp-V 線図を示しなさい.. 不可逆過程の例を

More information

Microsoft PowerPoint - 9.pptx

Microsoft PowerPoint - 9.pptx 9/7/8( 水 9. 線形写像 ここでは 行列の積によって 写像を定義できることをみていく また 行列の積によって定義される写像の性質を調べていく 拡大とスカラー倍 行列演算と写像 ( 次変換 拡大後 k 倍 k 倍 k 倍拡大の関係は スカラー倍を用いて次のように表現できる p = (, ' = k ' 拡大前 p ' = ( ', ' = ( k, k 拡大 4 拡大と行列の積 拡大後 k 倍

More information

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t 1 1.1 sin 2π [rad] 3 ft 3 sin 2t π 4 3.1 2 1.1: sin θ 2.2 sin θ ft t t [sec] t sin 2t π 4 [rad] sin 3.1 3 sin θ θ t θ 2t π 4 3.2 3.1 3.4 3.4: 2.2: sin θ θ θ [rad] 2.3 0 [rad] 4 sin θ sin 2t π 4 sin 1 1

More information

Microsoft PowerPoint - 10.pptx

Microsoft PowerPoint - 10.pptx 0. 固有値とその応用 固有値と固有ベクトル 2 行列による写像から固有ベクトルへ m n A : m n n m 行列によって線形写像 f R R A が表せることを見てきた ここでは 2 次元平面の行列による写像を調べる 2 = 2 A 2 2 とし 写像 まず 単位ベクトルの像を求める u 2 x = v 2 y f : R A R を考える u 2 2 u, 2 2 0 = = v 2 0

More information

竹田式数学 鉄則集

竹田式数学  鉄則集 合格への鉄則集 数学 ⅡB 竹鉄 ⅡB-01~23 竹鉄 ⅡB-1 式と証明 (1) 方程式の決定 方程式の決定問題 a+bi が解なら,a-bi も解 解と係数の関係を活用する 例題 クリアー 140 a,b は実数とする 3 次方程式 x 3 +ax 2 +bx+10=0 が 1+2i を解にもつとき, 定数 a,b の値を求めよ また, 他の解を求めよ 鉄則集 21 竹鉄 ⅡB-2 式と証明

More information

Microsoft PowerPoint - 集積デバイス工学7.ppt

Microsoft PowerPoint - 集積デバイス工学7.ppt 集積デバイス工学 (7 問題 追加課題 下のトランジスタが O する電圧範囲を求めよただし T, T - とする >6 問題 P 型 MOS トランジスタについて 正孔の実効移動度 μ.7[m/ s], ゲート長.[μm], ゲート幅 [μm] しきい値電圧 -., 単位面積あたりの酸化膜容量

More information

統計的データ解析

統計的データ解析 統計的データ解析 011 011.11.9 林田清 ( 大阪大学大学院理学研究科 ) 連続確率分布の平均値 分散 比較のため P(c ) c 分布 自由度 の ( カイ c 平均値 0, 標準偏差 1の正規分布 に従う変数 xの自乗和 c x =1 が従う分布を自由度 の分布と呼ぶ 一般に自由度の分布は f /1 c / / ( c ) {( c ) e }/ ( / ) 期待値 二乗 ) 分布 c

More information

技術者のための構造力学 156 w M P m + M M+M 図 -1 はりの座標系, 外力と断面力の向きと方向 表 -1 荷重, 反力と断面力の表記に用いる記号一覧 荷重 ( 外力 ) 分布荷重 (kn/m) w 分布モーメント (knm/m) m 集中荷重 (kn) P 集中モーメント (kn

技術者のための構造力学 156 w M P m + M M+M 図 -1 はりの座標系, 外力と断面力の向きと方向 表 -1 荷重, 反力と断面力の表記に用いる記号一覧 荷重 ( 外力 ) 分布荷重 (kn/m) w 分布モーメント (knm/m) m 集中荷重 (kn) P 集中モーメント (kn 技術者のための構造力学 156 曲げ変形とせん断変形 ( 前編 ) 三好崇夫加藤久人 1. せん断変形の影響が顕著な事例実務設計でせん断変形の影響が無視できない事例として, 高さ h が部材長 に比べて大きい,h/ が 1/1 よりも小さいはり部材が挙げられる.h/ 1/5 ではせん断変形に伴うたわみが曲げに伴うたわみの ~% に達し, さらに h/ 1/ になるとせん断変形によるたわみと曲げ変形に伴うたわみは同程度になる.

