Microsoft PowerPoint - TSV_osawa.pptx

Size: px
Start display at page:

Download "Microsoft PowerPoint - TSV_osawa.pptx"

Transcription

1 研究の背景 船体疲労強度評価のための実用的応力評価法 大阪大学大学院工学研究科船舶海洋工学部門大沢直樹 Structural Hot Spot Stress (HSS) 公称応力の評価が困難の場合に使用. 構造的応力集中 のみ考慮 応力特異性が無視できる部分の表面応力を外挿する評価法が主流 船体構造の HSS による疲労評価 - 溶接詳細のモデル化を省略したシェルFEモデルでHSSを評価 - シェル FE 解析で評価した継手近傍応力と, 参照応力 ( ソリッド FE 解析結果 測定応力 ) との乖離 - シェルFE 解析で評価したHSSは過度に安全側の評価になる場合がある. シェルFE 解析に基づくHSS 決定法の改良が必要 - 継手近傍のシェル応力 : 形状 荷重形態により計算誤差が大きく変化 - 強いメッシュ依存性 Page 2 研究の背景 研究の背景 Structural Hot Spot Stress (HSS) 公称応力の評価が困難の場合に使用. 構造的応力集中 のみ考慮 応力特異性が無視できる部分の表面応力を外挿する評価法が主流 船体構造の HSS による疲労評価 - 溶接詳細のモデル化を省略したシェルFEモデルでHSSを評価 - シェル FE 解析で評価した継手近傍応力と, 参照応力 ( ソリッド FE 解析結果 測定応力 ) との乖離 - シェルFE 解析で評価したHSSは過度に安全側の評価になる場合がある. シェルFE 解析に基づくHSS 決定法の改良が必要 - 継手近傍のシェル応力 : 形状 荷重形態により計算誤差が大きく変化 - 強いメッシュ依存性 先行研究 (e.g. Fricke 21) の問題点 - ベンチマークを繰返しても計算誤差のばらつきしか判らない - シェル応力と参照応力の差が生じるメカニズムの解明が必要 - メカニズムが判れば誤差の補正も可能になる Scatter in HSS evaluation Page 3 Page 4

2 研究の目的 ウェブ補強十字継手 角回し継手でシェル応力と参照応力に差が生じるメカニズムを解明する シェル応力の計算誤差を補正する手法を提案する ソリッド解析 歪計測と同等の精度で, シェル応力のみからウェブ補強十字継手 角回し継手 HSS を決定する手法を提案する. 提案手法の有効性を,BCロワースツール基部 ロンジスチフナの大型構造模型試験により検証する 隅肉継手の応力集中 荷重非伝達すみ肉継手 (i) 付加物と主板を分離 - 付加物 : 寸法不変 - 主板 : 一様伸び, 歪 =S/E (ii) 付加物と主板を接合 - 相互拘束が発生 - 付加物 : 接合面で伸び - 主板 : 接合面で縮み 主板上面の接合部外縁で局所的な伸び 歪の集中 = 応力集中が発生 - 止端ノッチの応力特異性 応力集中の原因 - 付加板厚の変化 - 主板の板厚方向非線形変形 Page 5 Page 6 ウェブ補強十字継手の応力集中 角回し継手の応力集中 付加板 補強ウェブと主板の相互拘束 - ウェブ面内 主板断面内変形 - ウェブ面角部の変形集中 - 主板の特異性は板厚方向非線形変形で発生 - ウェブ溶接線によるせん断遅れ - 主板面内変形 - ウェブ溶接線によるせん断遅れ - ウェブと直交する付加板があって緩和される 応力集中の原因 - ウェブ面角部周りの ( 非特異 ) 変形集中 - ウェブ溶接線によるせん断遅れ - 主板の板厚方向非線形変形による応力特異性 ガセットと主板の相互拘束 - ガセット面内 主板断面内変形 - ガセット溶接線によるせん断遅れ - 主板の特異性は板厚方向非線形変形で発生 - 主板面内変形 - ガセット溶接線によるせん断遅れ - ガセット端があるため顕著 - 応力集中の原因 - 主板接合位置の ( 非特異 ) 変形集中 - ガセット溶接線によるせん断遅れ - 主板の板厚方向非線形変形による応力特異性 角回し継手の応力集中 Page 7 テクノスターユーザー会 Sep. 28, 212 Page 8

3 ウェブ補強角回し継手の応力集中 シェル FE モデルによる構造応力集中の評価 ガセット 補強ウェブと主板の相互拘束 - ウェブ面内 主板断面内変形 - ウェブ面角部の変形集中 - 主板の特異性は板厚方向非線形変形で発生 - ウェブ溶接線によるせん断遅れ - 主板面内変形 - ウェブ溶接線によるせん断遅れ - ガセット端があるため顕著 応力集中の原因 - ウェブ面角部周りの ( 非特異 ) 変形集中 - ウェブ溶接線によるせん断遅れ - 主板の板厚方向非線形変形による応力特異性 止端の特異性が無視できる領域で以下を評価 i. ウェブ ガセット面角部周りの面内変形集中 ii. 主板面内のウェブ ガセット溶接線に沿ったせん断遅れ シェル計算結果はビードを省略したソリッドモデルに対応 - シェル解析で i, ii とも解析可能 溶接継手解析における注意点 - シェルモデルで溶接ビードはモデル化されない - 面接合部を幅が零の面の交線として表現 ノッチ応力特異成分 構造応力集中 ビードありソリッド応力 脚長だけシフトしたビードなしソリッド応力 止端フランク角 >ビードなしノッチ角 - 安全側の評価 Page 9 Page 1 十字継手 ( ビードなしモデル ) シェル計算結果の解釈 Saint-Venant s principle - 部材交差部近傍以外でシェル応力 (iv) ソリッド応力(i) シェル面接合点 Aはソリッド中央面交差線 A に対応 ソリッド : ノッチからの点 =シェル : 交差線からxの点 x 十字継手 ( ビードありモデル ) シェル計算結果の解釈 ビードありソリッド, 止端から距離 d ビードなしソリッド, ノッチから d シェル, 交差線から x=d+ tv th d xl, x; cosec cot t h: thickness of the main plate - t v: thickness of the attached plate - :the angle at which the main and attached plates intersect - l :the additional fillet weld leg length Page 11 Page 12

4 角回し継手 ( ビードあり なしモデル ) シェル計算結果の解釈 ビードなしソリッドモデル - シェル ソリッドでガセット端位置は同一 - ソリッド : ノッチからの点 =シェル : 交差線からの点 ビードありソリッド応力 - ビードありソリッド応力 脚長 だけシフトしたビードなしソリッド応力 - ビードありソリッド, 止端から距離 d シェル ビードなしソリッド, ガセット端から d 主板面外変形の影響 主板の横方向曲げ 補強ウェブとの相互作用 シェルモデル - 幅零の接合線 - 交線直近まで横曲げ曲率あり - ポアソン効果 : 長手方向収縮 ソリッドモデル - ウェブ板厚幅の接合面 - 交線直近では横曲げなし - ポアソン効果による収縮なし 主板に下向き圧力 - 上に凸の横曲げ 縦曲げ - シェルの場合のみ長手方向圧縮初期歪が発生 - ウェブの面内曲げはシェル ソリッドで同等 - シェル応力が上昇 テクノスターユーザー会 Sep. 28, 212 Page 13 Page 14 面圧を受ける T 断面梁 面圧を受ける T 断面梁 Flange thickness t f, Web thickness t w - (1mm, 5mm), (1mm, 1mm) (1mm, 2mm), (2mm, 1mm) (2mm, 2mm) "Base model" - (t f, t w )= (1mm, 1mm) 荷重条件 - Downward pressure - Upward pressure Base model の変形 Downward Upward pressure pressure Long. bending Trans. bending Downward convex upward convex upward Upward convex upward convex downward ソリッドモデルの変形 シェルモデルの変形 Page Page 16

5 sx (MPa) rface stress, Sur 面圧を受ける T 断面梁 ウェブ溶接線上長手方向表面応力 横方向曲げ応力 sy,b シェルソリッド応力差 sx sx sx,shell sx,solid - 横曲げが上に凸 : sy,b > sy,shell > sy,solid - 横曲げが下に凸 : sy,b < sy,shell < sy,solid Coupling (PSCM, ts/t=1.) t x t shell T-shape beam (t f, t w )=(1mm, 1mm) Upward pressure load Distance from the fixed end, x (mm) 14 sx (MPa) rface stress, Sur T-shape beam (t f, t w )=(1mm, 1mm) Dwn. pressure load Coupling (PSCM, ts/t=1.) t x t shell 5 1 Distance from the fixed end, x (mm) Page 17 2 面圧を受ける T 断面梁 sx = k sy,b ( 端部を除く ) - 横曲げポアソン効果による応力変化 との近似の有効性が示された 横曲げ影響係数 k OLID (MPa) x,shell x,so x = T-shape Tshape beam (t f, t w )=(1mm, 1mm) Downward pressure load Upward pressure load x =.1 x yb,shell Transversal bending stress, yb,shell (MPa) k=.1 for 'base' model. x / yb,sh HELL T-shape beam (t f, t w )=(1mm, 1mm) Downward pressure load Upward pressure load Distance from the fixed end, x (mm) 14 Page 18 面圧を受ける T 断面梁 19 面圧を受ける T 断面梁 x / yb,shell sx = k sy,b が全てのモデルで近似的に成立. k : フランジ ウェブ板厚 (t f, t w ) に依存 T-shape beam models (t f, t w ) (1, 1) (1, 5) (1, 2) (2, 1) (2, 2) sy, SHELL k = sx / T-shape beam models k =.9 R Surface st tress, sx (M Pa) T-shape beam (t f, t w )=(1mm, 5mm) Dwn. pressure load.9 t w t f sx,solid sx,shell sy,b sx, SOLID s x, SHELL s x, SHELL.9 (t w / t f ) s y, SHELL Pa) tress, sx (M Surface st T-shape beam (t f, t w )=(2mm,1mm) Dwn. pressure load sx, SOLID s x, SHELL s x, SHELL.9 (t w / t f ) sy, SHELL Distance from the fixed end, x (mm) R= t w / t f k.9r.9t w t f Distance from the fixed end, x (mm) Distance from the fixed end, x (mm) 修正式によりシェル計算応力のみからソリッド応力が精度よく推定できている 2 Page 19 Page 2

6 ] ガセット端の面内変形集中 ( 引張り荷重 ) ガセット端の面内変形集中 ( 純曲げ荷重 ) Shell model Hybrid model (solid gusset plate and shell main plate) Shell or hybrid model (the mid-plane of main plate) シェルモデル ハイブリッドモデル - 純曲げなら主板 ガセット接合線の長さ変化なし - せん断遅れによる応力集中はなし - 主板面外方向変位の相互影響は等しく生じる - 応力集中が零にはならない シェルモデルでは接合部幅が零 要素辺長が同じならシェルモデルの変形集中の方が顕著 せん断遅れ起因の主板面内応力集中 shell stress > solid stress fine shell stress > coarse shell stress Solid model ソリッドモデル - 純曲げでも主板 ガセット接合面の長さ変化が発生 - せん断遅れ起因の応力集中が発生 テクノスターユーザー会 Sep. 28, 212 Page 21 Page 22 単純角回し継手 単純角回し継手ソリッド応力 ( 引張り荷重 ) ビードなしモデル (1/2 対称 ) - Solid model,shell model,rbe solid model ( 断面平面保持 ), - Hybrid model: ガセット : ソリッド, 主板 : シェル 荷重条件 : 引張り, 曲げ, 組合せ ( 引張り+ 曲げ ) 板厚 (t f :main plate (flange) thickness t g :gusset plate thickness) - (t f, t g )=(1mm,5mm),(1mm,1mm),(1mm,m), (mm,5mm),(mm,1mm),(mm,mm) ウェブ補強角回し継手のシェル応力 stress [MPa] Surface s 25 2 (t f, t g ) = (1, 1) Tensile loading Hybrid Solid (t g /8 x t g /8xt) f Solid (t g /8 x t g /8 x t f /2) Solid (t g /8 x t g /8 x t f /4) Solid (t g /8 x t g /8 x t f /8) ビードなしソリッドモデル ハイブリッドモデル 止端から 5t.5 f 以遠ではハイブリッド主板シェル応力 ソリッド表面応力 - この領域では板厚方向の非線形応力分布が無視できる Shell model Hybrid model Solid model Comparison of surface stresses of a gusset welded joint under tensile loadings calculated by hybrid model and solid models with various element size Page 23 テクノスターユーザー会 Sep. 28, 212 Page 24

