マイクロ波無線装置の補修用シート保有に関する信頼性の検討

Size: px
Start display at page:

Download "マイクロ波無線装置の補修用シート保有に関する信頼性の検討"

Transcription

1 マイクロ波無線装置の故障と信頼性維持について 補修用ユニットの保有に関する検討. 概説通信回線は設備が直列に接続されるため 一箇所でも切断すると系統全体が機能しなくなるという 信頼度上特異な構成となっている このため 冗長構成 ダイバシティー化 ルート化などの対策を施して所要の信頼度を確保しているが 設備の構成要素 ( ユニット ) が故障すると回線信頼度は直接又は間接的に脅かされることになる 特にマイクロ波無線装置のような多重通信機器が故障するとその影響は大きい このため送受信装置は冗長構成となっているが その片系が故障すると迅速に補修をしない限り所定の信頼度を確保できないことは当然である 最近の送受信装置は回路が複雑で現場での修理はほとんど不可能であり 故障ユニットをメーカに送って修理を依頼するが 近年この修理期間が問題となっている 中通における調査結果では 短いもので 56 日 長いものでは 3 日余りもの修理期間を要している この間 片系故障のまま放置することはできないので メーカから代替ユニットを借用して対策しているのが現状である このような折 近年における無線施設数の増大と機種の多様化により メーカ側も代替品の確保と供給に責任を持つことが困難になってきたとして あるメーカから代替ユニット供給に関する保守契約を結ぶよう申し入れがあった この問題に対処するためには 冗長系に故障が生じたとき 何時間以内に修理又は代替品を供給しなければならないかを技術的に検討する必要がある 回線切断に至る故障としては 共通部故障と冗長系二重故障があるが これらの故障に対する修理時間 (MTTR) についての検討を行った いくつかの条件を設定した上で信頼性理論に基づく計算を行ったが 結論的として 共通部故障のときは 直ちに修理を行う必要があり また冗長部故障の場合でも 速やかなる代替品の供給が不可欠であることを明らかにした 該当文書は 予備品等管理検討作業会 の資料として作成したものであるが これを技術研修資料として使用するために 次のような変更を加えた 文書のタイトルを マイクロ波無線装置の補修用シート保有に関する信頼性の検討 から本タイトルに変更した 概説 結論 及び 参考文献 を追加した 3 補修用シート を一般的な信頼性用語として 補修用ユニット に変更した 4 計算結果を若干修正したが 結論に影響するような修正ではない 5 本文にあった MTBF の区間推定 は付録とした また付録に 信頼性に関する基礎理論 を追加した 6 その他 研修資料として必要と思われる注書き等を追加した

2 . 適用理論. 信頼度関数と MTBF(Mean Time Between Failure) F t () 信頼度関数 R ( t) と不信頼度関数 ( ) 時間 ~t の間に故障する確率 R( t) と故障しない確率 F( t) ( t) + F ( t) = () 故障密度関数 f ( t) 時間 t における故障確率密度を f ( t) で表わす d F ( t) d R ( t) の間に次の関係が成立する R () f ( t) = = () dt dt ( 注 ) 確率密度関数と累積分布関数の累積分布関数は 次式で与えられる 一般に確率密度関数 f ( x) F x ( x) = f ( x)dx 確率密度関数 (Probability Denity Funtion) は P.D.F とも呼ばれ 関数記号は小文字で表わされる 累積分布関数 (Cumulative Ditribution Funtion) は C.D.F とも呼ばれ 関数記号は大文字で表わされる (3) 平均故障間隔 MTBF E t が MTBF となる f ( t) の期待値 ( ) E ( t) = MTBF = t f ( t) dt ( 注 ) 期待値の定義 変数 x の確率密度関数が f ( x) E ( x) x f ( x) + = dx 式 (3) に次の部分積分公式を適用する ( x) v ( x) dx = v ( x) u( x) u ( x) v( x)dx の場合 その期待値 (Expetation) は次式で与えられる u (4) ( x) = t, v ( x) = f ( t), u ( x) =, v( x) F ( t) u = F t f ( t) dt = tf( t) F( t) dt ( t) R( t) = であるから ( t) dt = tf( t) { R ( t) } dt = t F( t) t R ( t) dt t f + E ( t) = t f ( t) dt = [ t F( t) t] + R( t) dt ( t) lim F = t であるから [ F( t) t] = t [ F( t) ] t となる = (3)

3 E ( t) = MTBF = R( t) dt (5). 故障数の分布 () ポアソン分布 ある時間内に平均 µ 台故障する系において その時間内に x 台が故障する確率は一般に次 のポアソン分布に従うとされている x µ µ p( x) = e (6) x! 単一装置の故障率を とすると t 時間内の平均故障数は µ = t ( 台 ) となる 更に同一機種 が n 台ある場合の全体の故障数は p ( n t ) ( ) ( nt) x e x µ = n t となり ポアソン分布は次式となる = (7) x! 時間 t の間に故障しない確率は 式 (7) において x = とすれば得られ 指数分布となる ( ここで x! =! = である ) n t ( ) = e p (8) () 指数型信頼度関数式 (8) において 時間 t を変数にとると e n t は ~t 時間に故障しない確率 すなわち指数分布に従う信頼度関数を与える 指数型故障モデルは故障率が一定 ( 対象期間内に装置が劣化傾向を持たない ) モデルであり 本検討ではこのモデルを使用する 信頼度関数は次式となる R n t ( t) e = (9) 故障密度関数 f ( t) は式 () より dr ( ) ( t) n t f t = n e dt この分布の期待値 E( t) E = () が MTBF となる ( t) = MTBF = t f ( t) dt = t n e n t dt = n ().3 不通率 ( 保全度係数 ) 平均修復時間を MTTR (Mean Time to Repair) とし t 時間内に m 台の装置が故障したと仮定すると その間の不通時間は次式で与えられる 3

4 ( m) ( n t) m t Uhm = m MTTR p = m MTTR e () m! Uhm の期待値は その系の平均不通時間 Uhn となる p( ) + MTTR p( ) + + n MTTR p( m) + + n MTTR p( n) { p( ) + p( ) + np( n) } (3) Uhn = MTTR = MTTR + 式 (3) の { } 内はポアソン分布の期待値 n t となるので Uhn = n t MTTR (4) となる 指数型故障モデルでは = であるから t 時間内における不通時間は次式となる MTBF MTTR Uhn = n t MTTR = t (5) MTBF n t = とおくと 単位時間当たりの不通時間となり 保全度係数と呼ばれる ρ = MTTR n MTBF (6) n 不通率 ( 不稼働率 )U は次式で与えられるが 一般に MTTR MTBF であるから実際上 ρ が不通率となる MTTR MTTR U = = ρ n (7) MTBF MTBF + MTTR n n m n.4 システムの故障率 () 直列システム複数のブロックからなるシステムにおいて いずれかのブロックが故障すると全体の系がシステムダウンとなる系は信頼度的に直列なシステムと呼ばれる R ( t ) R ( t ) R 3 3 ( t ) R n( t ) n 図 直列システム 直列システムにおいては 各部分の信頼度関数の積が全体の信頼度関数となる 4

5 R ( t) R ( t) R ( t) R ( t) R ( t) = 3 n (8) 指数型故障モデルでは次に示すように 各部分の故障率の和が全体の故障率となる R t t 3t n t ( n) t ( t) = e e e e = e = e (9) = n () 総合の MTBF は次式となる = MTBF () () 並列システム並列システムにおいては 各部分の不信頼度の積が全体の不信頼度関数となる 図 に示すような二つのブロックからなる並列システムの総合 MTBF を求める F( t) = F ( t) F ( t) = { R ( t) }{ R ( t) } R ( t) = R ( t) = R ( t) = = の場合 F ( t) = { R ( t) } = R ( t) + R ( t) 総合信頼度関数 R ( t) は次式となる ( t) F( t) = R ( t) R ( t) R = () t ( t) = e R となるから R 総合 MTBF は t t ( t) = e e t t 3 MTBF = R( t) dt = = = e + e (3) ( t) R, ( t) R, 図 並列システム 式 (3) は修理を伴わない並列システムの MTBF であり 片系が故障しても修理をしないで放置しておくと 並列システムの MTBF は片系のみの場合の MTBF( = / ) の.5 5

6 倍にしかならないことになる (3) 修理を伴う並列システム単位時間内に修復できる確率を保全度 (M) という 信頼度関数 保全度関数とも指数分布 t µτ に従うものとし それぞれ R ( t) = e M ( τ ) e = とすると 状態推移確率行列を 解くことにより 結論として次式を得る [ 文献 [] p34] 3 + µ MTBF = (4) ここで µ は単位時間内に修復される確率であり 修復率と呼ばれる 式 (4) において µ = とおくと MTBF = 3 となり 式 (3) に示す修理をしない並列システムの MTBF と等しくなる 一般に µ であり 式 (4) の分子を + µ µ µ 3 とすると MTBF となる この 式は 比較的短期間に修理される並列システムの信頼度に関しては 故障率の乗法則が成立することを示唆している 片系故障時の保全度を µ 両系故障時の保全度を µ とし 両系故障による回線停止に対す る平均修復時間は MTTR = となるので 不通率は次式となる MTTR µ u = µ = = MTBF e 3 + µ µ ( 3 + µ ) (5) 式 (5) の MTBF は両系故障に対する等価平均故障間隔である e 以上は完全並列システムの場合であり 実際のシステムには共通部があるので これを考慮する必要がある ( 第 4 章参照 ) 3. 検討モデル 3. 回線系統モデル北向マイクロが 区間 局 西向マイクロが 区間 3 局であるが モデル回線として次の 区間 局の系統を想定する 3 区間 局 図 3 回線系統モデル 6

7 3. 計算モデル () 単純故障 MTBF(MTBF) 回線停止に至るかどうかに関係なく 修理を要する故障が発生した場合の平均故障間隔を単純 MTBF と呼ぶことにし これを MTBFとする この故障は発生頻度が高く データの取得が容易である () 等価 MTBF(MTBFe) 回線停止に直接結びつく故障 すなわち共通部故障 冗長系の同時故障などを対象とする平均呼称間隔を等価 MTBF をと呼ぶことにし これを MTBFe とする これは発生頻度が少なく 有意なデータの取得が事実上不可能である (3) 換算係数 ( k ) 単純 MTBF と等価 MTBF の比を換算係数 k とする MTBFe k = (6) MTBF マイクロ波無線装置の場合 k の値は約 5 とされているので本検討ではこの値を使用する 3.3 装置モデル () 検討条件 (a) 直列システム : 故障率の和とする 式 () 参照 (b) 並列システム : 等価 MTBF は式 (4) より次式となる 3 + µ MTBFe = (7) 送受信部の両系同時故障 ( 注 3) による等価故障率 は次式となる = = MTBFe 3 + µ TR (8) TR ( 注 3) 両系同時故障率装置の片系が故障し その修理が終わらないうちに他の片系が故障する確率を指す () 重故障までを対象とする () 送受信装置故障モデル装置の信頼度的構成を図 4のように設定する 電源部は便宜上共通部に含める 7

8 頼度的に並列共通部送信部受信部信 t t r r 信頼度的に直列 tr 図 4 送受信装置の故障モデル 4. 信頼度の計算 4. 冗長系を含む等価故障率計算の単純化のために 号 号の送信部 号 号の受信部の全ての故障率を等しい ものとし これを とする ' () 単純故障 + tr = (9) MTBF tr ' t + t + r + r 4 = (3) = () 回線停止故障 冗長系送受信部の両系同時故障率を とすると 回線停止故障率 は次式となる TR = + TR = (3) MTBFe 送受信部の故障率を等しいとして ' t t = r = r = トの両系同時故障率は 式 (4) より次式となる ' ' = とすると 送受信各ユニッ ' TR = (3) 3 + µ ここで µ は片系故障時の保全度である 8

