<4D F736F F F696E74202D20315F899E97CDA5944D89F090CD93FC96E5835A837E83698E9197BF2E >

Size: px
Start display at page:

Download "<4D F736F F F696E74202D20315F899E97CDA5944D89F090CD93FC96E5835A837E83698E9197BF2E >"

Transcription

1 応力 熱解析入門セミナー 1

2 目次 基礎編 1. 応力解析の概要 3 2. 熱伝導解析の概要 35 応用編 3. 熱応力解析 対称モデルのすすめ 外部境界条件 線形解析と非線形解析 過渡解析 特異点 77 2

3 1. 応力解析 (Galileo) の概要 応力解析の種類 解析オプション 材料定数 ボディ属性 境界条件 結果表示 ステップ / 熱荷重の設定 3

4 応力解析の種類 静解析 つりあいの式 を解く [K] {x}= {f} 共振解析 ( 固有振動解析 ) 先端に荷重を受けた梁 ( 例題 1) 座屈解析 過渡解析 鐘の固有振動 ( 例題 11) 調和解析 ( 強制振動解析 ) ボールの衝突 ( 例題 32) H 形鋼の座屈 ( 例題 48) 運動方程式を解く [M]{a} + [C]{v} + [K]{x} = {f} 応力拡張オプション ( 別売 ) が必要です ツインタワーの強制振動解析 ( 例題 16) 4

5 応力解析の種類 静解析 固有振動を求める 共振解析 ( 固有振動解析 ) 先端に荷重を受けた梁 ( 例題 1) 座屈解析 { [K] - ω 2 [M] } {x} = {0} 過渡解析 鐘の固有振動 ( 例題 11) 調和解析 ( 強制振動解析 ) ボールの衝突 ( 例題 32) 正弦振動する強制力で励起される振動を求める H 形鋼の座屈 ( 例題 48) { [K] - ω 2 [M] } {x} = {f} ツインタワーの強制振動解析 ( 例題 16) 5

6 応力解析の種類 静解析 共振解析 ( 固有振動解析 ) 先端に荷重を受けた梁 ( 例題 1) 座屈解析 過渡解析 鐘の固有振動 ( 例題 11) 調和解析 ( 強制振動解析 ) ボールの衝突 ( 例題 32) 一定値以上の圧縮力によって発生する座屈モードを求める H 形鋼の座屈 ( 例題 48) ツインタワーの強制振動解析 ( 例題 16) 6

7 応力解析の種類 応力解析の種類は ここから選択してください 7

8 解析オプション 解析オプション : 補助的な 味付け 8

9 解析オプション ( 加速度, 角速度 ) 加速度モデルに慣性力 maを発生させる モデル全体に重力を印加 自重 ( 重力加速度 ) で変形する梁 ( 例題 4) 角速度モデルに慣性力 ( 遠心力 )mrω 2 を発生させる 遠心力での変形解析 ( 例題 23) 9

10 応力解析の流れ 1 モデルの絵を描く (CAD データのインポートも可能 ) 2 応力解析の種類を 5 つの中から選ぶ 3 解析オプション ( 補助的な味付け ) を設定する 4 各ボディ ( 構成部材 ) の材料定数を設定する 5 各ボディのボディ属性 ( 材料定数以外の性質 ) を設定する 6 境界条件 ( 印加する力など ) を設定する 7 解析ボタンを押してしばらく待つと 結果が得られる 10

11 材料定数 弾性定数 ( ヤング率 ポアソン比 ) 密度 線膨張係数 11

12 材料定数 弾性定数 ( ヤング率 ポアソン比 ) 密度 線膨張係数 12

13 材料定数 弾性定数 ( ヤング率 ポアソン比 ) 密度 線膨張係数 線膨張係数, 弾性定数に関しては異方性を設定することもできます 13

14 応力解析の流れ 1 モデルの絵を描く (CAD データのインポートも可能 ) 2 応力解析の種類を 5 つの中から選ぶ 3 解析オプション ( 補助的な味付け ) を設定する 4 各ボディ ( 構成部材 ) の材料定数を設定する 5 各ボディのボディ属性 ( 材料定数以外の属性情報 ) を設定する 6 境界条件 ( 印加する力など ) を設定する 7 解析ボタンを押してしばらく待つと 結果が得られる 14

15 ボディ属性 ( 材料定数以外の属性情報 ) 初期ひずみ として薄膜の膜応力などを設定できます 初期ひずみを用いた薄膜内部応力の解析 ( 例題 41 ) 15

16 ボディ属性 ( 材料定数以外の属性情報 ) 方向タブで異方性材料の向きを指定できます 第 3 軸だけが特別な異方性材料の場合 第 3 軸の方向をベクトル指定することで 材料の向きを表すことができます オイラー角の設定については ヘルプページを参照ください 16

17 応力解析の流れ 1 モデルの絵を描く (CAD データのインポートも可能 ) 2 応力解析の種類を 5 つの中から選ぶ 3 解析オプション ( 補助的な味付け ) を設定する 4 各ボディ ( 構成部材 ) の材料定数を設定する 5 各ボディのボディ属性 ( 材料定数以外の性質 ) を設定する 6 境界条件 ( 印加する力など ) を設定する 7 解析ボタンを押してしばらく待つと 結果が得られる 17

18 境界条件の設定 変位力接触関係 18

19 力の境界条件 印加する力を指定する 集中荷重 ( 点に設定 ) 線分布荷重 ( 辺に設定 ) 面分布荷重 ( 面に設定 ) 圧力 ( 面に設定 ) トータル荷重入力の場合単位は [N] となる

20 トルクの境界条件 印加するトルクを設定する 20

21 変位の境界条件 変位 ( 移動量 ) を指定する ( 例題 3) 梁の先端の変位を指定梁の根元を固定 ( 変位をゼロに指定 ) X 方向,Y 方向の動きは拘束しない Y 方向の動きをゼロに拘束する 21

22 回転変位の境界条件 回転軸周りの回転角を指定する 拘束 1 拘束 2 拘束 2 拘束 1 22

23 接触の境界条件 被接触面 接触面 ( 例題 28) 大変形をともなう接触解析 一方に 接触面 他方に 被接触面 の境界条件を設定しておかないと お互いの存在を認識することができず お互いを無視してすりぬけます お手数ですが 接触面 被接触面 の設定をお願いします 23

24 簡易接触の境界条件 簡易接触 ( 例題 43) 摩擦を考慮した接触解析 1 最初から接触している面どうしに関しては 簡易接触の境界条件を使用することができます 通常の接触の設定と比較すると 計算が軽くなります 通常の接触と簡易接触を混在させると逆に計算が遅くなります 1 メッシュ以上の横ズレが発生するモデルで簡易接触を使うと 誤差が大きくなります 24

25 補足 描画した段階で 2 つのボディが図形的に接触している場合 その境界面に何の境界条件も設定しないと 両者は固着しているとみなされます 両者が固着していない場合には 簡易接触もしくは接触 / 被接触の境界条件を設定してください 25

26 応力解析の流れ 1 モデルの絵を描く (CAD データのインポートも可能 ) 2 応力解析の種類を 5 つの中から選ぶ 3 解析オプション ( 補助的な味付け ) を設定する メッシュ分割は自動生成されます 4 各ボディ ( 構成部材 ) の材料定数を設定する 5 各ボディのボディ属性 ( 材料定数以外の性質 ) を設定する 6 境界条件 ( 印加する力など ) を設定する 7 解析ボタンを押してしばらく待つと 結果が得られる 26

27 結果表示 ( 応力解析 ) 27

28 結果表示 ( 応力解析 ) 28

29 - 応力解析に関する補足 - ステップ / 熱荷重 の設定 熱荷重で反りが発生するバイメタル ( 例題 7) 29

30 熱荷重 熱荷重解析オプションの 熱荷重 を選択すると温度変化による膨張収縮によって発生する変形を解析できます 条件設定は ステップ / 熱荷重 タブで行います 基準温度 (25 ) から到達温度 (80 ) に変化したときの変形を解析

31 多段階熱プロファイル 多段階の温度変化も設定可能 Step3 発生 Step5 発生 31

32 ボディのバース / デス設定 ボディ属性設定の中の 解析領域 タブで設定します Step3 Step5 発生 32

33 ボディの材料特性切り替え ステップ毎にボディの材料物性を切り替えることも可能です ボディ属性設定の中の 材料切替 タブで設定します 33

34 境界条件の ON/OFF 切り替え ステップ毎に境界条件を ON/OFF することも可能です 34

35 2. 熱伝導解析 (Watt) の概要 解析条件 材料定数 ボディ属性 境界条件 結果表示 35

36 熱伝導解析の種類 0sec 80sec 160sec 240sec 中央に 10W 発熱体, 外周 4 辺は 0 に固定 ( 例題 4 ) 過渡解析 初期温度状態から時間ステップを刻んで熱伝導方程式を解く 時間軸上での温度変化が分かる 上図の例は過渡解析 定常解析 長時間経過後の到達状態を求める 温度の時間変化がゼロという条件で熱伝導方程式を解くことにより 長時間後の到達状態 ( 定常状態 ) を一気に求める 定常状態の存在しない系 ( 温度が際限なく上がり続ける系など ) で定常解析を行うと 解が求まりません 36

37 熱伝導解析の種類 いずれかを選択ください 37

38 材料定数 熱伝導率熱の伝わりやすさ 密度単位体積あたりの質量 比熱温度 1 上昇に必要な熱量 (1Kg あたり ) 熱伝導率の例 [W/m/deg] 金 Au 315 銀 Ag 427 銅 Cu 402 SUS ホ リカーホ ネート0.2 ホ リエチレン 0.22 カ ラエホ 過渡解析では 熱伝導率, 密度, 比熱全てを設定いただく必要があります 定常解析で必要なのは 熱伝導率の設定だけです 38

39 ボディ属性 ( 材料定数以外の属性情報 ) 各ボディの発熱量を設定できます 総発熱量での設定 発熱密度での設定 いずれも可能 発熱密度の空間分布を与えることも可能 温度依存性を持つ発熱密度も設定可能 ( 温度依存性を あり にして設定 ) 発熱量に時間プロファイルを持たせることも可能 ( 時間依存をオンにして設定 ) 39

40 ボディ属性 ( 材料定数以外の属性情報 ) 各ボディの初期温度を設定できます ( 過渡解析の場合 ) デフォルトでは 全てのボディに同じ初期温度 ( 過渡解析の条件設定の中に含ま れる ) が設定されています ボディ属性設定の中で 各ボディに個別の初期温度 を与えることができます 40