7 単純角回し継手シェル応力 ( 引張り荷重 ) 単純角回し継手シェル応力 ( 純曲げ荷重 ) [MPa] face stress [ Surf Tensile loading Hybrid bid t g /8 x t g /8 Shell t g /4 x t g /4 Shell t g /2 x t g /2 Shell t g x t g Shell Hybridモデル応力 ソリッド応力 要素辺長小 止端応力大 シェル要素辺長がガセット板厚の 5~ 倍のとき, シェル応力 細密ハイブリッドモデル応力になる ce stress [M MPa] Surfac Bending loading Hybrid t g /8 x t g /8 Shell t g /4 x t g /4 Shell t g /2 x t g /2 Shell t g x t g Shell 要素辺長によらずシェル応力 = 細密ハイブリッドモデル応力 接合線伸縮の相互作用が生じない Comparison of surface stresses of a gusset welded joint under tensile loadings calculated by hybrid model and shell models with various element edge lengths. 25 t f > t g のとき主板辺長メッシュによる応力は非安全側の推定値を与える場合がある 主板面外変形の相互作用による応 Comparison of surface stresses of a gusset welded joint under bending loadings calculated by hybrid model and shell models with various element edge lengths. 力集中は発生 テクノスターユーザー会 Sep. 28, 212 Page 25 テクノスターユーザー会 Sep. 28, 212 Page 26 単純角回し継手のシェル応力 ( 純曲げ荷重 ) 単純角回し継手のシェル応力 ( 純曲げ荷重 ) Surface stre ess [MPa] Bending loading Hybrid bid RBE solid (t g /8 x t g /8 x t g /8) シェル / ハイブリッドモデル - せん断遅れなし - 面外変形の相互作用のみ ソリッドモデル - t/2のオフセットにより接合面伸縮が発生 - せん断遅れによる応力集中が重畳 5 1 シェルモデルは止端応力の非安全側推定値を与える Comparison of surface stresses of a gusset welded Joint under bending loadings calculated by hybrid and RBE solid models with mesh size tg/8 x tg/8 x tg/8. シェル応力の補正方法 stress [MPa a] Surface Combined (tensile & bending) loading Hybrid RBE solid (t g /4 x t g /4 x t g /4) Hybrid modified by Eq. (1) (k=1.) 6 65 Comparison of surface stresses of a gusset welded joint under combined (tensile & bending) loadings calculated by hybrid and solid models with mesh size tg/4 x tg/4 x tg/ bsolid, bshell, S k b Sm bshell, ( S ) b, solid, b, shell : the bending contributions of solid andshell surface stress at a given location Sm, S b : the nominal membrane and bending stresses k : correction factor which depens on the model dimension and shell element size m テクノスターユーザー会 Sep. 28, 212 Page 27 テクノスターユーザー会 Sep. 28, 212 Page 28

8 ウェブ補強角回し継手のシェル応力 ウェブ補強角回し継手のシェル応力 引張り負荷 - 主板シェル要素辺長がt g x t g or t g /2 x t g /2のとき, 6 g g シェル応力 ソリッド応力 Surfa ce stress [MPa] tg x tg shell tg/2 x tg/2 shell tg/4 x tg/4 shell tg/8 x tg/8 shell hybird Shell model Hybrid model Solid model ビードなしモデル (1/2 対称 ) 荷重条件 - 引張り負荷 - 主板内に曲げ応力が生じないよう端部荷重を調整 - 複合負荷 - 3 点曲げ - 主板内に膜応力, 曲げ応力の双方が発生 複合負荷 - 提案する補正式により, 主板シェル要素辺長がt g x t g or t g /2 x t g /2のときシェル応力 ソリッド応力になる Sur rface stress [MPa] solid without weld solid with weld tg x tg shell tg x tg shell modified eq. (1) (k=1) Page 29 テクノスターユーザー会 Sep. 28, 212 Page 3 stress [MPa] Surface 角回し継手の応力 ( ビードありモデル ) (t f, t g ) = (1, 1) tensile loading solid models with / without weld representation without_bead with_bead tg x tg shell 止端から.5t f 以遠ではビードあり : 止端からの距離ビードなし : ガセット端からの距離シェルモデル : ガセット端からの距離を等しくとれば, 応力は概ね一致する. 大型構造模型試験 BC ロワースツール基部 BC lower stool + double bottom 気密構造. 内圧を負荷 スツール角 6, 75, 9 deg. L411 x B1 x H125 板厚 t=1mm センタガーダ板厚 t G =1, mm 材料 : KA32 Model ID: XXYY - =XX deg., g, t G =YYmm Comparison of surface stresses of solid models of gusset welded joint with / without weld representation under tensile loadings. テクノスターユーザー会 Sep. 28, 212 Page 31 Model 61 Page 32

9 大型構造模型試験 BC ロワースツール基部 大型構造模型試験 12. Model 61 BCロワースツール基部 1. Measured (x.92) Calculated モデルのスツール側を固着 内圧 + 端部曲げ荷重 -.2MPa pressure - 25kN end load 内底板上の 36 点で長さ方向 幅方向歪向を計測 FE modeling - txtshell FE mesh - 4-nodes shell (MARC Elm. 75) - シェル ソリッド混合モデル (8 elm. layers in the dir. of the thickness) Up. Left : UL UL2 UL1 CL2 Y-dir. CL1 X-dir C CR1 CR (X-dir. ID) UL2-4 UL1-4 C-4X 4Y UL1-5 5 UL C L 計測歪はソリッドモデル計算値に ほぼ一致 6. シェル ソリッド混合モデルの精度の高さが示された 提案する計算仕様 - t x tシェルモデル - ソリッド : 止端からの距離 - シェル : ビードなしソリッドモデルのノッチからの距離 - 主板に面外変形がある場合は横曲げ影響補正を行う strain X1-6 Surface Surface strain X C-1x CR1-1x CL1-1x CR2-1x CL2-1x UR1-1x UL1-1X UR2-1x UL2-1x C-2x CR1-2x CL1-2x CR2-2x CL2-2x UR1-2x UL1-2x UR2-2x UL2-2x C-3x CR1-3x CL1-3x CR2-3x CL2-3x UR1-3x UL1-3x UR2-3x UL2-3x C-4x CR1-4x CL1-4x UR2-4x UL2-4x CR2-4x CL2-4x UR1-4x UL1-4x Model 9 Measured (x1.) Calculated UR1 4. UR2 UR1-1X, 1Y Up. Right: UR UR2-4 5 UR Weld Toe UR3-5. C-1 1x CR1-1 1x CL1-1 1x CR2-1 1x CL2-1 1x UR1-1 1x UL1-1 1X UR2-1 1x UL2-1 1x C-2 2x CR1-2 2x CL1-2 2x CR2-2 2x CL2-2 2x UR1-2 2x UL1-2 2x UR2-2 2x UL2-2 2x C-3 3x CR1-3 3x CL1-3 3x CR2-3 3x CL2-3 3x UR1-3 3x UL1-3 3x UR2-3 3x UL2-3 3x C-4 4x CR1-4 4x CL1-4 4x CR2-4 4x CL2-4 4x UR1-4 4x UL1-4 4x UR2-4 4x UL2-4 4x Page 33 Page 34 大型構造模型試験 BC ロワースツール基部 大型構造模型試験ロンジスチフナ ソリッド表面応力は計測応力によく一致 シェル応力とソリッド応力に誤差が生じる場合がある 9 degモデル溶接線直近要素を除いて, 横曲げ影響修正式によりシェル応力からほぼ正確にソリッド応力 = 計測応力を推定できている - 9deg モデル溶接線直近シェル要素 - 要素中心がビードなしソリッドモデルのノッチ位置にある - Kirchhoff 仮説 ( 断面平面保持 ) は無効, 直近シェル要素応力 <ソリッド応力 Pa] ce stress, sx [MP Surfac Model 61 Point load + Pressure Shell Shell (modified) Solid Measured x.92 Surf face stress [MP Pa] Model 9 Point load + Pressure Shell Shell (modified) Solid Measured Distance from the hot spot, d or [mm] Distance from the hot spot, d or [mm] 4 Page 35 テクノスターユーザー会 Sep. 28, 212 Page 36

10 大型構造模型試験ロンジスチフナ 大型構造模型試験ロンジスチフナ Solid model Shell model 計算仕様 - ガセット板厚辺長シェル ( t g x t g shell ) - シェル : ガセット端からの距離 - ソリッド : 止端からの距離 - フランジ板内の曲げ応力によりシェル応力を補正 s [MPa] Su urface stress Measured vs. d Solid vs. d t g x t g Shell (modified by Eq. (1), k=1.) vs. 1 2 Surface stresses on the flange plate of the full-scale longitudinal stiffener model calculated by shell and coupling FE models ソリッド表面応力 計測応力 シェル応力はソリッド応力と概ね一致 提案法の有効性が示された テクノスターユーザー会 Sep. 28, 212 Page 37 テクノスターユーザー会 Sep. 28, 212 Page 38 HSS 決定法 x SR22B 法 1.5 x t.5 txt t シェル要素を使用 hot spot S.5 S 1.5t 提案するシェル応力の解釈によれば, 斜板をもつウェブ補強十字継手の外挿点 (.5t,1.5t) 要素中央にない場合がある. 外挿点と要素中央の位置関係によっては, 線形補間により外挿点応力を計算すると過度に安全側になる 3 次補間を用いれば外挿入点応力の推定精度を改善できる. ウェブ補強十字継手 HSS 決定法 1. t x t shellモデルを使用. シェル要素の要素内平均応力が要素中央で作用すると評価 2. 主板に幅方向面外曲げが生じている場合は, 次式によりシェル応力を補正 sx,solid sx,shell k tw tf sy,b Eq. (4) 3. HSS 外挿点応力 s (x 5t.5t ), s (x t 1.5t ). シェル中央面交線から次式の距離離れた位置のシェル応力で近似. 要素中央と外挿点が一致しない場合は, 隣接する要素応力から補間する. t h 3 t h tv th x.5t, x1.5t ; cosec cot Eqs. (1) and (5) s (x.5t ), s (x 1.5t ) の補間方法は継手形状により線形 3 次式を使い分ける. 4. HSSを次式で計算する 1.5 x.5 x Eq. (6) hot spot S.5t S 1.5t Page 39 Page 4