More information

2 (1) 軸応力 σが最大値 σ max に達する以前 : 応力 -ひずみ線図は ほぼ直線となる 軸応力- 軸ひずみ線図の傾きからヤング率 Eが dσ/dεとして求まり 同一の応力レベルにおける軸ひずみと周ひずみの比としてポアソン比 νが得られる E=dσ/dε ν= ε θ /ε z (3.1)

2 (1) 軸応力 σが最大値 σ max に達する以前 : 応力 -ひずみ線図は ほぼ直線となる 軸応力- 軸ひずみ線図の傾きからヤング率 Eが dσ/dεとして求まり 同一の応力レベルにおける軸ひずみと周ひずみの比としてポアソン比 νが得られる E=dσ/dε ν= ε θ /ε z (3.1) 1 3. 岩石の変形強度特性 3.1 緒言 2 章では 1 軸や3 軸圧縮試験などの岩石の標準的な試験によって供試体にどのような応力ひずみ状態が現れるかについて説明した 本章では これらの岩石の標準的な試験で得られる岩石の変形強度特性について述べる 岩盤を構成する基質部が岩石であるが 岩盤のもう一つの構成要素である不連続面の強度変形特性とそれらを調べる試験方法については4 章で述べる 基質部と不連続面から成る岩盤の強度変形特性については5

More information

表1-表4_No78_念校.indd

表1-表4_No78_念校.indd mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm Fs = tan + tan. sin(1.5) tan sin. cos Fs ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

More information

<4D F736F F F696E74202D AB97CD8A E630398FCD5F8AC C896E291E8816A2E B8CDD8AB B83685D>

<4D F736F F F696E74202D AB97CD8A E630398FCD5F8AC C896E291E8816A2E B8CDD8AB B83685D> 単純な ( 単純化した ) 応力状態における弾塑性問題 () 繊維強化複合材の引張り () 三本棒トラスへの負荷 () はりの曲げ (4) 円筒 丸棒のねじりとせん断変形 (5) 熱弾塑性問題 負荷 ( 弾性変形 ) 負荷 ( 弾塑性変形 ) 除荷 残留応力 第 9 章,4 ページ ~ その. 繊維強化複合材料の引張り Rs.: []htt://authrs.library.caltch.du/5456//hrst.it.du/hrs/

More information

ディジタル信号処理

ディジタル信号処理 ディジタルフィルタの設計法. 逆フィルター. 直線位相 FIR フィルタの設計. 窓関数法による FIR フィルタの設計.5 時間領域での FIR フィルタの設計 3. アナログフィルタを基にしたディジタル IIR フィルタの設計法 I 4. アナログフィルタを基にしたディジタル IIR フィルタの設計法 II 5. 双 次フィルタ LI 離散時間システムの基礎式の証明 [ ] 4. ] [ ]*

More information

<4D F736F F D2089FC92E82D D4B CF591AA92E882C CA82C982C282A282C42E727466>

<4D F736F F D2089FC92E82D D4B CF591AA92E882C CA82C982C282A282C42E727466> 11 Application Note 光測定と単位について 1. 概要 LED の性質を表すには 光の強さ 明るさ等が重要となり これらはその LED をどのようなアプリケーションに使用するかを決定するために必須のものになることが殆どです しかし 測定の方法は多種存在し 何をどのような測定器で測定するかにより 測定結果が異なってきます 本書では光測定とその単位について説明していきます 2. 色とは

More information

第2章

第2章 第 2 章 企業の行動 : 第二部 ここでは 短期の供給曲線がなぜ右上がりになるのか述べます 企業は利潤を最大化すると仮定します (1) π = TR TC π : 利潤 TR : 総収入 TC : 総費用 企業は自己の生産物の価格 P に影響をしない と仮定します このことは 生 産物市場が完全競争市場であるということを意味します 詳しくは 完全競争 市場の定義について教科書などを参考にしてください

