one way two way (talk back) (... ) C.E.Shannon 1948 A Mathematical theory of communication. 1 ( ) 0 ( ) 1

Similar documents

(check matrices and minimum distances) H : a check matrix of C the minimum distance d = (the minimum # of column vectors of H which are linearly depen


r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.


S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1.

newmain.dvi

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

II

p-sylow :

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

v er.1/ c /(21)

2011de.dvi

1 1.1 R (ring) R1 R4 R1 R (commutative [abelian] group) R2 a, b, c R (ab)c = a(bc) (associative law) R3 a, b, c R a(b + c) = ab + ac, (a + b)c = ac +

II Time-stamp: <05/09/30 17:14:06 waki> ii

16 B


I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

, = = 7 6 = 42, =

D 24 D D D

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

2014 (2014/04/01)

DVIOUT

A

Part () () Γ Part ,

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

14 (x a x x a f(x x 3 + 2x 2 + 3x + 4 (x 1 1 y x 1 x y + 1 x 3 + 2x 2 + 3x + 4 (y (y (y y 3 + 3y 2 + 3y y 2 + 4y + 2 +


Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

15 mod 12 = 3, 3 mod 12 = 3, 9 mod 12 = N N 0 x, y x y N x y (mod N) x y N mod N mod N N, x, y N > 0 (1) x x (mod N) (2) x y (mod N) y x


名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト

201711grade1ouyou.pdf

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h

meiji_resume_1.PDF

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

1


AI n Z f n : Z Z f n (k) = nk ( k Z) f n n 1.9 R R f : R R f 1 1 {a R f(a) = 0 R = {0 R 1.10 R R f : R R f 1 : R R 1.11 Z Z id Z 1.12 Q Q id

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>


6.1 (P (P (P (P (P (P (, P (, P.

Microsoft Word - 信号処理3.doc

ii-03.dvi

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

J1-a.dvi

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =



Z: Q: R: C:

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

st.dvi

< 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3)

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =

6.1 (P (P (P (P (P (P (, P (, P.101

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona

³ÎΨÏÀ

1. x { e 1,..., e n } x = x1 e1 + + x n en = (x 1,..., x n ) X, Y [X, Y ] Intrinsic ( ) Intrinsic M m P M C P P M P M v 3 v : C P R 1

all.dvi

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)


1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

No.004 [1] J. ( ) ( ) (1968) [2] Morse (1997) [3] (1988) 1

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

( )

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

TOP URL 1

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )



2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

熊本県数学問題正解


Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

i


: , 2.0, 3.0, 2.0, (%) ( 2.

Transcription:

1 1.1 1.2 one way two way (talk back) (... ) 1.3 0 C.E.Shannon 1948 A Mathematical theory of communication. 1 ( ) 0 ( ) 1

( (coding theory)) 2 2.1 (convolution code) (block code), 3 3.1 Q q Q n Q n 1 Q n x, y x = (x 1 x 2... x n ), y = (y 1 y 2... y n ) n d H (x, y) = δ(x i, y i ) i=1 1 x i y i δ(x i, y i ) = 0 x i = y i d H (x, y) x, y (Hamming distance) w(x) = d H (x, 0) 2

x (weight) 0 x, y 0 B ρ (x) = {y Q n d H (x, y) ρ} x ρ (sphere) 2 δ(x i, y i ) x, y, z Q δ(x, z) = 0 δ(x, z) = 1 x z y x, z x = y, z y x y, z = y x y z δ(x, y)+δ(y, z) 1 = δ(x, z) 3.2 2 Q n C (block code) (codeword) n (code length) (minimum distance) d(c) = min{d H (x, y) x, y C} w(c) = min{w(x) x C} (minimum weight) q = Q r(c) = log q C n (information rate, rate of code) ρ(c) = max{min{d H (x, c) c C} x Q n } (covering radius) ρ x Q n C x Q n ρ {B ρ (c) c C} Q n 3.3 ECC EDC 3 s s (s error detecting code) t t (t error cerrecting code) d(c) d(c) 2s s d(c) 2t + 1 t 4 2t + 1 C Q n (perfect code) x Q n t 2t + 1 t t t eror correcting code 3