41 境界条件の設定 41

42 温度指定の境界条件 例題 1 柱天面 : 100 温度指定の境界条件 柱底面 : 0 温度指定の境界条件 柱側面 : 断熱 温度分布 熱流束 金 SUS 金 SUS 熱流束 : 熱の流れ熱流束が天面から流入 底面から流出 ( 熱流束 ) = ( 熱伝導率 ) ( 温度勾配 ) 42

43 熱流束流入の境界条件 例題 13 柱天面 : 熱流束 [w/m 2 ] 流入柱底面 : 25 柱側面 : 断熱 温度分布 熱流束流入の境界条件 熱流束流入ゼロの境界条件 熱流束 Ni 銅 Ni 銅 43

44 熱伝達係数の境界条件 放熱量 ( 熱流束流出量 ) = h (θ- θa) h : 熱伝達係数, θ: 放熱面温度, θa: 環境温度 h=10000 ( 25 ) θa 底面 200 温度分布 底面 100 熱流束分布 h 無風の空気空間に露出している面の熱伝達係数 : 5~25[W/m 2 K] 44

45 もっと実際的な放熱の設定 1 強制対流 2 自然対流

46 強制対流の境界条件 右記の公式を用いて計算する 実体は熱伝達係数の境界条件 強制対流条件下の放熱 ( 熱流束流出量 ) = h (θ-θa) θ: 表面温度 θa: 室温 ( 環境温度 ) θa v L 平均熱伝達係数 h 3.86 h v / v: 流速 L: 代表長さ v L L 46

47 強制対流の境界条件 強制対流条件下の放熱 ( 熱流束流出量 ) = h (θ-θa) 平均熱伝達係数 h 3.86 h v / v L v: 流速 L: 代表長さ 1W で発熱するチップの実装された基板 +y 方向 1[m/s] の風を当てたとしてオモテ面とウラ面に強制対流による放熱を設定 ( 例題 7) L 平均熱伝達係数 h を全面に付与するため 全体的な放熱は計算できるが 風上風下の区別はできない 47

48 自然対流の境界条件 自然対流 自然対流条件下の放熱 ( 熱流束流出量 ) = h (θ- θa) 1.25 θ: 表面温度 θa: 室温 ( 環境温度 ) h : 面の大きさと向きから決まる係数 強制的に与えられる風ではなく 広い開放空間に静かに置かれた状態での自然対流による放熱 温度差によって自然発生する上昇気流が計算の前提 十分に広い空間に放熱面が露出しているということが計算の前提 48

49 自然対流の境界条件 ( 熱流束流出量 ) = h (θ- θa) 1.25 θ: 表面温度 θa: 室温 ( 環境温度 ) θa h ( 自然対流係数 ) は 面の向きと大きさから定まる係数 自動計算されます 49

50 環境輻射の境界条件 強制対流, 自然対流による放熱に続いて 環境への輻射による放熱の設定を説明します 環境輻射による放熱は 強制対流もしくは自然対流による放熱と同じ面に付与することができます 3 環境輻射 ( 周囲空間への輻射 ) 3

51 環境輻射の境界条件 環境輻射による放熱 f = k σ (θ 4 -θ a 4 ) k : 輻射係数 σ : ステファンホ ルツマン係数 θa f : 放熱量 ( 熱流束 ) θ: 表面温度 θa: 室温 ( 環境温度 ) k は輻射率と形態係数の積 形態係数は 1 と仮定 したがって k= 輻射率 輻射率は 0 と 1 の間の値 輻射率 + 光の反射率 =1 k 1 と仮定する形態係数は厳密には 0 と 1 の間の値平面 もしくは上に凸の面では 1 51

52 物体間輻射の境界条件 物体間輻射 モデルの表面間での輻射による熱交換 高温の上板からの輻射で加熱される下板中央の円盤は低温の遮蔽板 ( 例題 16) 52

53 結果表示 ( 熱伝導解析 ) 温度 熱流束 FIX 53

54 3. 熱応力解析 54

55 再録 : 応力静解析 熱荷重オプション 熱荷重で反りが発生するバイメタル ( 例題 7) 温度分布を持たない事例であれば 応力解析の熱荷重で解析できる ( 熱伝導解析は不要 ) FIX 55

56 熱伝導解析で得られる温度分布を使いたい場合 発熱チップ 変位ベクトル 熱応力解析例題 3 チップ発熱によって発生する温度分布で発生する変形の解析 応力解析と熱伝導解析の両方を選択 基準温度 ( 無応力温度 ) の設定

57 4. 対称モデルのすすめ 対称モデルを解析するメリット 対称境界条件 ( 応力解析 ) 対称境界条件 ( 熱伝導解析 ) 57

58 対称モデルを解析するメリット 解析モデルに対称性がある場合 モデルを対称面でカットした対称モデルを解析することができます BEAM フルモデル 対称モデル 計算コスト ( 時間やメモリ量 ) を大幅に削減できます 58

59 対称境界条件 ( 熱伝導解析の場合 ) 熱伝導解析の場合は 対称面に断熱境界を設定します 断熱 Z Y X 断熱 注意 : 発熱ボディを分割する場合は発熱量も変更する必要あり フルモデルでの解析結果 59

60 対称境界条件 ( 応力解析の場合 ) 応力解析の場合は 対称面の変位の垂直成分を固定します X 変位固定 Z Y BEAM X Y 変位固定 フルモデルでの解析結果 60

61 対称境界条件 Z Y X 解析的には同じ意味 BEAM 対称面の境界条件を選択いただくと 対称面を意味する適切な境界条件が自動設定されます 対称面の境界条件を選択頂いた場合 結果表示においてフルモデル表示が可能になります

62 5. 外部境界条件

63 外部境界条件 ( デフォルト境界条件 ) 有限要素法のシミュレーションでは モデル最外周の全ての面に境界条件を付与する必要があります しかし モデル最外周の全ての面への境界条件設定を ユーザーの皆様に強要すると非常に使い勝手が悪くなります Femtet では ユーザーの皆様が境界条件を付与しなかったモデル最外周面に 外部境界条件 を適用する仕様になっております 63

64 外部境界条件 ( デフォルト境界条件 ) 64

65 6. 線形解析と非線形解析 線形と非線形解析 応力解析での非線形解析 熱伝導解析での非線形解析 65

66 線形と非線形解析 a a a a a a a a a a a a a a a a x x x x b b b b 有限要素法においては 節点毎に配置された未知数 x i に関する連立一次方程式 ( 行列方程式 ) を組立てて それを解きます 線形解析 非線形解析 : 行列組立とその求解を 1 回行えば解が求まる解析 : 行列組立と求解を複数回繰り返す必要がある解析 非線形解析は計算コストがかかります 結果が上手く求まらないこともあります 66

67 非線形解析の例 接触 形 が刻々と変化する 形 を少しずつ変化させながら 求解を繰り返す 67

68 2 種類の幾何学非線形 大変位根元の微小なひずみが先端に大きな移動 ( 変位 ) を発生させる効果を考慮 68

69 非線形解析の事例 大変位 大変位 微小変形解析では無視される 回り込み を考慮して解析 ( 例題 6) 大変位オフ ( 線形解析 ) 大変位オン ( 非線形解析 ) 微小変形解析結果が拡大されるだけ ちょっとヘンな解析結果になる 少し変形させてモデルを作り直す という計算を繰り返す ( 非線形解析 ) 69

70 2 種類の幾何学非線形 ひずみが大きい場合 (0.1 以上 ) は 大ひずみ ( 非線形解析 ) を使ってください 線形解析の矛盾 1N 0.2 2N 0.4 5N 1.0? 6N 1.2????? 大ひずみのオプションを使うと 少しひずませてモデルを作り直す という繰り返しを行います ( 非線形解析 ) 方程式の形も少し変えてあります

71 熱伝導解析での非線形解析 材料定数の熱伝導率で温度依存性が設定された場合 非線形解析となります 少し温度を変えて材料定数を変化させる というステップを繰り返す 71

72 その他の非線形解析 - 応力解析で 下記の材料を扱う場合 弾塑性材料, クリープ材料, 粘弾性材料, 超弾性材料 - 熱伝導解析で 下記の境界条件を使う場合 自然対流, 環境輻射, 物体間輻射 72

73 7. 過渡解析 応力過渡解析を行うためには応力拡張オプションが必要です 73

74 過渡解析タブ 熱伝導解析や応力解析の過渡解析を行う場合は 過渡解析タブを設定します 過渡解析においては 時間を小刻みに進行させながら解析を行います 過渡解析タブの中では 下記を設定します 時間ステップ ( 時間の刻み幅 ) All Rights Reserved, ステップ数 Copyright c Murata Software Co., Ltd. 出力間隔 ( 結果ファイルの出力間隔 ) 74

75 時間的に変化する発熱量 発熱量 ( ボディ属性 ) や各種境界条件 ( 温度 熱伝達 環境輻射の環境温度 熱流束 ) に時間依存性を持たせることができます 75

76 時間的に変化する境界条件 応力解析の過渡解析では機械境界のうち 変位 荷重 圧力に時間プロファイルを持たせることが可能 76

77 8. 特異点 応力の真値が 77

78 特異点 応力 ( 静水圧 ) 針先端 51MPa 針先端 102MPa 針先端 1,024MPa メッシュを細かくしても 特異点の応力は収束しません ( 真値である に近づきます ) 特異点から 2 メッシュ程度以上離れた場所の結果は信用できます 78

79 特異点 上記のようなモデルにおいても 梁の付け根が特異点となります ( 付け根に丸みをもたせれば 特異点ではなくなります ) 特異点は決して珍しいものではありません 応力集中する場所に 現実に即した 丸み などが設定されていないと特異点になります メッシュを細かくしても応力の値が収束しないとき 特異点である可能性が高いです 79

80 特異点 応力 ( 最大主応力 ) 梁根本 1GPa 梁根本 1.3GPa 梁根本 2.1GPa メッシュを細かくしても 特異点の応力は収束しません ( 真値である に近づきます ) 特異点から 2 メッシュ程度以上離れた場所の結果は信用できます 80

81 特異点 特異点が存在する場合の対応 1 特異点近辺 (2 メッシュ以内 ) のデータを考察対象から外す 2 モデルに現実に即した 丸み などを持たせて特異点を無くす 3 構造パラメータ ( 寸法など ) をふった水準間比較などの場合には メッシュサイズを揃えて水準間比較を行う ( 特異点付近の解析値は 絶対値として信用できないが 同じメッシュサイズなら水準間相対関係は保たれると仮定する ) 4 エネルギー開放率など 応力以外の物理指標を使って考察をする 詳細は Femtet ヘルプの中の J 積分 に関する記述を参照ください 81

A Luvens ICCG 未収束時にワーニングを出力するようにした A Luvens 非線形計算未収束時に計算をストップするようにした A Luvens 外部回路に電流源素子を追加 A Curie 浮き電極の境界条件を追加 A Hertz ポートの境界条件で差動ペアの設定が可能になった A Her