11 ウェブ補強十字継手 HSS 決定法 ウェブ補強十字継手 HSS 決定法 HSS TRG : ソリッド計算で評価 HSS CNV : 位置 横曲げ補正なし HSS LOTSBERG : - DnV CN3.7 CNV Model 61 Conventional Lotsberg's method Proposed (=2.887mm) Interpolation [Mpa] HSS TRG HSS CNV Derived s (x shift ) HSS Lotsberg Derived s (x.5t ) s (x.5t ) HSS PRP Derived [Mpa] /Target [Mpa] [Mpa] /Target [Mpa] [Mpa] [Mpa] /Target Linear % % % 1.72 Cubic % % Model 751 Conventional Lotsberg's method Proposed (=3.84mm) Interpo- HSS TRG HSS CNV Derived s (x shift ) HSS Lotsberg Derived s (x 5.5t ) s (x 5.5t ) HSS PRP Derived lation [Mpa] [Mpa] /Target [Mpa] [Mpa] /Target [Mpa] [Mpa] [Mpa] /Target Linear N/A N/A N/A % % N/A Cubic N/A N/A N/A % Model 91 Conventional Lotsberg's method Proposed (=5.mm) Interpolation [Mpa] HSS TRG HSS CNV Derived s (x shift ) HSS Lotsberg Derived s (x.5t ) s (x.5t ) HSS PRP Derived [Mpa] /Target [Mpa] [Mpa] /Target [Mpa] [Mpa] [Mpa] /Target Linear % % % 1.22 Cubic % 1% % Model 9 Conventional Lotsberg's method Proposed (=5.mm) Interpolation [Mpa] HSS TRG HSS CNV Derived s (x shift ) HSS Lotsberg Derived s (x.5t ) s (x.5t ) HSS PRP Derived [Mpa] /Target [Mpa] [Mpa] /Target [Mpa] [Mpa] [Mpa] /Target Linear % % % 1.22 Cubic % % Page 41 A) HSS CNV : 過度に安全側の評価 ( 推定比 136.8±4.9%). B) HSS Lotsberg : やや安全側の評価. ( 推定比 114.7% ±9.1% for linear, 1.1%±8.6% for cubic). C) HSS PRP : 参照値に最も近い推定値を与える.( 推定比.1%±6.9% for linear, 97.4%±8.4% 4%for cubic). D) HSS PRP の推定誤差 - Linear : less than 1% for =9 deg., g, 13.1% for =6 deg. - Cubic : 7.2% for =6 deg., 非安全側の推定 for =9 deg. Page 42 ウェブ補強十字継手 HSS 決定法 HSS PRP with 線形 3 次補間 ( 斜板角度により使い分け ) が最良のHSS 推定精度を示す. 18.% Conventional.5t-1.5t Lotsberg (Linear) Lotsberg (Cubic) 16.% Proposal (Linear/Cubic) ウェブ補強十字継手 HSS 決定法 4-nodes shell (MARC Elm. 75) vs. 8-node shell (MARC Elm. 72) - 同一要素分割 (t x t shell mesh) - 交差線直近要素応力 :8-nodes > 4-nodes - 交差線から2つ目の要素応力 :4-nodes < 8-nodes - HSS PRP の差は < 5% 14.% 12.% 1.% 8.% 6.% Surface stre ess, sx [MPa] Model 61 Point load + Pressure 3 4-node 4-node (modified) 8-node 8-node (modified) Solid ess, sx [MPa] Surface stre Model 9 Point load + Pressure 4-node 4-node (modified) 8-node 8-node (modified) Solid 4.% % Distance from the hot spot, d or [mm] Distance from the hot spot, d or [mm] 4.% Page 43 Page 44

12 ウェブ補強十字継手 HSS 決定法 HSS PRP with 線形 3 次補間 ( 斜板角度により使い分け ) が最良のHSS 推定精度を示す. 4-node elmと8-node elmの差は僅少 18.% Conventional.5t-1.5t Lotsberg (Linear) Lotsberg (Cubic) 16.% Proposal (Linear/Cubic) 14.% 12.% 1.% ウェブ補強角回し継手 HSS 決定法 1. ガセット板厚の.5~1 倍の辺長を有するshellモデルを使用. シェル要素の要素内平均応力が要素中央で作用すると評価 2. 主板に曲げ応力が作用している場合は, 表面応力を次式で補正する Sb k ( S ) b, solid b, shell b, shell m S m 3. HSS 外挿点応力 s (x.5t ), s (x 1.5t ). ガセット端位置から.5t, 1.5t 離れた位置のシェル応力で近似. 要素中央と外挿点が一致しない場合は, 隣接する要素応力から補間する. 1.5 x.5 x 4. HSS を次式で計算する hot spot S.5t S 1.5t 8.% 6.% 4.% ロンジスチフナ角回し継手のHSS - ソリッド計算結果 =577MPa - シェル計算結果 542MPa 計測応力からの推定値 2.%.% Page 45 Page 46 結言 ウェブ補強十字継手 角回し継手でシェル応力と参照応力に差が生じるメカニズムを精査した. 十字継手ではシェルモデルでの止端位置の解釈が不適切だったことと, および主板の横方向曲げ変形が生じる際のポアソン効果により, シェル ソリッド応力差が発生していたことがわかった. 角回し継手でせん断遅れによる面内応力集中を適切に評価するには要素辺長をガセット板厚の1/2~1 倍にする必要があること, および, 主板が曲げを受ける角回し継手では, ガセット接合面の上下位置が板厚の1/2 だけ異なることが原因で, ソリッドモデルでのみせん断遅れによる応力集中が生じることがわかった. ウェブ補強十字継手 角回し継手のシェル ソリッド応力差を補正する手法を提案した. ソリッド解析 歪計測と同等の精度で, シェル応力のみからウェブ補強十字継手 角回し継手のHSSを高い精度で推定する手法を提案した. 提案手法の有効性を,BCロワースツール基部 ロンジスチフナの大型構造模型試験により示した. Page 47

r 0 r 45 r 90 F 0 n

r 0 r 45 r 90 F 0 n Evaluation of Fatigue and Noise-and-vibration Properties of Automobile Partial Models Abstract Application of high strength steel sheets to automotive bodies requires evaluation technologies of fatigue

More information

Microsoft Word - 建築研究資料143-1章以外

Microsoft Word - 建築研究資料143-1章以外 4. ブレース接合部 本章では, ブレース接合部について,4 つの部位のディテールを紹介し, それぞれ問題となる点や改善策等を示す. (1) ブレースねらい点とガセットプレートの形状 (H 形柱, 弱軸方向 ) 対象部位の概要 H 形柱弱軸方向にガセットプレートタイプでブレースが取り付く場合, ブレースの傾きやねらい点に応じてガセットプレートの形状等を適切に設計する. 検討対象とする接合部ディテール

More information

(p.52-57)392-10

(p.52-57)392-10 Fatigue Life Prediction of Welded Structures Based on Crack Growth Analysis Abstract A fatigue life prediction system for welded structures has been developed based on crack growth analysis. In the developed

More information

PowerPoint Presentation

PowerPoint Presentation H8 年度有限要素法 1 構造強度設計 1. 塑性崩壊 1.3 疲労設計 ( 一部修正版 ) H8-1/6 早川 (R : 夏学期の復習部分 ) 1. 塑性崩壊とその評価法 ( 極限解析 ) R 塑性崩壊 : 構造物として使用に耐えないほどの過度の塑性変形 全断面降伏 前提 : 弾完全塑性材モデル E ひずみ硬化ありひずみ硬化なし : 降伏強さ E : ヤング率 ε 図 1.3 弾完全塑性材モデルの応力

More information

構造力学Ⅰ第12回

構造力学Ⅰ第12回 第 回材の座屈 (0 章 ) p.5~ ( 復習 ) モールの定理 ( 手順 ) 座屈とは 荷重により梁に生じた曲げモーメントをで除して仮想荷重と考える 座屈荷重 偏心荷重 ( 曲げと軸力 ) 断面の核 この仮想荷重に対するある点でのせん断力 たわみ角に相当する曲げモーメント たわみに相当する ( 例 ) 単純梁の支点のたわみ角 : は 図 を仮想荷重と考えたときの 点の支点反力 B は 図 を仮想荷重と考えたときのB

More information

問題 2-1 ボルト締結体の設計 (1-1) 摩擦係数の推定図 1-1 に示すボルト締結体にて, 六角穴付きボルト (M12) の締付けトルクとボルト軸力を測定した ボルトを含め材質はすべて SUS304 かそれをベースとしたオーステナイト系ステンレス鋼である 測定時, ナットと下締結体は固着させた

問題 2-1 ボルト締結体の設計 (1-1) 摩擦係数の推定図 1-1 に示すボルト締結体にて, 六角穴付きボルト (M12) の締付けトルクとボルト軸力を測定した ボルトを含め材質はすべて SUS304 かそれをベースとしたオーステナイト系ステンレス鋼である 測定時, ナットと下締結体は固着させた 問題 2-1 ボルト締結体の設計 (1-1) 摩擦係数の推定図 1-1 に示すボルト締結体にて, 六角穴付きボルト (M12) の締付けトルクとボルト軸力を測定した ボルトを含め材質はすべて SUS304 かそれをベースとしたオーステナイト系ステンレス鋼である 測定時, ナットと下締結体は固着させた 測定データを図 1-2 に示す データから, オーステナイト系ステンレス鋼どうしの摩擦係数を推定せよ

More information

Developement of Plastic Collocation Method Extension of Plastic Node Method by Yukio Ueda, Member Masahiko Fujikubo, Member Masahiro Miura, Member Sum

Developement of Plastic Collocation Method Extension of Plastic Node Method by Yukio Ueda, Member Masahiko Fujikubo, Member Masahiro Miura, Member Sum Developement of Plastic Collocation Method Extension of Plastic Node Method by Yukio Ueda, Member Masahiko Fujikubo, Member Masahiro Miura, Member Summary Previously, the authors developed the plastic

More information

PowerPoint Presentation

PowerPoint Presentation CAE 演習 :Eas-σ lite に よる応力解析 目標 : 機械工学実験 はりの曲げと応力集中 の有限要素法による応力解析を行う 用語 CAD: Computer Aided Design CAE: Computer Aided Engineering コンピュータシミュレーション CAM: Computer Aided Manufacturing スケジュール. 有限要素法の基礎と応用例 2.

More information

Microsoft PowerPoint - 講義PPT2019.ppt [互換モード]

Microsoft PowerPoint - 講義PPT2019.ppt [互換モード] . CA 演習 :as σ lite による応力解析 目標 : 機械工学実験 はりの曲げと応力集中 の有限要素法による応力解析を行う CAD: Computer Aided Design CA: Computer Aided ngineering コンピュータシミュレーション CAM: Computer Aided Manufacturing スケジュール. 有限要素法の基礎と応用例. as σの使い方の説明.

More information

14 FEM [1] 1992 [3] 1(a)(b) 1(c) [2] 2 ( 財 ) 日本海事協会 36 平成 14 年度 ClassNK 研究発表会

14 FEM [1] 1992 [3] 1(a)(b) 1(c) [2] 2 ( 財 ) 日本海事協会 36 平成 14 年度 ClassNK 研究発表会 1. 1(1) 1(2)[1] 1992 [2] 1992 [3] 100 100 比率 (%) 80 60 40 変形腐食亀裂 相対損傷数 80 60 40 変形腐食亀裂 20 20 0 0 5 10 15 20 25 船齢 ( 年 ) 0 0 5 10 15 20 25 船齢 ( 年 ) (1) Ratio of Each Damage (2) Number of Damage Fig.1 Relation

More information

Slide 1

Slide 1 Release Note Release Date : Jun. 2015 Product Ver. : igen 2015 (v845) DESIGN OF General Structures Integrated Design System for Building and General Structures Enhancements Analysis & Design 3 (1) 64ビットソルバー及び

More information

4) 横桁の照査位置 P.27 修正事項 横桁 No07~No18 ( 少主桁のNo01からNo06は格子計算による 断面力が発生しないので省略 ) 照査点 No 溶接部名称 継手名称 等級 1 横桁腹板上 主桁腹板 すみ肉 F H 2 横桁腹板下 主桁腹板 すみ肉 F H ただし 上記の 2 つ照