5 MDD (minimum distance decoding) 1 (repetition code) Q = {0, 1}, n 0 1 n n 1/n 5 C = {x = (00000), y = (11111)} 5 5 2e + 1 2 MDD 0, 1 MDD ( ) x, y 1 Q 5 5 5 2 = 10 30 2 2 (n ) 2 (parity check code)) Q = {0, 1} Q k 0 1 ( Q k+1 ) 1 ( ) 1 1 ( ) 2 1 EDC k/(k + 1) 1 LAN Q = {0, 1} 2 0, 1 2 ε 1, 0 2 2 n 1 > n 2 n 1 n 2 MLD(maximum likekihood decoding) ε 2 y x d H (x, y) = e x y P (x y) = ε e (1 ε) n e e MDD 4

n 2 f(x), g(x) lim x f(x)/g(x) 0 f(x) g(x) f(n) f(n) n, log n n n! MDD MLD C 4 (1) 4.1 Q ( Q = {0, 1} 2 ) Q GF (q) Q Q = q q p q = p r p Q Q Q = Q {0} Q α( ) Q = {0, 1, α, α 2, α 3,..., α q 2 } F q p F p Q = {0, 1, 2,..., p 1} p 0, 1 Q q = p r (p : prime) F q F p F p [x] r p(x) F p [x]/(p(x)) p(x) x 5

4.2 G H g 1 g 2 h H(g 1 = g 2 h) G H ( ) (1) H = {h 1 = e, h 2, h 3,..., h m } H e h 2 (2) g 2 G g 2 H g 2 H = {g 2 h 1 = g 2, g 2 h 2, g 2 h 3,..., g 2 h m } (3) g 3 G g 3 H g 2 H g 3 H = {g 3 h 1 = g 3, g 3 h 2, g 3 h 3,..., g 3 h m } (4) G (6) l G = H l G = H g 2 H g 3 g l H G/H {e, g 2, g 3,,..., g l } 5 5.1 6 Q n C q ( q = Q ) C Q n C k C (n, k) d (n, k, d) x, y C x y C x y 3 C x, y x y C d H (x, y) = d H (x y, 0) = w(x y) C k C k ( ) {x 1, x 2,..., x k } ( ) c C (c 1 c 2... c k )(c = c 1 x 1 + c 2 x 2 + + c k x k ) 6

k n G G = x 1 x 2.. x k C = {ag a Q k } G C G = (I k, P ) k P k n k P w Q k wg = (w, p) (p n k ) k (information symbols) (parity check symbols) I k 3 5 {(11111), (00000)} G = (11111) 7 {(e i 1) i = 1, 2,..., 7, e i = (0... 010... 0) } G = (I 7 1 T 7 ) 1 7 = (1111111) 1 T 7 7 8 0 1 2 0, 1 C = {(c 1 c 2... c 8 ) c 1 + c 2 + + c 8 = 0} 7 2 C 1, C 2 (equivalent) k n k G = (I k, P ) P C 1, C 2 7

8 C k (systematic) C = q k k k (separable) 9 C (n, k) C (dual code) C = {y Q k x C (< x, y >= 0)} < x, y > C (n, n k) C C = {0} C = C C (self dual) G C n k n H GH T = O (n k) H C < x, y >= xy T a, b Q k x = ag, y = bh < x, y >= ag(bh) T = agh T b T < x, y >= 0 H n k dim{bh b Q k } = n k. C = {bh b Q k }. H x C xh T = O 10 (1) y C x C < x, y >= 0 ( ) C H C (2) C H x Q n xh T x (syndrome) G = (I k P ) C H G = (I k P ) GH T = O H = ( P T I n k ) 4 H R, H P 3 H R = (1 T 4 I 4 ) H P = (11111111) 1 4 = (1111) 5.2 Q n C xh T = yh T (x y)h T = 0 x y + C 8