A Luvens ICCG 未収束時にワーニングを出力するようにした A Luvens 非線形計算未収束時に計算をストップするようにした A Luvens 外部回路に電流源素子を追加 A Curie 浮き電極の境界条件を追加 A Hertz ポートの境界条件で差動ペアの設定が可能になった A Her ********************************************************* Femtet2016.1.1 更新履歴 ********************************************************* [A] : 機能追加 [M] : 機能変更 [B] : バグ修正 A モデラ 応力解析 圧電解析の時 異方性材料の材料の座標軸を表示する

More information

Microsoft PowerPoint - シミュレーション工学-2010-第1回.ppt

Microsoft PowerPoint - シミュレーション工学-2010-第1回.ppt シミュレーション工学 ( 後半 ) 東京大学人工物工学研究センター 鈴木克幸 CA( Compter Aded geerg ) r. Jaso Lemo (SC, 98) 設計者が解析ツールを使いこなすことにより 設計の評価 設計の質の向上を図る geerg の本質の 計算機による支援 (CA CAM などより広い名前 ) 様々な汎用ソフトの登場 工業製品の設計に不可欠のツール 構造解析 流体解析

More information

OpenFOAM(R) ソースコード入門 pt1 熱伝導方程式の解法から有限体積法の実装について考える 前編 : 有限体積法の基礎確認 2013/11/17 オープンCAE 富山富山県立大学中川慎二

OpenFOAM(R) ソースコード入門 pt1 熱伝導方程式の解法から有限体積法の実装について考える 前編 : 有限体積法の基礎確認 2013/11/17 オープンCAE 富山富山県立大学中川慎二 OpenFOAM(R) ソースコード入門 pt1 熱伝導方程式の解法から有限体積法の実装について考える 前編 : 有限体積法の基礎確認 2013/11/17 オープンCAE 勉強会 @ 富山富山県立大学中川慎二 * OpenFOAM のソースコードでは, 基礎式を偏微分方程式の形で記述する.OpenFOAM 内部では, 有限体積法を使ってこの微分方程式を解いている. どのようにして, 有限体積法に基づく離散化が実現されているのか,

More information

パソコンシミュレータの現状

パソコンシミュレータの現状 第 2 章微分 偏微分, 写像 豊橋技術科学大学森謙一郎 2. 連続関数と微分 工学において物理現象を支配する方程式は微分方程式で表されていることが多く, 有限要素法も微分方程式を解く数値解析法であり, 定式化においては微分 積分が一般的に用いられており. 数学の基礎知識が必要になる. 図 2. に示すように, 微分は連続な関数 f() の傾きを求めることであり, 微小な に対して傾きを表し, を無限に

More information

Microsoft Word - 第5章.doc

Microsoft Word - 第5章.doc 第 5 章表面ひび割れ幅法 5-1 解析対象 ( 表面ひび割れ幅法 ) 表面ひび割れ幅法は 図 5-1 に示すように コンクリート表面より生じるひび割れを対象とした解析方法である. すなわち コンクリートの弾性係数が断面で一様に変化し 特に方向性を持たない表面にひび割れを解析の対象とする. スラブ状構造物の場合には地盤を拘束体とみなし また壁状構造物の場合にはフーチングを拘束体として それぞれ外部拘束係数を定める.

More information

CW単品静解析基礎

CW単品静解析基礎 第 2 章 : メッシュ 本章では SolidWorks Simulation2009 でメッシュを作成する際の各種機能 それらの操作方法を習得します 最初にメッシュコントロール機能について学習し 鋭い凹角のコーナーが応力の特異点であることが示されます 次にメッシュの品質 ( アスペクト比 ヤコビアン ) について学んだ後 最後にソフトにより自動的にメッシュが改善されるアダプティブ法を学習します 1.

More information

スライド 1

スライド 1 Femtet Ver9.0 新機能 / 変更点のご紹介 1 トピックス 機能 解析機能 プリ ポストプロセッサ 概要 簡易熱流体解析 : 強制対流による放熱 熱伝導解析 : 自然対流 ( 係数自動計算 ) 熱伝導解析 : 熱流境界条件 応力解析 : 接触解析 ( 応力パックオプション ) 応力解析 ( 熱荷重 ): 弾性材料の温度依存性 応力解析 ( 熱荷重 ): 線膨張係数の温度依存性 音波解析

More information

アンデン株式会社第 1 技術部 DE 開発藤井成樹 < 業務内容 > アンデンとして CAE 解析を強化するために 10/1 月に DE(Degital Engineering) 開発が 5 名で発足 CAE 開発 活用が目的 解析内容は 構造解析 ( 動解析 非線形含む ) 電場 磁場 音場 熱流

アンデン株式会社第 1 技術部 DE 開発藤井成樹 < 業務内容 > アンデンとして CAE 解析を強化するために 10/1 月に DE(Degital Engineering) 開発が 5 名で発足 CAE 開発 活用が目的 解析内容は 構造解析 ( 動解析 非線形含む ) 電場 磁場 音場 熱流 アンデン株式会社第 1 技術部 DE 開発藤井成樹 < 業務内容 > アンデンとして CAE 解析を強化するために 10/1 月に DE(Degital Engineering) 開発が 5 名で発足 CAE 開発 活用が目的 解析内容は 構造解析 ( 動解析 非線形含む ) 電場 磁場 音場 熱流 流体解析など様々 項目 04 05 06 07 08 09 10 11

More information

FEM原理講座 (サンプルテキスト)

FEM原理講座 (サンプルテキスト) サンプルテキスト FEM 原理講座 サイバネットシステム株式会社 8 年 月 9 日作成 サンプルテキストについて 各講師が 講義の内容が伝わりやすいページ を選びました テキストのページは必ずしも連続していません 一部を抜粋しています 幾何光学講座については 実物のテキストではなくガイダンスを掲載いたします 対象とする構造系 物理モデル 連続体 固体 弾性体 / 弾塑性体 / 粘弾性体 / 固体

More information

<4D F736F F D208D5C91A297CD8A7793FC96E591E631308FCD2E646F63>

<4D F736F F D208D5C91A297CD8A7793FC96E591E631308FCD2E646F63> 第 1 章モールの定理による静定梁のたわみ 1-1 第 1 章モールの定理による静定梁のたわみ ポイント : モールの定理を用いて 静定梁のたわみを求める 断面力の釣合と梁の微分方程式は良く似ている 前章では 梁の微分方程式を直接積分する方法で 静定梁の断面力と変形状態を求めた 本章では 梁の微分方程式と断面力による力の釣合式が類似していることを利用して 微分方程式を直接解析的に解くのではなく 力の釣合より梁のたわみを求める方法を学ぶ

More information

スライド 1

スライド 1 Femtet Ver10.2 新機能 / 変更点のご紹介 トピックス 機能 解析機能 概要 応力解析 : ステップ解析のリスタート / 中断 応力解析 : チェックリストを用いたバース / デス設定 応力解析 : 結果フィールドの強化 応力解析 : 結果値の CSV ファイル出力 応力解析 : ボディ属性初期歪み 応力解析 圧電解析 : 分布荷重のトータル荷重設定 圧電解析 : 浮電極に抵抗値をつける

More information

<4D F736F F F696E74202D20906C8D488AC28BAB90DD8C7689F090CD8D488A D91E F1>

<4D F736F F F696E74202D20906C8D488AC28BAB90DD8C7689F090CD8D488A D91E F1> 人工環境設計解析工学構造力学と有限要素法 ( 第 回 ) 東京大学新領域創成科学研究科 鈴木克幸 固体力学の基礎方程式 変位 - ひずみの関係 適合条件式 ひずみ - 応力の関係 構成方程式 応力 - 外力の関係 平衡方程式 境界条件 変位規定境界 反力規定境界 境界条件 荷重応力ひずみ変形 場の方程式 Γ t Γ t 平衡方程式構成方程式適合条件式 構造力学の基礎式 ひずみ 一軸 荷重応力ひずみ変形

More information

Microsoft PowerPoint - 第7章(自然対流熱伝達 )_H27.ppt [互換モード]

Microsoft PowerPoint - 第7章(自然対流熱伝達 )_H27.ppt [互換モード] 第 7 章自然対流熱伝達 伝熱工学の基礎 : 伝熱の基本要素 フーリエの法則 ニュートンの冷却則 次元定常熱伝導 : 熱伝導率 熱通過率 熱伝導方程式 次元定常熱伝導 : ラプラスの方程式 数値解析の基礎 非定常熱伝導 : 非定常熱伝導方程式 ラプラス変換 フーリエ数とビオ数 対流熱伝達の基礎 : 熱伝達率 速度境界層と温度境界層 層流境界層と乱流境界層 境界層厚さ 混合平均温度 強制対流熱伝達 :

More information

(Microsoft PowerPoint - \221\34613\211\361)

(Microsoft PowerPoint - \221\34613\211\361) 計算力学 ~ 第 回弾性問題の有限要素解析 (Ⅱ)~ 修士 年後期 ( 選択科目 ) 担当 : 岩佐貴史 講義の概要 全 5 講義. 計算力学概論, ガイダンス. 自然現象の数理モデル化. 行列 場とその演算. 数値計算法 (Ⅰ) 5. 数値計算法 (Ⅱ) 6. 初期値 境界値問題 (Ⅰ) 7. 初期値 境界値問題 (Ⅱ) 8. マトリックス変位法による構造解析 9. トラス構造の有限要素解析. 重み付き残差法と古典的近似解法.