More information

構造解析マニュアル@RDstr

構造解析マニュアル@RDstr 構造解析マニュアル @RDstr ~ 片持ち梁の弾性静解析 ~ 岐阜高専構造解析学研究室 H270608 版 1. 解析モデル 下に示すような長さ 1000mm 高さ 100mm 幅 200mm の片持ち梁の弾性解析を行う 2. Salome-meca でのメッシュの作成 1 1 アイコンをクリックして Salome-meca を起動する 2 2 ジオメトリのアイコンをクリックする 表示されるウィンドウで

More information

英語                                    英-1

英語                                    英-1 数学 出題のねらい 数と式, 図形, 関数, 資料の活用 の 4 領域について, 基礎的な概念や原理 法則の理解と, それらに基づき, 数学的に考察したり, 表現したり, 処理したりする力をみることをねらいとした () 数と式 では, 数の概念についての理解の程度, 文字を用いた式を処理したり, 文字を用いて式に表現したりする力, 目的に応じて式を変形する力をみるものとした () 図形 では, 平面図形や空間図形についての理解の程度,

More information

8. 自由曲線と曲面の概要 陽関数 陰関数 f x f x x y y y f f x y z g x y z パラメータ表現された 次元曲線 パラメータ表現は xyx 毎のパラメータによる陽関数表現 形状普遍性 座標独立性 曲線上の点を直接に計算可能 多価の曲線も表現可能 gx 低次の多項式は 計

8. 自由曲線と曲面の概要 陽関数 陰関数 f x f x x y y y f f x y z g x y z パラメータ表現された 次元曲線 パラメータ表現は xyx 毎のパラメータによる陽関数表現 形状普遍性 座標独立性 曲線上の点を直接に計算可能 多価の曲線も表現可能 gx 低次の多項式は 計 8. 自由曲線 曲面. 概論. ベジエ曲線 曲面. ベジエ曲線 曲面の数学. OeGLによる実行. URS. スプライン関数. スプライン曲線 曲面. URS 曲線 曲面 4. OeGLによる実行 8. 自由曲線と曲面の概要 陽関数 陰関数 f x f x x y y y f f x y z g x y z パラメータ表現された 次元曲線 パラメータ表現は xyx 毎のパラメータによる陽関数表現 形状普遍性

More information

受信機時計誤差項の が残ったままであるが これをも消去するのが 重位相差である. 重位相差ある時刻に 衛星 から送られてくる搬送波位相データを 台の受信機 でそれぞれ測定する このとき各受信機で測定された衛星 からの搬送波位相データを Φ Φ とし 同様に衛星 からの搬送波位相データを Φ Φ とす

受信機時計誤差項の が残ったままであるが これをも消去するのが 重位相差である. 重位相差ある時刻に 衛星 から送られてくる搬送波位相データを 台の受信機 でそれぞれ測定する このとき各受信機で測定された衛星 からの搬送波位相データを Φ Φ とし 同様に衛星 からの搬送波位相データを Φ Φ とす RTK-GPS 測位計算アルゴリズム -FLOT 解 - 東京海洋大学冨永貴樹. はじめに GPS 測量を行う際 実時間で測位結果を得ることが出来るのは今のところ RTK-GPS 測位のみである GPS 測量では GPS 衛星からの搬送波位相データを使用するため 整数値バイアスを決定しなければならず これが測位計算を複雑にしている所以である この整数値バイアスを決定するためのつの方法として FLOT

More information

DVIOUT-n_baika

DVIOUT-n_baika 1 三角関数の n 倍角の公式とその応用について述べます. なお Voyage 200 の操作の詳細は http://sci-tech.ksc.kwansei.ac.jp/~yamane にある はじめての数式処理電卓 Voyage 200 をご覧下さい. 2 倍角の公式 cos 2x =2cos 2 x 1=1 2sin 2 x sin 2x =2sinxcos x はよく知られています.3 倍角の公式