4) 横桁の照査位置 P.27 修正事項 横桁 No07~No18 ( 少主桁のNo01からNo06は格子計算による 断面力が発生しないので省略 ) 照査点 No 溶接部名称 継手名称 等級 1 横桁腹板上 主桁腹板 すみ肉 F H 2 横桁腹板下 主桁腹板 すみ肉 F H ただし 上記の 2 つ照 鋼道路橋の疲労設計資料 4. 疲労設計計算例 の横桁計算の修正 横桁の主桁への連結部の溶接にて 腹板部にすみ肉溶接を フランジ部に完全溶込溶接を採用した設計事例を掲載していますが 溶接部の応力計算の方法を修正いたします 異なる種類の溶接を混在させた場合には 母材の全断面を効とした場合に比べ 各部位の応力の分担が変わるわるため 溶接部の断面を用いて断面性能を計算し 応力を計算しました 詳細については

More information

Microsoft Word - JP FEA Post Text Neutral File Format.doc

Microsoft Word - JP FEA Post Text Neutral File Format.doc FEA Post Text File Format 1. 共通事項 (1) ファイル拡張子 *.fpt (FEA Post Text File Format) () 脚注 脚注記号 : セミコロン (;) 脚注記号の後に来るテキストは変換されない (3) データ区分 データ区分記号 :, (4) コマンド表示 コマンドの前は * 記号を付けてデータと区分する Example. 単位のコマンド *UNIT

More information

<4D F736F F D208E9197BF DDA89D78E8E8CB182CC8FDA8DD78C7689E6816A2E646F6378>

<4D F736F F D208E9197BF DDA89D78E8E8CB182CC8FDA8DD78C7689E6816A2E646F6378> 資料 - 載荷試験の詳細計画 第 回伊達橋補修検討委員会資料 平成 年 月 日 . 載荷試験の詳細計画 表 -. 部位 格点形式 溶接継ぎ手形式の階層化 ( 横桁と垂直材 下弦材との接合部応力 ). 疲労の観点からの原因究明および今後の亀裂の進展性の把握を目的とする計測 () 載荷試験の目的載荷試験は 以下の項目を把握 検証するために実施するものである (A) 横桁と垂直材 下弦材との接合部応力垂直材側の溶接止端部に応力を生じさせていると考えられる横桁の面外応力を把握するため

More information

主な新機能および更新機能 : ソルバーインターフェース ADVENTURE Cluster コネクタ要素ソリッド要素タイプ疲労解析名称出力 Nastran シェルモデル読み込み改良名称変更 Gravity 出力改良 SETカード改良 LBC>Connection Type : Connector P

主な新機能および更新機能 : ソルバーインターフェース ADVENTURE Cluster コネクタ要素ソリッド要素タイプ疲労解析名称出力 Nastran シェルモデル読み込み改良名称変更 Gravity 出力改良 SETカード改良 LBC>Connection Type : Connector P 主な新機能および更新機能 : ソルバーインターフェース TSV-Solver 接触条件非線形静解析モーダル周波数 / 過渡応答解析定常熱伝導解析 Abaqus 名称読み込み超弾性材料読み込み COUPLING 出力改良 RBE2 出力改良要素特性コマンド改良ガスケット要素粘着要素コンクリート材料流体材料特性 (Nastran, Actran 含 ) 要素面定義出力改良 LBC>Contact>Solver:Dynamis

More information

< B795FB8C6094C28F6F97CD97E12E786477>

< B795FB8C6094C28F6F97CD97E12E786477> 長方形板の計算システム Ver3.0 適用基準 級数解法 ( 理論解析 ) 構造力学公式集( 土木学会発行 /S61.6) 板とシェルの理論( チモシェンコ ヴォアノフスキークリ ガー共著 / 長谷川節訳 ) 有限要素法解析 参考文献 マトリックス構造解析法(J.L. ミーク著, 奥村敏恵, 西野文雄, 西岡隆訳 /S50.8) 薄板構造解析( 川井忠彦, 川島矩郎, 三本木茂夫 / 培風館 S48.6)

More information

Microsoft Word - 1B2011.doc

Microsoft Word - 1B2011.doc 第 14 回モールの定理 ( 単純梁の場合 ) ( モールの定理とは何か?p.11) 例題 下記に示す単純梁の C 点のたわみ角 θ C と, たわみ δ C を求めよ ただし, 部材の曲げ 剛性は材軸に沿って一様で とする C D kn B 1.5m 0.5m 1.0m 解答 1 曲げモーメント図を描く,B 点の反力を求める kn kn 4 kn 曲げモーメント図を描く knm 先に得られた曲げモーメントの値を

More information

PowerPoint Presentation

PowerPoint Presentation Non-linea factue mechanics き裂先端付近の塑性変形 塑性域 R 破壊進行領域応カ特異場 Ω R R Hutchinson, Rice and Rosengen 全ひずみ塑性理論に基づいた解析 現段階のひずみは 除荷がないとすると現段階の応力で一義的に決まる 単純引張り時の応カーひずみ関係 ( 構成方程式 ): ( ) ( ) n () y y y ここで α,n 定数, /

More information

計算例 5t超え~10t以下用_(補強リブ無しのタイプ)

計算例 5t超え~10t以下用_(補強リブ無しのタイプ) 1 標準吊金具の計算事例 5t 超え ~10t 以下用 ( 補強リブ無しのタイプ ) 015 年 1 月 修正 1:015.03.31 ( 社 ) 鋼管杭 鋼矢板技術協会製品技術委員会 1. 検討条件 (1) 吊金具形状 寸法 ( 材料 : 引張強度 490 N/mm 級 ) 00 30 φ 65 90 30 150 150 60 15 () 鋼管仕様 外径 板厚 長さ L 質量 (mm) (mm)

More information

<4D F736F F D208D5C91A297CD8A7793FC96E591E631308FCD2E646F63>

<4D F736F F D208D5C91A297CD8A7793FC96E591E631308FCD2E646F63> 第 1 章モールの定理による静定梁のたわみ 1-1 第 1 章モールの定理による静定梁のたわみ ポイント : モールの定理を用いて 静定梁のたわみを求める 断面力の釣合と梁の微分方程式は良く似ている 前章では 梁の微分方程式を直接積分する方法で 静定梁の断面力と変形状態を求めた 本章では 梁の微分方程式と断面力による力の釣合式が類似していることを利用して 微分方程式を直接解析的に解くのではなく 力の釣合より梁のたわみを求める方法を学ぶ

More information

対象船舶 (*) 設計荷重を負荷した構造解析による応力の評価 ( 山波 谷波 静荷重 ) ハルガーダモーメントによる応力の評価 ( 梁理論 ) 公称応力範囲 公称平均応力 公称応力範囲 公称平均応力 (**) 最大 HS 応力範囲 応力集中係数 構造的 HS 平均応力 等価 HS 応力範囲 等価応力

対象船舶 (*) 設計荷重を負荷した構造解析による応力の評価 ( 山波 谷波 静荷重 ) ハルガーダモーメントによる応力の評価 ( 梁理論 ) 公称応力範囲 公称平均応力 公称応力範囲 公称平均応力 (**) 最大 HS 応力範囲 応力集中係数 構造的 HS 平均応力 等価 HS 応力範囲 等価応力 疲労強度評価ガイドラインの概要 ( ダブルハルタンカー編 ) 1. はじめに NK では 船体構造の実用的な疲労強度評価手法として ダブルハルタンカーの大骨に対する評価としての 疲労強度評価ガイドライン ( ダブルハルタンカー編 ) 及びダブルハルタンカー並びにバルクキャリヤーの縦通肋骨に対する評価としての 縦通肋骨疲労強度評価暫定指針 を開発している これらガイドライン及び暫定指針は 共通した設計荷重の考え方及び強度評価判定基準に基づく評価手法を提示するものである

More information

国土技術政策総合研究所資料

国土技術政策総合研究所資料 5. 鉄筋コンクリート橋脚の耐震補強設計における考え方 5.1 平成 24 年の道路橋示方書における鉄筋コンクリート橋脚に関する規定の改定のねらい H24 道示 Ⅴの改定においては, 橋の耐震性能と部材に求められる限界状態の関係をより明確にすることによる耐震設計の説明性の向上を図るとともに, 次の2 点に対応するために, 耐震性能に応じた限界状態に相当する変位を直接的に算出する方法に見直した 1)

More information

The Evaluation on Impact Strength of Structural Elements by Means of Drop Weight Test Elastic Response and Elastic Limit by Hiroshi Maenaka, Member Sh

The Evaluation on Impact Strength of Structural Elements by Means of Drop Weight Test Elastic Response and Elastic Limit by Hiroshi Maenaka, Member Sh The Evaluation on Impact Strength of Structural Elements by Means of Drop Weight Test Elastic Response and Elastic Limit by Hiroshi Maenaka, Member Shigeru Kitamura, Member Masaaki Sakuma Genya Aoki, Member

More information

Super Build/MC1 - S梁継手の計算

Super Build/MC1 - S梁継手の計算 *** Super Build/MC1 - S 梁継手の計算 *** 70-899180 [Sample 01/10/10 10:7 PGE- 1 基本事項 工事名 : 設計例略称 : Sample 日付 : 01/06/08 1:00:00 担当者 : Union System 解析結果 : 表示桁未満で切り捨てを行った 計算条件 検討内容 : 全強接合 保有耐力接合 部材耐力計算 全強接合の設計用応力は

More information

Microsoft Word - 建築研究資料143-1章以外

Microsoft Word - 建築研究資料143-1章以外 3.H 形断面柱を用いた柱梁接合部 本章では,H 形断面柱を用いた柱梁接合部に関して,6 つの部位の接合部ディテールを紹介し, それらについて, それぞれ問題となる点や改善策等を示す. (1) 柱梁接合部の標準ディテール 対象部位の概要 H 形柱を用いた柱梁接合部の標準ディテール 検討対象とする接合部ディテール 検討課題 各接合形式における柱梁接合部の各部位の材質 板厚を検討する. 34 検討課題に対応した接合部ディテールの例

More information

材料強度試験 ( 曲げ試験 ) [1] 概要 実験 実習 Ⅰ の引張り試験に引続き, 曲げ試験による機械特性評価法を実施する. 材料力学で学ぶ梁 の曲げおよびたわみの基礎式の理解, 材料への理解を深めることが目的である. [2] 材料の変形抵抗変形抵抗は, 外力が付与された時の変形に対する各材料固有

材料強度試験 ( 曲げ試験 ) [1] 概要 実験 実習 Ⅰ の引張り試験に引続き, 曲げ試験による機械特性評価法を実施する. 材料力学で学ぶ梁 の曲げおよびたわみの基礎式の理解, 材料への理解を深めることが目的である. [2] 材料の変形抵抗変形抵抗は, 外力が付与された時の変形に対する各材料固有 材料強度試験 ( 曲げ試験 [] 概要 実験 実習 Ⅰ の引張り試験に引続き, 曲げ試験による機械特性評価法を実施する. 材料力学で学ぶ梁 の曲げおよびたわみの基礎式の理解, 材料への理解を深めることが目的である. [] 材料の変形抵抗変形抵抗は, 外力が付与された時の変形に対する各材料固有の抵抗値のことであり, 一般に素材の真応力 - 真塑性ひずみ曲線で表される. 多くの金属材料は加工硬化するため,

More information

Microsoft PowerPoint - zairiki_3

Microsoft PowerPoint - zairiki_3 材料力学講義 (3) 応力と変形 Ⅲ ( 曲げモーメント, 垂直応力度, 曲率 ) 今回は, 曲げモーメントに関する, 断面力 - 応力度 - 変形 - 変位の関係について学びます 1 曲げモーメント 曲げモーメント M 静定力学で求めた曲げモーメントも, 仮想的に断面を切ることによって現れる内力です 軸方向力は断面に働く力 曲げモーメント M は断面力 曲げモーメントも, 一つのモーメントとして表しますが,

More information

屋根ブレース偏心接合の研究開発

屋根ブレース偏心接合の研究開発 論文 報告 屋根ブレース偏心接合の研究開発 ~BT 接合ピースを用いた大梁 小梁 屋根ブレース接合部 ~ Research and Development of Eccentric Joints in Roof Brace 戸成建人 * Tatsuto TONARI 谷ヶ﨑庄二 * Shoji YAGASAKI 池谷研一 * Kenichi IKETANI 中澤潤 * Jun NAKAZAWA 川田工業システム建築の鉄骨生産ラインの特徴を活かして製作コストを低減するために,