More information

構造力学Ⅰ第12回

構造力学Ⅰ第12回 第 回材の座屈 (0 章 ) p.5~ ( 復習 ) モールの定理 ( 手順 ) 座屈とは 荷重により梁に生じた曲げモーメントをで除して仮想荷重と考える 座屈荷重 偏心荷重 ( 曲げと軸力 ) 断面の核 この仮想荷重に対するある点でのせん断力 たわみ角に相当する曲げモーメント たわみに相当する ( 例 ) 単純梁の支点のたわみ角 : は 図 を仮想荷重と考えたときの 点の支点反力 B は 図 を仮想荷重と考えたときのB

More information

応用数学Ⅱ 偏微分方程式(2) 波動方程式(12/13)

応用数学Ⅱ 偏微分方程式(2) 波動方程式(12/13) 偏微分方程式. 偏微分方程式の形 偏微分 偏導関数 つの独立変数 をもつ関数 があるとき 変数 が一定値をとって だけが変化したとす ると は だけの関数となる このとき を について微分して得られる関数を 関数 の に関する 偏微分係数 略して偏微分 あるいは偏導関数 pil deiie といい 次のように表される についても同様な偏微分を定義できる あるいは あるいは - あるいは あるいは -

More information

A Gauss 磁石の比透磁率を入力できるようにした A Hertz SheetBody が外部ポート上にある場合に対応した A Hertz 伝搬モードが無い場合にも解析が続けられるようなスイッチを追加 A Watt 温度依存性を持つ異方性熱伝導率設定を追加 A Mach 指向性計算法で結果フィール

A Gauss 磁石の比透磁率を入力できるようにした A Hertz SheetBody が外部ポート上にある場合に対応した A Hertz 伝搬モードが無い場合にも解析が続けられるようなスイッチを追加 A Watt 温度依存性を持つ異方性熱伝導率設定を追加 A Mach 指向性計算法で結果フィール ********************************************************* Femtet2016.0.2 更新履歴 ********************************************************* [A] : 機能追加 [M] : 機能変更 [B] : バグ修正 =====================================================================

More information

Microsoft Word - thesis.doc

Microsoft Word - thesis.doc 剛体の基礎理論 -. 剛体の基礎理論初めに本論文で大域的に使用する記号を定義する. 使用する記号トルク撃力力角運動量角速度姿勢対角化された慣性テンソル慣性テンソル運動量速度位置質量時間 J W f F P p .. 質点の並進運動 質点は位置 と速度 P を用いる. ニュートンの運動方程式 という状態を持つ. 但し ここでは速度ではなく運動量 F P F.... より質点の運動は既に明らかであり 質点の状態ベクトル

More information

Femtet 新機能 / 変更点のご紹介 All Rights Reserved, Copyright c Murata Software Co., Ltd.

Femtet 新機能 / 変更点のご紹介 All Rights Reserved, Copyright c Murata Software Co., Ltd. Femtet 2018.0 新機能 / 変更点のご紹介 新機能 / 変更点 機能 概要 解析機能 ソルバ全般 : 結果インポート機能追加 ソルバ全般 : 変形形状を考慮した解析 応力 / 熱伝導解析 : 初期応力 初期温度のインポート 応力 / 熱伝導解析 : 結果インポートによるリスタート機能追加 応力解析 : 空気領域自動作成に対応 応力解析 : 体積変化率の結果表示 圧電 / 応力解析 : 異方性材料の方向表示改良

More information

PowerPoint Presentation

PowerPoint Presentation Non-linea factue mechanics き裂先端付近の塑性変形 塑性域 R 破壊進行領域応カ特異場 Ω R R Hutchinson, Rice and Rosengen 全ひずみ塑性理論に基づいた解析 現段階のひずみは 除荷がないとすると現段階の応力で一義的に決まる 単純引張り時の応カーひずみ関係 ( 構成方程式 ): ( ) ( ) n () y y y ここで α,n 定数, /

More information

Microsoft PowerPoint - elast.ppt [互換モード]

Microsoft PowerPoint - elast.ppt [互換モード] 弾性力学入門 年夏学期 中島研吾 科学技術計算 Ⅰ(48-7) コンピュータ科学特別講義 Ⅰ(48-4) elast 弾性力学 弾性力学の対象 応力 弾性力学の支配方程式 elast 3 弾性力学 連続体力学 (Continuum Mechanics) 固体力学 (Solid Mechanics) の一部 弾性体 (lastic Material) を対象 弾性論 (Theor of lasticit)

More information

スライド 1

スライド 1 H25 創造設計演習 ~ 振動設計演習 1~ 1 ゆれない片持ち梁の設計 振動設計演習全体 HP(2011 年度まで使用 今は閲覧のみ ): http://hockey.t.u-tokyo.ac.jp/shindousekkei/index.html M4 取付ネジ 2 Xin 加振器 50mm 幅 30mm 材料 :A2017または ABS 樹脂 計測点 :Xout 2mm? Hz CAD 所望の特性になるまで繰り返す?

More information

Microsoft Word - 中村工大連携教材(最終 ).doc

Microsoft Word - 中村工大連携教材(最終 ).doc 音速について考えてみよう! 金沢工業大学 中村晃 ねらい 私たちの身の回りにはいろいろな種類の波が存在する. 体感できる波もあれば, できない波もある. その中で音は体感できる最も身近な波である. 遠くで雷が光ってから雷鳴が届くまで数秒間時間がかかることにより, 音の方が光より伝わるのに時間がかかることも経験していると思う. 高校の物理の授業で音の伝わる速さ ( 音速 ) は約 m/s で, 詳しく述べると

More information

スライド 1

スライド 1 CAE 演習 有限要素法のノウハウ ( 基礎編 ) 1. はじめに 有限要素法はポピュラーなツールである一方 解析で苦労している人が多い 高度な利用技術が必要 ( 解析の流れに沿って説明 ) 2. モデル化 要素の選択 3. メッシュ分割の工夫 4. 境界条件の設定 5. 材料物性の入力 6.7. 解析の結果の検証と分析 2. モデル化 要素の選択 モデルを単純化していかに解析を効率的 高精度に行うか?

More information

Autodesk Inventor Skill Builders Autodesk Inventor 2010 構造解析の精度改良 メッシュリファインメントによる収束計算 予想作業時間:15 分 対象のバージョン:Inventor 2010 もしくはそれ以降のバージョン シミュレーションを設定する際

Autodesk Inventor Skill Builders Autodesk Inventor 2010 構造解析の精度改良 メッシュリファインメントによる収束計算 予想作業時間:15 分 対象のバージョン:Inventor 2010 もしくはそれ以降のバージョン シミュレーションを設定する際 Autodesk Inventor Skill Builders Autodesk Inventor 2010 構造解析の精度改良 メッシュリファインメントによる収束計算 予想作業時間:15 分 対象のバージョン:Inventor 2010 もしくはそれ以降のバージョン シミュレーションを設定する際に 収束判定に関するデフォルトの設定をそのまま使うか 修正をします 応力解析ソルバーでは計算の終了を判断するときにこの設定を使います

More information

1/11 SalomeMeca による構造解析 ( 線形 非線形 ) の紹介 1. 自己紹介 2. SalomeMeca の概要 3. SalomeMeca でできること ( 確認した項目 ) 4. 具体的実施例の紹介 5. 解析結果 ( 非線形 動解析 ) の事例 6. まとめ 7. 付録 (Co

1/11 SalomeMeca による構造解析 ( 線形 非線形 ) の紹介 1. 自己紹介 2. SalomeMeca の概要 3. SalomeMeca でできること ( 確認した項目 ) 4. 具体的実施例の紹介 5. 解析結果 ( 非線形 動解析 ) の事例 6. まとめ 7. 付録 (Co 1/11 SalomeMeca による構造解析 ( 線形 非線形 ) の紹介 1. 自己紹介 2. SalomeMeca の概要 3. SalomeMeca でできること ( 確認した項目 ) 4. 具体的実施例の紹介 5. 解析結果 ( 非線形 動解析 ) の事例 6. まとめ 7. 付録 (Code_Aster のコマンドリスト ) 2011/06/25 アンデン ( 株 ) 藤井成樹 1. 自己紹介

More information

Q

Q 埼玉工業大学機械工学学習支援セミナー ( 小西克享 ) 剛体の重心と自由運動 -1/8 テーマ 07: 剛体の重心と自由運動 一般的に剛体が自由に運動できる状態 ( 非拘束の状態 ) で運動するとき, 剛体は回転運動を伴った運動をします. たとえば, 棒の端を持って空中に放り投げると, 棒はくるくる回転しながら上昇してやがて地面に落ちてきます. 剛体が拘束されない状態で運動する様子を考察してみましょう.

More information

線形弾性体 線形弾性体 応力テンソル とひずみテンソルソル の各成分が線形関係を有する固体. kl 応力テンソル O kl ひずみテンソル

線形弾性体 線形弾性体 応力テンソル とひずみテンソルソル の各成分が線形関係を有する固体. kl 応力テンソル O kl ひずみテンソル Constitutive equation of elasti solid Hooke s law λδ μ kk Lame s onstant λ μ ( )( ) ( ) linear elasti solid kl kl Copyright is reserved. No part of this doument may be reprodued for profit. 線形弾性体 線形弾性体

More information

伝熱学課題

伝熱学課題 練習問題解答例 < 第 章強制対流熱伝達 >. 式 (.9) を導出せよ (.6) を変換する 最初に の微分値を整理しておく (.A) (.A) これを用いて の微分値を求める (.A) (.A) (.A) (.A6) (.A7) これらの微分値を式 (.6) に代入する (.A8) (.A9) (.A) (.A) (.A) (.9). 薄い平板が温度 で常圧の水の一様な流れの中に平行に置かれている

More information

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように 3 章 Web に Link 解説 連続式 微分表示 の誘導.64 *4. 連続式連続式は ある領域の内部にある流体の質量の収支が その表面からの流入出の合計と等しくなることを定式化したものであり 流体における質量保存則を示したものである 2. 連続式 微分表示 の誘導図のような微小要素 コントロールボリューム の領域内の流体の増減と外部からの流体の流入出を考えることで定式化できる 微小要素 流入

More information

静的弾性問題の有限要素法解析アルゴリズム

静的弾性問題の有限要素法解析アルゴリズム 概要 基礎理論. 応力とひずみおよび平衡方程式. 降伏条件式. 構成式 ( 応力 - ひずみ関係式 ) 有限要素法. 有限要素法の概要. 仮想仕事の原理式と変分原理. 平面ひずみ弾性有限要素法定式化 FEM の基礎方程式平衡方程式. G G G ひずみ - 変位関係式 w w w. kl jkl j D 構成式応力 - ひずみ関係式 ) (. 変位の境界条件力の境界条件境界条件式 t S on V

More information

PowerPoint Presentation

PowerPoint Presentation CAE 演習 :Eas-σ lite に よる応力解析 目標 : 機械工学実験 はりの曲げと応力集中 の有限要素法による応力解析を行う 用語 CAD: Computer Aided Design CAE: Computer Aided Engineering コンピュータシミュレーション CAM: Computer Aided Manufacturing スケジュール. 有限要素法の基礎と応用例 2.