More information

<4D F736F F D20837D834E838D97FB8F4B96E291E889F090E091E682528FCD81698FAC97D1816A>

<4D F736F F D20837D834E838D97FB8F4B96E291E889F090E091E682528FCD81698FAC97D1816A> 第 3 章 GDP の決定 練習問題の解説 1. 下表はある国の家計所得と消費支出です 下記の設問に答えなさい 年 所得 (Y) 消費支出 (C) 1 年目 25 15 2 年目 3 174 (1) 1 年目の平均消費性向と平均貯蓄性向を求めなさい (2) 1 年面から 2 年目にかけての限界消費性向を求めなさい 解答 (1).6 と.4 (2).48 解説 (3 頁参照 ) (1) 所得に対する消費の割合が平均消費性向です

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

untitled

untitled No. 1 2 3 1 4 310 1 5 311 7 1 6 311 1 7 2 8 2 9 1 10 2 11 2 12 2 13 3 14 3 15 3 16 3 17 2 18 2 19 3 1 No. 20 4 21 4 22 4 23 4 25 4 26 4 27 4 28 4 29 2760 4 30 32 6364 4 36 4 37 4 39 4 42 4 43 4 44 4 46

More information

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B 9 7 A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B x x B } B C y C y + x B y C x C C x C y B = A

More information

1 6 2011 3 2011 3 7 1 2 1.1....................................... 2 1.2................................. 3 1.3............................................. 4 6 2.1................................................

More information

伝熱学課題

伝熱学課題 練習問題解答例 < 第 9 章熱交換器 > 9. 入口温度 0 の kg/ の水と 入口温度 0 の 0 kg/ の水の間で熱交換を行 う 前者の出口温度が 40 の時 後者の出口温度はいくらか 解 ) 式 (9.) を使う,,,, において どちらの流体も水より に注意して 0 40 0 0, これを解いて, 9. 0 の水を用いて 0.MPa の飽和蒸気 kg/ と熱交換させ 蒸気を復水させること

More information

観測的宇宙論WS2013.pptx

観測的宇宙論WS2013.pptx ì コンテンツ イントロダクション 球対称崩壊モデル ビリアル平衡 結果 まとめ イントロダクション 宇宙磁場 銀河や銀河団など様々なスケールで磁場が存在 起源や進化について未だに謎が多い 宇宙の構造形成に影響 P(k)[h -3 Mpc 3 ] 10 6 10 5 10 4 10 3 10 10 1 10 0 10-1 10-10 -3 10-4 10-4 10-3 10-10 -1 10 0 10

More information

< 図形と方程式 > 点間の距離 A x, y, B x, y のとき x y x y : に分ける点 æ ç è A x, y, B x, y のとき 線分 AB を : に分ける点は x x y y, ö ø 注 < のとき外分点 三角形の重心 点 A x, y, B x, y, C x, を頂

< 図形と方程式 > 点間の距離 A x, y, B x, y のとき x y x y : に分ける点 æ ç è A x, y, B x, y のとき 線分 AB を : に分ける点は x x y y, ö ø 注 < のとき外分点 三角形の重心 点 A x, y, B x, y, C x, を頂 公式集数学 Ⅱ B < 式と証明 > 整式の割り算縦書きの割り算が出来ること f を g で割って 商が Q で余りが R のときは Q g f /////// R f g Q R と書ける 分数式 分母, 分子をそれぞれ因数分解し 約分する 既約分数式 加法, 減法については 分母を通分し分子の計算をする 繁分数式 分母 分子に同じ多項式をかけて 普通の分数式になおす 恒等式 数値代入法 係数比較法

More information

連続講座 断層映像法の基礎第 34 回 : 篠原 広行 他 放射状に 線を照射し 対面に検出器の列を置いておき 一度に 1 つの角度データを取得する 後は全体を 1 回転しながら次々と角度データを取得することで計測を終了する この計測で得られる投影はとなる ここで l はファンビームのファンに沿った

連続講座 断層映像法の基礎第 34 回 : 篠原 広行 他 放射状に 線を照射し 対面に検出器の列を置いておき 一度に 1 つの角度データを取得する 後は全体を 1 回転しながら次々と角度データを取得することで計測を終了する この計測で得られる投影はとなる ここで l はファンビームのファンに沿った 連続講座 断層映像法の基礎第 34 回 : 篠原広行 他 篠原 広行 桑山 潤 小川 亙 中世古 和真 断層映像法の基礎第 34 回スパイラルスキャン CT 1) 軽部修平 2) 橋本雄幸 1) 小島慎也 1) 藤堂幸宏 1) 3) 首都大学東京人間健康科学研究科放射線科学域 2) 東邦大学医療センター大橋病院 3) 横浜創英短期大学情報学科 1) はじめに第 33 回では検出確率 C ij の関係を行列とベクトルの計算式に置き換えて解を求める最小二乗法を利用した方法について解説した

