4 1 7 Ver.1/ MIMO MIMO Multiple Input Multiple Output MIMO = = MIMO LAN IEEE802.11n MIMO Alamouti STBC Space Time Block Code

Similar documents
ohgane

UWB a) Accuracy of Relative Distance Measurement with Ultra Wideband System Yuichiro SHIMIZU a) and Yukitoshi SANADA (Ultra Wideband; UWB) UWB GHz DLL

main.dvi

2005 1

A Study of Adaptive Array Implimentation for mobile comunication in cellular system GD133

Optical Flow t t + δt 1 Motion Field 3 3 1) 2) 3) Lucas-Kanade 4) 1 t (x, y) I(x, y, t)

1


THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE {s-kasihr, wakamiya,

IPSJ SIG Technical Report Vol.2014-MBL-70 No.49 Vol.2014-UBI-41 No /3/15 2,a) 2,b) 2,c) 2,d),e) WiFi WiFi WiFi 1. SNS GPS Twitter Facebook Twit

CDMA (high-compaciton multicarrier codedivision multiple access: HC/MC-CDMA),., HC/MC-CDMA,., 32.,, 64. HC/MC-CDMA, HC-MCM, i

IEEE ax:第 6 世代の Wi-Fi テクニカル ホワイト ペーパー

通信容量制約を考慮したフィードバック制御 - 電子情報通信学会 情報理論研究会(IT) 若手研究者のための講演会

050920_society_kmiz.odp

TCP/IP IEEE Bluetooth LAN TCP TCP BEC FEC M T M R M T 2. 2 [5] AODV [4]DSR [3] 1 MS 100m 5 /100m 2 MD 2 c 2009 Information Processing Society of

it-ken_open.key

format

Signal Processing for Low Complexity Terminals and Pilot Signal Design in Multiple-Input Multiple-Output Systems ( ) ( ) LAN 3.9 Multiple-Input Multip

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2

2.2 (a) = 1, M = 9, p i 1 = p i = p i+1 = 0 (b) = 1, M = 9, p i 1 = 0, p i = 1, p i+1 = 1 1: M 2 M 2 w i [j] w i [j] = 1 j= w i w i = (w i [ ],, w i [

JIS Z803: (substitution method) 3 LCR LCR GPIB

5989_3443JAJP.qxd

untitled

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

カルマンフィルターによるベータ推定( )

第3章 非線形計画法の基礎

format

研究シリーズ第40号

1. HNS [1] HNS HNS HNS [2] HNS [3] [4] [5] HNS 16ch SNR [6] 1 16ch 1 3 SNR [4] [5] 2. 2 HNS API HNS CS27-HNS [1] (SOA) [7] API Web 2

Keysight MIMO MIMO Cluster n Path n σ n, AoA σ n, AoD Θ n, AoA MS/UE Array Boresight Rx0 Tx0 Θ n, AoD LOS BS Array Boresight Θ n+1, AoA Rx1 Tx1 Path n

untitled


1 s(t) ( ) f c : A cos(2πf c t + ϕ) (AM, Amplitude Modulation) (FM, Frequency Modulation) (PM, Phase Modulation) 2

大面積プラズマ生成用アンテナの設計に関する研究


IPSJ SIG Technical Report 1, Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1

meiji_resume_1.PDF

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

25 11M n O(n 2 ) O(n) O(n) O(n)

t.dvi

ID 3) 9 4) 5) ID 2 ID 2 ID 2 Bluetooth ID 2 SRCid1 DSTid2 2 id1 id2 ID SRC DST SRC 2 2 ID 2 2 QR 6) 8) 6) QR QR QR QR

1 Kinect for Windows M = [X Y Z] T M = [X Y Z ] T f (u,v) w 3.2 [11] [7] u = f X +u Z 0 δ u (X,Y,Z ) (5) v = f Y Z +v 0 δ v (X,Y,Z ) (6) w = Z +