More information

Microsoft PowerPoint - elast.ppt [互換モード]

Microsoft PowerPoint - elast.ppt [互換モード] 弾性力学入門 年夏学期 中島研吾 科学技術計算 Ⅰ(48-7) コンピュータ科学特別講義 Ⅰ(48-4) elast 弾性力学 弾性力学の対象 応力 弾性力学の支配方程式 elast 3 弾性力学 連続体力学 (Continuum Mechanics) 固体力学 (Solid Mechanics) の一部 弾性体 (lastic Material) を対象 弾性論 (Theor of lasticit)

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 材料実験演習 第 6 回 2015.05.17 スケジュール 回 月 / 日 標題 内容 授業種別 時限 講義 演習 6,7 5 月 17 日 8 5 月 24 日 5 月 31 日 9,10 6 月 7 日 11 6 月 14 日 講義 曲げモーメントを受ける鉄筋コンクリート(RC) 梁の挙動その1 構造力学の基本事項その2 RC 梁の特徴演習 曲げを受ける梁の挙動 実験 鉄筋コンクリート梁の載荷実験レポート

More information

材料の力学解答集

材料の力学解答集 材料の力学 ( 第 章 ) 解答集 ------------------------------------------------------------------------------- 各種応力の計算問題 (No1) 1. 断面積 1mm の材料に 18N の引張荷重が働くとき, 断面に生じる応力はどれほどか ( 18(N/mm ) または 18(MP)) P 18( N) 18 N /

More information

スライド 1

スライド 1 CAE 演習 有限要素法のノウハウ ( 基礎編 ) 1. はじめに 有限要素法はポピュラーなツールである一方 解析で苦労している人が多い 高度な利用技術が必要 ( 解析の流れに沿って説明 ) 2. モデル化 要素の選択 3. メッシュ分割の工夫 4. 境界条件の設定 5. 材料物性の入力 6.7. 解析の結果の検証と分析 2. モデル化 要素の選択 モデルを単純化していかに解析を効率的 高精度に行うか?

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 材料実験演習 第 6 回 2017.05.16 スケジュール 回 月 / 日 標題 内容 授業種別 時限 実験レポート評価 講義 演習 6,7 5 月 16 日 8 5 月 23 日 5 月 30 日 講義 曲げモーメントを受ける鉄筋コンクリート(RC) 梁の挙動その1 構造力学の基本事項その2 RC 梁の特徴演習 曲げを受ける梁の挙動 実験 鉄筋コンクリート梁の載荷実験レポート 鉄筋コンクリート梁実験レポート作成

More information

Microsoft PowerPoint - 知財報告会H20kobayakawa.ppt [互換モード]

Microsoft PowerPoint - 知財報告会H20kobayakawa.ppt [互換モード] 亀裂の変形特性を考慮した数値解析による岩盤物性評価法 地球工学研究所地圏科学領域小早川博亮 1 岩盤構造物の安定性評価 ( 斜面の例 ) 代表要素 代表要素の応力ひずみ関係 変形: 弾性体の場合 :E,ν 強度: モールクーロン破壊規準 :c,φ Rock Mech. Rock Engng. (2007) 40 (4), 363 382 原位置試験 せん断試験, 平板載荷試験 原位置三軸試験 室内試験

More information

第3章 ひずみ

第3章 ひずみ 第 4 章 応力とひずみの関係 4. 単軸応力を受ける弾性体の応力とひずみの関係 温度一定の下で, 負荷による変形が徐荷によって完全に回復する場合を広義の弾性というが, 狭義の弾 性では, 負荷過程と徐荷過程で応力 - ひずみ関係が一致しない場合は含めず ( 図 - 参照 ), 与えられたひ ずみ状態に対して応力が一意に定まる, つまり応力がひずみの関数と して表される. このような物体を狭義の弾性体

More information

問題-1.indd

問題-1.indd 科目名学科 学年 組学籍番号氏名採点結果 016 年度材料力学 Ⅲ 問題 1 1 3 次元的に外力負荷を受ける物体を考える際にデカルト直交座標 - を採る 物体 内のある点 を取り囲む微小六面体上に働く応力 が v =- 40, = 60 =- 30 v = 0 = 10 v = 60 である 図 1 の 面上にこれらの応力 の作用方向を矢印で記入し その脇にその矢印が示す応力成分を記入しなさい 図

More information

研究成果報告書

研究成果報告書 様式 C-19 科学研究費助成事業 ( 科学研究費補助金 ) 研究成果報告書 平成 25 年 6 月 7 日現在 機関番号 :16301 研究種目 : 基盤研究 (C) 研究期間 :2010~2012 課題番号 :22560793 研究課題名 ( 和文 ) ハット型スチフナを有する GFR 防撓パネルの圧壊強度評価に関する研究研究課題名 ( 英文 ) Stud on Evaluation of Compressive

More information

Autodesk Inventor Skill Builders Autodesk Inventor 2010 構造解析の精度改良 メッシュリファインメントによる収束計算 予想作業時間:15 分 対象のバージョン:Inventor 2010 もしくはそれ以降のバージョン シミュレーションを設定する際

Autodesk Inventor Skill Builders Autodesk Inventor 2010 構造解析の精度改良 メッシュリファインメントによる収束計算 予想作業時間:15 分 対象のバージョン:Inventor 2010 もしくはそれ以降のバージョン シミュレーションを設定する際 Autodesk Inventor Skill Builders Autodesk Inventor 2010 構造解析の精度改良 メッシュリファインメントによる収束計算 予想作業時間:15 分 対象のバージョン:Inventor 2010 もしくはそれ以降のバージョン シミュレーションを設定する際に 収束判定に関するデフォルトの設定をそのまま使うか 修正をします 応力解析ソルバーでは計算の終了を判断するときにこの設定を使います

More information

1/14 モールの定理を用いた変位計算 CAELinux による 3D 解析とシェル解析の比較荒川誠目次 1. 解析概要 2. モールの定理を用いた変位算出 3.CAELinux Salome-meca を用いたシェル解析 4.CAELinux Salome-meca を用いた 3D 解析 5. 結

1/14 モールの定理を用いた変位計算 CAELinux による 3D 解析とシェル解析の比較荒川誠目次 1. 解析概要 2. モールの定理を用いた変位算出 3.CAELinux Salome-meca を用いたシェル解析 4.CAELinux Salome-meca を用いた 3D 解析 5. 結 1/14 モールの定理を用いた変位計算 CAELinux による 3D 解析とシェル解析の比較荒川誠目次 1. 解析概要 2. モールの定理を用いた変位算出 3.CAELinux Salome-meca を用いたシェル解析 4.CAELinux Salome-meca を用いた 3D 解析 5. 結果比較 1. 概要 : CAELinux Salome-meca には 3D 解析だけでは無く シェル解析機能も備わっている

More information

05設計編-標準_目次.indd

05設計編-標準_目次.indd 2012 年制定 コンクリート標準示方書 [ 設計編 : 本編 ] 目 次 1 章 総 則 1 1.1 適用の範囲 1 1.2 設計の基本 2 1.3 用語の定義 4 1.4 記 号 7 2 章 要求性能 13 2.1 一 般 13 2.2 耐久性 13 2.3 安全性 14 2.4 使用性 14 2.5 復旧性 14 2.6 環境性 15 3 章 構造計画 16 3.1 一 般 16 3.2 要求性能に関する検討

More information

<4D F736F F D208D7E959A82A882E682D18F498BC78BC882B B BE98C60816A2E646F63>

<4D F736F F D208D7E959A82A882E682D18F498BC78BC882B B BE98C60816A2E646F63> 降伏時および終局時曲げモーメントの誘導 矩形断面 日中コンサルタント耐震解析部松原勝己. 降伏時の耐力と変形 複鉄筋の矩形断面を仮定する また コンクリートの応力ひずみ関係を非線形 放物線型 とする さらに 引張鉄筋がちょうど降伏ひずみに達しているものとし コンクリート引張応力は無視する ⅰ 圧縮縁のひずみ

More information

Microsoft PowerPoint - fuseitei_6

Microsoft PowerPoint - fuseitei_6 不静定力学 Ⅱ 骨組の崩壊荷重の計算 不静定力学 Ⅱ では, 最後の問題となりますが, 骨組の崩壊荷重の計算法について学びます 1 参考書 松本慎也著 よくわかる構造力学の基本, 秀和システム このスライドの説明には, 主にこの参考書の説明を引用しています 2 崩壊荷重 構造物に作用する荷重が徐々に増大すると, 構造物内に発生する応力は増加し, やがて, 構造物は荷重に耐えられなくなる そのときの荷重を崩壊荷重あるいは終局荷重という

More information

有限要素法法による弾弾性変形解析 (Gmsh+Calculix)) 海洋エネルギギー研究センター今井 問題断面が1mmx1mm 長さ 20mmm の鋼の一端端を固定 他他端に点荷重重をかけた場場合の先端変変位および最大応力を求求める P Equation Chapter 1 Section 1 l

有限要素法法による弾弾性変形解析 (Gmsh+Calculix)) 海洋エネルギギー研究センター今井 問題断面が1mmx1mm 長さ 20mmm の鋼の一端端を固定 他他端に点荷重重をかけた場場合の先端変変位および最大応力を求求める P Equation Chapter 1 Section 1 l 有限要素法法による弾弾性変形解析 (Gmsh+Calculix)) 海洋エネルギギー研究センター今井 問題断面が1mmx1mm 長さ 20mmm の鋼の一端端を固定 他他端に点荷重重をかけた場場合の先端変変位および最大応力を求求める P Equation Chapter 1 Section 1 l δ 1 形状の作作成 (Gmsh) c: gmsh test1 フォルダを作る http://geuz.org/gmsh/#

More information

配管設計解析に関する補足技術資料 全 6 頁 曲げモーメントを負荷した場合のエルボの変形 MSP0002-R 年 5 月 31 日 エムエス配管解析技術水野貞男 1. まえがき曲げモーメントを負荷した場合のエルボの変形に就いては, 配管の設計解析法 (1) の 項で説明して

配管設計解析に関する補足技術資料 全 6 頁 曲げモーメントを負荷した場合のエルボの変形 MSP0002-R 年 5 月 31 日 エムエス配管解析技術水野貞男 1. まえがき曲げモーメントを負荷した場合のエルボの変形に就いては, 配管の設計解析法 (1) の 項で説明して 配管設計解析に関する補足技術資料 全 6 頁 曲げモーメントを負荷した場合のエルボの変形 SP0002-R00 2013 年 5 月 31 日 エムエス配管解析技術水野貞男 1. まえがき曲げモーメントを負荷した場合のエルボの変形に就いては, 配管の設計解析法 (1) の 4.1.5 項で説明しており, 特に, 面内曲げに関しては, 偏平化が起きる力学的原因も解説した 紙幅の関係から, 配管の設計解析法

More information

円筒面で利用可能なARマーカ

円筒面で利用可能なARマーカ 円筒面で利用可能な AR マーカ AR Marker for Cylindrical Surface 2014 年 11 月 14 日 ( 金 ) 眞鍋佳嗣千葉大学大学院融合科学研究科 マーカベース AR 二次元マーカはカメラ姿勢の推定, 拡張現実等広い研究分野で利用されている 現実の風景 表示される画像 デジタル情報を付加 カメラで撮影し, ディスプレイに表示 使用方法の単純性, 認識の安定性からマーカベース