9 (3) 計算上の故障率マイクロ波送受信装置の単純 MTBF は文献 [5] により約 万時間とされている 回線停止を対象とする等価 MTBF は単純 MTBF の約 /5 とされているのでこの値を使用する 送受信装置 台当りの故障率は次のように表される MTBF ' = = = (33) 5 回線停止対象故障率は次式となる 7 + TR = = = (34) 5 5 MTBF 5 一般に であるから TR 7 (35) 送受信各ユニット単体当りの故障率は であるから 4 ' 5 = = =.5 (36) 4 送受各ユニットの冗長部同時故障率は式 (3) より ' 5 ' (.5 ) = = ' µ µ TR (37) 4. 電源開発 無線装置の MTBF 及び MTTR 実績 () 運用実績と故障数電源開発 にて昭和 63 年度から平成 3 年度までの 4 年間について 稼動中のマイクロ波無線装置のコンポーネントアワーと故障数について調べた結果は表 の通りであった 表 無線装置の故障実績 年度コンポーネントアワー ( 注 4) 故障数 昭和 63 年度 74 台 876 時間 =,4,4 時間 平成 年度 7 台 876 時間 =,373,96 時間 平成 年度 75 台 876 時間 =,49, 時間 7 平成 3 年度 9 台 876 時間 =,549,6 時間 8 合計 9,73,36 時間 49 ( 注 4) コンポーネントアワーの算出に当たっては 年度途中で運用開始した装置についても年度初めから運用しているものとして計算した 9

10 () MTBF 点推定値 コンポーネントアワーがT = 時間で その間の故障数の合計が 49 件であったので MTBF の点推定値は以下の通りとなる MTBF = = 986 ( 時間 ) (38) 49 (3) MTBF 区間推定値 χ 分布による 9% 両側信頼区間を求める MTBF 区間推定表 ( 注 5) にて r = 5 から求めると次のようになる の欄 上限値 98,6.35=63, ( 時間 ) 下限値 98,6.768=53, ( 時間 ) (39) ( 注 5)MTBF 区間推定表式 (3.9) の係数.35 及び.768 は MTBF 区間推定表から求めた値である この表は例えば文献 [4] p9 に与えられている ( 付録 Ⅱ MTBF 区間推定 参照 ) 下限値と比較しても モデル計算における MTBF =. 時間よりは若干良い値となっている 4.3 片系故障時の信頼度低下特性 () モデルケースの場合 5 7 =.45 = MTBFe = 片系故障時の保全度を µ 両系故障時 の保全度を µ とすると 式 (3) より 無線装置 台当りの不通率は次式で求められる MTTR 4 u = = = + (4) MTBFe µ µ µ ( 3 + µ ) 前述の 4. (3) 計算上の故障率 において 無線装置 台を送受 現用予備の 4 台に分解したので 区間 (4 装置 ) 合計台数は 6 台となる なお 共通部故障率は無線装置 台当りの数値として扱う 従って合計不通率は次式となる u = u + u ( 合計故障率 ) r u = 4 ( 共通部不通率 ) µ (4)

11 ' u r = 6 ( 冗長部不通率 ) µ ' ( 3 + µ ) モデルケースの不通率について計算した結果を表 に示す 保全度については µ = µ = µ として計算した 片系故障時と両系故障時では緊急度の相違から修理時間に差があると考えられるが そのようなデータは得られていないので 同じとして計算した = 表 モデルケースの不通率 µ µ µ = 保全度 µ MTTR 時間 共通部不通率 冗長部不通率 () 実測 MTBF の場合電源開発 における MTBF 実績値の区間推定を求める 式 (39) に MTBF の区間推定値 が与えられているので MTBFe=MTBF 5 = = ' = と MTBF MTBFe 4 して故障率を求めると表 3のようになる 表 3 実測 MTBF による故障率推定値 MTBF MTBFe 単純故障率 共通部故障 ユニット単純故 ( 時間 ) ( 時間 ) 率 障率 ' 上限値 63, 下限値 53,

12 共通部不通率 = 4 冗長部不通率 = 6 µ µ ' ( 3 ' + µ ) として上限及び下限の不通率 を求めると表 4 のようになる 表 4 実測 MTBF による不通率 u MTTR( 時間 ) 上限共通部 上限冗長部下限共通部 下限冗長部 3.4E-6.888E- 5.4E E E-6.55E-9.5E E E-9.6E-5.56E E-8 5.4E E E-7.5E E E-7.6E-4.5E E-6 5.4E E E-5.5E E E-5.6E E E E E-.836 (3) MTTR の実績故障した送受信ユニットをメーカに修理に出して返ってくるまでの日数を 平成 年 4 月から平成 4 年 月までの 4 件について調べた結果によると 最短日数が 7 日 最長日数が 3 日 平均は 56 日であった 別紙の 装置故障に伴う不通率推定曲線 にはこのデータを記入している (4) 目標信頼度モデル回線に対する目標信頼度としては 文献 [5] で示されている無線装置 台当りの信頼度 - 6 を採用した 回線系統の目標信頼度は 4 台 - 6 = 8-5 となる 別紙の目標信頼度にはこの値を与えている 4.4 片系故障時の伝搬路信頼度低下特性 6QAM 方式の無線装置は 号 号受信機ともダイバシティー用受信機を備えているが 4PSK 方式の無線装置は 号受信機を SD 用受信機として使用しているため 号のいずれかが故障して片肺運用になるとダイバシティー効果がなくなる この影響による信頼度の低下はさほど大きいとは考えられないが その概要を把握するために以下の検討を

13 行う ここでは計算方法のみを示し 具体的計算は行っていない () 検討モデル 中継区関数 : 区間 受信装置の単純故障率 : 台当り.5-6 式(3.7) より 回線系統の伝搬路信頼度基準値 : 5-5 ( 電協研 6kmモデルより ) 故障した区間には改善度 A ( 倍 ) のダイバシティーが採用されているものとする () 計算方法次の二つの計算方法を示す 年間にある 区間が故障した場合の条件付確率で瞬断率を求める 全受信装置 n 台のうち r 台が故障し その故障区間でレーレーフェージングが発生したとして 瞬断率を求める (3) 条件付確率による瞬断率の求め方 ダイバシティーのある 区間の信頼度 = 5-5 /=.5-6 片系が故障した 区間の信頼度 =.5-6 A A はダイバシティー改善度 ( 倍 ) である ( 注 ) ダイバシティー効果が無くなった 区間の伝搬路信頼度ダイバシティー区間は 所要伝搬路信頼度.5-6 をダイバシティーにより満足させているはずである 従って その 区間の伝搬路信頼度に関して次の関係が成立する P R [ ] A M =.5 ここで P : レーレーフェージング発生確率 R A : ダイバシテイ改善度 ( 倍 ) [ M ]: フェージングマージン ( 真値 ) ダイバシティー効果がなくなると その区間の伝搬路信頼度は次式となる P R =.5 A [ M ] 年間瞬断時間 Dy は以下のとおりになる Dy =.5 A MTTR +.5 ( 876 MTTR) ( 時間 ) 故障した 区間の修 故障した 区間のその 故障していない 9 区間 理中の断時間 他の断時間 の瞬断時間 3

14 瞬断率 = Dy/ 876 (4) 上の式にダイバシティー改善度 A ( 例えば 倍 ) 及び MTTR の値を入れれば瞬断率を計 算することができる (4) 故障した r 台の受信区間でフェージングが発生した場合の瞬断率 受信装置台数 : n = 区間 4 台 = 8 台 台の故障率が p =.5 の場合に k 台が同時に故障する確率 p k は次の二項分布で与えれる n k n k p =! k p ( p) k! n k! (43) ( ) k 台の受信装置が故障し その修理期間中にフェージングが発生して瞬断が生じる確率は次式で求められる 瞬断率 = p.5 + p {(.5 A MTTR )/ ( 876 MTTR) 876} / p {(.5 A MTTR )/ ( 876 MTTR) / 876} p n {(.5 A MTTR) / n.5 ( 876 MTTR) / 876} (44) 上の式にダイバシティー改善度 A ( 例えば 倍 ) 及び MTTR の値を入れれば瞬断率を計算することができる 以上は計算方法を示しただけで 具体的には算出していないが 片系の受信装置が故障し その区間のダイバシティーが不能となっても系全体に与える影響は少ない この問題は 海上区間など ダイバシティー機能が不可欠な区間について個別に検討すべきであると考える 5. 結論無線装置の代替ユニットに関する保守契約検討時の資料を基に研修用資料を作成した 研修目的であるから全面的に作り変えることも可能であったが 通信設備保全に関する工学的アプローチの具体例として なるべく元の文書の内容を残すよう考慮した 4

15 本検討による計算結果は別紙のグラフに示してある モデル回線の共通部不通率カーブによると 信頼度目標を満たすためにはMTTR= すなわち 時間以内に修理を完了しなければならない事を示している これは年間の許容不通時間を示しているのではなく 共通部故障率に基づく故障が発生した場合にこの時間内に修理を施す必要があることを示している 共通部故障率 台は モデル回線において 4 年に 回の割合で発生する確率である モデル回線の冗長部不通率では 目標信頼度を満たす MTTR は 時間ほどになっている 中通の予備ユニットに対する MTTR 実績はこの期間を大きく超過しており 代替ユニットの供給が不可欠であることを示している グラフには実測 MTBF に基づく不通率の上下限カーブも点線で示した 実測 MTBF は文献 [5] の調査結果よりは少し向上しているが 昭和 5 年頃のアナログ無線装置に比べて大きく改善されたとは言いがたい 元の文書は 代替ユニットの必要性を概略的に示すのが目的であり 条件設定等はあまり厳密ではない 従ってこの検討結果を他の目的に利用する場合は注意を要する 例えば 故障が発生した場合の駆けつけ時間に関する検討が目的であれば それに合わせたモデルと条件設定を行う必要があり 当然別の方法論を考える必要がある このような理由から この資料は研修目的のみに使用することを希望する 参考文献 [] 佐藤喜代蔵 信頼性工学 オーム社 [] 塩見弘 信頼性の基礎 電気 電子工学体系 コロナ社 [3] 塩見弘著 高木昇監修 信頼性概論 信頼性工学体系 東京電機大学 [4] 塩見弘著 高木昇監修 信頼性の基礎数学 信頼性工学体系 東京電機大学 [5] 電気協同研究第 33 巻第 号 電力用マイクロ波無線装置信頼度向上対策 電力用マイクロ波無線装置信頼度向上専門委員会 5

16 付録 Ⅰ MTBF の信頼区間. 少数サンプルの MTBF 少ない故障数から求めた実測 MTBF を母集団の MTBF の推定値と考えるとき その推定 誤差が問題となる 以下には χ ( カイ二乗 ) 分布を使用する MTBF の信頼区間の求め方 を述べる ( 付録 Ⅱ MTBF の区間推定 参照 ) ( 注 ) 参考文献 文献 [3]p3 p89 (MTBF の区間推定 ) 文献 []p45( ポアソン分布の部分和と χ 分布の関係 ) ( 注 ) 信頼区間 統計標本から母数を推定するとき ( 例えば 標本平均から母平均を推定するとき ) 母数が例えば 9% の確率である区間内に存在すると推定されたとき これを母数の 9% 信頼区間という. ポアソン分布による信頼区間指数型故障モデルにおいて 一定時間における平均故障数を m とすると 故障数 r の分布は次のポアソン分布となる f ( r) r m m = e (a) r! 累積分布は次式となる F ( r) = f ( r) r= (a) 故障数の実測値が r であった場合 母平均 m の推定モデルは付録図 のようになる p p m L : 母平均下限推定値 m U : 母平均上限推定値 p : 危険率 m L r m U 付録図 故障数の区間推定図 ( 注 5) ポアソン分布は離散型分布であるが 付録図 では便宜上連続型分布で図示している