P361

Run-Based Trieから構成される 決定木の枝刈り法

Dynkin Serre Weyl

1 Nelson-Siegel Nelson and Siegel(1987) 3 Nelson-Siegel 3 Nelson-Siegel 2 3 Nelson-Siegel 2 Nelson-Siegel Litterman and Scheinkman(199

untitled

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V

27 送信電 ISSCC 2017 [5, 6, 7] PC CPU ASIC CPU ASIC AD/DA 1 制御 2: 制御 3: 4: LAN dbm 90 dbm 20 dbm 20 db 0 dbm 40 db AD 40 dbm 50 db

main.dvi

地中レーダによる地下計測

( ) ( ) ( ) ( ) ( )

MainOfManuscript.dvi

量子情報科学−情報科学の物理限界への挑戦- 2018

MainOfManuscript.dvi

IPSJ SIG Technical Report GPS LAN GPS LAN GPS LAN Location Identification by sphere image and hybrid sensing Takayuki Katahira, 1 Yoshio Iwai 1

IMT-Advanced Testbed Development for IMT-Advanced Radio Experiments Toshinori SUZUKI, Noriaki MIYAZAKI, and Satoshi KONISHI IMT-Advanced 3 IMT-2000 IT


4.1 % 7.5 %

dvipsj.8449.dvi

untitled

03.Œk’ì

untitled

三石貴志.indd

ADC121S Bit, ksps, Diff Input, Micro Pwr Sampling ADC (jp)

Abstract This paper concerns with a method of dynamic image cognition. Our image cognition method has two distinguished features. One is that the imag

スライド タイトルなし

Microsoft Word - _Kazuki_09年7月RCS_papr_final.doc

untitled

[6] DoN DoN DDoN(Donuts DoN) DoN 4(2) DoN DDoN 3.2 RDoN(Ring DoN) 4(1) DoN 4(3) DoN RDoN 2 DoN 2.2 DoN PCA DoN DoN 2 DoN PCA 0 DoN 3. DoN

ohpr.dvi

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

& 3 3 ' ' (., (Pixel), (Light Intensity) (Random Variable). (Joint Probability). V., V = {,,, V }. i x i x = (x, x,, x V ) T. x i i (State Variable),

turbo 1993code Berrou 1) 2[dB] SNR 05[dB] 1) interleaver parallel concatenated convolutional code ch

2006 Indexed Fuzzy Vault 3ADM1117 3ADM3225

SO(2)


2013 M

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

MIMO Throughput-aware Random Clustering Throughput-aware Random Clustering MATLAB MIMO MIMO MIMO MIMO MIMO MIMO [16] MIMO [1

( ) ,

2 1 1 (1) 1 (2) (3) Lax : (4) Bäcklund : (5) (6) 1.1 d 2 q n dt 2 = e q n 1 q n e q n q n+1 (1.1) 1 m q n n ( ) r n = q n q n 1 r ϕ(r) ϕ (r)

(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α,

GD152

IEEE802.11n LAN WiMAX(Mobile Worldwide Interoperability for Microwave Access) LTE(Long Term Evolution) IEEE LAN Bluetooth IEEE LAN

untitled

Auerbach and Kotlikoff(1987) (1987) (1988) 4 (2004) 5 Diamond(1965) Auerbach and Kotlikoff(1987) 1 ( ) ,

Mantel-Haenszelの方法

P.1P.3 P.4P.7 P.8P.12 P.13P.25 P.26P.32 P.33

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

Z: Q: R: C: sin 6 5 ζ a, b

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

impulse_response.dvi

untitled

1 Tokyo Daily Rainfall (mm) Days (mm)

2007/8 Vol. J90 D No. 8 Stauffer [7] 2 2 I 1 I 2 2 (I 1(x),I 2(x)) 2 [13] I 2 = CI 1 (C >0) (I 1,I 2) (I 1,I 2) Field Monitoring Server


(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008)


AV 1000 BASE-T LAN 90 IEEE ac USB (3 ) LAN (IEEE 802.1X ) LAN AWS (Amazon Web Services) AP 3 USB wget iperf3 wget 40 MBytes 2 wget 40 MByt

Transcription:

4 -- 1 7 MIMO 2009 4 MIMO Multiple Input Multiple Output MIMO = = MIMO LAN IEEE802.11n MIMO Alamouti STBC Space Time Block Code 1 7-1 MIMO 7-2 MIMO 7-3 MIMO MIMO 7-4 MIMO 8 8-5 c 2010 1/(18)