(1) e 0 = 0 e 1 = (10... 0) e 2 C (e 1 + C) e 3 C (e 1 + C) (e 2 + C),... C Q n (n, k) q n k ( (q = Q ) (2) 1 e 1 = (10... 0), e 2 = (010... 0),..., e n = (0... 01) C 1 2 (3) e n+1 = (110... 0), e n+2 = (0110... 0) 2 (4) C 3 q n k (5) {e 1, e 2,... e r } {s i = e i H T i = 1,..., r} (r = q n k ) s 1, s 2,..., s n H s 1 s 2. = H T s ṇ. C H 10 x C e w = x + e wh T = (x + e)h T = eh T (1) w s = wh T (2) s s = s j (3) s j e j x = w e j MDD 4 2 2 (n, k, d) C P (C) P (C) = d h w ε w (1 ε) n w w=0 9

0 d h w w ε 0 1 1 0 {e j j = 1,..., r} x i {x i + e j j = 1,..., r} e j w x i x i + e j ε w (1 ε) n w w h w h w ε w (1 ε) n w x i P (x i ) C P (C) = 2 k i=1 P (x i ) d h w ε w (1 ε) n w w=0 P (x i ) = 1/2 k C 6 11 G F q (n, k) C G k n G 2 ( ) C (projective code) G C x 1 e( e = ae j = (0... 0a0... 0)) (x + e)g T G ( j ) G G C 1 C C Q = F q k Q k 2 f 1 0 Q k Q k s 1 Q q 1 s 1 = q 1 s 1 f 2 0 s 2 s 2 = q 1 l s i s j = Ø (i j) l (q 1) = q k 1 l = (q k 1)/(q 1). 12 n = (q k 1)/(q 1) F q (n, n k) (Hamming code) 2 F q k {f 1, f 2,..., f n } F q H = (f 1, f 2,..., f n ) C ch T = O 10

1 5 3 1 ECC C H = (f 1 f 2... f n ) f j k 2 c( n ) ch T = 0 c = (c 1 c 2... c n ) c 1 f 1 + c 2 f 2 + + c n f n = 0 f j 0 0 2 c i c j 0, c k = 0(k i, j) c i f i + c j f j = 0 f i, f j 3 3 C (n, n k) n = (q k 1)/(q 1) c 1 Q n B 1 (c) = 1 + n(q 1) = 1 + (q k 1)/(q 1) (q 1) = q k C = q n k q n k q k = q n = Q n. C 1 Q n 1 ECC 5 (1) q = 2 k = 2 n = (2 2 1)/(2 1) = 3 (n, n k, 3) = (3, 1, 3) k = 3 n = (2 3 1)/(2 1) = 7 2 (n, n k, 3) = (7, 4, 3) 001 010 0001 111 011 H = 0110 011 H T = 100 1010 101 101 110 111 11

1 e j eh T H j ( ) q = 2 3 2 2 3 = 8 1 7 2 1 7 1 1 2 e = (0001 000) s = eh T = (100) 2 4. H G 1000 011 0111 100 H = 1011 010 G = 0100 101 0010 110 1101 001 0001 111 1001 110 H = 0100 111 0011 101 k = 4 n = (2 4 1)/(2 1) = 15 2 (15, 11, 3) 1 15 2 (2) q = 3 Q = {0, 1, 2} k = 3 n = (3 3 1)/(3 1) = 13 3 (n, n k, 3) = (13, 10, 3) 11111 11100 100 H = 00111 22211 010 12012 01212 001 G 10000 00000 202 01000 00000 201 00100 00000 220 00010 00000 222 00001 00000 221 G = 00000 10000 210 00000 01000 212 00000 00100 211 00000 00010 022 00000 00001 021 12

13 d (n, k, d) C H(n k n ) n k + 1 n + 1 0 H H =. 0 1... 1 1 1 H T H T =. 1 0... 0 1 (n + 1, k) C C C C n+1 C = {(c 1 c 2... c n c n+1 ) (c 1 c 2... c n ) C c j = 0} 6 d 2 (n, k, d) C C (n + 1, k, d + 1) C C d C d 1 1 d = d + 1 1 1 ECC 2 EDC j=1 6 100 11100 H = 010 01110 001 11010 111 11111 (7, 4, 3) (8, 4, 4) (7, 4, 3) (8, 4, 4) 0000000 1111111 00000000 11111111 1110100 0001011 11101000 11111111 0111010 1000101 01110100 10001011 0011101 1100010 00111010 11000101 1001110 0110001 10011100 01100011 0100111 1011000 01001110 10110001 1010011 0101100 10100110 01011001 1101001 0010110 11010010 00101101 (7, 4, 3) (8, 4, 4) 7 ( majority logic decoding) 13