17 付録図 から m, m を求めることは 付録図 に示すように 平均 r のポアソン分布の p L U p 及び の値を求めることと同じである p p m L r m U 付録図 平均 r の分布からの推定 MTBF の推定値は次式から求めることができる MTBF ( 上限値 ) = T m L T MTBF ( 下限値 ) = T : コンポーネントアワー m U (a3) ( 注 ) コンポーネントアワー (Component hour) 系 機器 部品などについて 測定された個々の動作時間のまたは試験時間の総計値をいう (JIS Z 85 信頼性用語 より) ただし ポアソン分布は離散型分布であるため 故障数は整数であり 丁度 p に相当する 位置に整数値がくるとは限らない 故障数 r が大きい場合 ( r > ) は 正規近似によって求 めることができるが 少ない場合は誤差が大きくなる 少数故障を含む MTBF の区間推定法としては次の χ ( カイ二乗 ) 分布による推定法が適用される 3. χ 分布による MTBF の区間推定 () ポアソン分布の部分和と χ 分布の関係 + x x 不定積分の漸化式 e x dx = e ( x + x +! ) を使うと ポアソン分布の部分和 は次式で表される F r m m m ( ) = e = ( m + m + +! ) = r= r!! Γ m ( + ) e x x dx (a4)

18 Γ + = ただし ( )! 一方 自由度 φ の χ 分布は次式で与えられる 密度関数 ( χ ) 分布関数 F( ) φ χ χ φ = e ( ) (a5) φ Γ χ / φ ( ) x φ / χ = e x dx (a6) Γ 次に F( χ ) の補数 F( χ ) ( ) を確率 p に等しくするような χ の値を考える φ x F χ = e x dx = p (a8) φ Γ( ) χ 上式と式 (a4) を比較すると χ = m φ = ( +) とすると両式が一致することがわか る すなわち となる m χ φ, p χ 分布の (%) = m = χ φ, p p 値を χ φ, p とすると () MTBF の区間推定 ( 定時打切方式 ) 前述のように観測値が r の場合の故障数の上 下限値は r を平均値とするポアソン分布の p (%) 及び ( p) (%) に等しい 従って 平均 m のポアソン分布の (%) p, とすると m =, p = χ { ( r + ) p} p を m p χ φ となる p p の値を MTBF の下限に の値を上限対応させると 定時打切方式の場合の MTBF の区間推定値は次式となる T T MTBF ( 下限 ) = = p p χ ( r + ), χ ( r + ), (a9) T T MTBF ( 上限 ) = = p p χ r, χ r, 上限と下限で自由度 ( 注 ) が異なるのは 定時打切方式の場合における打切り時点の想定 の相違によるもので 打切られた時点が次の故障の直前であったとすると自由度は ( r +) 故障の直後であったとすると r となる 定数打切方式の場合は 故障直後に打切るので 上下限とも自由度は r となる 3

19 ( 注 ) χ 分布の自由度と上側確率 χ φ, p χ 分布の変数が ( ) で表されるとき φ は自由度であり p は上側確率である χ 分布の確率密度関数を f ( χ ) 累積分布関数を F( χ ) 次の図のようになる とすると これらの関係は f ( χ ) ( ) p = F χ ( ) p = F χ χ 分布関係図 ( p) χ φ, χ 以上 4

20 付録 Ⅱ 信頼性に関する基礎理論 この資料は電源開発 殿より開発電子技術 が受託した 通信機器劣化診断に関する技術調査業務 の報告書( 平成 年 3 月 ) の第 3 章を抜粋したものであり 電発殿の許可を得て研修資料として使用するものである 3. 信頼性の基礎 3-3. ワイブル確率紙 修理を施されるシステムの信頼性 システムの信頼性 MTBF の区間推定 3-6 参考文献 3-

講義「○○○○」

講義「○○○○」 講義 信頼度の推定と立証 内容. 点推定と区間推定. 指数分布の点推定 区間推定 3. 指数分布 正規分布の信頼度推定 担当 : 倉敷哲生 ( ビジネスエンジニアリング専攻 ) 統計的推測 標本から得られる情報を基に 母集団に関する結論の導出が目的 測定値 x x x 3 : x 母集団 (populaio) 母集団の特性値 統計的推測 標本 (sample) 標本の特性値 分布のパラメータ ( 母数

More information

基礎統計

基礎統計 基礎統計 第 11 回講義資料 6.4.2 標本平均の差の標本分布 母平均の差 標本平均の差をみれば良い ただし, 母分散に依存するため場合分けをする 1 2 3 分散が既知分散が未知であるが等しい分散が未知であり等しいとは限らない 1 母分散が既知のとき が既知 標準化変量 2 母分散が未知であり, 等しいとき 分散が未知であるが, 等しいということは分かっているとき 標準化変量 自由度 の t

More information

横浜市環境科学研究所

横浜市環境科学研究所 周期時系列の統計解析 単回帰分析 io 8 年 3 日 周期時系列に季節調整を行わないで単回帰分析を適用すると, 回帰係数には周期成分の影響が加わる. ここでは, 周期時系列をコサイン関数モデルで近似し単回帰分析によりモデルの回帰係数を求め, 周期成分の影響を検討した. また, その結果を気温時系列に当てはめ, 課題等について考察した. 気温時系列とコサイン関数モデル第 報の結果を利用するので, その一部を再掲する.

More information

Microsoft PowerPoint - statistics pptx

Microsoft PowerPoint - statistics pptx 統計学 第 16 回 講義 母平均の区間推定 Part-1 016 年 6 10 ( ) 1 限 担当教員 : 唐渡 広志 ( からと こうじ ) 研究室 : 経済学研究棟 4 階 43 号室 email: kkarato@eco.u-toyama.ac.jp website: http://www3.u-toyama.ac.jp/kkarato/ 1 講義の目的 標本平均は正規分布に従うという性質を

More information

Microsoft PowerPoint - sc7.ppt [互換モード]

Microsoft PowerPoint - sc7.ppt [互換モード] / 社会調査論 本章の概要 本章では クロス集計表を用いた独立性の検定を中心に方法を学ぶ 1) 立命館大学経済学部 寺脇 拓 2 11 1.1 比率の推定 ベルヌーイ分布 (Bernoulli distribution) 浄水器の所有率を推定したいとする 浄水器の所有の有無を表す変数をxで表し 浄水器をもっている を 1 浄水器をもっていない を 0 で表す 母集団の浄水器を持っている人の割合をpで表すとすると

More information

Microsoft PowerPoint - stat-2014-[9] pptx

Microsoft PowerPoint - stat-2014-[9] pptx 統計学 第 17 回 講義 母平均の区間推定 Part-1 014 年 6 17 ( )6-7 限 担当教員 : 唐渡 広志 ( からと こうじ ) 研究室 : 経済学研究棟 4 階 43 号室 email: kkarato@eco.u-toyama.ac.j website: htt://www3.u-toyama.ac.j/kkarato/ 1 講義の目的 標本平均は正規分布に従うという性質を

More information

データ解析

データ解析 データ解析 ( 前期 ) 最小二乗法 向井厚志 005 年度テキスト 0 データ解析 - 最小二乗法 - 目次 第 回 Σ の計算 第 回ヒストグラム 第 3 回平均と標準偏差 6 第 回誤差の伝播 8 第 5 回正規分布 0 第 6 回最尤性原理 第 7 回正規分布の 分布の幅 第 8 回最小二乗法 6 第 9 回最小二乗法の練習 8 第 0 回最小二乗法の推定誤差 0 第 回推定誤差の計算 第

More information

資料の概要 レイリー分布 (Rayleigh distribution) について 周波数が一定で 振幅及び位相が不規則に変動する多重波 ( 正弦波 ) の合成受信電界強度の確率分布はレイリー密度分布に従う 多数の反射波やダクト伝搬路による多重波が到来して合成される場合 この分布に従うことになる マ

資料の概要 レイリー分布 (Rayleigh distribution) について 周波数が一定で 振幅及び位相が不規則に変動する多重波 ( 正弦波 ) の合成受信電界強度の確率分布はレイリー密度分布に従う 多数の反射波やダクト伝搬路による多重波が到来して合成される場合 この分布に従うことになる マ 資料の概要 レイリー分布 (Raleigh distribution) について 周波数が一定で 振幅及び位相が不規則に変動する多重波 ( 正弦波 ) の合成受信電界強度の確率分布はレイリー密度分布に従う 多数の反射波やダクト伝搬路による多重波が到来して合成される場合 この分布に従うことになる マイクロ波無線通信や移動無線通信における伝搬路の解析には 主としてこの分布が使用されている マイクロ波回線設計で使用される

More information

パソコンシミュレータの現状

パソコンシミュレータの現状 第 2 章微分 偏微分, 写像 豊橋技術科学大学森謙一郎 2. 連続関数と微分 工学において物理現象を支配する方程式は微分方程式で表されていることが多く, 有限要素法も微分方程式を解く数値解析法であり, 定式化においては微分 積分が一般的に用いられており. 数学の基礎知識が必要になる. 図 2. に示すように, 微分は連続な関数 f() の傾きを求めることであり, 微小な に対して傾きを表し, を無限に

More information

Microsoft PowerPoint - 測量学.ppt [互換モード]

Microsoft PowerPoint - 測量学.ppt [互換モード] 8/5/ 誤差理論 測定の分類 性格による分類 独立 ( な ) 測定 : 測定値がある条件を満たさなければならないなどの拘束や制約を持たないで独立して行う測定 条件 ( 付き ) 測定 : 三角形の 3 つの内角の和のように, 個々の測定値間に満たすべき条件式が存在する場合の測定 方法による分類 直接測定 : 距離や角度などを機器を用いて直接行う測定 間接測定 : 求めるべき量を直接測定するのではなく,

More information

Microsoft Word - NumericalComputation.docx

Microsoft Word - NumericalComputation.docx 数値計算入門 武尾英哉. 離散数学と数値計算 数学的解法の中には理論計算では求められないものもある. 例えば, 定積分は, まずは積分 ( 被積分関数の原始関数をみつけること できなければ値を得ることはできない. また, ある関数の所定の値における微分値を得るには, まずその関数の微分ができなければならない. さらに代数方程式の解を得るためには, 解析的に代数方程式を解く必要がある. ところが, これらは必ずしも解析的に導けるとは限らない.

More information

確率分布 - 確率と計算 1 6 回に 1 回の割合で 1 の目が出るさいころがある. このさいころを 6 回投げたとき,1 度も 1 の目が出ない確率を求めよ. 5 6 /6 6 =15625/46656= (5/6) 6 = ある市の気象観測所での記録では, 毎年雨の降る

確率分布 - 確率と計算 1 6 回に 1 回の割合で 1 の目が出るさいころがある. このさいころを 6 回投げたとき,1 度も 1 の目が出ない確率を求めよ. 5 6 /6 6 =15625/46656= (5/6) 6 = ある市の気象観測所での記録では, 毎年雨の降る 確率分布 - 確率と計算 6 回に 回の割合で の目が出るさいころがある. このさいころを 6 回投げたとき 度も の目が出ない確率を求めよ. 5 6 /6 6 =565/46656=.48 (5/6) 6 =.48 ある市の気象観測所での記録では 毎年雨の降る日と降らない日の割合は概ね :9 で一定している. 前日に発表される予報の精度は 8% で 残りの % は実際とは逆の天気を予報している.