4 -- 1 -- 7 7--1 7--1--1 MIMO 2009 4 s 1 (i) #1 #1 y 1 (i) #Nt #Nr s Nt (i) y Nt (i) 7 1 MIMO 7 1 N t N r MIMO T it k (1 k N t ) s k (i) l (1 l N r ) k h lk l y l (i) N t y l (i) = h lk s k (i) + n l (i) k=1 (7 1) n l (i) l N r Y(i) Y H (i) = [ y 1 (i) y 2 (i) y N r (i) ] H Y(i) (7 1) (7 2) Y(i) = HS(i) + n(i) (7 3) H h lk N r N t H = [ h 1 h 2 h Nt ] h H k = [ h 1k h 2k h N rk ] (7 4) (7 5) S(i) n(i) N t N r S H (i) = [ s 1 (i) s 2 (i) s N t (i) ] n H (i) = [ n 1 (i) n 2 (i) n N r (i) ] (7 6) (7 7) c 2010 2/(18)

S(i) N t 0 Nt R s = S(i)S H (i) n(i) 0 Nr R n = n(i)n H (i) Y(i) 0 Nr R y (7 3) R y = Y(i)Y H (i) = H S(i)S H (i) H H + n(i)n H (i) = HR s H H + R n (7 8) S(i) n(i) 7--1--2 MIMO I[S(i), Y(i)] I[S(i), Y(i)] = dy { } pys [Y(i), S(i)] ds p ys [Y(i), S(i)] log 2 p y [Y(i)]p s [S(i)] 1) p ys [Y(i), S(i)] Y(i) S(i) p y [Y(i)] p s [S(i)] Y(i) S(i) I[S(i), Y(i)] (7 9) S(i) p s [S(i)] MIMO C (7 9) C = max I[S(i), Y(i)] p s[s(i)] (7 10) 1) W Hz WC (7 10) C (7 9) I[S(i), Y(i)] = dy p y [Y(i)] log 2 p y [Y(i)] + ds p s [S(i)] dy p ys [Y(i) S(i)] log 2 p ys [Y(i) S(i)] (7 11) p ys [Y(i) S(i)] S(i) Y(i) p ys [Y(i) S(i)] n (i) (7 3) p ys [Y(i) S(i)] = 1 π Nr detr n exp { [Y(i) HS(i)] H R 1 n [Y(i) HS(i)] } (7 12) c 2010 3/(18)

det( ) (7 11) ds p s [S(i)] dy p ys [Y(i) S(i)] log 2 p ys [Y(i) S(i)] = { ( ) ds p s [S(i)] log 2 π N r 1 detr n log 2 tr } [Y(i) HS(i)][Y(i) HS(i)] H R 1 n = log 2 ( π N r detr n ) N r log 2 (7 13) p s [S(i)] tr( ) (7 11) Y(i) Y(i) p y [Y(i)] p y [Y(i)] = 1 π Nr detr y exp [ Y(i) H R 1 y Y(i) ] (7 14) S(i) Y(i) (7 11) (7 13) ( ) dy p y [Y(i)] log 2 p y [Y(i)] = log 2 π N r N r detr y + (7 15) log 2 (7 13) (7 10) MIMO C C = log 2 det ( R 1 n R y ) = log2 det ( I Nr + R 1 n HR s H H) (7 16) (7 8) I N r N r s k (i) S(i) R s N r R s = P t N t I Nt (7 17) P t n(i) R n = σ 2 ni Nr (7 18) σ 2 n (7 16) C ( C = log 2 det I Nr + P ) t HH H N t σ 2 n (7 19) HH H N r N r Q Q min(n t, N r ) HH H N r N r U c 2010 4/(18)