14 C r < x, y (ν) >= 0 (x C, y (ν) C, 1 ν r) i (orthgonal system with respect to position i) (i) y (ν) = (y (ν) 1 y(ν) 2... y n (ν) ) y (ν) i = 1 (ν = 1, 2,..., r) (ii) j i (1 j n) y (ν) 0 ν (1 ν r) j x = (x 1 x 2... x n ) t t r/2 x e = (e 1 e 2... e n ) < x, y (ν) >=< e, y (ν) > 0 (1 ν r) x i e i = 0 e j 0 j t (ii) < x, y (ν) >=< e, y (ν) > 0 ν (1 ν r) t x i e i 0 e i y (ν) = e i 0 (1 ν r) e j 0 j t 1 < e, y (ν) >= e i + e j y (ν) 0 < x, y (ν) > 0 ν (1 ν r) r (t 1) t r/2 r (t 1) > r {ν < x, y (ν) >= 0} > {ν < x, y (ν) > 0} xi x i 2 i (1 i n) i 7 5 H 1 x 1 + x 2 + x 3 = 0 x 1 + x 4 + x 5 = 0 x 1 + x 6 + x 7 = 0 x 1 x 1 1, 1, 1 x 1 2 0 1 1 2 1 2 ( 2-EDC ) 8 (2) 15 (1) R (ring) (2) R I (ideal) RI I 8 14

(1) Z F F F[x] (2) Z n Z {0, ±n, ±2n, ±3n,... } nz (n) (3) F[x] f(x) F[x] f(x) (f(x)) 16 (1) R p R pr = {px x R} (principal ideal) (2) R R (pricipal ideal ring) (3) I ab I = (a I or b I) (prime ideal) (4) R I (maximal ideal) I S R S S = I S = R (5) (local ring) 17 Z p Z {0, 1, 2,..., p 1} a+b c (mod p), ab d (mod p) Z/pZ Z/(p) ( ) (residual (class) ring) g(x) F[x] g(x) F[x] a(x)+b(x) c(x) (mod g(x)) a(x)b(x) d(x) (mod g(x)) F[x]/(g(x)) (residual polynomial ring) 7 Z, Z/(p), F[x], F[x]/(g(x)) Z Z I p s I s = pq + r (0 r < p) q, r r = s pq I p I r = 0 s = pq 9 9.1 18 C (c 0 c 1... c n 1 ) C = (c n 1 c 0... c n 2 ) C 15

(c i c i+1... c i 1 ) C (i = 0, 1,..., n 1) 9.2 (c 0 c 1... c n 1 ) F n q c 0 + c 1 x + c 2 x 2 + + c n 1 x n 1 F q [x]/(x n 1) C C 8 F n q C C F q[x]/(x n 1) (i) C F q [x]/(x n 1) C F n q c(x) = c 0 +c 1 x+c 2 x 2 +c n 1 x n 1 C C xc(x) = c 0 x + c 1 x 2 + + c n 2 x n 1 + c n 1 x n c n 1 + c 0 x + c 1 x 2 + + c n 2 x n 1 (mod x n 1) C (c n 1 c 0 c 1... c n 2 ) C. C (2) C F n q c(x) C xc(x) C. xi c(x) C (i = 1, 2,... ) a(x) a(x)c(x) C C F q [x]/(x n 1) C g(x) 1 (generator polynomial) g(x) x n 1 x n 1 = g(x)q(x) + r(x) (0 deg(r(x)) < deg(g(x))) x n 1 r(x) C g(x) C r(x) = 0 x n 1 = f 1 (x)f 2 (x)... f t (x) n, k, q x n 1 = f 1 (x)f 2 (x)... f t (x) {f 1 (x), f 2 (x),..., f t (x)} ( ) g(x) = f i1 (x)f i2 (x)... f is (x) deg(g(x)) = n k g(x) k n (1) a = (a 0 a 1... a k 1 ) (2) a k 1 a(x) = a 0 + a 1 x + + a k 1 x k 1 (3) a(x) a(x)g(x) = c 0 + c 1 x + + c n 1 x n 1 c = (c 0 c 1... c n 1 ) 16