More information

Microsoft Word - ultrasonic_2010.doc

Microsoft Word - ultrasonic_2010.doc 超音波の基礎 改訂版 機能材料工学科 阿部洋 目次. 音響振動と音場音場. 音圧. 速度ポテンシャル. 音響インピーダンス 5. 超音波の反射と透過 6. 液浸法 ( パルス超音波透過 ). 超音波吸収 8. 減衰定数 8. 音速測定 9. 測定例 9. 横波反射法を用いたずりいたずりインピーダンスインピーダンス測定. 弾性 0. 粘性 0. 粘弾性. 音波の緩和現象 5 付録 A 弾性論 7 参考文献

More information

解析センターを知っていただく キャンペーン

解析センターを知っていただく キャンペーン 005..5 SAS 問題設定 目的 PKパラメータ (AUC,Cmax,Tmaxなど) の推定 PKパラメータの群間比較 PKパラメータのバラツキの評価! データの特徴 非反復測定値 個体につき 個の測定値しか得られない plasma concentration 非反復測定値のイメージ図 測定時点間で個体の対応がない 着目する状況 plasma concentration 経時反復測定値のイメージ図

More information

Ł½’¬24flNfix+3mm-‡½‡¹724

Ł½’¬24flNfix+3mm-‡½‡¹724 571 0.0 31,583 2.0 139,335 8.9 310,727 19.7 1,576,352 100.0 820 0.1 160,247 10.2 38,5012.4 5,7830.4 9,5020.6 41,7592.7 77,8174.9 46,425 2.9 381,410 24.2 1,576,352 100.0 219,332 13.9 132,444 8.4 173,450

More information

Microsoft PowerPoint - 2.ppt [互換モード]

Microsoft PowerPoint - 2.ppt [互換モード] 0 章数学基礎 1 大学では 高校より厳密に議論を行う そのために 議論の議論の対象を明確にする必要がある 集合 ( 定義 ) 集合 物の集まりである集合 X に対して X を構成している物を X の要素または元という 集合については 3 セメスタ開講の 離散数学 で詳しく扱う 2 集合の表現 1. 要素を明示する表現 ( 外延的表現 ) 中括弧で 囲う X = {0,1, 2,3} 慣用的に 英大文字を用いる

More information

...............y.\....07..

...............y.\....07.. 150 11.512.0 11.812.0 12.013.0 12.514.0 1 a c d e 1 3 a 1m b 6 20 30cm day a b a b 6 6 151 6 S 5m 11.511.8 G 515m 11.812.0 SG 10m 11.812.0 10m 11.511.8 1020m 11.812.0 SF 5m 11.511.8 510m 11.812.0 V 5m

More information

演習2

演習2 神戸市立工業高等専門学校電気工学科 / 電子工学科専門科目 数値解析 2017.6.2 演習 2 山浦剛 (tyamaura@riken.jp) 講義資料ページ h t t p://clim ate.aic s. riken. jp/m embers/yamaura/num erical_analysis. html 曲線の推定 N 次多項式ラグランジュ補間 y = p N x = σ N x x

More information

untitled

untitled (a) (b) (c) (d) Wunderlich 2.5.1 = = =90 2 1 (hkl) {hkl} [hkl] L tan 2θ = r L nλ = 2dsinθ dhkl ( ) = 1 2 2 2 h k l + + a b c c l=2 l=1 l=0 Polanyi nλ = I sinφ I: B A a 110 B c 110 b b 110 µ a 110

More information

はじめに ここ 10 年の間に 有限要素法 (FEA) は 解析専任者のツールとしてだけでなく 設計において実用的に使用できるツールとなりました 現在の CAD ソフトウェアは FEA を内蔵しており 設計者は日常の設計ツールとして製品設計の過程で FEA を使用します しかしながら 最近まで 設計