More information

Microsoft Word - 予稿集表紙.doc

Microsoft Word - 予稿集表紙.doc ミクロ組織に基づくフェライト セメンタイト鋼の脆性破壊発生予測 柴沼一樹東京大学大学院工学系研究科 ミクロ組織に基づくフェライト セメンタイト鋼の脆性破壊発生予測 柴沼一樹 東京大学 大学院工学系研究科システム創成学専攻 113-8656 東京都文京区本郷 7-3-1 shibanuma@struct.t.-u-tokyo.ac.jp 近年, 構造物に使用される鋼材の高張力化や使用環境の過酷化が進み,

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション SALOME-MECA を使用した RC 構造物の弾塑性解析 終局耐力と弾塑性有限要素法解析との比較 森村設計信高未咲 共同研究者岐阜工業高等専門学校柴田良一教授 研究背景 2011 年に起きた東北地方太平洋沖地震により多くの建築物への被害がみられた RC 構造の公共建築物で倒壊まではいかないものの大きな被害を負った報告もあるこれら公共建築物は災害時においても機能することが求められている今後発生が懸念されている大地震を控え

More information

<4D F736F F F696E74202D AB97CD8A E631318FCD5F AB8D5C90AC8EAE816A2E B8CDD8AB B83685D>

<4D F736F F F696E74202D AB97CD8A E631318FCD5F AB8D5C90AC8EAE816A2E B8CDD8AB B83685D> 弾塑性構成式 弾塑性応力 ひずみ解析における基礎式 応力の平衡方程式 ひずみの適合条件式 構成式 (), 全ひずみ理論 () 硬化則 () 塑性ポテンシャル理論の概要 ひずみ 応力の増分, 速度 弾性丸棒の引張変形を考える ( 簡単のため 公称 で考える ). 時間増分 dt 時刻 t 0 du u 時刻 t t 時刻 t t のひずみ, 応力 u, 微小な時間増分 dt におけるひずみ増分, 応力増分

More information

集水桝の構造計算(固定版編)V1-正規版.xls

集水桝の構造計算(固定版編)V1-正規版.xls 集水桝の構造計算 集水桝 3.0.5 3.15 横断方向断面の計算 1. 計算条件 11. 集水桝の寸法 内空幅 B = 3.000 (m) 内空奥行き L =.500 (m) 内空高さ H = 3.150 (m) 側壁厚 T = 0.300 (m) 底版厚 Tb = 0.400 (m) 1. 土質条件 土の単位体積重量 γs = 18.000 (kn/m 3 ) 土の内部摩擦角 φ = 30.000

More information

untitled

untitled 1 2 3 4 5 130mm 32mm UV-irradiation UV-cationic cure UV-cationic cure UV-cationic cure Thermal cationic Reaction heat cure Thermal cationic Cation Reaction heat cure Cation (a) UV-curing of

More information

BUILD.3SⅡ出力例

BUILD.3SⅡ出力例 U.N.009500 ** BUILD.3SⅡ(Ver 1.50) ** Page 1 ***************** ** ****************** ********************************** ********************** ** ********** ******* ****** ******* ****** ************

More information

スライド 1

スライド 1 H25 創造設計演習 ~ 振動設計演習 1~ 1 ゆれない片持ち梁の設計 振動設計演習全体 HP(2011 年度まで使用 今は閲覧のみ ): http://hockey.t.u-tokyo.ac.jp/shindousekkei/index.html M4 取付ネジ 2 Xin 加振器 50mm 幅 30mm 材料 :A2017または ABS 樹脂 計測点 :Xout 2mm? Hz CAD 所望の特性になるまで繰り返す?

More information

CLT による木造建築物の設計法の開発 ( その 2)~ 構造設計法の開発 ~ 平成 26 年度建築研究所講演会 CLT による木造建築物の設計法の開発 ( その 2)~ 構造設計法の開発 ~ 構造研究グループ荒木康弘 CLT による木造建築物の設計法の開発 ( その 2)~ 構造設計法の開発 ~

CLT による木造建築物の設計法の開発 ( その 2)~ 構造設計法の開発 ~ 平成 26 年度建築研究所講演会 CLT による木造建築物の設計法の開発 ( その 2)~ 構造設計法の開発 ~ 構造研究グループ荒木康弘 CLT による木造建築物の設計法の開発 ( その 2)~ 構造設計法の開発 ~ CLT による木造建築物の設計法の開発 ( その 2)~ 構造設計法の開発 ~ 構造研究グループ荒木康弘 CLT 構造の特徴 構法上の特徴 構造上の特徴 講演内容 構造設計法の策定に向けた取り組み CLT 建物の現状の課題 設計法策定に向けた取り組み ( モデル化の方法 各種実験による検証 ) 今後の展望 2 構造の構法上の特徴軸組構法の建て方 鉛直荷重水平力 ( 自重 雪地震 風 ) 柱や梁で支持壁で抵抗

More information

Microsoft Word - 技術資料Vol.2.docx

Microsoft Word - 技術資料Vol.2.docx 技術資料 Vol.2 Civil Engineering & Consultants 株式会社クレアテック東京都千代田区西神田 2 丁目 5-8 共和 15 番館 6 階 TEL:03-6268-9108 / FAX:03-6268-9109 http://www.createc-jp.com/ ( 株 ) クレアテック技術資料 Vol.2 P.1 解析種別キーワード解析の目的解析の概要 3 次元静的線形解析

More information

SPACEstJ User's Manual

SPACEstJ User's Manual 6-1 第 6 章部材の断面力計算 ポイント : 部材断面力の計算 両端の変位より両端外力を計算する 本章では 両端の変位を用いて部材両端の材端力を求め 断面内の応力との釣合より 断面力を求める方法を学ぶ ここでは 部材荷重は等分布荷重を考慮しているため 基本応力と節点荷重による断面力を重ね合わせて 実際の部材断面力を求める 6.1 はじめに キーワード 部材断面力の計算部材座標系の変位等分布荷重による基本応力

More information

<4D F736F F D2097CD8A7793FC96E582BD82ED82DD8A E6318FCD2E646F63>

<4D F736F F D2097CD8A7793FC96E582BD82ED82DD8A E6318FCD2E646F63> - 第 章たわみ角法の基本式 ポイント : たわみ角法の基本式を理解する たわみ角法の基本式を梁の微分方程式より求める 本章では たわみ角法の基本式を導くことにする 基本式の誘導法は各種あるが ここでは 梁の微分方程式を解いて基本式を求める方法を採用する この本で使用する座標系は 右手 右ネジの法則に従った座標を用いる また ひとつの部材では 図 - に示すように部材の左端の 点を原点とし 軸線を

More information

スライド 1

スライド 1 第 3 章 鉄筋コンクリート工学の復習 鉄筋によるコンクリートの補強 ( 圧縮 ) 鉄筋で補強したコンクリート柱の圧縮を考えてみよう 鉄筋とコンクリートの付着は十分で, コンクリートと鉄筋は全く同じように動くものとする ( 平面保持の仮定 ) l Δl 長さの柱に荷重を載荷したときの縮み量をとする 鉄筋及びコンクリートの圧縮ひずみは同じ量なのでで表す = Δl l 鉄筋及びコンクリートの応力はそれぞれの弾性定数を用いて次式で与えられる

More information

Microsoft PowerPoint - 静定力学講義(6)

Microsoft PowerPoint - 静定力学講義(6) 静定力学講義 (6) 静定ラーメンの解き方 1 ここでは, 静定ラーメンの応力 ( 断面力 ) の求め方について学びます 1 単純ばり型ラーメン l まず, ピンとローラーで支持される単純支持ばり型のラーメン構造の断面力の求め方について説明します まず反力を求める H V l V H + = 0 H = Y V + V l = 0 V = l V Vl+ + + l l= 0 + l V = + l

More information

全学ゼミ 構造デザイン入門 構造解析ソフトの紹介 解析ソフト 1

全学ゼミ 構造デザイン入門 構造解析ソフトの紹介 解析ソフト 1 全学ゼミ 構造デザイン入門 構造の紹介 1 次回 11/15 解析演習までに準備すること 集合場所 計算機センターE26教室 デザインをだいたい決定する 変更可 側面図 横から 平面図 上から 下面図 下から などを作成 部材は線 接合部は点で表現 部材表 寸法 部材長さを決定 40m以下を確認 B B A H H H A 側面図 H H 部材 部材表 長さ 個数 小計 A 1.2m 2 2.4m

More information

第 5 章 構造振動学 棒の振動を縦振動, 捩り振動, 曲げ振動に分けて考える. 5.1 棒の縦振動と捩り振動 まっすぐな棒の縦振動の固有振動数 f[ Hz] f = l 2pL である. ただし, L [ 単位 m] は棒の長さ, [ 2 N / m ] 3 r[ 単位 Kg / m ] E r

第 5 章 構造振動学 棒の振動を縦振動, 捩り振動, 曲げ振動に分けて考える. 5.1 棒の縦振動と捩り振動 まっすぐな棒の縦振動の固有振動数 f[ Hz] f = l 2pL である. ただし, L [ 単位 m] は棒の長さ, [ 2 N / m ] 3 r[ 単位 Kg / m ] E r 第 5 章 構造振動学 棒の振動を縦振動, 捩り振動, 曲げ振動に分けて考える 5 棒の縦振動と捩り振動 まっすぐな棒の縦振動の固有振動数 f[ Hz] f l pl である ただし, L [ 単位 m] は棒の長さ, [ N / m ] [ 単位 Kg / m ] E は (5) E 単位は棒の材料の縦弾性係数 ( ヤング率 ) は棒の材料の単位体積当りの質量である l は境界条件と振動モードによって決まる無

More information

Super Build/FA1出力サンプル

Super Build/FA1出力サンプル *** Super Build/FA1 *** [ 計算例 7] ** UNION SYSTEM ** 3.44 2012/01/24 20:40 PAGE- 1 基本事項 計算条件 工 事 名 : 計算例 7 ( 耐震補強マニュアル設計例 2) 略 称 : 計算例 7 日 付 :2012/01/24 担 当 者 :UNION SYSTEM Inc. せん断による変形の考慮 : する 剛域の考慮 伸縮しない材(Aを1000

More information

Salome-Mecaを使用した メッシュ生成(非構造格子)

Salome-Mecaを使用した メッシュ生成(非構造格子) Salome-Meca を使用した 構造解析入門 秋山善克 1 Salome-Meca とは EDF( フランス電力公社 ) が提供している Linux ベースのオープンソース Code_Aster : 解析ソルバー Salome-Meca : プリポストを中心とした統合プラットフォーム :SALOME Platform に Code_Aster をモジュールとして組み込んだもの Code_Aster

More information

実船における YP4 鋼の使用状況とその実績評価 Application ratio of high tensile steels (w%) Ratio of each type of steel (w%) R & D for TMCP Technology R & D for TMCP Steel

実船における YP4 鋼の使用状況とその実績評価 Application ratio of high tensile steels (w%) Ratio of each type of steel (w%) R & D for TMCP Technology R & D for TMCP Steel YP4 1. TMCP YP4 1 2 YP4 2 YP4 YP4 NK 1 NK 2. 2.1 TMCP TMCP 198 HT TMCP Fig.1 TMCP HT 197 YP32 HT 2% TMCP YP32/36 198 7% 2 2% TMCP YP4 4kgf/mm 2 198 12 13 8. 1 ( 財 ) 日本海事協会 49 平成 13 年度 ClassNK 研究発表会 実船における

More information

<4D F736F F D208D5C91A297CD8A7793FC96E591E631318FCD2E646F63>

<4D F736F F D208D5C91A297CD8A7793FC96E591E631318FCD2E646F63> 11-1 第 11 章不静定梁のたわみ ポイント : 基本的な不静定梁のたわみ 梁部材の断面力とたわみ 本章では 不静定構造物として 最も単純でしかも最も大切な両端固定梁の応力解析を行う ここでは 梁の微分方程式を用いて解くわけであるが 前章とは異なり 不静定構造物であるため力の釣合から先に断面力を決定することができない そのため 梁のたわみ曲線と同時に断面力を求めることになる この両端固定梁のたわみ曲線や断面力分布は