9 2 (7, 4) 2 x 7 1 = (x + 1)(x 3 + x 2 + 1)(x 3 + x + 1) g(x) = (x 3 + x 2 + 1) a = (a 0 a 1 a 2 a 3 ) c (a 0 + a 1 x + a 2 x 2 + a 3 x 3 )(1 + x 2 + x 3 ) = a 0 + a 1 x + (a 0 + a 2 )x 2 + + (a 2 + a 3 )x 5 + a 3 x 6 c = (a 0 a 1 (a 0 + a 2 )... (a 2 + a 3 )a 3 ) n k k 1 n k n 1 k (1) a(x) x n k x n k (2) a(x)x n k g(x) q(x), r(x) a(x)x n k = g(x)q(x) + r(x). r(x) d(x) = a(x)x n k r(x) = g(x)q(x). (3) d(x) deg(r(x)) < deg(g(x)) = n k. n k a(x)x n k n k 10 a(x)x 7 4 = (a 0 + a 1 x + a 2 x 2 + a 3 x 3 )x 3 = a 0 x 3 + a 1 x 4 + a 2 x 5 + a 3 x 6 g(x) = x 3 + x 2 + 1 r(x) = (a 0 + a 1 + a 3 )x 2 + (a 1 + a 2 + a 3 )x + (a 0 + a 1 + a 2 ) d = ((a 0 + a 1 + a 3 )(a 1 + a 2 + a 3 )(a 0 + a 1 + a 2 ) a 0 a 1 a 2 a 3 ) 4 3 ( mod 2 ) 9.3 (n, k) C g(x) = g 0 +g 1 x+ +g n k x n k a = (a 0 a 1... a k 1 ) a(x) = a 0 +a 1 x+ +a k 1 x k 1 a(x)g(x) = n 1 l=0 ( l i=0 a ig l i )x l, w = (a 0 g 0 (a 1 g 0 + a 0 g 1 )... a k 1 g n k ) w = ag g 0 g 1... g n k 0 0... 0 G = 0 g 0... g n k 1 g n k 0... 0 0 0...... 0 0 0... g 0 g 1... g n k g(x) x n 1 h(x) = h 0 + h 1 x + + h k x k h(x)g(x) = x n 1 g 0 h l + g 1 h l 1 + + g n k h l n+k = 0 (for l = 0, 1,..., n 1). 0 0... 0 h k... h 1 h 0 0 0... h k... h 1 h 0 0 H =.. h k... h 1 h 0 0... 0 (in F q [x]) 17

GH T = O w = ag wh T = O. H C w(x)h(x) = a(x)g(x)h(x) = 0 h(x) (parity check polynomial) 10 BCH Bose Ray Chaudhurui(1960) Hocquenghem(1959) BCH H = (h 1 h 2... h n ) h i H i (n k ) c = (c 1 c 2... c n ) C ch T = 0 c 1 h T 1 + c 2 h T 2 + + c n h T n = 0 H 9 (n, k, d) C H d 1 d w(c) = d x Q n with (w(x) < d) x C {h 1, h 2,..., h n } d 1 c C (with w(c) = d) c 0 H d 10 H {h 1, h 2,..., h n } d 1 d w(c) = d d 1 c = (c 1 c 2... c n ) w(x) = d 1 x C. d c i1 h T i 1 +c i2 h T i 2 + +c id h T i d = 0 c = (0,..., 0, c i1, 0..., 0, c i2,..., 0) ch T = O c C with w(c) = d Rank(H) d 1 d d 18