More information

スライド 1

スライド 1 データ解析特論第 10 回 ( 全 15 回 ) 2012 年 12 月 11 日 ( 火 ) 情報エレクトロニクス専攻横田孝義 1 終了 11/13 11/20 重回帰分析をしばらくやります 12/4 12/11 12/18 2 前回から回帰分析について学習しています 3 ( 単 ) 回帰分析 単回帰分析では一つの従属変数 ( 目的変数 ) を 一つの独立変数 ( 説明変数 ) で予測する事を考える

More information

Microsoft PowerPoint - Statistics[B]

Microsoft PowerPoint - Statistics[B] 講義の目的 サンプルサイズの大きい標本比率の分布は正規分布で近似できることを理解します 科目コード 130509, 130609, 110225 統計学講義第 19/20 回 2019 年 6 月 25 日 ( 火 )6/7 限 担当教員 : 唐渡広志 ( からと こうじ ) 研究室 : email: website: 経済学研究棟 4 階 432 号室 kkarato@eco.u-toyama.ac.jp

More information

第 3 回講義の項目と概要 統計的手法入門 : 品質のばらつきを解析する 平均と標準偏差 (P30) a) データは平均を見ただけではわからない 平均が同じだからといって 同一視してはいけない b) データのばらつきを示す 標準偏差 にも注目しよう c) 平均

第 3 回講義の項目と概要 統計的手法入門 : 品質のばらつきを解析する 平均と標準偏差 (P30) a) データは平均を見ただけではわからない 平均が同じだからといって 同一視してはいけない b) データのばらつきを示す 標準偏差 にも注目しよう c) 平均 第 3 回講義の項目と概要 016.8.9 1.3 統計的手法入門 : 品質のばらつきを解析する 1.3.1 平均と標準偏差 (P30) a) データは平均を見ただけではわからない 平均が同じだからといって 同一視してはいけない b) データのばらつきを示す 標準偏差 にも注目しよう c) 平均 :AVERAGE 関数, 標準偏差 :STDEVP 関数とSTDEVという関数 1 取得したデータそのものの標準偏差

More information

ビジネス統計 統計基礎とエクセル分析 正誤表

ビジネス統計 統計基礎とエクセル分析 正誤表 ビジネス統計統計基礎とエクセル分析 ビジネス統計スペシャリスト エクセル分析スペシャリスト 公式テキスト正誤表と学習用データ更新履歴 平成 30 年 5 月 14 日現在 公式テキスト正誤表 頁場所誤正修正 6 知識編第 章 -3-3 最頻値の解説内容 たとえば, 表.1 のデータであれば, 最頻値は 167.5cm というたとえば, 表.1 のデータであれば, 最頻値は 165.0cm ということになります

More information

講義「○○○○」

講義「○○○○」 講義 システムの信頼性 内容. 直列システムの信頼性. 並列システムの信頼性 3. 直列 並列の複合システムの信頼性 4. 信頼性向上のための手法 担当 : 倉敷哲生 ビジネスエンジニアリング専攻 システムの構成 種々の機械や構造物, システムを分割していけば. 個々の要素 サブシステム となる. サブシステムの組み合わせ方式 直列系 並列系 m/ 冗長系 待機冗長系 3 直列システムの信頼性 直列系

More information

Microsoft PowerPoint - e-stat(OLS).pptx

Microsoft PowerPoint - e-stat(OLS).pptx 経済統計学 ( 補足 ) 最小二乗法について 担当 : 小塚匡文 2015 年 11 月 19 日 ( 改訂版 ) 神戸大学経済学部 2015 年度後期開講授業 補足 : 最小二乗法 ( 単回帰分析 ) 1.( 単純 ) 回帰分析とは? 標本サイズTの2 変数 ( ここではXとY) のデータが存在 YをXで説明する回帰方程式を推定するための方法 Y: 被説明変数 ( または従属変数 ) X: 説明変数

More information

統計的データ解析

統計的データ解析 統計的データ解析 011 011.11.9 林田清 ( 大阪大学大学院理学研究科 ) 連続確率分布の平均値 分散 比較のため P(c ) c 分布 自由度 の ( カイ c 平均値 0, 標準偏差 1の正規分布 に従う変数 xの自乗和 c x =1 が従う分布を自由度 の分布と呼ぶ 一般に自由度の分布は f /1 c / / ( c ) {( c ) e }/ ( / ) 期待値 二乗 ) 分布 c

More information

Microsoft Word - å“Ÿåłžå¸°173.docx

Microsoft Word - å“Ÿåłžå¸°173.docx 回帰分析 ( その 3) 経済情報処理 価格弾力性の推定ある商品について その購入量を w 単価を p とし それぞれの変化量を w p で表 w w すことにする この時 この商品の価格弾力性 は により定義される これ p p は p が 1 パーセント変化した場合に w が何パーセント変化するかを示したものである ここで p を 0 に近づけていった極限を考えると d ln w 1 dw dw

More information

モジュール1のまとめ

モジュール1のまとめ 数理統計学 第 0 回 復習 標本分散と ( 標本 ) 不偏分散両方とも 分散 というのが実情 二乗偏差計標本分散 = データ数 (0ページ) ( 標本 ) 不偏分散 = (03 ページ ) 二乗偏差計 データ数 - 分析ではこちらをとることが多い 復習 ここまで 実験結果 ( 万回 ) 平均 50Kg 標準偏差 0Kg 0 人 全体に小さすぎる > mea(jkke) [] 89.4373 標準偏差

More information

情報工学概論

情報工学概論 確率と統計 中山クラス 第 11 週 0 本日の内容 第 3 回レポート解説 第 5 章 5.6 独立性の検定 ( カイ二乗検定 ) 5.7 サンプルサイズの検定結果への影響練習問題 (4),(5) 第 4 回レポート課題の説明 1 演習問題 ( 前回 ) の解説 勉強時間と定期試験の得点の関係を無相関検定により調べる. データ入力 > aa

More information

電子デバイスの技術進展による製品戦略の変化

電子デバイスの技術進展による製品戦略の変化 経営工学編 : 技術に携わる者であれば 必須の工学 信頼性工学 Reliabiliy Engineering 2014 年 12 月 31 日版 工学博士中小企業診断士 芳賀知 Saoru Haga, Ph.D. No par of his maerial may be reproduced, in any form or by any means, wihou permission. 1. 信頼性とは

More information

様々なミクロ計量モデル†

様々なミクロ計量モデル† 担当 : 長倉大輔 ( ながくらだいすけ ) この資料は私の講義において使用するために作成した資料です WEB ページ上で公開しており 自由に参照して頂いて構いません ただし 内容について 一応検証してありますが もし間違いがあった場合でもそれによって生じるいかなる損害 不利益について責任を負いかねますのでご了承ください 間違いは発見次第 継続的に直していますが まだ存在する可能性があります 1 カウントデータモデル

More information

(.3) 式 z / の計算, alpha( ), sigma( ) から, 値 ( 区間幅 ) を計算 siki.3<-fuctio(, alpha, sigma) elta <- qorm(-alpha/) sigma /sqrt() elta [ 例 ]., 信頼率 として, サイ

(.3) 式 z / の計算, alpha( ), sigma( ) から, 値 ( 区間幅 ) を計算 siki.3<-fuctio(, alpha, sigma) elta <- qorm(-alpha/) sigma /sqrt() elta [ 例 ]., 信頼率 として, サイ 区間推定に基づくサンプルサイズの設計方法 7.7. 株式会社応用数理研究所佐々木俊久 永田靖 サンプルサイズの決め方 朝倉書店 (3) の 章です 原本とおなじ 6 種類を記述していますが 平均値関連 4 つをから4 章とし, 分散の つを 5,6 章に順序を変更しました 推定手順 サンプルサイズの設計方法は, 原本をそのまま引用しています R(S-PLUS) 関数での計算方法および例を追加しました.

More information

統計学 - 社会統計の基礎 - 正規分布 標準正規分布累積分布関数の逆関数 t 分布正規分布に従うサンプルの平均の信頼区間 担当 : 岸 康人 資料ページ :

統計学 - 社会統計の基礎 - 正規分布 標準正規分布累積分布関数の逆関数 t 分布正規分布に従うサンプルの平均の信頼区間 担当 : 岸 康人 資料ページ : 統計学 - 社会統計の基礎 - 正規分布 標準正規分布累積分布関数の逆関数 t 分布正規分布に従うサンプルの平均の信頼区間 担当 : 岸 康人 資料ページ : https://goo.gl/qw1djw 正規分布 ( 復習 ) 正規分布 (Normal Distribution)N (μ, σ 2 ) 別名 : ガウス分布 (Gaussian Distribution) 密度関数 Excel:= NORM.DIST

More information

Microsoft Word - thesis.doc

Microsoft Word - thesis.doc 剛体の基礎理論 -. 剛体の基礎理論初めに本論文で大域的に使用する記号を定義する. 使用する記号トルク撃力力角運動量角速度姿勢対角化された慣性テンソル慣性テンソル運動量速度位置質量時間 J W f F P p .. 質点の並進運動 質点は位置 と速度 P を用いる. ニュートンの運動方程式 という状態を持つ. 但し ここでは速度ではなく運動量 F P F.... より質点の運動は既に明らかであり 質点の状態ベクトル

More information

Microsoft Word - Stattext07.doc

Microsoft Word - Stattext07.doc 7 章正規分布 正規分布 (ormal dstrbuto) は 偶発的なデータのゆらぎによって生じる統計学で最も基本的な確率分布です この章では正規分布についてその性質を詳しく見て行きましょう 7. 一般の正規分布正規分布は 平均と分散の つの量によって完全に特徴付けられています 平均 μ 分散 の正規分布は N ( μ, ) 分布とも書かれます ここに N は ormal の頭文字を 表わしています

More information

EBNと疫学

EBNと疫学 推定と検定 57 ( 復習 ) 記述統計と推測統計 統計解析は大きく 2 つに分けられる 記述統計 推測統計 記述統計 観察集団の特性を示すもの 代表値 ( 平均値や中央値 ) や ばらつきの指標 ( 標準偏差など ) 図表を効果的に使う 推測統計 観察集団のデータから母集団の特性を 推定 する 平均 / 分散 / 係数値などの推定 ( 点推定 ) 点推定値のばらつきを調べる ( 区間推定 ) 検定統計量を用いた検定

More information

スライド 1

スライド 1 データ解析特論重回帰分析編 2017 年 7 月 10 日 ( 月 )~ 情報エレクトロニクスコース横田孝義 1 ( 単 ) 回帰分析 単回帰分析では一つの従属変数 ( 目的変数 ) を 一つの独立変数 ( 説明変数 ) で予測する事を考える 具体的には y = a + bx という回帰直線 ( モデル ) でデータを代表させる このためにデータからこの回帰直線の切片 (a) と傾き (b) を最小

More information

Probit , Mixed logit

Probit , Mixed logit Probit, Mixed logit 2016/5/16 スタートアップゼミ #5 B4 後藤祥孝 1 0. 目次 Probit モデルについて 1. モデル概要 2. 定式化と理解 3. 推定 Mixed logit モデルについて 4. モデル概要 5. 定式化と理解 6. 推定 2 1.Probit 概要 プロビットモデルとは. 効用関数の誤差項に多変量正規分布を仮定したもの. 誤差項には様々な要因が存在するため,

More information

RSS Higher Certificate in Statistics, Specimen A Module 3: Basic Statistical Methods Solutions Question 1 (i) 帰無仮説 : 200C と 250C において鉄鋼の破壊応力の母平均には違いはな

RSS Higher Certificate in Statistics, Specimen A Module 3: Basic Statistical Methods Solutions Question 1 (i) 帰無仮説 : 200C と 250C において鉄鋼の破壊応力の母平均には違いはな RSS Higher Certiicate in Statistics, Specimen A Module 3: Basic Statistical Methods Solutions Question (i) 帰無仮説 : 00C と 50C において鉄鋼の破壊応力の母平均には違いはない. 対立仮説 : 破壊応力の母平均には違いがあり, 50C の方ときの方が大きい. n 8, n 7, x 59.6,