はじめに ここ 10 年の間に 有限要素法 (FEA) は 解析専任者のツールとしてだけでなく 設計において実用的に使用できるツールとなりました 現在の CAD ソフトウェアは FEA を内蔵しており 設計者は日常の設計ツールとして製品設計の過程で FEA を使用します しかしながら 最近まで 設計 ホワイトペーパー 非線形解析活用ガイド insight 概要 このホワイトペーパーでは 線形解析と非線形解析の違いについて説明し どのようなケースにそれぞれを使用するのが最適化を解析します 非線形効果を無視することにより重大な設計エラーにつながる可能性があることを認識することが重要です 一般的な設計に含まれるいくつかの例で確認することにより 非線形解析が過剰設計を防ぎ よりよい製品の設計に役立つことが理解できるでしょう

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information

EPSON エプソンプリンタ共通 取扱説明書 ネットワーク編

EPSON エプソンプリンタ共通 取扱説明書 ネットワーク編 K L N K N N N N N N N N N N N N L A B C N N N A AB B C L D N N N N N L N N N A L B N N A B C N L N N N N L N A B C D N N A L N A L B C D N L N A L N B C N N D E F N K G H N A B C A L N N N N D D

More information

ありがとうございました

ありがとうございました - 1 - - 2 - - 3 - - 4 - - 5 - 1 2 AB C A B C - 6 - - 7 - - 8 - 10 1 3 1 10 400 8 9-9 - 2600 1 119 26.44 63 50 15 325.37 131.99 457.36-10 - 5 977 1688 1805 200 7 80-11 - - 12 - - 13 - - 14 - 2-1 - 15 -

More information

EPSON エプソンプリンタ共通 取扱説明書 ネットワーク編

EPSON エプソンプリンタ共通 取扱説明書 ネットワーク編 K L N K N N N N N N N N N N N N L A B C N N N A AB B C L D N N N N N L N N N A L B N N A B C N L N N N N L N A B C D N N A L N A L B C D N L N A L N B C N N D E F N K G H N A B C A L N N N N D D

More information

公務員人件費のシミュレーション分析

公務員人件費のシミュレーション分析 47 50 (a) (b) (c) (7) 11 10 2018 20 2028 16 17 18 19 20 21 22 20 90.1 9.9 20 87.2 12.8 2018 10 17 6.916.0 7.87.4 40.511.6 23 0.0% 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2.0% 4.0% 6.0% 8.0%

More information

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 A B (A/B) 1 1,185 17,801 6.66% 2 943 26,598 3.55% 3 3,779 112,231 3.37% 4 8,174 246,350 3.32% 5 671 22,775 2.95% 6 2,606 89,705 2.91% 7 738 25,700 2.87% 8 1,134

More information

橡hashik-f.PDF

橡hashik-f.PDF 1 1 1 11 12 13 2 2 21 22 3 3 3 4 4 8 22 10 23 10 11 11 24 12 12 13 25 14 15 16 18 19 20 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 144 142 140 140 29.7 70.0 0.7 22.1 16.4 13.6 9.3 5.0 2.9 0.0

More information

198

198 197 198 199 200 201 202 A B C D E F G H I J K L 203 204 205 A B 206 A B C D E F 207 208 209 210 211 212 213 214 215 A B 216 217 218 219 220 221 222 223 224 225 226 227 228 229 A B C D 230 231 232 233 A

More information

ネットショップ・オーナー2 ユーザーマニュアル

ネットショップ・オーナー2  ユーザーマニュアル 1 1-1 1-2 1-3 1-4 1 1-5 2 2-1 A C 2-2 A 2 C D E F G H I 2-3 2-4 2 C D E E A 3 3-1 A 3 A A 3 3 3 3-2 3-3 3-4 3 C 4 4-1 A A 4 B B C D C D E F G 4 H I J K L 4-2 4 C D E B D C A C B D 4 E F B E C 4-3 4

More information

1

1 1 2 3 4 5 (2,433 ) 4,026 2710 243.3 2728 402.6 6 402.6 402.6 243.3 7 8 20.5 11.5 1.51 0.50.5 1.5 9 10 11 12 13 100 99 4 97 14 A AB A 12 14.615/100 1.096/1000 B B 1.096/1000 300 A1.5 B1.25 24 4,182,500