More information

第 5 章 構造振動学 棒の振動を縦振動, 捩り振動, 曲げ振動に分けて考える. 5.1 棒の縦振動と捩り振動 まっすぐな棒の縦振動の固有振動数 f[ Hz] f = l 2pL である. ただし, L [ 単位 m] は棒の長さ, [ 2 N / m ] 3 r[ 単位 Kg / m ] E r

第 5 章 構造振動学 棒の振動を縦振動, 捩り振動, 曲げ振動に分けて考える. 5.1 棒の縦振動と捩り振動 まっすぐな棒の縦振動の固有振動数 f[ Hz] f = l 2pL である. ただし, L [ 単位 m] は棒の長さ, [ 2 N / m ] 3 r[ 単位 Kg / m ] E r 第 5 章 構造振動学 棒の振動を縦振動, 捩り振動, 曲げ振動に分けて考える 5 棒の縦振動と捩り振動 まっすぐな棒の縦振動の固有振動数 f[ Hz] f l pl である ただし, L [ 単位 m] は棒の長さ, [ N / m ] [ 単位 Kg / m ] E は (5) E 単位は棒の材料の縦弾性係数 ( ヤング率 ) は棒の材料の単位体積当りの質量である l は境界条件と振動モードによって決まる無

More information

<4D F736F F D208D5C91A297CD8A7793FC96E591E6398FCD2E646F63>

<4D F736F F D208D5C91A297CD8A7793FC96E591E6398FCD2E646F63> 9-1 第 9 章静定梁のたわみ ポイント : 梁の微分方程式を用いて梁のたわみを求める 静定梁のたわみを計算 前章では 梁の微分方程式を導き 等分布荷重を受ける単純梁の解析を行った 本節では 導いた梁の微分方程式を利用し さらに多くの静定構造物の解析を行い 梁の最大たわみや変形状態を求めることにする さらに を用いて課題で解析した構造を数値計算し 解析結果を比較 検討しよう 9.1 はじめに キーワード梁の微分方程式単純梁の応力解析片持ち梁の応力解析

More information

Microsoft PowerPoint - 講義PPT2019.ppt [互換モード]

Microsoft PowerPoint - 講義PPT2019.ppt [互換モード] . CA 演習 :as σ lite による応力解析 目標 : 機械工学実験 はりの曲げと応力集中 の有限要素法による応力解析を行う CAD: Computer Aided Design CA: Computer Aided ngineering コンピュータシミュレーション CAM: Computer Aided Manufacturing スケジュール. 有限要素法の基礎と応用例. as σの使い方の説明.

More information

Slide 1

Slide 1 Release Note Release Date : Jun. 2015 Product Ver. : igen 2015 (v845) DESIGN OF General Structures Integrated Design System for Building and General Structures Enhancements Analysis & Design 3 (1) 64ビットソルバー及び

More information

A FemtetMacro CFemtet.ShowAllBody 関数を追加 A FemtetMacro CFemtet.HideAllBody 関数を追加 A FemtetMacro CFemtet.ReverseBodyVisibleState 関数を追加 A FemtetMacro CFem

A FemtetMacro CFemtet.ShowAllBody 関数を追加 A FemtetMacro CFemtet.HideAllBody 関数を追加 A FemtetMacro CFemtet.ReverseBodyVisibleState 関数を追加 A FemtetMacro CFem ********************************************************* Femtet11.0 更新履歴 ********************************************************* [A] : 機能追加 [M] : 機能変更 [B] : バグ修正 A Gaudi Femtetをリボンメニュー化 A Gaudi DXFエクスポート機能追加

More information

<4D F736F F D208D5C91A297CD8A7793FC96E591E631318FCD2E646F63>

<4D F736F F D208D5C91A297CD8A7793FC96E591E631318FCD2E646F63> 11-1 第 11 章不静定梁のたわみ ポイント : 基本的な不静定梁のたわみ 梁部材の断面力とたわみ 本章では 不静定構造物として 最も単純でしかも最も大切な両端固定梁の応力解析を行う ここでは 梁の微分方程式を用いて解くわけであるが 前章とは異なり 不静定構造物であるため力の釣合から先に断面力を決定することができない そのため 梁のたわみ曲線と同時に断面力を求めることになる この両端固定梁のたわみ曲線や断面力分布は

More information

ギリシャ文字の読み方を教えてください

ギリシャ文字の読み方を教えてください 埼玉工業大学機械工学学習支援セミナー ( 小西克享 ) 慣性モーメント -1/6 テーマ 01: 慣性モーメント (Momet of ietia) コマ回しをすると, 長い時間回転させるには重くて大きなコマを選ぶことや, ひもを早く引くことが重要であることが経験的にわかります. 遊びを通して, 回転の運動エネルギーを増やせば, 回転の勢いが増すことを学習できるので, 機械系の学生にとってコマ回しも大切な体験学習のひとつと言えます.

More information

破壊の予測

破壊の予測 本日の講義内容 前提 : 微分積分 線形代数が何をしているかはうろ覚え 材料力学は勉強したけど ちょっと 弾性および塑性学は勉強したことが無い ー > ですので 解らないときは質問してください モールの応力円を理解するとともに 応力を 3 次元的に考える FM( 有限要素法 の概略 内部では何を計算しているのか? 3 物が壊れる条件を考える 特に 変形 ( 塑性変形 が発生する条件としてのミーゼス応力とはどのような応力か?

More information

Microsoft PowerPoint - H22制御工学I-2回.ppt

Microsoft PowerPoint - H22制御工学I-2回.ppt 制御工学 I 第二回ラプラス変換 平成 年 4 月 9 日 /4/9 授業の予定 制御工学概論 ( 回 ) 制御技術は現在様々な工学分野において重要な基本技術となっている 工学における制御工学の位置づけと歴史について説明する さらに 制御システムの基本構成と種類を紹介する ラプラス変換 ( 回 ) 制御工学 特に古典制御ではラプラス変換が重要な役割を果たしている ラプラス変換と逆ラプラス変換の定義を紹介し

More information

Femtet 新機能 / 変更点のご紹介 All Rights Reserved, Copyright c Murata Software Co., Ltd.

Femtet 新機能 / 変更点のご紹介 All Rights Reserved, Copyright c Murata Software Co., Ltd. Femtet 2017.0 新機能 / 変更点のご紹介 新機能 / 変更点 機能 解析機能 概要 応力解析 : 初期応力を考慮した解析機能の追加 応力解析 : 剥離解析機能の拡張 応力解析 : 材料データベースにゴム材料データを追加 応力 / 圧電解析 : 応力 ひずみフィールド表記の改良 圧電解析 : 初期応力を考慮した解析機能の追加 熱伝導解析 : 非線形解析に自動加速 / 減速機能を追加 電磁波解析

More information

スライド 1

スライド 1 Femtet Ver11.1 新機能 / 変更点のご紹介 トピックス 機能 解析機能メッシャユーザインタフェース 概要 熱伝導解析 : 輻射解析の輻射面チェック高速化 熱伝導解析 : 輻射解析の精度改善 熱伝導解析 : 発熱密度結果表示機能 磁場解析 : 磁石の磁化方向設定機能を拡張 電磁波解析 : 電圧 電流ポートの作成 音波解析 : 加速度の駆動と音響インテンシティ 電場解析 : メッキ解析の不具合修正

More information

<4D F736F F F696E74202D2091E6328FCD E9F8CB392E88FED944D936093B1298D758B F E291E892C789C1292E B8CDD8

<4D F736F F F696E74202D2091E6328FCD E9F8CB392E88FED944D936093B1298D758B F E291E892C789C1292E B8CDD8 第 章一次元定常熱伝導 伝熱工学の基礎 : 伝熱の基本要素 フーリエの法則 ニュートンの冷却則 次元定常熱伝導 : 熱伝導率 熱通過率 熱伝導方程式 次元定常熱伝導 : ラプラスの方程式 数値解析の基礎 非定常熱伝導 : 非定常熱伝導方程式 ラプラス変換 フーリエ数とビオ数 対流熱伝達の基礎 : 熱伝達率 速度境界層と温度境界層 層流境界層と乱流境界層 境界層厚さ 混合平均温度 強制対流熱伝達 :

More information

<4D F736F F D2097CD8A7793FC96E582BD82ED82DD8A E6318FCD2E646F63>

<4D F736F F D2097CD8A7793FC96E582BD82ED82DD8A E6318FCD2E646F63> - 第 章たわみ角法の基本式 ポイント : たわみ角法の基本式を理解する たわみ角法の基本式を梁の微分方程式より求める 本章では たわみ角法の基本式を導くことにする 基本式の誘導法は各種あるが ここでは 梁の微分方程式を解いて基本式を求める方法を採用する この本で使用する座標系は 右手 右ネジの法則に従った座標を用いる また ひとつの部材では 図 - に示すように部材の左端の 点を原点とし 軸線を

More information

Autodesk Simulation 2014 Autodesk Simulation 2014 新機能演習

Autodesk Simulation 2014 Autodesk Simulation 2014 新機能演習 Autodesk Simulation 2014 Autodesk Simulation 2014 新機能演習 演習 1 パラメトリック解析 目的 : ジオメトリ : 荷重 : 拘束 : パラメトリック解析の設定の方法を学習します PivotBracket.ipt という Inventor ファイルを読み込んでください モデルはシンプルなブラケットです メッシュはデフォルトのまま作成します ブラケットの一部の面に

More information

電磁波解析入門セミナー 説明資料 All Rights Reserved, Copyright c Murata Software Co., Ltd. 1

電磁波解析入門セミナー 説明資料 All Rights Reserved, Copyright c Murata Software Co., Ltd. 1 電磁波解析入門セミナー 説明資料 1 もくじ 1. 電磁波解析の概要 2. 電磁波解析の機能 設定の紹介 2 もくじ 1. 電磁波解析の概要 Femtet の3つの電磁界ソルバ... 4 電磁波解析の3つの種類... 5 調和解析... 6 導波路解析... 7 共振解析... 8 2. 電磁波解析の機能 設定の紹介 3 Femtet の 3 つの電磁界ソルバ Femtet には 3 つの電磁界ソルバがあります

More information

伝熱学課題

伝熱学課題 練習問題解答例 < 第 9 章熱交換器 > 9. 入口温度 0 の kg/ の水と 入口温度 0 の 0 kg/ の水の間で熱交換を行 う 前者の出口温度が 40 の時 後者の出口温度はいくらか 解 ) 式 (9.) を使う,,,, において どちらの流体も水より に注意して 0 40 0 0, これを解いて, 9. 0 の水を用いて 0.MPa の飽和蒸気 kg/ と熱交換させ 蒸気を復水させること

More information

第1章 単 位

第1章  単  位 H. Hamano,. 長柱の座屈 - 長柱の座屈 長い柱は圧縮荷重によって折れてしまう場合がある. この現象を座屈といい, 座屈するときの荷重を座屈荷重という.. 換算長 長さ の柱に荷重が作用する場合, その支持方法によって, 柱の理論上の長さ L が異なる. 長柱の計算は, この L を用いて行うと都合がよい. この L を換算長 ( あるいは有効長さという ) という. 座屈荷重は一般に,

More information

有限要素法法による弾弾性変形解析 (Gmsh+Calculix)) 海洋エネルギギー研究センター今井 問題断面が1mmx1mm 長さ 20mmm の鋼の一端端を固定 他他端に点荷重重をかけた場場合の先端変変位および最大応力を求求める P Equation Chapter 1 Section 1 l