19 n, l 1 n β β l, β l+1,..., β l+δ 2 m l (x), m l+1 (x),..., m l+δ 2 (x) G(x) = L.C.M.(m l (x), m l+1 (x),..., m l+δ 2 (x)) F q n δ BCH (BCH code of designed distance δ) l = 1 (narrow sense)bch n = q m 1 (i.e β F q m ) BCH (primitive BCH code) 11 n δ q BCH ( 1 β ) l β l 2 ( 1 β ) l+1 β l+1 2 H =...... ( 1 β ) l+δ 2 β l+δ 2 2 (... ) β l n 1 (... ) β l+1 n 1..... (... ) β l+δ 2 n 1 w(x) v(x) w(x) v(x)g(x) (mod x n 1) w(x) = w 0 + w 1 x + w 2 x 2 + + w n 1 x n 1 w(β i ) = w 0 + w 1 β i ( + w 2 β i ) 2 ( + + wn 1 β i ) n 1 = v(β i )G(β i ) = 0 (w 0 w 1 w 2... w n 1 )(1β i ( β i) 2... ( β i ) n 1 ) T = 0 i = l, l + 1,..., l + δ 2 H (w 0 w 1... w n 1 )H T = 0 H 12 δ BCH δ 10 11 δ 1 n δ 1 0 19

( ) β l j 1 ( ) β l j 2 ( )... β l j δ 1 ( ) β l+1 j 1 ( ) β l+1 j 2 ( )... β l+1 j δ 1 D(j 1 j 2... j δ 1 ) =...... ( ) β l+δ 2 j 1 ( ) β l+δ 2 j 2 ( )... β l+δ 2 j δ 1 1 1... 1 β j 1 β j 2... β j δ 1 = β l(j 1+j 2 + +j δ 1 )...... ( ) β j 1 δ 2 ( ) β j 2 δ 2 ( )... β j δ 1 δ 2 = β l(j1+j2+ +j ( δ 1) β j s β jt) s>t 0 Vandermonde 11 F 2 6 α m 1 (x) = 1 + x + x 6 63 2 BCH (63, 45, 7) BCH G 3 (x) G 3 (x) = L.C.M.(m 1 (x), m 3 (x), m 5 (x)) = (1 + x + x 6 )(1 + x + x 2 + x 4 + x 6 )(1 + x + x 2 + x 5 + x 6 ) = 1 + x + x 2 + x 3 + x 6 + x 7 + x 9 + x 15 + x 16 + x 17 + x 18 63 2 BCH n k t G(x) 63 57 1 G 1 (x) = 1 + x + x 6 51 2 G 2 (x) = G 1 (x)(1 + x + x 2 + x 4 + x 6 ) 45 3 G 3 (x) = G 2 (x)(1 + x + x 2 + x 5 + x 6 ) 39 4 G 4 (x) = G 1 (x)g 3 (x) 36 5 G 5 (x) = G 4 (x)(1 + x 2 + x 3 ) 30 6 G 6 (x) = G 5 (x)(1 + x 2 + x 3 + x 5 + x 6 ) 24 7 G 7 (x) = G 6 (x)(1 + x + 3 +x 4 + x 6 ) 18 10 G 10 (x) = G 7 (x)(1 + x 2 + x 4 + x 5 + x 6 ) 16 11 G 11 (x) = G 10 (x)(1 + x + x 2 ) 10 13 G 13 (x) = G 11 (x)(1 + x + x 4 + x 5 + x 6 ) 7 15 G 15 (x) = G 13 (x)(1 + x + x 3 ) F 2 6 20