HH H = UDU H D = diag[λ 1, λ 2,..., λ Q, 0,..., 0] (7 20) (7 21) D N r N r diag[ ] λ q (1 q Q) HH H (7 20) (7 19) [ ( C = log 2 det U I Nr + ( = log 2 det I Nr + = log 2 Q = Q q=1 q=1 ( 1 + P tλ q N t σ 2 n P t N t σ 2 n P ) t D N t σ 2 n ) ( log 2 1 + P ) tλ q N t σ 2 n ) ] D U H (7 22) MIMO Q q SNR P tλ q N t σ 2 n N t = N r = N H 0 1 H C P t 2, N 3) W W C 1) 6 2000 2) G.J. Foschini, Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas, Bell Labs Technical Journal, vol.1, no.2, pp.41-59, 1996. 3) G.J. Foschini and M.J. Gans, On limits of wireless communications in a fading environment when using multi-element antennas, Wireless Personal Communications, vol.6, no.3, pp.311-335, 1998. c 2010 5/(18)

4 -- 1 -- 7 7--2 2009 8 STC: Space-Time Code STC STBC: Space-Time Block Code STTC: Space-Time Trellis Code 2 STC 2 STBC W-CDMA 7--2--1 STBC STBC N = 2 STBC 1) STBC 2 2 2 2 X 1 X 2 1, 2 X 1, X 2 1 1 X 2 2 X 1 STBC 1 1 STBC M 2M M = 1 1, 2 H 1, H 2 STBC 2 2 Y 1, Y 2 STBC X 1 = H 1 Y 1 + H 2 Y 2 (7 23) X 2 = H 2 Y 1 H 1 Y 2. (7 24) STBC N = 1 M = 2 MRC 3 db STBC STBC N > 2 Tarokh 3) Ganesan 4, 5) PAM STBC 3) STBC N = 2, 4, 8 c 2010 6/(18)

3) N > 2 STBC 1/2 R 3/4 STBC Jafarkhani 6) STBC STBC Jafarkhani STBC partial diversity ML 7--2--2 STTC STTC N M STTC QPSK, 4 STTC t U t = (U t,1, U t,2 ) G modulo 4 (X t,1,., X t,n ) N QPSK 1 S k 0 00,01,02,03 2 0 1 10,11,12,13 3 2 3 20,21,22,23 30,31,32,33 7 2 QPSK, 4 STTC 2) 7 2 QPSK 2) QPSK, 4 STTC QPSK, 4 STTC 2) G G = 0 2 0 1 2 0 1 0 (7 25) S k 0, 1, 2, 3 2 1 2 c 2010 7/(18)

1) S. Alamouti, Space block coding: A simple transmitter diversity technique for wireless communications, IEEE J. Select. Areas. Commun., vol.16, no.5, pp.1451-1458, Oct. 1998. 2) V. Tarokh, N. Seshadri, and A.R. Calderbank, Space-time codes for high data rate wireless communication: Performance criterion and code construction, IEEE Trans. Inform. Theory, vol.44, pp.744-765, March 1998. 3) V. Tarokh, H. Jafarkhani, and A.R. Calderbank, Space-time block codes from orthogonal designs, IEEE Trans. Inform. Theory, vol.45, no.4, pp.1456-1467, July 1999. 4) G. Ganesan and P. Stoica, Space-time diversity using orthogonal and amicable orthogonal designs, Wireless Personal Commun., vol.18, pp.165-178, Aug. 2001. 5) G. Ganesan and P. Stoica, Space-time block codes: A maximum SNR approach, IEEE Trans. Inform. Theory, vol.47, no.4, pp.1650-1656, May 2001. 6) H. Jafarkhani, A quasi-orthogonal space-time block code, IEEE Trans. Commun.,, vol.49, no.1, pp.1-4, Jan. 2001. c 2010 8/(18)

4 -- 1 -- 7 7--3 MIMO 2009 5 MIMO 7--3--1 M 1 m (1 m M) N rm N t N r N r = M m=1 N rm m it (7 2) N rm Y m (i) Y m (i) = H m S(i) + n m (i) (7 26) H m n m (i) N rm N t N rm S(i) (7 6) N t M S(i) = F m d m (i) m=1 (7 27) d m (i) m p m p m (1 p m N rm ) m F m d m (i) N t p m (7 27) S(i) S(i) = Fd(i) F = [F 1 F 2 F M ] d H (i) = [d H 1 (i) dh 2 (i) dh M (i)] (7 28) (7 29) (7 30) F d(i) (7 29) (7 30) N t P P P = M m=1 p m (7 26) Y m (i) N r Y(i) Y H (i) = [Y H 1 (i) YH 2 (i) YH M (i)] (7 31) Y(i) = HS(i) + n(i) (7 32) c 2010 9/(18)