有限要素法法による弾弾性変形解析 (Gmsh+Calculix)) 海洋エネルギギー研究センター今井 問題断面が1mmx1mm 長さ 20mmm の鋼の一端端を固定 他他端に点荷重重をかけた場場合の先端変変位および最大応力を求求める P Equation Chapter 1 Section 1 l 有限要素法法による弾弾性変形解析 (Gmsh+Calculix)) 海洋エネルギギー研究センター今井 問題断面が1mmx1mm 長さ 20mmm の鋼の一端端を固定 他他端に点荷重重をかけた場場合の先端変変位および最大応力を求求める P Equation Chapter 1 Section 1 l δ 1 形状の作作成 (Gmsh) c: gmsh test1 フォルダを作る http://geuz.org/gmsh/#

More information

FrontISTR による熱応力解析 東京大学新領域創成科学研究科人間環境学専攻橋本学 2014 年 10 月 31 日第 15 回 FrontISTR 研究会 < 機能 例題 定式化 プログラム解説編 熱応力解析 / 弾塑性解析 >

FrontISTR による熱応力解析 東京大学新領域創成科学研究科人間環境学専攻橋本学 2014 年 10 月 31 日第 15 回 FrontISTR 研究会 < 機能 例題 定式化 プログラム解説編 熱応力解析 / 弾塑性解析 > FronISR による熱応力解析 東京大学新領域創成科学研究科人間環境学専攻橋本学 214 年 1 月 31 日第 15 回 FronISR 研究会 < 機能 例題 定式化 プログラム解説編 熱応力解析 / 弾塑性解析 > FronISR に実装されている定式化を十分に理解し, 解きたい問題に対してソースコードを自由にカスタマイズ ( 要素タイプを追加, 材料の種類を追加, ユーザサブルーチンを追加

More information

PowerPoint Presentation

PowerPoint Presentation Autodesk Simulation Mechanical/CFD におけるメッシュテクニカルトピックス オートデスクコンサルタント冠者実 Join us on Twitter: #AU2013 アジェンダ Autodesk Simulation Mechanical メッシュトピックス サーフェスが重複しているケース Simulation Mechanical で修正する方法 Fusion で修正する方法

More information

OpenCAE勉強会 公開用_pptx

OpenCAE勉強会 公開用_pptx OpenCAE 勉強会岐阜 2013/06/15 ABAQUS Student Edition を用い た XFEM き裂進展解析事例報告 OpenCAE 学会員 SH 発表内容 ABAQUS Student Edition とは? ABAQUS Student Edition 入手方法など - 入手方法 / インストール - 解析 Sample ファイルの入手方法 etc. XFEM について -XFEM

More information

Microsoft PowerPoint - H21生物計算化学2.ppt

Microsoft PowerPoint - H21生物計算化学2.ppt 演算子の行列表現 > L いま 次元ベクトル空間の基底をケットと書くことにする この基底は完全系を成すとすると 空間内の任意のケットベクトルは > > > これより 一度基底を与えてしまえば 任意のベクトルはその基底についての成分で完全に記述することができる これらの成分を列行列の形に書くと M これをベクトル の基底 { >} による行列表現という ところで 行列 A の共役 dont 行列は A

More information

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ 数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュレーションによって計算してみる 4.1 放物運動一様な重力場における放物運動を考える 一般に質量の物体に作用する力をとすると運動方程式は

More information

Microsoft Word - 1B2011.doc

Microsoft Word - 1B2011.doc 第 14 回モールの定理 ( 単純梁の場合 ) ( モールの定理とは何か?p.11) 例題 下記に示す単純梁の C 点のたわみ角 θ C と, たわみ δ C を求めよ ただし, 部材の曲げ 剛性は材軸に沿って一様で とする C D kn B 1.5m 0.5m 1.0m 解答 1 曲げモーメント図を描く,B 点の反力を求める kn kn 4 kn 曲げモーメント図を描く knm 先に得られた曲げモーメントの値を

More information

Microsoft PowerPoint - fuseitei_6

Microsoft PowerPoint - fuseitei_6 不静定力学 Ⅱ 骨組の崩壊荷重の計算 不静定力学 Ⅱ では, 最後の問題となりますが, 骨組の崩壊荷重の計算法について学びます 1 参考書 松本慎也著 よくわかる構造力学の基本, 秀和システム このスライドの説明には, 主にこの参考書の説明を引用しています 2 崩壊荷重 構造物に作用する荷重が徐々に増大すると, 構造物内に発生する応力は増加し, やがて, 構造物は荷重に耐えられなくなる そのときの荷重を崩壊荷重あるいは終局荷重という

More information

Microsystem Integration & Packaging Laboratory

Microsystem Integration & Packaging Laboratory 2015/01/26 MemsONE 技術交流会 解析事例紹介 東京大学実装工学分野研究室奥村拳 Microsystem Integration and Packaging Laboratory 1 事例紹介 1. 解析の背景高出力半導体レーザの高放熱構造 2. 熱伝導解析解析モデルの概要 3. チップサイズの熱抵抗への影響 4. 接合材料の熱抵抗への影響 5. ヒートシンク材料の熱抵抗への影響 Microsystem

More information

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X (

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X ( 第 週ラプラス変換 教科書 p.34~ 目標ラプラス変換の定義と意味を理解する フーリエ変換や Z 変換と並ぶ 信号解析やシステム設計における重要なツール ラプラス変換は波動現象や電気回路など様々な分野で 微分方程式を解くために利用されてきた ラプラス変換を用いることで微分方程式は代数方程式に変換される また 工学上使われる主要な関数のラプラス変換は簡単な形の関数で表されるので これを ラプラス変換表

More information

netu_pptx

netu_pptx OpenCAE 勉強会 @ 富山 2014/12/13 Salome-meca 他熱伝導解析機能調査 OpenCAE 勉強会 SH 本日の発表内容 熱伝導解析手法について オープンソースCAE 熱伝導解析 Salome-mecaによる熱伝導解析機能の概要 非線形熱伝導解析機能検証 直交異方性熱伝導解析機能検証 まとめ 熱伝導解析手法について 熱伝導解析を解く方法には次のような方法がある 純粋に固体内の熱伝導解析は構造解析分野だと思うが

More information

Microsoft PowerPoint - 2_FrontISTRと利用可能なソフトウェア.pptx

Microsoft PowerPoint - 2_FrontISTRと利用可能なソフトウェア.pptx 東京大学本郷キャンパス 工学部8号館2階222中会議室 13:30-14:00 FrontISTRと利用可能なソフトウェア 2017年4月28日 第35回FrontISTR研究会 FrontISTRの並列計算ハンズオン 精度検証から並列性能評価まで 観測された物理現象 物理モデル ( 支配方程式 ) 連続体の運動を支配する偏微分方程式 離散化手法 ( 有限要素法, 差分法など ) 代数的な数理モデル

More information

PowerPoint Presentation

PowerPoint Presentation Embedded CFD 1D-3D 連成によるエンジンコンパートメント熱収支解析手法の提案 June 9, 2017 . アジェンダ Embedded CFD 概要 エンコパ内風流れデモモデル 他用途への適用可能性, まとめ V サイクルにおける,1D-3D シミュレーションの使い分け ( 現状 ) 1D 機能的表現 企画 & 初期設計 詳細 3D 形状情報の無い段階 1D 1D 空気流れ計算精度に限度

More information

memo

memo 数理情報工学特論第一 機械学習とデータマイニング 4 章 : 教師なし学習 3 かしまひさし 鹿島久嗣 ( 数理 6 研 ) kashima@mist.i.~ DEPARTMENT OF MATHEMATICAL INFORMATICS 1 グラフィカルモデルについて学びます グラフィカルモデル グラフィカルラッソ グラフィカルラッソの推定アルゴリズム 2 グラフィカルモデル 3 教師なし学習の主要タスクは

More information

軸受内部すきまと予圧 δeff =δo (δf +δt ) (8.1) δeff: 運転すきま mm δo: 軸受内部すきま mm δf : しめしろによる内部すきまの減少量 mm δt: 内輪と外輪の温度差による内部すきまの減少量 mm (1) しめしろによる内部すきまの減少量しめしろを与えて軸受

軸受内部すきまと予圧 δeff =δo (δf +δt ) (8.1) δeff: 運転すきま mm δo: 軸受内部すきま mm δf : しめしろによる内部すきまの減少量 mm δt: 内輪と外輪の温度差による内部すきまの減少量 mm (1) しめしろによる内部すきまの減少量しめしろを与えて軸受 軸受内部すきまと予圧 8. 軸受内部すきまと予圧 8. 1 軸受内部すきま軸受内部すきまとは, 軸又はハウジングに取り付ける前の状態で, 図 8.1に示すように内輪又は外輪のいずれかを固定して, 固定されていない軌道輪をラジアル方向又はアキシアル方向に移動させたときの軌道輪の移動量をいう 移動させる方向によって, それぞれラジアル内部すきま又はアキシアル内部すきまと呼ぶ 軸受内部すきまを測定する場合は,

More information

参 考 1. 工事請負契約書 2. 建設分野で使われるおもな単位 3.SI 単位換算率表

参 考 1. 工事請負契約書 2. 建設分野で使われるおもな単位 3.SI 単位換算率表 参 考 1. 工事請負契約書 2. 建設分野で使われるおもな単位 3.SI 単位換算率表 - 287 - - 288 - - 289 - - 290 - - 291 - - 292 - - 293 - - 294 - - 295 - - 296 - - 297 - - 298 - - 299 - - 300 - - 301 - - 302 - - 303 - - 304 - - 305 - - 306

More information

以下 変数の上のドットは時間に関する微分を表わしている (ex. 2 dx d x x, x 2 dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-1) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( x や x, x などがすべて 1 次で なおかつ

以下 変数の上のドットは時間に関する微分を表わしている (ex. 2 dx d x x, x 2 dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-1) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( x や x, x などがすべて 1 次で なおかつ 以下 変数の上のドットは時間に関する微分を表わしている (e. d d, dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( や, などがすべて 次で なおかつそれらの係数が定数であるような微分方程式 ) に対して安定性の解析を行ってきた しかしながら 実際には非線形の微分方程式で記述される現象も多く存在する

More information

第1章 単 位

第1章  単  位 H. Hmno 問題解答 問題解答. 力の釣合い [ 問題.] V : sin. H :.cos. 7 V : sin sin H : cos cos cos 上第 式より これと第 式より.. cos V : sin sin H : coscos cos 上第 式より これと第 式より.98. cos [ 問題.] :. V :. : 9 9. V :. : sin V : sin 8.78 H