m(x) α, α 2, α 4, α 8, α 16, α 32 m 1 (x) = 1 + x + x 6 α 3, α 6, α 12, α 24, α 48, α 33 m 3 (x) = 1 + x + x 2 + x 4 + x 6 α 5, α 10, α 20, α 40, α 17, α 34 m 5 (x) = 1 + x + x 2 + x 5 + x 6 α 7, α 14, α 28, α 56, α 49, α 35 m 7 (x) = 1 + x 3 + x 6 α 9, α 18, α 36 m 9 (x) = 1 + x 2 + x 3 α 11, α 22, α 44, α 25, α 50, α 37 m 11 (x) = 1 + x 2 + x 3 + x 5 + x 6 α 13, α 26, α 52, α 41, α 19, α 38 m 13 (x) = 1 + x + x 3 + x 4 + x 6 α 15, α 30, α 60, α 57, α 51, α 39 m 15 (x) = 1 + x 2 + x 4 + x 5 + x 6 α 21, α 42 m 21 (x) = 1 + x + x 2 α 23, α 46, α 29, α 58, α 53, α 43 m 23 (x) = 1 + x + x 4 + x 5 + x 6 α 27, α 54, α 45 m 27 (x) = 1 + x + x 3 α 31, α 62, α 61, α 59, α 55, α 47 m 31 (x) = 1 + x 5 + x 6 11 2 BCH O(n log 2 2 n) (1) S(x) (2) S(x) σ(x) η(x) (3) σ(x) (4) σ(x) η(x) 2 q (q > 2) F q n 2t + 1 BCH (l = 1 ) β 1 n G(x) v = (v 0 v 1... v n 1 ) v(x) = v 0 + v 1 x + v 2 x 2 + + v n 1 x n 1 w = (w 0 w 1... w n 1 ) w(x) = w 0 + w 1 x + w 2 x 2 + + w n 1 x n 1 e = (e 0 e 1... e n 1 ) e(x) = e 0 + e 1 x + e 2 x 2 + + e n 1 x n 1 E = {i 1, i 2,..., i s e ij 0} (s t) σ(x) = i E (1 βi x) η(x) = i E e iβ i x j E {i} (1 βj x) 21

1. w(x) = v(x) + e(x) w(β j ) = v(β j ) + e(β j ) = c(β j )G(β) + e(β j ) = e(β j ) (j = 1, 2,..., 2t) S j = w(β j ) = e(β j ) (j = 1, 2,..., 2t) E = {i 1, i 2,..., i s } (s < t) S j = e i1 (β j ) i 1 + e i2 (β j ) i 2 + + e is (β j ) i s = e i (β j ) i i E Y l = e il X l = β i l (l = 1, 2,..., s) s S j = Y l X j l (j = 1, 2,..., 2t) l=1 S(x) = S 1 + S 2 x + S 3 x 2 + + S 2t x 2t 1 ( ) 2t = e i (β j ) i x j 1 = 2t e i (β i ) j x j 1 = j=1 i E j=1 i E 1 1 αx = (αx) j S(x) = i E j=0 e i β i 1 β i x (mod x2t ) = s l=1 s l=1 Y l X l 1 X l x (mod x2t ) 2t Y l X j l xj 1 2. E = {i 1, i 2,..., i s } σ(x) = (1 β i1 x)(1 β i2 x)... (1 β is x) = (1 X 1 x)(1 X 2 x)... (1 X s x) j=1 22

σ(x) = 0 x x = X 1 = (β i l ) 1 (l = 1, 2,..., s) σ(x) S(x) σ(x)s(x) = (1 X 1 x)(1 X 2 x)... (1 X s x) l s l=1 = (1 X 2 x)(1 X 3 x)... (1 X s x)y 1 X 1 +(1 X 1 x)(1 X 3 x)... (1 X s x)y 2 X 2 Y l X l 1 X l x (mod x2t ) =. +(1 X 1 x)(1 X 2 x)... (1 X s 1 x)y s X s (mod x 2t ) s s Y l X l (1 X j x) (mod x 2t ) l=1 l=1 j l η(x) η(x) = s Y l X l l=1 s (1 X j x) (mod x 2t ) l=1 j l σ(x)s(x) = η(x) (mod x 2t ) φ(x) σ(x)s(x) + φ(x)x 2t = η(x) S(x) x 2t σ(x), φ(x), η(x) S(x) x 2t η(x) ( ) 3. σ(x) β 1 n β, β 2,..., β n 1 Chien (Chien search) 4. 2 q > 2 13 (Forney ) e il = Y l = η(x 1 l ) σ (X 1 l ) X l = α i l Chien σ (x) σ(x) 23