More information

<4D F736F F D208EC08CB18C7689E68A E F AA957A82C682948C9F92E82E646F63>

<4D F736F F D208EC08CB18C7689E68A E F AA957A82C682948C9F92E82E646F63> 第 7 回 t 分布と t 検定 実験計画学 A.t 分布 ( 小標本に関する平均の推定と検定 ) 前々回と前回の授業では, 標本が十分に大きいあるいは母分散が既知であることを条件に正規分布を用いて推定 検定した. しかし, 母集団が正規分布し, 標本が小さい場合には, 標本分散から母分散を推定するときの不確実さを加味したt 分布を用いて推定 検定しなければならない. t 分布は標本分散の自由度 f(

More information

森林水文 水資源学 2 2. 水文統計 豪雨があった時, 新聞やテレビのニュースで 50 年に一度の大雨だった などと報告されることがある. 今争点となっている川辺川ダムは,80 年に 1 回の洪水を想定して治水計画が立てられている. 畑地かんがいでは,10 年に 1 回の渇水を対象として計画が立て

森林水文 水資源学 2 2. 水文統計 豪雨があった時, 新聞やテレビのニュースで 50 年に一度の大雨だった などと報告されることがある. 今争点となっている川辺川ダムは,80 年に 1 回の洪水を想定して治水計画が立てられている. 畑地かんがいでは,10 年に 1 回の渇水を対象として計画が立て . 水文統計 豪雨があった時, 新聞やテレビのニュースで 50 年に一度の大雨だった などと報告されることがある. 今争点となっている川辺川ダムは,80 年に 回の洪水を想定して治水計画が立てられている. 畑地かんがいでは,0 年に 回の渇水を対象として計画が立てられる. このように, 水利構造物の設計や, 治水や利水の計画などでは, 年に 回起こるような降雨事象 ( 最大降雨強度, 最大連続干天日数など

More information

カイ二乗フィット検定、パラメータの誤差

カイ二乗フィット検定、パラメータの誤差 統計的データ解析 008 008.. 林田清 ( 大阪大学大学院理学研究科 ) 問題 C (, ) ( x xˆ) ( y yˆ) σ x πσ σ y y Pabx (, ;,,, ) ˆ y σx σ y = dx exp exp πσx ただし xy ˆ ˆ はyˆ = axˆ+ bであらわされる直線モデル上の点 ( ˆ) ( ˆ ) ( ) x x y ax b y ax b Pabx (,

More information

Microsoft Word - 補論3.2

Microsoft Word - 補論3.2 補論 3. 多変量 GARC モデル 07//6 新谷元嗣 藪友良 対数尤度関数 3 章 7 節では 変量の対数尤度を求めた ここでは多変量の場合 とくに 変量について対数尤度を求める 誤差項 は平均 0 で 次元の正規分布に従うとする 単純化のため 分散と共分散は時間を通じて一定としよう ( この仮定は後で変更される ) したがって ij から添え字 を除くことができる このとき と の尤度関数は

More information

多変量解析 ~ 重回帰分析 ~ 2006 年 4 月 21 日 ( 金 ) 南慶典

多変量解析 ~ 重回帰分析 ~ 2006 年 4 月 21 日 ( 金 ) 南慶典 多変量解析 ~ 重回帰分析 ~ 2006 年 4 月 21 日 ( 金 ) 南慶典 重回帰分析とは? 重回帰分析とは複数の説明変数から目的変数との関係性を予測 評価説明変数 ( 数量データ ) は目的変数を説明するのに有効であるか得られた関係性より未知のデータの妥当性を判断する これを重回帰分析という つまり どんなことをするのか? 1 最小 2 乗法により重回帰モデルを想定 2 自由度調整済寄与率を求め

More information

<4D F736F F D208EC08CB18C7689E68A E F193F18D8095AA957A C C839395AA957A814590B38B4B95AA957A2E646F63>

<4D F736F F D208EC08CB18C7689E68A E F193F18D8095AA957A C C839395AA957A814590B38B4B95AA957A2E646F63> 第 4 回二項分布, ポアソン分布, 正規分布 実験計画学 009 年 月 0 日 A. 代表的な分布. 離散分布 二項分布大きさ n の標本で, 事象 Eの起こる確率を p とするとき, そのうち x 個にEが起こる確率 P(x) は二項分布に従う. 例さいころを 0 回振ったときに の出る回数 x の確率分布は二項分布に従う. この場合, n = 0, p = 6 の二項分布になる さいころを

More information

ベイズ統計入門

ベイズ統計入門 ベイズ統計入門 条件付確率 事象 F が起こったことが既知であるという条件の下で E が起こる確率を条件付確率 (codtoal probablt) という P ( E F ) P ( E F ) P( F ) 定義式を変形すると 確率の乗法公式となる ( E F ) P( F ) P( E F ) P( E) P( F E) P 事象の独立 ある事象の生起する確率が 他のある事象が生起するかどうかによって変化しないとき

More information

Microsoft PowerPoint - statistics pptx

Microsoft PowerPoint - statistics pptx 統計学 第 17 回 講義 母平均の区間推定 Part- 016 年 6 14 ( )3 限 担当教員 : 唐渡 広志 ( からと こうじ ) 研究室 : 経済学研究棟 4 階 43 号室 email: kkarato@eco.u toyama.ac.jp website: http://www3.u toyama.ac.jp/kkarato/ 1 講義の目的 標本平均は正規分布に従うという性質を

More information

<4D F736F F D2090B695A8939D8C768A E F AA957A82C682948C9F92E8>

<4D F736F F D2090B695A8939D8C768A E F AA957A82C682948C9F92E8> 第 8 回 t 分布と t 検定 生物統計学 A.t 分布 ( 小標本に関する平均の推定と検定 ) 前々回と前回の授業では, 標本が十分に大きいあるいは母分散が既知であることを条件に正規分布を用いて推定 検定した. しかし, 母集団が正規分布し, 標本が小さい場合には, 標本分散から母分散を推定するときの不確実さを加味したt 分布を用いて推定 検定しなければならない. t 分布は標本分散の自由度 f(

More information

Microsoft PowerPoint slide2forWeb.ppt [互換モード]

Microsoft PowerPoint slide2forWeb.ppt [互換モード] 講義内容 9..4 正規分布 ormal dstrbuto ガウス分布 Gaussa dstrbuto 中心極限定理 サンプルからの母集団統計量の推定 不偏推定量について 確率変数, 確率密度関数 確率密度関数 確率密度関数は積分したら. 平均 : 確率変数 分散 : 例 ある場所, ある日時での気温の確率. : 気温, : 気温 が起こる確率 標本平均とのアナロジー 類推 例 人の身長の分布と平均

More information

Python-statistics5 Python で統計学を学ぶ (5) この内容は山田 杉澤 村井 (2008) R によるやさしい統計学 (

Python-statistics5   Python で統計学を学ぶ (5) この内容は山田 杉澤 村井 (2008) R によるやさしい統計学 ( http://localhost:8888/notebooks/... Python で統計学を学ぶ (5) この内容は山田 杉澤 村井 (2008) R によるやさしい統計学 (http://shop.ohmsha.co.jp/shop /shopdetail.html?brandcode=000000001781&search=978-4-274-06710-5&sort=) を参考にしています

More information

平成 7 年度数学 (3) あるゲームを 回行ったときに勝つ確率が. 8のプレイヤーがいる このゲームは 回ごとに独 立であるとする a. このゲームを 5 回行う場合 中心極限定理を用いると このプレイヤーが 5 回以上勝つ確率 は である. 回以上ゲームをした場合 そのうちの勝ち数が 3 割以上

平成 7 年度数学 (3) あるゲームを 回行ったときに勝つ確率が. 8のプレイヤーがいる このゲームは 回ごとに独 立であるとする a. このゲームを 5 回行う場合 中心極限定理を用いると このプレイヤーが 5 回以上勝つ確率 は である. 回以上ゲームをした場合 そのうちの勝ち数が 3 割以上 平成 7 年度数学 数学 ( 問題 ) 問題 から問題 3 を通じて必要であれば ( 付表 ) に記載された数値を用いなさい 問題. 次の ()~() の各問について 空欄に当てはまる最も適切なものをそれぞれの選択肢 の中から選び 解答用紙の所定の欄にマークしなさい なお 同じ選択肢を複数回選択してもよい 各 5 点 ( 計 6 点 ) ()つのサイコロを振る試行を 回繰り返すこととする 回目と 回目の試行でともにの目が出る事象を

More information

不偏推定量

不偏推定量 不偏推定量 情報科学の補足資料 018 年 6 月 7 日藤本祥二 統計的推定 (statistical estimatio) 確率分布が理論的に分かっている標本統計量を利用する 確率分布の期待値の値をそのまま推定値とするのが点推定 ( 信頼度 0%) 点推定に ± で幅を持たせて信頼度を上げたものが区間推定 持たせた幅のことを誤差 (error) と呼ぶ 信頼度 (cofidece level)

More information

第7章

第7章 5. 推定と検定母集団分布の母数を推定する方法と仮説検定の方法を解説する まず 母数を一つの値で推定する点推定について 推定精度としての標準誤差を説明する また 母数が区間に存在することを推定する信頼区間も取り扱う 後半は統計的仮説検定について述べる 検定法の基本的な考え方と正規分布および二項確率についての検定法を解説する 5.1. 点推定先に述べた統計量は対応する母数の推定値である このように母数を一つの値およびベクトルで推定する場合を点推定

More information

<4D F736F F D208D A778D5A8A778F4B8E7793B CC A7795D2816A2E646F6378>

<4D F736F F D208D A778D5A8A778F4B8E7793B CC A7795D2816A2E646F6378> 高等学校学習指導要領解説数学統計関係部分抜粋 第 部数学第 2 章各科目第 節数学 Ⅰ 3 内容と内容の取扱い (4) データの分析 (4) データの分析統計の基本的な考えを理解するとともに, それを用いてデータを整理 分析し傾向を把握できるようにする アデータの散らばり四分位偏差, 分散及び標準偏差などの意味について理解し, それらを用いてデータの傾向を把握し, 説明すること イデータの相関散布図や相関係数の意味を理解し,

More information

Kumamoto University Center for Multimedia and Information Technologies Lab. 熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI 宮崎県美郷

Kumamoto University Center for Multimedia and Information Technologies Lab. 熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI 宮崎県美郷 熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI プロジェクト @ 宮崎県美郷町 熊本大学副島慶人川村諒 1 実験の目的 従来 信号の受信電波強度 (RSSI:RecevedSgnal StrengthIndcator) により 対象の位置を推定する手法として 無線 LAN の AP(AccessPont) から受信する信号の減衰量をもとに位置を推定する手法が多く検討されている

More information

周期時系列の統計解析 (3) 移動平均とフーリエ変換 nino 2017 年 12 月 18 日 移動平均は, 周期時系列における特定の周期成分の消去や不規則変動 ( ノイズ ) の低減に汎用されている統計手法である. ここでは, 周期時系列をコサイン関数で近似し, その移動平均により周期成分の振幅

周期時系列の統計解析 (3) 移動平均とフーリエ変換 nino 2017 年 12 月 18 日 移動平均は, 周期時系列における特定の周期成分の消去や不規則変動 ( ノイズ ) の低減に汎用されている統計手法である. ここでは, 周期時系列をコサイン関数で近似し, その移動平均により周期成分の振幅 周期時系列の統計解析 3 移動平均とフーリエ変換 io 07 年 月 8 日 移動平均は, 周期時系列における特定の周期成分の消去や不規則変動 ノイズ の低減に汎用されている統計手法である. ここでは, 周期時系列をコサイン関数で近似し, その移動平均により周期成分のがどのように変化するのか等について検討する. また, 気温の実測値に移動平均を適用した結果についてフーリエ変換も併用して考察する. 単純移動平均の計算式移動平均には,

More information

Microsoft PowerPoint - 基礎・経済統計6.ppt

Microsoft PowerPoint - 基礎・経済統計6.ppt . 確率変数 基礎 経済統計 6 確率分布 事象を数値化したもの ( 事象ー > 数値 の関数 自然に数値されている場合 さいころの目 量的尺度 数値化が必要な場合 質的尺度, 順序的尺度 それらの尺度に数値を割り当てる 例えば, コインの表が出たら, 裏なら 0. 離散確率変数と連続確率変数 確率変数の値 連続値をとるもの 身長, 体重, 実質 GDP など とびとびの値 離散値をとるもの 新生児の性別

More information

<4D F736F F F696E74202D2091E6824F82518FCD E838B C68CEB82E894AD90B B2E >

<4D F736F F F696E74202D2091E6824F82518FCD E838B C68CEB82E894AD90B B2E > 目次 参考文献安達著 : 通信システム工学, 朝倉書店,7 年. ディジタル変調. ディジタル伝送系モデル 3. 符号判定誤り確率 4. 元対称通信路 安達 : コミュニケーション符号理論 安達 : コミュニケーション符号理論 変調とは?. ディジタル変調 基底帯域 ( ベースバンド ) 伝送の信号波形は零周波数付近のスペクトルを持っている. しかし, 現実の大部分の通信路は零周波数付近を殆ど伝送することができない帯域通信路とみなされる.