More information

PowerPoint Presentation

PowerPoint Presentation H8 年度有限要素法 1 構造強度設計 1. 塑性崩壊 1.3 疲労設計 ( 一部修正版 ) H8-1/6 早川 (R : 夏学期の復習部分 ) 1. 塑性崩壊とその評価法 ( 極限解析 ) R 塑性崩壊 : 構造物として使用に耐えないほどの過度の塑性変形 全断面降伏 前提 : 弾完全塑性材モデル E ひずみ硬化ありひずみ硬化なし : 降伏強さ E : ヤング率 ε 図 1.3 弾完全塑性材モデルの応力

More information

問題 2-1 ボルト締結体の設計 (1-1) 摩擦係数の推定図 1-1 に示すボルト締結体にて, 六角穴付きボルト (M12) の締付けトルクとボルト軸力を測定した ボルトを含め材質はすべて SUS304 かそれをベースとしたオーステナイト系ステンレス鋼である 測定時, ナットと下締結体は固着させた

問題 2-1 ボルト締結体の設計 (1-1) 摩擦係数の推定図 1-1 に示すボルト締結体にて, 六角穴付きボルト (M12) の締付けトルクとボルト軸力を測定した ボルトを含め材質はすべて SUS304 かそれをベースとしたオーステナイト系ステンレス鋼である 測定時, ナットと下締結体は固着させた 問題 2-1 ボルト締結体の設計 (1-1) 摩擦係数の推定図 1-1 に示すボルト締結体にて, 六角穴付きボルト (M12) の締付けトルクとボルト軸力を測定した ボルトを含め材質はすべて SUS304 かそれをベースとしたオーステナイト系ステンレス鋼である 測定時, ナットと下締結体は固着させた 測定データを図 1-2 に示す データから, オーステナイト系ステンレス鋼どうしの摩擦係数を推定せよ

More information

板バネの元は固定にします x[0] は常に0です : > x[0]:=t->0; (1.2) 初期値の設定をします 以降 for 文処理のため 空集合を生成しておきます : > init:={}: 30 番目 ( 端 ) 以外については 初期高さおよび初速は全て 0 にします 初期高さを x[j]

板バネの元は固定にします x[0] は常に0です : > x[0]:=t->0; (1.2) 初期値の設定をします 以降 for 文処理のため 空集合を生成しておきます : > init:={}: 30 番目 ( 端 ) 以外については 初期高さおよび初速は全て 0 にします 初期高さを x[j] 機械振動論固有振動と振動モード 本事例では 板バネを解析対象として 数値計算 ( シミュレーション ) と固有値問題を解くことにより振動解析を行っています 実際の振動は振動モードと呼ばれる特定パターンが複数組み合わされますが 各振動モードによる振動に分けて解析を行うことでその現象を捉え易くすることが出来ます そこで 本事例では アニメーションを活用した解析結果の可視化も取り入れています 板バネの振動

More information

主な新機能および更新機能 : ソルバーインターフェース ADVENTURE Cluster コネクタ要素ソリッド要素タイプ疲労解析名称出力 Nastran シェルモデル読み込み改良名称変更 Gravity 出力改良 SETカード改良 LBC>Connection Type : Connector P

主な新機能および更新機能 : ソルバーインターフェース ADVENTURE Cluster コネクタ要素ソリッド要素タイプ疲労解析名称出力 Nastran シェルモデル読み込み改良名称変更 Gravity 出力改良 SETカード改良 LBC>Connection Type : Connector P 主な新機能および更新機能 : ソルバーインターフェース TSV-Solver 接触条件非線形静解析モーダル周波数 / 過渡応答解析定常熱伝導解析 Abaqus 名称読み込み超弾性材料読み込み COUPLING 出力改良 RBE2 出力改良要素特性コマンド改良ガスケット要素粘着要素コンクリート材料流体材料特性 (Nastran, Actran 含 ) 要素面定義出力改良 LBC>Contact>Solver:Dynamis

More information

Salome-Mecaを使用した メッシュ生成(非構造格子)

Salome-Mecaを使用した メッシュ生成(非構造格子) Salome-Meca を使用した 構造解析入門 秋山善克 1 Salome-Meca とは EDF( フランス電力公社 ) が提供している Linux ベースのオープンソース Code_Aster : 解析ソルバー Salome-Meca : プリポストを中心とした統合プラットフォーム :SALOME Platform に Code_Aster をモジュールとして組み込んだもの Code_Aster

More information

SalomeMeca の使いかた 熱応力と弾塑性解析 ( 基本 ) 1/8 信頼性課藤井 08/5/20 SalomeMeca の使い方 熱応力と弾塑性解析 ( 基本 ) (SaloemMeca ) 目次 1. はじめに 2. モデルの作成 3. Code_A

SalomeMeca の使いかた 熱応力と弾塑性解析 ( 基本 ) 1/8 信頼性課藤井 08/5/20 SalomeMeca の使い方 熱応力と弾塑性解析 ( 基本 ) (SaloemMeca ) 目次 1. はじめに 2. モデルの作成 3. Code_A 1/8 信頼性課藤井 08/5/20 SalomeMeca の使い方 -- 9.0 熱応力と弾塑性解析 ( 基本 ) (SaloemMeca 2008.1) 目次 1. はじめに 2. モデルの作成 3. Code_Aster の作成 3-1. 材料の定義 3-2. 材料と温度設定 3-3. 境界条件 3-4. 非線形解析の定義 3-5. 出力の制御 4. 計算開始 結果の確認 5. Code_Aster

More information

計算機シミュレーション

計算機シミュレーション . 運動方程式の数値解法.. ニュートン方程式の近似速度は, 位置座標 の時間微分で, d と定義されます. これを成分で書くと, d d li li とかけます. 本来は が の極限をとらなければいけませんが, 有限の小さな値とすると 秒後の位置座標は速度を用いて, と近似できます. 同様にして, 加速度は, 速度 の時間微分で, d と定義されます. これを成分で書くと, d d li li とかけます.

More information

<4D F736F F D E4F8E9F82C982A882AF82E98D7397F1>

<4D F736F F D E4F8E9F82C982A882AF82E98D7397F1> 3 三次における行列 要旨高校では ほとんど 2 2 の正方行列しか扱ってなく 三次の正方行列について考えてみたかったため 数 C で学んだ定理を三次の正方行列に応用して 自分たちで仮説を立てて求めていったら 空間における回転移動を表す行列 三次のケーリー ハミルトンの定理 三次における逆行列を求めたり 仮説をたてることができた. 目的 数 C で学んだ定理を三次の正方行列に応用する 2. 概要目的の到達点として

More information

演習資料 ( 作成 : 江澤良孝 ) SolidWorks2014 による片持ち梁モデル作成と SolidWorks Simulation による 3 次元応力解析 - 参照面を使った境界条件の設定 - 10N 端面を拘束 材料 : 炭素鋼 ( 普通 ) 1

演習資料 ( 作成 : 江澤良孝 ) SolidWorks2014 による片持ち梁モデル作成と SolidWorks Simulation による 3 次元応力解析 - 参照面を使った境界条件の設定 - 10N 端面を拘束 材料 : 炭素鋼 ( 普通 ) 1 演習資料 ( 作成 : 江澤良孝 ) SolidWorks2014 による片持ち梁モデル作成と SolidWorks Simulation による 3 次元応力解析 - 参照面を使った境界条件の設定 - 10N 端面を拘束 材料 : 炭素鋼 ( 普通 ) 1 演習資料 ( 作成 : 江澤良孝 ) SolidWorks 2014 によるモデル作成 1. パソコンを起動し ログインする ( デフォルトの仮想デスクトップ

More information

位相最適化?

位相最適化? 均質化設計法 藤井大地 ( 東京大学 ) 位相最適化? 従来の考え方 境界形状を変化させて最適な形状 位相を求める Γ t Ω b Γ D 境界形状を変化させる問題点 解析が進むにつれて, 有限要素メッシュが異形になり, 再メッシュが必要になる 位相が変化する問題への適応が難しい Γ Γ t t Ω b Ω b Γ D Γ D 領域の拡張と特性関数の導入 χ Ω ( x) = f 0 f x Ω x

More information

DVIOUT-SS_Ma

DVIOUT-SS_Ma 第 章 微分方程式 ニュートンはリンゴが落ちるのを見て万有引力を発見した という有名な逸話があります 無重力の宇宙船の中ではリンゴは落ちないで静止していることを考えると 重力が働くと始め静止しているものが動き出して そのスピードはどんどん大きくなる つまり速度の変化が現れることがわかります 速度は一般に時間と共に変化します 速度の瞬間的変化の割合を加速度といい で定義しましょう 速度が変化する, つまり加速度がでなくなるためにはその原因があり

More information

Microsoft PowerPoint - 知財報告会H20kobayakawa.ppt [互換モード]

Microsoft PowerPoint - 知財報告会H20kobayakawa.ppt [互換モード] 亀裂の変形特性を考慮した数値解析による岩盤物性評価法 地球工学研究所地圏科学領域小早川博亮 1 岩盤構造物の安定性評価 ( 斜面の例 ) 代表要素 代表要素の応力ひずみ関係 変形: 弾性体の場合 :E,ν 強度: モールクーロン破壊規準 :c,φ Rock Mech. Rock Engng. (2007) 40 (4), 363 382 原位置試験 せん断試験, 平板載荷試験 原位置三軸試験 室内試験

More information

2014 年 10 月 2 日 本日の講義及び演習 数値シミュレーション 2014 年度第 2 回 偏微分方程式の偏微分項をコンピュータで扱えるようにする 離散化 ( 差分化 ) テイラー展開の利用 1 階微分項に対する差分式 2 階微分項に対する差分式 1 次元熱伝導方程式に適用して差分式を導出

2014 年 10 月 2 日 本日の講義及び演習 数値シミュレーション 2014 年度第 2 回 偏微分方程式の偏微分項をコンピュータで扱えるようにする 離散化 ( 差分化 ) テイラー展開の利用 1 階微分項に対する差分式 2 階微分項に対する差分式 1 次元熱伝導方程式に適用して差分式を導出 04 年 0 月 日 本日の講義及び演習 数値シミュレーション 04 年度第 回 偏微分方程式の偏微分項をコンピュータで扱えるようにする 離散化 ( 差分化 テイラー展開の利用 階微分項に対する差分式 階微分項に対する差分式 次元熱伝導方程式に適用して差分式を導出 Ecel を利用した温度変化シミュレーション 永野 ( 熱流体システム研究室 hagao@tc.ac.p 重要! 熱の伝わり方 ( 伝熱モード