More information

Microsoft PowerPoint - stat-2014-[9] pptx

Microsoft PowerPoint - stat-2014-[9] pptx 統計学 第 17 回 講義 母平均の区間推定 Part-1 014 年 6 17 ( )6-7 限 担当教員 : 唐渡 広志 ( からと こうじ ) 研究室 : 経済学研究棟 4 階 43 号室 email: kkarato@eco.u-toyama.ac.j website: htt://www3.u-toyama.ac.j/kkarato/ 1 講義の目的 標本平均は正規分布に従うという性質を

More information

Microsoft Word - 要旨まとめ.doc

Microsoft Word - 要旨まとめ.doc スティック状口紅における感触の数値化 株式会社コーセー 生産部 生産技術課 津原 一寛 塗布抵抗F [gf] スティック状口紅の使用方法は 化粧品の中でも特殊な塗 布行為を行なうアイテムといえる それは 固形状の口紅に 応力を加え液状の化粧膜へと状態の変化をさせる必要があ るためである スティック状口紅を口唇へ塗布する際の感触は 配合する 油剤の粘度等により左右されるものの 上述した状態変化も 大きな割合を占めている

More information

平成22年度地方都市ガス事業天然ガス化促進対策調査,次世代保安向上技術調査,地震対策技術調査,委員会の運営等,調査報告書

平成22年度地方都市ガス事業天然ガス化促進対策調査,次世代保安向上技術調査,地震対策技術調査,委員会の運営等,調査報告書 22 23 2 2 21 ( ) 2 1.1 1 1.1 1.2 2 22 22 JFE 22 2 21 22 3 22 JFE 22 2 21 ( ) 1 4 22 JFE 22 2 21 JFE 22 JFE JFE 22 JFE 22 2 21 5 2 21 22 15 3 1 1 ( )(7 8 ) 2 1 11 3 22 1 2 6 JFE 22 2 21 1 7 1 22 1 6 1

More information

untitled

untitled 0 ( L CONTENTS 0 . sin(-x-sinx, (-x(x, sin(90-xx,(90-xsinx sin(80-xsinx,(80-x-x ( sin{90-(ωφ}(ωφ. :n :m.0 m.0 n tn. 0 n.0 tn ω m :n.0n tn n.0 tn.0 m c ω sinω c ω c tnω ecω sin ω ω sin c ω c ω tn c tn ω

More information

untitled

untitled .m 5m :.45.4m.m 3.m.6m (N/mm ).8.6 σ.4 h.m. h.68m h(m) b.35m θ4..5.5.5 -. σ ta.n/mm c 3kN/m 3 w 9.8kN/m 3 -.4 ck 6N/mm -.6 σ -.8 3 () :. 4 5 3.75m :. 7.m :. 874mm 4 865mm mm/ :. 7.m 4.m 4.m 6 7 4. 3.5

More information

レッスン6part

レッスン6part 再履修線形代数 分解定理を主軸に整理整頓レッスン ジョルダン分解 Pa II レッスン ジョルダン分解 Pa II このレッスンでは ジョルダン分解の応用として 行列関数の定義 スペクトル写像定理 微分方程式解法を扱う 行列関数 f ( の定義には 最初の節で定義する M 演算による方法がわかりやすい 直接代入形 ジョルダン分解代入形である M 演算形 コーシーの積分公式 f ( f( λ( λ π

More information

Taro-H22T3金沢工大eの導入訂正版

Taro-H22T3金沢工大eの導入訂正版 数学 Ⅲ での対数 e の導入 T3 第 4 回年会於金沢工業大学岡山市立岡山後楽館高校河合伸昭一部対数数学 Ⅱ の復習 作ってみようあなただけの対数表 対数の原理の理解と記号に慣れる.A. グラフ電卓で検算しながら 次の表を完成させよう 3 4 5 6 7 8 9 0 3 4 5 6 B. 暗算で次の値を計算しよう ( ヒント A の表を活用しよう ) 6 3 3 64 3 56 6 4 8 64

More information

ab c d 6 12 1:25,000 28 3 2-1-3 18 2-1-10 25000 3120 10 14 15 16 7 2-1-4 1000ha 10100ha 110ha ha ha km 200ha 100m 0.3 ha 100m 1m 2-1-11 2-1-5 20cm 2-1-12 20cm 2003 1 05 12 2-1-13 1968 10 7 1968 7 1897