More information

(3) E-I 特性の傾きが出力コンダクタンス である 添え字 は utput( 出力 ) を意味する (4) E-BE 特性の傾きが電圧帰還率 r である 添え字 r は rrs( 逆 ) を表す 定数の値は, トランジスタの種類によって異なるばかりでなく, 同一のトランジスタでも,I, E, 周

(3) E-I 特性の傾きが出力コンダクタンス である 添え字 は utput( 出力 ) を意味する (4) E-BE 特性の傾きが電圧帰還率 r である 添え字 r は rrs( 逆 ) を表す 定数の値は, トランジスタの種類によって異なるばかりでなく, 同一のトランジスタでも,I, E, 周 トランジスタ増幅回路設計入門 pyrgt y Km Ksaka 005..06. 等価回路についてトランジスタの動作は図 のように非線形なので, その動作を簡単な数式で表すことができない しかし, アナログ信号を扱う回路では, 特性グラフのの直線部分に動作点を置くので線形のパラメータにより, その動作を簡単な数式 ( 一次式 ) で表すことができる 図. パラメータトランジスタの各静特性の直線部分の傾きを数値として特性を表したものが

More information

Microsoft PowerPoint - 10.pptx

Microsoft PowerPoint - 10.pptx m u. 固有値とその応用 8/7/( 水 ). 固有値とその応用 固有値と固有ベクトル 行列による写像から固有ベクトルへ m m 行列 によって線形写像 f : R R が表せることを見てきた ここでは 次元平面の行列による写像を調べる とし 写像 f : を考える R R まず 単位ベクトルの像 u y y f : R R u u, u この事から 線形写像の性質を用いると 次の格子上の点全ての写像先が求まる

More information

Microsoft PowerPoint - H21生物計算化学2.ppt

Microsoft PowerPoint - H21生物計算化学2.ppt 演算子の行列表現 > L いま 次元ベクトル空間の基底をケットと書くことにする この基底は完全系を成すとすると 空間内の任意のケットベクトルは > > > これより 一度基底を与えてしまえば 任意のベクトルはその基底についての成分で完全に記述することができる これらの成分を列行列の形に書くと M これをベクトル の基底 { >} による行列表現という ところで 行列 A の共役 dont 行列は A

More information

Microsoft Word - Stattext12.doc

Microsoft Word - Stattext12.doc 章対応のない 群間の量的データの検定. 検定手順 この章ではデータ間に 対 の対応のないつの標本から推定される母集団間の平均値や中央値の比較を行ないます 検定手法は 図. のようにまず正規に従うかどうかを調べます 但し この場合はつの群が共に正規に従うことを調べる必要があります 次に 群とも正規ならば F 検定を用いて等分散であるかどうかを調べます 等分散の場合は t 検定 等分散でない場合はウェルチ

More information

統計学の基礎から学ぶ実験計画法ー1

統計学の基礎から学ぶ実験計画法ー1 第 部統計学の基礎と. 統計学とは. 統計学の基本. 母集団とサンプル ( 標本 ). データ (data) 3. 集団の特性を示す統計量 基本的な解析手法 3. 統計量 (statistic) とは 3. 集団を代表する統計量 - 平均値など 3.3 集団のばらつきを表す値 - 平方和 分散 標準偏差 4. ばらつき ( 分布 ) を表す関数 4. 確率密度関数 4. 最も重要な正規分布 4.3

More information

数値計算法

数値計算法 数値計算法 008 4/3 林田清 ( 大阪大学大学院理学研究科 ) 実験データの統計処理その 誤差について 母集団と標本 平均値と標準偏差 誤差伝播 最尤法 平均値につく誤差 誤差 (Error): 真の値からのずれ 測定誤差 物差しが曲がっていた 測定する対象が室温が低いため縮んでいた g の単位までしかデジタル表示されない計りで g 以下 計りの目盛りを読み取る角度によって値が異なる 統計誤差

More information

ディジタル信号処理

ディジタル信号処理 ディジタルフィルタの設計法. 逆フィルター. 直線位相 FIR フィルタの設計. 窓関数法による FIR フィルタの設計.5 時間領域での FIR フィルタの設計 3. アナログフィルタを基にしたディジタル IIR フィルタの設計法 I 4. アナログフィルタを基にしたディジタル IIR フィルタの設計法 II 5. 双 次フィルタ LI 離散時間システムの基礎式の証明 [ ] 4. ] [ ]*

More information

スライド 1

スライド 1 計測工学第 12 回以降 測定値の誤差と精度編 2014 年 7 月 2 日 ( 水 )~7 月 16 日 ( 水 ) 知能情報工学科 横田孝義 1 授業計画 4/9 4/16 4/23 5/7 5/14 5/21 5/28 6/4 6/11 6/18 6/25 7/2 7/9 7/16 7/23 2 誤差とその取扱い 3 誤差 = 測定値 真の値 相対誤差 = 誤差 / 真の値 4 誤差 (error)

More information

Excelによる統計分析検定_知識編_小塚明_5_9章.indd

Excelによる統計分析検定_知識編_小塚明_5_9章.indd 第7章57766 検定と推定 サンプリングによって得られた標本から, 母集団の統計的性質に対して推測を行うことを統計的推測といいます 本章では, 推測統計の根幹をなす仮説検定と推定の基本的な考え方について説明します 前章までの知識を用いて, 具体的な分析を行います 本章以降の知識は操作編での操作に直接関連していますので, 少し聞きなれない言葉ですが, 帰無仮説 有意水準 棄却域 などの意味を理解して,

More information

禁無断転載 第 3 章統計的手法に用いられる分布 All rights reserved (C) 芳賀 第 1 節我々の身の回りにある代表的分布と性質 1. 分布の表わし方我々の身の回りにある全てのものは ばらつきを持っています 収集したデータを分析していくためには このばらつきがどのような分布にな

禁無断転載 第 3 章統計的手法に用いられる分布 All rights reserved (C) 芳賀 第 1 節我々の身の回りにある代表的分布と性質 1. 分布の表わし方我々の身の回りにある全てのものは ばらつきを持っています 収集したデータを分析していくためには このばらつきがどのような分布にな 第 3 章統計的手法に用いられる分布 第 節我々の身の回りにある代表的分布と性質. 分布の表わし方我々の身の回りにある全てのものは ばらつきを持っています 収集したデータを分析していくためには このばらつきがどのような分布になっているかを明確に表現し 分析 比較を行えるようにしなければなりません この手法を覚えるようにしましょう () 分布の示し方収集した分布の全体的状態を目視で確認 比較するためには

More information

布に従う しかし サイコロが均質でなく偏っていて の出る確率がひとつひとつ異なっているならば 二項分布でなくなる そこで このような場合に の出る確率が同じであるサイコロをもっている対象者をひとつのグループにまとめてしまえば このグループの中では回数分布は二項分布になる 全グループの合計の分布を求め

布に従う しかし サイコロが均質でなく偏っていて の出る確率がひとつひとつ異なっているならば 二項分布でなくなる そこで このような場合に の出る確率が同じであるサイコロをもっている対象者をひとつのグループにまとめてしまえば このグループの中では回数分布は二項分布になる 全グループの合計の分布を求め < 解説 > 広告媒体の到達率推定モデル 株式会社ビデオリサーチ常務取締役木戸茂 広告媒体計画の評価指標として広告業界では 有効リーチ あるいは 有効フリークエンシー の概念が一般に用いられている 広告の到達回数分布 Frequency Distribution の推定が重視される背景としては Krugan97977 の3ヒット セオリー Threeexosuretheory を根拠とした 3リーチ

More information

DVIOUT

DVIOUT 第 3 章 フーリエ変換 3.1 フーリエ積分とフーリエ変換 第 章では 周期を持つ関数のフーリエ級数について学びました この章では 最初に 周期を持つ関数のフーリエ級数を拡張し 周期を持たない ( 一般的な ) 関数のフーリエ級数を導きましょう 具体的には 関数 f(x) を区間 L x L で考え この L を限りなく大きくするというアプローチを取ります (L ) なお ここで扱う関数 f(x)

More information

MINITAB アシスタントホワイトペーパー本書は Minitab 統計ソフトウェアのアシスタントで使用される方法およびデータチェックを開発するため Minitab の統計専門家によって行われた調査に関する一連の文書群を構成する文書の 1 つです ゲージ R&R 分析 ( 交差 ) 概要 測定システ

MINITAB アシスタントホワイトペーパー本書は Minitab 統計ソフトウェアのアシスタントで使用される方法およびデータチェックを開発するため Minitab の統計専門家によって行われた調査に関する一連の文書群を構成する文書の 1 つです ゲージ R&R 分析 ( 交差 ) 概要 測定システ MINITAB アシスタントホワイトペーパー本書は Minitab 統計ソフトウェアのアシスタントで使用される方法およびデータチェックを開発するため Minitab の統計専門家によって行われた調査に関する一連の文書群を構成する文書の 1 つです ゲージ R&R 分析 ( 交差 ) 概要 測定システムの分析は 生産工程を適切に監視および改善するために 事実上あらゆる種類の製造業で行われています 一般的な測定システムの分析では

More information

受信機時計誤差項の が残ったままであるが これをも消去するのが 重位相差である. 重位相差ある時刻に 衛星 から送られてくる搬送波位相データを 台の受信機 でそれぞれ測定する このとき各受信機で測定された衛星 からの搬送波位相データを Φ Φ とし 同様に衛星 からの搬送波位相データを Φ Φ とす

受信機時計誤差項の が残ったままであるが これをも消去するのが 重位相差である. 重位相差ある時刻に 衛星 から送られてくる搬送波位相データを 台の受信機 でそれぞれ測定する このとき各受信機で測定された衛星 からの搬送波位相データを Φ Φ とし 同様に衛星 からの搬送波位相データを Φ Φ とす RTK-GPS 測位計算アルゴリズム -FLOT 解 - 東京海洋大学冨永貴樹. はじめに GPS 測量を行う際 実時間で測位結果を得ることが出来るのは今のところ RTK-GPS 測位のみである GPS 測量では GPS 衛星からの搬送波位相データを使用するため 整数値バイアスを決定しなければならず これが測位計算を複雑にしている所以である この整数値バイアスを決定するためのつの方法として FLOT