More information

第 2 章 構造解析 8

第 2 章 構造解析 8 第 2 章 構造解析 8 2.1. 目的 FITSAT-1 の外郭構造が, 打ち上げ時の加速度等によって発生する局所的な応力, 及び温度変化によってビスに発生する引っ張り応力に対して, 十分な強度を有することを明らかにする. 解析には SolidWorks2011 を用いた. 2.2. 適用文書 (1)JMX-2011303B: JEM 搭載用小型衛星放出機構を利用する小型衛星への構造 フラクチャコントロール計画書

More information

<4D F736F F D208D5C91A297CD8A7793FC96E591E6398FCD2E646F63>

<4D F736F F D208D5C91A297CD8A7793FC96E591E6398FCD2E646F63> 9-1 第 9 章静定梁のたわみ ポイント : 梁の微分方程式を用いて梁のたわみを求める 静定梁のたわみを計算 前章では 梁の微分方程式を導き 等分布荷重を受ける単純梁の解析を行った 本節では 導いた梁の微分方程式を利用し さらに多くの静定構造物の解析を行い 梁の最大たわみや変形状態を求めることにする さらに を用いて課題で解析した構造を数値計算し 解析結果を比較 検討しよう 9.1 はじめに キーワード梁の微分方程式単純梁の応力解析片持ち梁の応力解析

More information

スライド タイトルなし

スライド タイトルなし 高じん性モルタルを用いた 実大橋梁耐震実験の破壊解析 ブラインド 株式会社フォーラムエイト 甲斐義隆 1 チーム構成 甲斐義隆 : 株式会社フォーラムエイト 青戸拡起 :A-Works 代表 松山洋人 : 株式会社フォーラムエイト Brent Fleming : 同上 安部慶一郎 : 同上 吉川弘道 : 東京都市大学総合研究所教授 2 解析モデル 3 解析概要 使用プログラム :Engineer s

More information

Influence of Material and Thickness of the Specimen to Stress Separation of an Infrared Stress Image Kenji MACHIDA The thickness dependency of the temperature image obtained by an infrared thermography

More information

( 計算式は次ページ以降 ) 圧力各種梁の条件別の計算式の見出し 梁のタイプ 自由 案内付 支持 のタイプ 片持ち梁 短銃ん支持 支持 固定 固定 固定 固定 ====== はねだし単純梁 ====== 2 スパンの連続梁 集中 等分布 偏心分布 等偏分布 他の多スパン 条件につ いては 7 の説

( 計算式は次ページ以降 ) 圧力各種梁の条件別の計算式の見出し 梁のタイプ 自由 案内付 支持 のタイプ 片持ち梁 短銃ん支持 支持 固定 固定 固定 固定 ====== はねだし単純梁 ====== 2 スパンの連続梁 集中 等分布 偏心分布 等偏分布 他の多スパン 条件につ いては 7 の説 梁の図面と計算式 以下の梁の図面と計算式は鉄の溶接の設計に役立つと認められたものです 正 (+) と負 (-) が方程式に使用されている 正 (+) と負 (-) を含む記号が 必ずしも正しくない場合があるのでご注意ください また 以下の情報は一般向けの参考として提供されるもので 内容についての保証をするものではありません せん断図面において基準線の上は正 (+) です せん断図面において基準線の下は負

More information

Microsoft PowerPoint - シミュレーション工学-2010-第1回.ppt

Microsoft PowerPoint - シミュレーション工学-2010-第1回.ppt シミュレーション工学 ( 後半 ) 東京大学人工物工学研究センター 鈴木克幸 CA( Compter Aded geerg ) r. Jaso Lemo (SC, 98) 設計者が解析ツールを使いこなすことにより 設計の評価 設計の質の向上を図る geerg の本質の 計算機による支援 (CA CAM などより広い名前 ) 様々な汎用ソフトの登場 工業製品の設計に不可欠のツール 構造解析 流体解析

More information

疲労に関する重要知識 実機で疲労破壊起点となる鋭い切欠きや微小欠陥の取扱いについて

疲労に関する重要知識 実機で疲労破壊起点となる鋭い切欠きや微小欠陥の取扱いについて 原子力研究委員会 FQA2 小委員会疲労に関する重要知識 Subcommittee for Organizing Question and Answer of Fatigue Knowledge(Phase 2) 疲労に関する重要知識講演資料集 実機で疲労破壊起点となる鋭い切欠きや微小欠陥の取扱いについて この資料は,( 一社 ) 日本溶接協会原子力研究委員会 FQA2 小委員会における講演資料を掲載したものです.

More information

75 unit: mm Fig. Structure of model three-phase stacked transformer cores (a) Alternate-lap joint (b) Step-lap joint 3 4)

75 unit: mm Fig. Structure of model three-phase stacked transformer cores (a) Alternate-lap joint (b) Step-lap joint 3 4) 3 * 35 (3), 7 Analysis of Local Magnetic Properties and Acoustic Noise in Three-Phase Stacked Transformer Core Model Masayoshi Ishida Kenichi Sadahiro Seiji Okabe 3.7 T 5 Hz..4 3 Synopsis: Methods of local

More information

第 2 図 X 2. X 線応力計測法について q ( a ) X 線回折モデル q X X X X Bragg 第 3 図 Bragg X X q X ( E ) ( v ) X 2 5 mm X (1) (2) (3) (4) 計測可能領域表面表面下, 断面 ( b ) 無負荷 (5) (6)

第 2 図 X 2. X 線応力計測法について q ( a ) X 線回折モデル q X X X X Bragg 第 3 図 Bragg X X q X ( E ) ( v ) X 2 5 mm X (1) (2) (3) (4) 計測可能領域表面表面下, 断面 ( b ) 無負荷 (5) (6) Measurement Technology for Resiual Stresses Locke in Structural Members IHI IHI IHI IHI IHI ( SCC ) IHI ( IIC ) If large compressive resiual stresses are prouce on the surface of a structure by shot-peening,

More information

新機能紹介

新機能紹介 TSV Pre V6.3 新機能紹介 株式会社テクノスター 2013.4.2 新機能一覧 表示機能の改良ローカル座標系を参照した節点位置表示 Group 表示中の Body 非表示 Open 機能の改良表示状態の読み込みエッジ色の変更フィルタ機能単位系サポート注記設定機能の追加 選択機能の改良 Pick filter 機能の拡張 GUI 上の局所座標系選択 2D Sketch 機能節点や Line

More information

Microsoft PowerPoint - TMTinst_ _summerschool_akiyama

Microsoft PowerPoint - TMTinst_ _summerschool_akiyama 1 2 3 4 5 6 7 8 9 10 590nm 2200nm 0 1.739 1.713 5 1.708 1.682 10 1.678 1.652 0-10 0.061061 0.061061 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 1.0 x1.0 0.5 x0.5 0.2 x0.2 0.1 x0.1 bg/30ms

More information

(Microsoft Word - \221\346\202R\225\322\221\346\202Q\217\315.docx)

(Microsoft Word - \221\346\202R\225\322\221\346\202Q\217\315.docx) 第 2 章 CLT パネル工法における鋼板挿入型接合部の 耐力向上に関する研究 2.1 一般事項 試験概要 1. 試験名称 CLT パネル工法における鋼板挿入型接合部の耐力向上に関する研究 2. 試験の目的 内容 試験目的 ~ 補強用長ビスを面外方向に用いることによる割裂抑制の効果 ~ CLT パネルを用いた鋼板挿入型接合部の試験体に引張力を加えたと き 鋼板挿入部から割裂が生じることが確認され 接合部の最大耐力

More information

Microsoft PowerPoint - 2_6_shibata.ppt [互換モード]

Microsoft PowerPoint - 2_6_shibata.ppt [互換モード] 圧密問題への逆問題の適用 一次元圧密と神戸空港の沈下予測 1. 一次元圧密の解析 2. 二次元圧密問題への適用 3. 神戸空港の沈下予測 1. 一次元圧密の解析 一次元圧密の実験 試験システムの概要 分割型圧密試験 逆解析の条件 未知量 ( 同定パラメータ ) 圧縮指数 :, 透水係数 :k 初期体積ひずみ速度 : 二次圧密係数 : 観測量沈下量 ( 計 4 点 ) 逆解析手法 粒子フィルタ (SIS)

More information

Microsoft Word - 講演会原稿

Microsoft Word - 講演会原稿 B06 CFRP 円筒の座屈試験 岡本瑞希 ( 神奈川大 学 ), 宮島侑冬 ( 神奈川大 学 ), 高野敦 ( 神奈川大 ) Mizuki Okamoto, Yuuto Miyajima, Atushi Takano (Kanagawa University) 1. 目的衛星やロケット 航空機などに軽量化のため複合材料の円筒殻が使われている 複合材料の中では CFRP(Carbon Fiber Reinforced

More information

杭の事前打ち込み解析

杭の事前打ち込み解析 杭の事前打ち込み解析 株式会社シーズエンジニアリング はじめに杭の事前打込み解析 ( : Pile Driving Prediction) は, ハンマー打撃時の杭の挙動と地盤抵抗をシミュレートする解析方法である 打ち込み工法の妥当性を検討する方法で, 杭施工に最適なハンマー, 杭の肉厚 材質等の仕様等を決めることができる < 特徴 > 杭施工に最適なハンマーを選定することができる 杭の肉厚 材質等の仕様を選定することができる

More information

03-03 Bush Mentori.pdf

03-03 Bush Mentori.pdf 54 541 A Headless Press Fit Bush Type A 1. Bushing with I.D. size smaller than 3.mm uses 3 degreed chamfered radius (R). SAG6 +.2 +.4 +.14 +.5 +.17 +.1 A +.2 +.2 +.3 +.4 +.36 +.5 +.43 +.52 +.62 +.74 +.1

More information

Fig. 1. Schematic drawing of testing system. 71 ( 1 )

Fig. 1. Schematic drawing of testing system. 71 ( 1 ) 1850 UDC 669.162.283 : 669.162.263.24/. 25 Testing Method of High Temperature Properties of Blast Furnace Burdens Yojiro YAMAOKA, Hirohisa HOTTA, and Shuji KAJIKAWA Synopsis : Regarding the reduction under

More information

複合構造レポート 09 FRP 部材の接合および鋼と FRP の接着接合に関する先端技術 目次 第 1 部 FRP 部材接合の設計思想と強度評価 第 1 章 FRP 構造物の接合部 FRP 材料 FRP 構造物における各種接合方法の分類と典型的な部位 接合方法

複合構造レポート 09 FRP 部材の接合および鋼と FRP の接着接合に関する先端技術 目次 第 1 部 FRP 部材接合の設計思想と強度評価 第 1 章 FRP 構造物の接合部 FRP 材料 FRP 構造物における各種接合方法の分類と典型的な部位 接合方法 複合構造レポート 09 FRP 部材の接合および鋼と FRP の接着接合に関する先端技術 目次 第 1 部 FRP 部材接合の設計思想と強度評価 第 1 章 FRP 構造物の接合部 3 1.1 FRP 材料 3 1.2 FRP 構造物における各種接合方法の分類と典型的な部位 3 1.2.1 接合方法の種類 3 1.2.2 FRP 構造物における接合部 9 1.3 国内外における FRP 接合部の設計思想

More information

<4D F736F F D208E9197BF B5497F48CB488F682CC908492E8816A2E646F6378>

<4D F736F F D208E9197BF B5497F48CB488F682CC908492E8816A2E646F6378> 資料 -3 亀裂原因の推定 第 5 回伊達橋補修検討委員会資料 平成 28 年 3 月 11 日 Ⅱ. 亀裂原因の推定 1. 亀裂原因の推定 1-1. 亀裂の発生状況 亀裂発生箇所を図 -1.1 表 -1.1 亀裂の位置を写真 -1.1 代表的な亀裂発生箇所を写真 -1.2~ 写真 -1.6 に 示す 亀裂は 横桁フランジと垂直材の接合部 (1234) 下弦材とニーブレース 下横構ガセットの接合 部