More information

<4D F736F F D B F090CD82C982C282A282C42E646F63>

<4D F736F F D B F090CD82C982C282A282C42E646F63> 1/8 温度応力解析についてアサヒコンサルタント 佃建一 1. はじめに解析は有限要素法 (FEM) と言われる数値解析手法で行ないます 一言で表現すれば 微分方程式で記述できるような物理現象 ( 熱現象 構造力学など ) に対して コンピュータを用いて近似解を求める手法です 右図のように解析する領域 ( 構造物 地盤 ) を 3 角形や 4 角形 ( 二次元や三次元 ) に細分割し ( 要素 )

More information

Microsoft Word - 2_0421

Microsoft Word - 2_0421 電気工学講義資料 直流回路計算の基礎 ( オームの法則 抵抗の直並列接続 キルヒホッフの法則 テブナンの定理 ) オームの法則 ( 復習 ) 図 に示すような物体に電圧 V (V) の直流電源を接続すると物体には電流が流れる 物体を流れる電流 (A) は 物体に加えられる電圧の大きさに比例し 次式のように表すことができる V () これをオームの法則 ( 実験式 ) といい このときの は比例定数であり

More information

Salome-Mecaを使用した メッシュ生成(非構造格子)

Salome-Mecaを使用した メッシュ生成(非構造格子) Salome-Meca を使用した 構造解析入門 秋山善克 1 Salome-Meca とは EDF( フランス電力公社 ) が提供している Linux ベースのオープンソース Code_Aster : 解析ソルバー Salome-Meca : プリポストを中心とした統合プラットフォーム :SALOME Platform に Code_Aster をモジュールとして組み込んだもの Code_Aster

More information

第6章 実験モード解析

第6章 実験モード解析 第 6 章実験モード解析 6. 実験モード解析とは 6. 有限自由度系の実験モード解析 6.3 連続体の実験モード解析 6. 実験モード解析とは 実験モード解析とは加振実験によって測定された外力と応答を用いてモードパラメータ ( 固有振動数, モード減衰比, 正規固有モードなど ) を求める ( 同定する ) 方法である. 力計 試験体 変位計 / 加速度計 実験モード解析の概念 時間領域データを利用する方法

More information

vecrot

vecrot 1. ベクトル ベクトル : 方向を持つ量 ベクトルには 1 方向 2 大きさ ( 長さ ) という 2 つの属性がある ベクトルの例 : 物体の移動速度 移動量電場 磁場の強さ風速力トルクなど 2. ベクトルの表現 2.1 矢印で表現される 矢印の長さ : ベクトルの大きさ 矢印の向き : ベクトルの方向 2.2 2 個の点を用いて表現する 始点 () と終点 () を結ぶ半直線の向き : ベクトルの方向

More information

PowerPoint Presentation

PowerPoint Presentation 解析精度向上のための材料測定のご紹介 解析精度向上のための材料測定のご紹介 解析精度影響要因 材料測定試験実施内容のご紹介 解析実施項目と必要な材料データ 材料パラメータの項目と解析適用結果のご紹介 まとめ Autodesk Simulation Moldflow Material Tests 解析種類別に必要となる材料特性 充填 + 保圧解析 粘度 転移温度 熱伝導率 比熱 pvt 機械的定数 金型熱膨張係数

More information

第 2 章 構造解析 8

第 2 章 構造解析 8 第 2 章 構造解析 8 2.1. 目的 FITSAT-1 の外郭構造が, 打ち上げ時の加速度等によって発生する局所的な応力, 及び温度変化によってビスに発生する引っ張り応力に対して, 十分な強度を有することを明らかにする. 解析には SolidWorks2011 を用いた. 2.2. 適用文書 (1)JMX-2011303B: JEM 搭載用小型衛星放出機構を利用する小型衛星への構造 フラクチャコントロール計画書

More information

D論研究 :「表面張力対流の基礎的研究」

D論研究 :「表面張力対流の基礎的研究」 D 論研究 : 表面張力対流の基礎的研究 定常 Marangoni 対流 及び非定常 Marangoni 対流に関する実験及び数値解析による検討 Si 単結晶の育成装置 Cz 法による Si 単結晶育成 FZ 法による Si 単結晶育成 気液表面 るつぼ加熱 気液表面 大きな温度差を有す気液表面では表面張力対流 (Marangoni 対流 ) が顕著 プロセス終了後のウエハ Cz 法により育成した

More information

Microsoft PowerPoint - zairiki_3

Microsoft PowerPoint - zairiki_3 材料力学講義 (3) 応力と変形 Ⅲ ( 曲げモーメント, 垂直応力度, 曲率 ) 今回は, 曲げモーメントに関する, 断面力 - 応力度 - 変形 - 変位の関係について学びます 1 曲げモーメント 曲げモーメント M 静定力学で求めた曲げモーメントも, 仮想的に断面を切ることによって現れる内力です 軸方向力は断面に働く力 曲げモーメント M は断面力 曲げモーメントも, 一つのモーメントとして表しますが,

More information

슬라이드 1

슬라이드 1 SoilWorks for FLIP 主な機能特徴 1 / 13 SoilWorks for FLIP Pre-Processing 1. CADのような形状作成 修正機能 AutoCAD感覚の使いやすいモデリングや修正機能 1 CADで形状をレイヤー整理したりDXFに変換しなくても Ctrl+C でコピーしてSoilWorks上で Ctrl+V で読込む 2. AutoCAD同様のコマンドキー入力による形状作成

More information

<4D F736F F F696E74202D E94D58B9393AE82F AC82B782E982BD82DF82CC8AEE E707074>

<4D F736F F F696E74202D E94D58B9393AE82F AC82B782E982BD82DF82CC8AEE E707074> 地盤数値解析学特論 防災環境地盤工学研究室村上哲 Mrakam, Satoh. 地盤挙動を把握するための基礎. 変位とひずみ. 力と応力. 地盤の変形と応力. 変位とひずみ 変形勾配テンソルひずみテンソル ひずみテンソル : 材料線素の長さの 乗の変化量の尺度 Green-Lagrange のひずみテンソルと Alman のひずみテンソル 微小変形状態でのひずみテンソル ひずみテンソルの物理的な意味

More information

目次 Patran 利用の手引き 1 1. はじめに 利用できるバージョン 概要 1 機能概要 マニュアル テクニカルサポートIDの取得について 3 2. Patran の利用方法 Patran の起動 3 (1) TSUBAMEにログイン

目次 Patran 利用の手引き 1 1. はじめに 利用できるバージョン 概要 1 機能概要 マニュアル テクニカルサポートIDの取得について 3 2. Patran の利用方法 Patran の起動 3 (1) TSUBAMEにログイン Patran 利用の手引 東京工業大学学術国際情報センター 2017.04 version 1.13 目次 Patran 利用の手引き 1 1. はじめに 1 1.1 利用できるバージョン 1 1.2 概要 1 機能概要 1 1.3 マニュアル 2 1.4 テクニカルサポートIDの取得について 3 2. Patran の利用方法 3 2.1 Patran の起動 3 (1) TSUBAMEにログイン

More information

Salome-Mecaを使用した メッシュ生成(非構造格子)

Salome-Mecaを使用した メッシュ生成(非構造格子) Salome-Mecaを使用した熱伝導解析入門 & 解析手法の違いによる熱伝導解析比較 秋山善克 1 Salome-Meca とは EDF( フランス電力公社 ) が提供している Linux ベースのオープンソース Code_Aster : 解析ソルバー Salome-Meca : プリポストを中心とした統合プラットフォーム :SALOME Platform に Code_Aster をモジュールとして組み込んだもの

More information

多次元レーザー分光で探る凝縮分子系の超高速動力学

多次元レーザー分光で探る凝縮分子系の超高速動力学 波動方程式と量子力学 谷村吉隆 京都大学理学研究科化学専攻 http:theochem.kuchem.kyoto-u.ac.jp TA: 岩元佑樹 iwamoto.y@kuchem.kyoto-u.ac.jp ベクトルと行列の作法 A 列ベクトル c = c c 行ベクトル A = [ c c c ] 転置ベクトル T A = [ c c c ] AA 内積 c AA = [ c c c ] c =

More information

学習指導要領

学習指導要領 (1) 数と式 ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 絶対値の意味を理解し適切な処理することができる 例題 1-3 の絶対値をはずせ 展開公式 ( a + b ) ( a - b ) = a 2 - b 2 を利用して根号を含む分数の分母を有理化することができる 例題 5 5 + 2 の分母を有理化せよ 実数の整数部分と小数部分の表し方を理解している

More information

JSMECM教育認定

JSMECM教育認定 一般社団法人日本機械学会 018/09/6 計算力学技術者 級問題集 ( 固体力学分野 )018 年度版 ( 第 9 版 3 刷 ) P 項目誤正 175 問 -6/ 上 8 行 1 1 sin cos sin cos rs y y xy rs y x xy i 計算力学技術者 級 ( 固体力学分野の有限要素法解析技術者 ) の認定の範囲 認定技術者の技術レベル本認定を取得した技術者は, 基本的な固体力学の問題に対して,

More information

<4D F736F F F696E74202D20836F CC8A C58B858B4F93B982A882E682D1978E89BA814091B28BC68CA48B E >

<4D F736F F F696E74202D20836F CC8A C58B858B4F93B982A882E682D1978E89BA814091B28BC68CA48B E > バットの角度 打球軌道および落下地点の関係 T999 和田真迪 担当教員 飯田晋司 目次 1. はじめに. ボールとバットの衝突 -1 座標系 -ボールとバットの衝突の前後でのボールの速度 3. ボールの軌道の計算 4. おわりに参考文献 はじめに この研究テーマにした理由は 好きな野球での小さい頃からの疑問であるバッテングについて 角度が変わればどう打球に変化が起こるのかが大学で学んだ物理と数学んだ物理と数学を使って判明できると思ったから

More information

Solid Edge ST10 新機能紹介

Solid Edge ST10 新機能紹介 Solid Edge ST10 新機能紹介 2018 年 2 月 All Rights Reserved, Copyright ITOUCHU TECHNO-SOLUTIONS Corporation 2018 目次 パーツ ジェネレーティブデザイン ( 位相最適化 ) リバースエンジニアリング メッシュベースモデリング ボディを調節 シンクロナスでのブレンド削除を強化 シートメタル 切り抜きがある曲げ部の移動

More information

Microsoft PowerPoint - 構造力学Ⅰ第03回.pptx

Microsoft PowerPoint - 構造力学Ⅰ第03回.pptx 分布荷重の合力 ( 効果 ) 前回の復習 ( 第 回 ) p. 分布荷重は平行な力が連続して分布していると考えられる 例 : 三角形分布 l dx P=ql/ q l qx q l 大きさ P dx x 位置 Px 0 x x 0 l ql 0 : 面積に等しい 0 l l 重心に等しいモーメントの釣合より ( バリノンの定理 ) l qx l qx ql q 3 l ql l xdx x0 xdx

More information