More information

DVIOUT

DVIOUT 第 章 離散フーリエ変換 離散フーリエ変換 これまで 私たちは連続関数に対するフーリエ変換およびフーリエ積分 ( 逆フーリエ変換 ) について学んできました この節では フーリエ変換を離散化した離散フーリエ変換について学びましょう 自然現象 ( 音声 ) などを観測して得られる波 ( 信号値 ; 観測値 ) は 通常 電気信号による連続的な波として観測機器から出力されます しかしながら コンピュータはこの様な連続的な波を直接扱うことができないため

More information

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X (

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X ( 第 週ラプラス変換 教科書 p.34~ 目標ラプラス変換の定義と意味を理解する フーリエ変換や Z 変換と並ぶ 信号解析やシステム設計における重要なツール ラプラス変換は波動現象や電気回路など様々な分野で 微分方程式を解くために利用されてきた ラプラス変換を用いることで微分方程式は代数方程式に変換される また 工学上使われる主要な関数のラプラス変換は簡単な形の関数で表されるので これを ラプラス変換表

More information

経営統計学

経営統計学 5 章基本統計量 3.5 節で量的データの集計方法について簡単に触れ 前章でデータの分布について学びましたが データの特徴をつの数値で示すこともよく行なわれます これは統計量と呼ばれ 主に分布の中心や拡がりなどを表わします この章ではよく利用される分布の統計量を特徴で分類して説明します 数式表示を統一的に行なうために データの個数を 個とし それらを,,, と表わすことにします ここで学ぶ統計量は統計分析の基礎となっており

More information

Microsoft PowerPoint - H22制御工学I-2回.ppt

Microsoft PowerPoint - H22制御工学I-2回.ppt 制御工学 I 第二回ラプラス変換 平成 年 4 月 9 日 /4/9 授業の予定 制御工学概論 ( 回 ) 制御技術は現在様々な工学分野において重要な基本技術となっている 工学における制御工学の位置づけと歴史について説明する さらに 制御システムの基本構成と種類を紹介する ラプラス変換 ( 回 ) 制御工学 特に古典制御ではラプラス変換が重要な役割を果たしている ラプラス変換と逆ラプラス変換の定義を紹介し

More information

Microsoft Word - 8章(CI).doc

Microsoft Word - 8章(CI).doc 8 章配置間相互作用法 : Configuration Interaction () etho [] 化学的精度化学反応の精密な解析をするためには エネルギー誤差は数 ~ kcal/mol 程度に抑えたいものである この程度の誤差内に治まる精度を 化学的精度 と呼ぶことがある He 原子のエネルギーをシュレーディンガー方程式と分子軌道法で計算した結果を示そう He 原子のエネルギー Hartree-Fock

More information

1.民営化

1.民営化 参考資料 最小二乗法 数学的性質 経済統計分析 3 年度秋学期 回帰分析と最小二乗法 被説明変数 の動きを説明変数 の動きで説明 = 回帰分析 説明変数がつ 単回帰 説明変数がつ以上 重回帰 被説明変数 従属変数 係数 定数項傾き 説明変数 独立変数 残差... で説明できる部分 説明できない部分 説明できない部分が小さくなるように回帰式の係数 を推定する有力な方法 = 最小二乗法 最小二乗法による回帰の考え方

More information

Medical3

Medical3 Chapter 1 1.4.1 1 元配置分散分析と多重比較の実行 3つの治療法による測定値に有意な差が認められるかどうかを分散分析で調べます この例では 因子が1つだけ含まれるため1 元配置分散分析 one-way ANOVA の適用になります また 多重比較法 multiple comparison procedure を用いて 具体的のどの治療法の間に有意差が認められるかを検定します 1. 分析メニュー

More information

1/10 平成 29 年 3 月 24 日午後 1 時 37 分第 5 章ローレンツ変換と回転 第 5 章ローレンツ変換と回転 Ⅰ. 回転 第 3 章光速度不変の原理とローレンツ変換 では 時間の遅れをローレンツ変換 ct 移動 v相対 v相対 ct - x x - ct = c, x c 2 移動

1/10 平成 29 年 3 月 24 日午後 1 時 37 分第 5 章ローレンツ変換と回転 第 5 章ローレンツ変換と回転 Ⅰ. 回転 第 3 章光速度不変の原理とローレンツ変換 では 時間の遅れをローレンツ変換 ct 移動 v相対 v相対 ct - x x - ct = c, x c 2 移動 / 平成 9 年 3 月 4 日午後 時 37 分第 5 章ローレンツ変換と回転 第 5 章ローレンツ変換と回転 Ⅰ. 回転 第 3 章光速度不変の原理とローレンツ変換 では 時間の遅れをローレンツ変換 t t - x x - t, x 静止静止静止静止 を導いた これを 図の場合に当てはめると t - x x - t t, x t + x x + t t, x (5.) (5.) (5.3) を得る

More information

<4D F736F F D FCD B90DB93AE96402E646F63>

<4D F736F F D FCD B90DB93AE96402E646F63> 7 章摂動法講義のメモ 式が複雑なので 黒板を何度も修正したし 間違ったことも書いたので メモを置きます 摂動論の式の導出無摂動系 先ず 厳密に解けている Schrödiger 方程式を考える,,,3,... 3,,,3,... は状態を区別する整数であり 状態 はエネルギー順に並んでいる 即ち は基底状態 は励起状態である { m } は相互に規格直交条件が成立する k m k mdx km k

More information

Microsoft PowerPoint - Inoue-statistics [互換モード]

Microsoft PowerPoint - Inoue-statistics [互換モード] 誤差論 神戸大学大学院農学研究科 井上一哉 (Kazuya INOUE) 誤差論 2011 年度前期火曜クラス 1 講義内容 誤差と有効数字 (Slide No.2~8 Text p.76~78) 誤差の分布と標準偏差 (Slide No.9~18 Text p.78~80) 最確値とその誤差 (Slide No.19~25 Text p.80~81) 誤差の伝播 (Slide No.26~32 Text

More information

サーバに関するヘドニック回帰式(再推計結果)

サーバに関するヘドニック回帰式(再推計結果) 2012 年 3 月 日本銀行調査統計局 企業物価指数 サーバ に関するヘドニック回帰式 ( 再推計結果 ) 企業物価指数 サーバ の品質調整に適用するヘドニック回帰式について 1 最新のデータを用いて再推計しましたので その結果をお知らせします 1. サーバのヘドニック推計に関する基本方針 留意事項推計頻度 年 1 回 (2 月 ) 適用範囲 国内品 輸出品 輸入品に対し 同一の推計式を適用 2

More information

数値計算法

数値計算法 数値計算法 011/5/5 林田清 ( 大阪大学大学院理学研究科 ) レポート課題 1( 締め切りは 5/5) 平均値と標準偏差を求めるプログラム 入力 : データの数 データ データは以下の 10 個 ( 例えばある月の最高気温 ( )10 日分 ) 34.3,5.0,3.,34.6,.9,7.7,30.6,5.8,3.0,31.3 出力 :( 標本 ) 平均値 標準偏差 ソースプログラムと出力結果をメイルの本文にして

More information

喨微勃挹稉弑

喨微勃挹稉弑 == 全微分方程式 == 全微分とは 変数の関数 z=f(, ) について,, の増分を Δ, Δ とするとき, z の増分 Δz は Δz z Δ+ z Δ で表されます. この式において, Δ 0, Δ 0 となる極限を形式的に dz= z d+ z d (1) で表し, dz を z の全微分といいます. z は z の に関する偏導関数で, を定数と見なし て, で微分したものを表し, 方向の傾きに対応します.

More information

_KyoukaNaiyou_No.4

_KyoukaNaiyou_No.4 理科教科内容指導論 I : 物理分野 物理現象の定量的把握第 4 回 ( 実験 ) データの眺め ~ 統計学の基礎続き 統計のはなし 基礎 応 娯楽 (Best selected business books) 村平 科技連出版社 1836 円 前回の復習と今回以降の 標 東京 学 善 郎 Web サイトより データ ヒストグラム 代表値 ( 平均値 最頻値 中間値 ) 分布の散らばり 集団の分布

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,. 23(2011) (1 C104) 5 11 (2 C206) 5 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 ( ). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5.. 6.. 7.,,. 8.,. 1. (75%

More information

チェビシェフ多項式の2変数への拡張と公開鍵暗号(ElGamal暗号)への応用

チェビシェフ多項式の2変数への拡張と公開鍵暗号(ElGamal暗号)への応用 チェビシェフ多項式の 変数への拡張と公開鍵暗号 Ell 暗号 への応用 Ⅰ. チェビシェフ Chbhv Chbhv の多項式 より であるから よって ここで とおくと coθ iθ coθ iθ iθ coθcoθ 4 4 iθ iθ iθ iθ iθ i θ i θ i θ i θ co θ co θ} co θ coθcoθ co θ coθ coθ したがって が成り立つ この漸化式と であることより

More information

基礎数理 ()Aさんは確定拠出年金の加入者となった 投資商品は収益率がそれぞれ独立な正規分布 N(7, σ ), N(, σ y ) に従う,Y から選択することとした の過去 8 年間の収益率の実績は {8,,,5,,-,6,}(%) Y の過去 6 年間の収益率の実績は {,,,4,,}(%)

基礎数理 ()Aさんは確定拠出年金の加入者となった 投資商品は収益率がそれぞれ独立な正規分布 N(7, σ ), N(, σ y ) に従う,Y から選択することとした の過去 8 年間の収益率の実績は {8,,,5,,-,6,}(%) Y の過去 6 年間の収益率の実績は {,,,4,,}(%) 平成 年 月 日 基礎数理 基礎数理 ( 問題 ) 問題. 次の () から (9) までの各問について それぞれの選択肢の中から正しい答えを選んで 指定 の解答用紙の所定欄にその記号を記入せよ ( 点 ) ()5 個のサイコロを転がすとき 得られたの目の数を の目の数をY とする この同時密度関数を f (, y) としたとき f (,) である ( ア ) 6 ( イ ) 7 5 ( ウ ) 7

More information

フィードバック ~ 様々な電子回路の性質 ~ 実験 (1) 目的実験 (1) では 非反転増幅器の増幅率や位相差が 回路を構成する抵抗値や入力信号の周波数によってどのように変わるのかを調べる 実験方法 図 1 のような自由振動回路を組み オペアンプの + 入力端子を接地したときの出力電圧 が 0 と

フィードバック ~ 様々な電子回路の性質 ~ 実験 (1) 目的実験 (1) では 非反転増幅器の増幅率や位相差が 回路を構成する抵抗値や入力信号の周波数によってどのように変わるのかを調べる 実験方法 図 1 のような自由振動回路を組み オペアンプの + 入力端子を接地したときの出力電圧 が 0 と フィードバック ~ 様々な電子回路の性質 ~ 実験 (1) 目的実験 (1) では 非反転増幅器の増幅率や位相差が 回路を構成する抵抗値や入力信号の周波数によってどのように変わるのかを調べる 実験方法 図 1 のような自由振動回路を組み オペアンプの + 入力端子を接地したときの出力電圧 が 0 となるように半固定抵抗器を調整する ( ゼロ点調整のため ) 図 1 非反転増幅器 2010 年度版物理工学実験法

More information

Microsoft Word - Time Series Basic - Modeling.doc

Microsoft Word - Time Series Basic - Modeling.doc 時系列解析入門 モデリング. 確率分布と統計的モデル が確率変数 (radom varable のとき すべての実数 R に対して となる確 率 Prob( が定められる これを の関数とみなして G( Prob ( とあらわすとき G( を確率変数 の分布関数 (probablt dstrbuto ucto と呼 ぶ 時系列解析で用いられる確率変数は通常連続型と呼ばれるもので その分布関数は (