More information

<4D F736F F D F B C9A90DD8B5A8F708A4A94AD8CF097AC89EF93878DAA89EF8FEA816A2E646F63>

<4D F736F F D F B C9A90DD8B5A8F708A4A94AD8CF097AC89EF93878DAA89EF8FEA816A2E646F63> トラス筋を用いた超軽量複合構造スラブ (KS スラブ ) 1. はじめに KS スラブは, 上下面の薄肉コンクリート版をトラス筋で結合した複合スラブ構造を有し, 上下面の 薄肉コンクリートの間に発泡スチロール ( 以下,EPS) を中空型枠として用いた超軽量なスラブである ( 図 -1) KS スラブは, 群集荷重や輪荷重 T-6 までの軽荷重に対応した製品であり, 都市再開発や駅前 立体化にともなうペデストリアンデッキ用床版,

More information

(1) 1.1

(1) 1.1 1 1 1.1 1.1.1 1.1 ( ) ( ) ( ) { ( ) ( ) { ( ) ( ) { ( ) ( ) { ( ) ( ) { ( ) ( ) ( ) ( ) ( ) 2 1 1.1.2 (1) 1.1 1.1 3 (2) 1.2 4 1 (3) 1.3 ( ) ( ) (4) 1.1 5 (5) ( ) 1.4 6 1 (6) 1.5 (7) ( ) (8) 1.1 7 1.1.3

More information

丹沢のブナの立ち枯れと東名高速道路にっいて 図3 夏型の高気圧におおわれ 風の弱い日の南関東 東海道の風の1日変化 矢は風向を 矢先の数字は風速 m s を示す この地区のアメダス地点は御殿場のみ 風向の方向に長軸をもっ楕円で囲んだ 午後から夕方に かけて南 南西風が卓越している 全体に午後に海風と谷風 平地から山地へ が卓越している 東名高速道路と国道246号線および地方道 まとめて東 名高速道路という

More information

180 30 30 180 180 181 (3)(4) (3)(4)(2) 60 180 (1) (2) 20 (3)

180 30 30 180 180 181 (3)(4) (3)(4)(2) 60 180 (1) (2) 20 (3) 12 12 72 (1) (2) (3) 12 (1) (2) (3) (1) (2) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (1) (2) 180 30 30 180 180 181 (3)(4) (3)(4)(2) 60 180 (1) (2) 20 (3) 30 16 (1) 31 (2) 31 (3) (1) (2) (3) (4) 30

More information

untitled

untitled 1....1 2....2 2.1...2 2.2...2 3....14 3.1...14 3.2...14 4....15 4.1...15 4.2...18 4.3...21 4.4...23 4.5...26 5....27 5.1...27 5.2...35 5.3...54 5.4...64 5.5...75 6....79 6.1...79 6.2...85 6.3...94 6.4...

More information

113 120cm 1120cm 3 10cm 900 500+240 10 1 2 3 5 4 5 3 8 6 3 8 6 7 6 8 4 4 4 4 23 23 5 5 7

More information

( )

( ) ( ) () () 3 cm cm cm cm cm cm 1000 1500 50 500 1000 1000 1500 1000 10 50 300 1000 2000 1000 1500 50 10 1000 2000 300 50 1000 2000 1000 1500 50 10 1000 2000 300 30 10 300 1000 2000 1000 1500 1000

More information

2002 (1) (2) (3) (4) (5) (1) (2) (3) (4) (5) (1) (2) (3) (4) (5) (6) (7) (8) (1) (2) (3) (4) (1) (2) (3) (4) (5) (6) (7) (8) No 2,500 3 200 200 200 200 200 50 200 No, 3 1 2 00 No 2,500 200 7 2,000 7

More information

-26-

-26- -25- -26- -27- -28- -29- -30- -31- -32- -33- -34- -35- -36- -37- -38- cm -39- -40- 1 2 3 4 4 3 2 1 5 5-41- -42- -43- -44- -45- -46- -47- -48- -49- -50- cm -51- -52- -53- -54- -55- -56- -57- -58- -59- -60-

More information