s η(x) = Y l X l l=1 x = X 1 l η(x 1 l ) = Y l X l s (1 X j x) (mod x 2t ) j=1 j l s (1 X j X 1 l ) (mod x 2t ) j=1 j l Y l = X l η(x 1 l ) s (1 X j X 1 j=1 j l σ(x) x l ) (mod x 2t ) (1) σ (x) = ( X 1 )(1 X 2 x)(1 X 3 x)... (1 X s x) +(1 X 1 x)( X 2 )(1 X 3 x)... (1 X s x).. +(1 X 1 x)... (1 X s 1 x)( X s ) s s = (1 X j x) l=1 x = X 1 l σ (X 1 l X l ) = X l j=1 j l s (1 X j X 1 l ) (mod x 2t ) (2) j=1 j l (2) (1) 12 Reed Solomon BCH Reed Solomon CD DVD 20 F q (q = p r, p : prime) n = q 1 BCH Reed Solomon l = 1 n n α g(x) = d 1 i=1 (x αi ) 14 Reed Solomon (n, k, d) d = n k + 1 24

k, n g(x) n k g(x), xg(x), x 2 g(x),..., x k 1 g(x) Reed Solomon g(x) d 1 d 1 = n k 21 (n, k, d) d = n k + 1 (MDS:Maximum Distance Separable Code) MDS 12 (15, 11, 5) RS g(x) = (x α)(x α 2 )(x α 3 )(x α 4 ) = α 10 + α 3 x + α 6 x 2 + α 13 x 3 + x 4 u(x) = α 5 + αx 2 + α 3 x 10 w(x) v(x) = u(x)g(x) = 1 + α 8 x + α 7 x 3 + α 13 x 4 + α 14 x 5 + αx 6 + α 13 x 10 + α 6 x 11 + α 9 x 12 + αx 13 + α 3 x 14 u = (α 5 0α00 00000 α 3 ) v = (1α 8 0α 7 α 13 α 14 α000 α 13 α 6 α 9 αα 3 ) Q = {0, 1} F 2 4 2 α, α 2,... (0010), (0100),... RS F 2 4 ( x 4 + x + 1) 0 0 0000 1 1 0001 α x 0010 α 2 x 2 0100 α 3 x 3 1000 α 4 x 4 x + 1 0011 α 5 x 2 + x 0110 α 6 x 3 + x 2 1100 α 7 x 3 + x + 1 1011 α 8 x 2 + 1 0101 α 9 x 3 + x 1010 α 10 x 2 + x + 1 0111 α 11 x 3 + x 2 + x 1110 α 12 x 3 + x 2 + x + 1 1111 α 13 x 3 + x 2 + 1 1101 α 14 x 3 + 1 1001 25

13 2 ECC w = (1α 8 0α 11 α 13 α 14 α000 α 2 α 6 α 9 αα 3 ) w(x) = 1 + α 8 x + α 11 x 3 + α 13 x 4 + α 14 x 5 + αx 6 + α 2 x 10 + α 6 x 11 + α 9 x 12 + αx 13 + α 3 x 14 1. g(x) α, α 2, α 3, α 4 w(x) S 1 = w(α) = α 2, S 2 = w(α 2 ) = α 9, S 3 = w(α 3 ) = α 13, S 4 = w(α 4 ) = α 6, S(x) = α 2 + α 9 x + α 13 x 2 + α 6 x 3 2. x 4 S(x) σ(x)s(x) + φ(x)x 4 = η(x) η(x) = α 2 + α 4 x σ(x) = 1 + α 12 x + α 13 x 2 3. F 2 4 α, α 2,..., α 14 σ(x) 0 σ(α 5 ) = σ(α 12 ) = 0 α 5 = α 10, α 12 = α 3. w(x) x 3 x 10 4. σ(x) σ (x) = 2 α 13 x + 1 α 12 α 12 (mod 2) Y 3 = α4 (α 12 ) + α 2 α 12 = α 8 Y 10 = α4 (α 5 ) + α 2 α 12 = α 14 e(x) = α 8 x 3 + α 14 x 10 ˆv(x) = w(x) e(x) = v(x) 13 (3) 22 S v B S ( (block) ) (i) B B B = k. (ii) T S T = t T B B λ (S, B) t design( t (v, k.λ) ) S (point) λ = 1 (Steiner system) 26

t design t design incidence S = {a 1, a 2,..., a s } B = {B 1, B 2,..., B b } incidence A s b (i, j) a i B j 1, 0 j B j 1 B j s 3 B B incidence 27