More information

仮説検定を伴う方法では 検定の仮定が満たされ 検定に適切な検出力があり データの分析に使用される近似で有効な結果が得られることを確認することを推奨します カイ二乗検定の場合 仮定はデータ収集に固有であるためデータチェックでは対応しません Minitab は近似法の検出力と妥当性に焦点を絞っています

仮説検定を伴う方法では 検定の仮定が満たされ 検定に適切な検出力があり データの分析に使用される近似で有効な結果が得られることを確認することを推奨します カイ二乗検定の場合 仮定はデータ収集に固有であるためデータチェックでは対応しません Minitab は近似法の検出力と妥当性に焦点を絞っています MINITAB アシスタントホワイトペーパー本書は Minitab 統計ソフトウェアのアシスタントで使用される方法およびデータチェックを開発するため Minitab の統計専門家によって行われた調査に関する一連の文書の 1 つです カイ二乗検定 概要 実際には 連続データの収集が不可能な場合や難しい場合 品質の専門家は工程を評価するためのカテゴリデータの収集が必要となることがあります たとえば 製品は不良

More information

Microsoft Word ã‡»ã…«ã‡ªã…¼ã…‹ã…žã…‹ã…³ã†¨åłºæœ›å•¤(佒芤喋çfl�)

Microsoft Word ã‡»ã…«ã‡ªã…¼ã…‹ã…žã…‹ã…³ã†¨åłºæœ›å•¤(佒芤喋çfl�) Cellulr uo nd heir eigenlues 東洋大学総合情報学部 佐藤忠一 Tdzu So Depren o Inorion Siene nd rs Toyo Uniersiy. まえがき 一次元セルオ-トマトンは数学的には記号列上の行列の固有値問題である 固有値問題の行列はふつう複素数体上の行列である 量子力学における固有値問題も無限次元ではあるが関数環上の行列でその成分は可換環である

More information

ファイナンスのための数学基礎 第1回 オリエンテーション、ベクトル

ファイナンスのための数学基礎 第1回 オリエンテーション、ベクトル 時系列分析 変量時系列モデルとその性質 担当 : 長倉大輔 ( ながくらだいすけ 時系列モデル 時系列モデルとは時系列データを生み出すメカニズムとなるものである これは実際には未知である 私たちにできるのは観測された時系列データからその背後にある時系列モデルを推測 推定するだけである 以下ではいくつかの代表的な時系列モデルを考察する 自己回帰モデル (Auoregressive Model もっとも頻繁に使われる時系列モデルは自己回帰モデル

More information

ii 2. F. ( ), ,,. 5. G., L., D. ( ) ( ), 2005.,. 6.,,. 7.,. 8. ( ), , (20 ). 1. (75% ) (25% ). 60.,. 2. =8 5, =8 4 (. 1.) 1.,,

ii 2. F. ( ), ,,. 5. G., L., D. ( ) ( ), 2005.,. 6.,,. 7.,. 8. ( ), , (20 ). 1. (75% ) (25% ). 60.,. 2. =8 5, =8 4 (. 1.) 1.,, (1 C205) 4 8 27(2015) http://www.math.is.tohoku.ac.jp/~obata,.,,,..,,. 1. 2. 3. 4. 5. 6. 7.... 1., 2014... 2. P. G., 1995.,. 3.,. 4.. 5., 1996... 1., 2007,. ii 2. F. ( ),.. 3... 4.,,. 5. G., L., D. ( )

More information

スライド 1

スライド 1 本資料について 本資料は下記論文を基にして作成されたものです. 文書の内容の正確さは保障できないため, 正確な知識を求める方は原文を参照してください. 著者 : 伊藤誠吾吉田廣志河口信夫 論文名 : 無線 LANを用いた広域位置情報システム構築に関する検討 出展 : 情報処理学会論文誌 Vol.47 No.42 発表日 :2005 年 12 月 著者 : 伊藤誠悟河口信夫 論文名 : アクセスポイントの選択を考慮したベイズ推定による無線

More information

Microsoft Word - Chap17

Microsoft Word - Chap17 第 7 章化学反応に対する磁場効果における三重項機構 その 7.. 節の訂正 年 7 月 日. 節 章の9ページ の赤枠に記載した説明は間違いであった事に気付いた 以下に訂正する しかし.. 式は 結果的には正しいので安心して下さい 磁場 の存在下でのT 状態のハミルトニアン は ゼーマン項 と時間に依存するスピン-スピン相互作用の項 との和となる..=7.. g S = g S z = S z g

More information

最小二乗フィット、カイ二乗フィット、gnuplot

最小二乗フィット、カイ二乗フィット、gnuplot 数値計算法 009 5/7 林田清 ( 大阪大学大学院理学研究科 ) 最尤法 (Maxmum Lkelhood Method) 回の ( 独立な ) 測定 xで, x,..., x 1 母集団が平均値 μgauss) 標準偏差 の正規 ( 分布の場合 1 回の測定で xから( xの間の値を観測する確率は + dx) dq = Pdx 1 1 x µ P exp π µ は不可知 推定値をとする µ

More information

自動車感性評価学 1. 二項検定 内容 2 3. 質的データの解析方法 1 ( 名義尺度 ) 2.χ 2 検定 タイプ 1. 二項検定 官能検査における分類データの解析法 識別できるかを調べる 嗜好に差があるかを調べる 2 点比較法 2 点識別法 2 点嗜好法 3 点比較法 3 点識別法 3 点嗜好

自動車感性評価学 1. 二項検定 内容 2 3. 質的データの解析方法 1 ( 名義尺度 ) 2.χ 2 検定 タイプ 1. 二項検定 官能検査における分類データの解析法 識別できるかを調べる 嗜好に差があるかを調べる 2 点比較法 2 点識別法 2 点嗜好法 3 点比較法 3 点識別法 3 点嗜好 . 内容 3. 質的データの解析方法 ( 名義尺度 ).χ 検定 タイプ. 官能検査における分類データの解析法 識別できるかを調べる 嗜好に差があるかを調べる 点比較法 点識別法 点嗜好法 3 点比較法 3 点識別法 3 点嗜好法 : 点比較法 : 点識別法 配偶法 配偶法 ( 官能評価の基礎と応用 ) 3 A か B かの判定において 回の判定でAが選ばれる回数 kは p の二項分布に従う H :

More information

Microsoft Word - 【確定版】H27都道府県別生命表作成方法

Microsoft Word - 【確定版】H27都道府県別生命表作成方法 平別生命表の作成方 Ⅰ 平成 7 年都道府県別生命表の作成方法 生命関数の定義 生存率 死亡率ちょうど歳に達した者が + 歳に達するまで生存する確率を歳以上 + 歳未満における生存率といい これをで表し + 歳に達しないで死亡する確率を歳以上 + 歳未満における死亡率といい これをで表す 特に を歳における生存率 死亡率といい これらを で表す 生存数生命表上で一定の出生者人 ( 通常 00,000

More information

経済統計分析1 イントロダクション

経済統計分析1 イントロダクション 1 経済統計分析 9 分散分析 今日のおはなし. 検定 statistical test のいろいろ 2 変数の関係を調べる手段のひとつ適合度検定独立性検定分散分析 今日のタネ 吉田耕作.2006. 直感的統計学. 日経 BP. 中村隆英ほか.1984. 統計入門. 東大出版会. 2 仮説検定の手続き 仮説検定のロジック もし帰無仮説が正しければ, 検定統計量が既知の分布に従う 計算された検定統計量の値から,

More information

ハートレー近似(Hartree aproximation)

ハートレー近似(Hartree aproximation) ハートリー近似 ( 量子多体系の平均場近似 1) 0. ハミルトニアンの期待値の変分がシュレディンガー方程式と等価であること 1. 独立粒子近似という考え方. 電子系におけるハートリー近似 3.3 電子系におけるハートリー近似 Mde by R. Okmoto (Kyushu Institute of Technology) filenme=rtree080609.ppt (0) ハミルトニアンの期待値の変分と

More information

母平均 母分散 母標準偏差は, が連続的な場合も含めて, すべての個体の特性値 のすべての実現値 の平均 分散 標準偏差であると考えてよい 有限母集団で が離散的な場合, まさにその意味になるが, そうでない場合も, このように理解してよい 5 母数 母集団から定まる定数のこと 母平均, 母分散,

母平均 母分散 母標準偏差は, が連続的な場合も含めて, すべての個体の特性値 のすべての実現値 の平均 分散 標準偏差であると考えてよい 有限母集団で が離散的な場合, まさにその意味になるが, そうでない場合も, このように理解してよい 5 母数 母集団から定まる定数のこと 母平均, 母分散, . 無作為標本. 基本的用語 推測統計における基本的な用語を確認する 母集団 調査の対象になる集団のこと 最終的に, 判断の対象になる集団である 母集団の個体 母集団を構成する つ つのもののこと 母集団は個体の集まりである 個体の特性値 個体の特性を表す数値のこと 身長や体重など 特性値は, 変量ともいう 4 有限母集団と無限母集団 個体の個数が有限の母集団を 有限母集団, 個体の個数が無限の母集団を

More information

<4D F736F F D208EC08CB18C7689E68A E F193F18D8095AA957A C C839395AA957A814590B38B4B95AA957A2E646F63>

<4D F736F F D208EC08CB18C7689E68A E F193F18D8095AA957A C C839395AA957A814590B38B4B95AA957A2E646F63> 第 4 回二項分布, ポアソン分布, 正規分布 実験計画学 A. 代表的な分布. 離散分布 二項分布大きさ n の標本で, 事象 Eの起こる確率を p とするとき, そのうち x 個にEが起こる確率 P(x) は二項分布に従う. 例さいころを 0 回振ったときに の出る回数 x の確率分布は二項分布に従う. この場合, n 0, p 6 の二項分布になる さいころを 0 回振ったときに が 0 回出る

More information

DVIOUT

DVIOUT 3 第 2 章フーリエ級数 23 フーリエ級数展開 これまで 関数 f(x) のフーリエ級数展開に関して 関数の定義区間やフーリエ級数の積分区間を断りなく [, ] に取ってきました これは フーリエ級数を構成する三角関数が基本周期 2 を持つためです すなわち フーリエ級数の各項 cos nx および sin nx (n =1, 2, 3, 4, ) の周期は それぞれ 2, 2 2, 2 3,

More information

Microsoft Word - 5章摂動法.doc

Microsoft Word - 5章摂動法.doc 5 章摂動法 ( 次の Moller-Plesset (MP) 法のために ) // 水素原子など 電子系を除いては 原子系の Schrödiger 方程式を解析的に解くことはできない 分子系の Schrödiger 方程式の正確な数値解を求めることも困難である そこで Hartree-Fock(H-F) 法を導入した H-F 法は Schrödiger 方程式が与える全エネルギーの 99% を再現することができる優れた近似方法である

More information

Microsoft PowerPoint - LectureB1handout.ppt [互換モード]

Microsoft PowerPoint - LectureB1handout.ppt [互換モード] 本講義のスコープ 都市防災工学 後半第 回 : イントロダクション 千葉大学大学院工学研究科建築 都市科学専攻都市環境システムコース岡野創 耐震工学の専門家として知っていた方が良いが 敷居が高く 入り口で挫折しがちな分野をいくつか取り上げて説明 ランダム振動論 地震波形に対する構造物応答の理論的把握 減衰と地震応答 エネルギーバランス 地震動の各種スペクトルの相互関係 震源モデル 近年では震源モデルによる地震動予測が良く行われている

More information