More information

Microsoft PowerPoint - Š’Š¬“H−w†i…„…C…m…‰…Y’fl†j.ppt

Microsoft PowerPoint - Š’Š¬“H−w†i…„…C…m…‰…Y’fl†j.ppt 乱流とは? 不規則運動であり, 速度の時空間的な変化が複雑であり, 個々の測定結果にはまったく再現性がなく, 偶然の値である. 渦運動 3 次元流れ 非定常流 乱流は確率過程 (Stochastic Process) である. 乱流工学 1 レイノルズの実験 UD = = ν 慣性力粘性力 乱流工学 F レイノルズ数 U L / U 3 = mα = ρl = ρ 慣性力 L U u U A = µ

More information

参考資料 -1 補強リングの強度計算 1) 強度計算式 (2 点支持 ) * 参考文献土木学会昭和 56 年構造力学公式集 (p410) Mo = wr1 2 (1/2+cosψ+ψsinψ-πsinψ+sin 2 ψ) No = wr1 (sin 2 ψ-1/2) Ra = πr1w Rb = π

参考資料 -1 補強リングの強度計算 1) 強度計算式 (2 点支持 ) * 参考文献土木学会昭和 56 年構造力学公式集 (p410) Mo = wr1 2 (1/2+cosψ+ψsinψ-πsinψ+sin 2 ψ) No = wr1 (sin 2 ψ-1/2) Ra = πr1w Rb = π 番号 場所打ちコンクリート杭の鉄筋かご無溶接工法設計 施工に関するガイドライン 正誤表 (2015 年 7 月更新 ) Page 行位置誤正 1 p.3 下から 1 行目 場所打ちコンクリート杭施工指 針 同解説オールケーシング工法 ( 土木 ): 日本基礎建設協会 (2014) 2 p.16 上から 3 行目 1) 補強リングと軸方向主筋を固定する金具の計算 3 p.22 図 4-2-1 右下 200

More information

第 14 章柱同寸筋かいの接合方法と壁倍率に関する検討 510

第 14 章柱同寸筋かいの接合方法と壁倍率に関する検討 510 第 14 章柱同寸筋かいの接合方法と壁倍率に関する検討 5 14.1 検討の背景と目的 9 mm角以上の木材のたすき掛け筋かいは 施行令第 46 条第 4 項表 1においてその仕様と耐力が規定されている 既往の研究 1では 9 mm角筋かい耐力壁の壁倍率が 5. を満たさないことが報告されているが 筋かい端部の仕様が告示第 146 号の仕様と異なっている 本報では告示どおりの仕様とし 9 mm角以上の筋かいたすき掛けの基礎的なデータの取得を目的として検討を行った

More information

Microsoft PowerPoint 発表資料(PC) ppt [互換モード]

Microsoft PowerPoint 発表資料(PC) ppt [互換モード] 空港エプロン PC 舗装版の補強構造に関する研究 空港研究部空港施設研究室坪川将丈, 水上純一, 江崎徹 ( 現 九州地整 ), 小林雄二 ( 株 ) ピーエス三菱吉松慎哉, 青山敏幸, 野中聡 1 研究の背景 目的 東京国際空港西側旅客エプロン15 番 16 番スポットのPC 舗装部において, 雨水の混入, 繰返し荷重の作用等により泥化したグラウト材のポンピング現象が発生ング現象 ( 航空機翼程度の高さにまで達する

More information

耐雪型歩道柵 (P 種 )H=1.1m ランク 3 ( 基礎ブロック ) 平成年月日

耐雪型歩道柵 (P 種 )H=1.1m ランク 3 ( 基礎ブロック ) 平成年月日 耐雪型歩道柵 (P 種 )H=1.1m ランク 3 ( 基礎ブロック ) 平成年月日 目 次 1. 目的 1 2. 耐雪型の設置計画 1 3. 構造諸元 1 4. 許容応力度 1 4-1 使用部材の許容応力度 ( SS400,STK410 相当 1 4-2 無筋コンクリートの引張応力度 1 4-3 地盤の耐荷力 1 5. 設計荷重 2 5-1 鉛直力 ( 沈降力 ) 2 5-2) 水平力 ( クリープ力

More information

<4D F736F F F696E74202D AD482DC82C682DF2E B8CDD8AB B83685D>

<4D F736F F F696E74202D AD482DC82C682DF2E B8CDD8AB B83685D> 力のつり合い反力 ( 集中荷重 ) V 8 V 4 X H Y V V V 8 トラス部材に生じる力 トラスの解法 4k Y 4k 4k 4k ' 4k X ' 30 E ' 30 H' 節点を引張る力節点を押す力部材に生じる力を表す矢印の向きに注意 V 0k 反力の算定 V' 0k 力のつり合いによる解法 リッターの切断法 部材 の軸力を求める k k k 引張側に仮定 3 X cos30 Y 04

More information

Microsoft Word - 第5章.doc

Microsoft Word - 第5章.doc 第 5 章表面ひび割れ幅法 5-1 解析対象 ( 表面ひび割れ幅法 ) 表面ひび割れ幅法は 図 5-1 に示すように コンクリート表面より生じるひび割れを対象とした解析方法である. すなわち コンクリートの弾性係数が断面で一様に変化し 特に方向性を持たない表面にひび割れを解析の対象とする. スラブ状構造物の場合には地盤を拘束体とみなし また壁状構造物の場合にはフーチングを拘束体として それぞれ外部拘束係数を定める.

More information

国土技術政策総合研究所 研究資料

国土技術政策総合研究所 研究資料 3. 解析モデルの作成汎用ソフトFEMAP(Ver.9.0) を用いて, ダムおよび基礎岩盤の有限要素メッシュを8 節点要素により作成した また, 貯水池の基本寸法および分割数を規定し,UNIVERSE 2) により差分メッシュを作成した 3.1 メッシュサイズと時間刻みの設定基準解析結果の精度を確保するために, 堤体 基礎岩盤 貯水池を有限要素でモデル化する際に, 要素メッシュの最大サイズならびに解析時間刻みは,

More information

第1章 単 位

第1章  単  位 H. Hamano,. 長柱の座屈 - 長柱の座屈 長い柱は圧縮荷重によって折れてしまう場合がある. この現象を座屈といい, 座屈するときの荷重を座屈荷重という.. 換算長 長さ の柱に荷重が作用する場合, その支持方法によって, 柱の理論上の長さ L が異なる. 長柱の計算は, この L を用いて行うと都合がよい. この L を換算長 ( あるいは有効長さという ) という. 座屈荷重は一般に,

More information

目次 Patran 利用の手引き 1 1. はじめに 利用できるバージョン 概要 1 機能概要 マニュアル テクニカルサポートIDの取得について 3 2. Patran の利用方法 Patran の起動 3 (1) TSUBAMEにログイン

目次 Patran 利用の手引き 1 1. はじめに 利用できるバージョン 概要 1 機能概要 マニュアル テクニカルサポートIDの取得について 3 2. Patran の利用方法 Patran の起動 3 (1) TSUBAMEにログイン Patran 利用の手引 東京工業大学学術国際情報センター 2017.04 version 1.13 目次 Patran 利用の手引き 1 1. はじめに 1 1.1 利用できるバージョン 1 1.2 概要 1 機能概要 1 1.3 マニュアル 2 1.4 テクニカルサポートIDの取得について 3 2. Patran の利用方法 3 2.1 Patran の起動 3 (1) TSUBAMEにログイン

More information

1. 空港における融雪 除雪対策の必要性 除雪作業状況 H12 除雪出動日数除雪出動回数 H13 H14 H15 H16 例 : 新千歳空港の除雪出動状況 2. 検討の方針 冬季の道路交通安全確保方策 ロードヒーティング 2

1. 空港における融雪 除雪対策の必要性 除雪作業状況 H12 除雪出動日数除雪出動回数 H13 H14 H15 H16 例 : 新千歳空港の除雪出動状況 2. 検討の方針 冬季の道路交通安全確保方策 ロードヒーティング 2 寒冷地空港における定時性向上のための融雪装置導入に関する舗装構造の検討 国土技術政策総合研究所空港研究部空港施設研究室水上純一 研究内容 1. 空港における融雪 除雪対策の必要性 2. 検討の方針 3. 検討内容 ( 各種実施試験 ) 4.. まとめ 1 1. 空港における融雪 除雪対策の必要性 除雪作業状況 35 3 25 2 15 1 5 H12 除雪出動日数除雪出動回数 H13 H14 H15

More information

1 2 D16ctc250 D16ctc250 1 D25ctc250 9,000 14,800 600 6,400 9,000 14,800 600 以上 6,500 隅角部テーパーをハンチ処理に 部材寸法の標準化 10cm ラウンド 10cm ラウンド 定尺鉄筋を用いた配筋 定尺鉄筋 配力筋位置の変更 ( 施工性考慮 ) 配力筋 主鉄筋 配力筋 主鉄筋 ハンチの除去底版テーパーの廃止 部材寸法の標準化

More information

<4D F736F F D208D5C91A297CD8A7793FC96E591E6328FCD2E646F63>

<4D F736F F D208D5C91A297CD8A7793FC96E591E6328FCD2E646F63> -1 ポイント : 材料の応力とひずみの関係を知る 断面内の応力とひずみ 本章では 建築構造で多く用いられる材料の力学的特性について学ぶ 最初に 応力とひずみの関係 次に弾性と塑性 また 弾性範囲における縦弾性係数 ( ヤング係数 ) について 建築構造用材料として代表的な鋼を例にして解説する さらに 梁理論で使用される軸方向応力と軸方向ひずみ あるいは せん断応力とせん断ひずみについて さらにポアソン比についても説明する

More information

<8D5C91A28C768E5A8F91836C C768E5A8F A2E786C73>

<8D5C91A28C768E5A8F91836C C768E5A8F A2E786C73> スカイセイフティネット構造計算書 スカイテック株式会社 1. 標準寸法 2. 設計条件 (1) 荷重 通常の使用では スカイセーフティネットに人や物は乗せないことを原則とするが 仮定の荷重としてアスファルト ルーフィング1 巻 30kgが1スパンに1 個乗ったとした場合を考える ネットの自重は12kgf/1 枚 これに単管 (2.73kgf/m) を1m 辺り2 本考える 従ってネット自重は合計で

More information

The Evaluation of LBB Behavior and Crack Opening Displacement on Statically Indeterminate Piping System Subjected to Monotonic Load The plastic collap

The Evaluation of LBB Behavior and Crack Opening Displacement on Statically Indeterminate Piping System Subjected to Monotonic Load The plastic collap The Evaluation of LBB Behavior and Crack Opening Displacement on Statically Indeterminate Piping System Subjected to Monotonic Load The plastic collapse and LBB behavior of statically indeterminate piping

More information

Fig. 3 Coordinate system and notation Fig. 1 The hydrodynamic force and wave measured system Fig. 2 Apparatus of model testing

Fig. 3 Coordinate system and notation Fig. 1 The hydrodynamic force and wave measured system Fig. 2 Apparatus of model testing The Hydrodynamic Force Acting on the Ship in a Following Sea (1 St Report) Summary by Yutaka Terao, Member Broaching phenomena are most likely to occur in a following sea to relative small and fast craft

More information

-

- 計算書番号 :01710014655 日付 :017 年 10 月 0 日 14:6:55 面材張り大壁 詳細計算書 仕様名 新グレー本モデルプラン 大壁 1. 計算条件 1. 1 概要情報 仕様名仕様詳細 特記事項 新グレー本モデルプラン 大壁 壁面を構成する面材数階高 H(mm) 壁長 (mm) 1 枚 730 910 1. 面材 釘情報 面材寸法 (mm) 730 910 面材厚さ t(mm)

More information