H n(i) N r N t N r H H = [H H 1 HH 2 HH M ] n H (i) = [n H 1 (i) nh 2 (i) nh M (i)] (7 33) (7 34) P N t (7 29) F 7--3--2 1 m N rm = 1 p m = 1 P = N r N r N t 1) 1 Channel Inversion HH H N r N r 0 F H H H (HH H ) 1 F = 1 ξ H H (HH H ) 1 (7 35) S(i) = 1 ξ H H (HH H ) 1 d(i) (7 36) ξ S H (i)s(i) = P t ξ = 1 P t d H (i)(hh H ) 1 d(i) (7 37) (7 32) (7 36) Y(i) = 1 ξ d(i) + n(i) (7 38) 0 HH H ill condition (7 37) ξ SNR F F = 1 ξ H H (HH H + ζi Nr ) 1 (7 39) ζ ξ F 0 ζ = M/P t SINR 2) c 2010 10/(18)

2 Sphere Decoding d(i) τd H -1 S(i) H n(i) y 1 (i) mod τ Encoding Fading channel y M (i) mod τ (a) Modulo vector precoding d(i) d 1 d 2 d K -r 21 /r 22 Q H mod τ mod τ S(i) H Fading channel n(i) y 1 (i) mod τ y M (i) mod τ (b) QR-based, successive precoding 7 3 Sphere decoding (7 35) F HH H SNR modulo vector precoding 3) 7 3(a) d(i) d d(i) d(i) + τ d d = a + jb (7 40) (7 41) j τ a b N r (7 41) d ξ d = arg min d [d(i) + τ d] H (HH H ) 1 [d(i) + τ d] (7 42) (7 32) Y(i) = 1 ξ [d(i) + τ d] + n(i) (7 43) Y(i) modulo τ/ ξ τ d/ ξ f τ [Y(i)] = 1 ξ d(i) + n(i) (7 44) f τ [ ] modulo c 2010 11/(18)

τ τ = 2(d max + /2) (7 45) d max (7 42) d N r N r = N t QR-based successive precoding 4) 7 3(b) H QR H = RQ (7 46) R N r N r Q N r N r N r S(i) S(i) = Q H S(i) r 11 s 1 HS(i) = R S(i) = r 21 s 1 + r 22 s 2 = Dd(i) (7 47). r pq R (p, q) s p S(i) p D N r N r D = diag[r 11 r 22 r NrN r ] (7 48) (7 47) S(i) s 1 = d 1 (i) s 2 = d 2 (i) r 21 s 1 r 22 s 3 = d 3 (i) r 31 s 1 r 32 s 2 r 33 r 33. d p (i) d(i) p S(i) modulo s 1 = d 1 (i) [ s 2 = f τ d 2 (i) r ] 21 s 1 = d 2 (i) r 21 r 22 ] s 3 = f τ [ d 3 (i) r 31 r 33 s 1 r 32 r 33 s 2. r 22 s 1 + τ d 2 = d 3 (i) r 31 r 33 s 1 r 32 r 33 s 2 + τ d 3 (7 49) c 2010 12/(18)

d p modulo DPC Dirty Paper Coding (7 47) S(i) S(i) = R 1 D[d(i) + τ d] (7 50) d d p N r S(i) S(i) = Q H R 1 D[d(i) + τ d] (7 51) τ d (7 49) modulo (7 42) 7--3--3 2 5) 1 Channel Block Diagonalization channel block diagonalization HF H 1 0 HF =... (7 52) 0 H M H m N rm p m 0 0 F (N r N rm ) N t H m H m = [H H 1 HH m 1 HH m+1 HH M ]H (7 53) H m Q m H m = Ũ m Σ m [Ṽ 1 m Ṽ0 m] H (7 54) Ũ m (N r N rm ) (N r N rm ) Σ m Q m 0 0 (N r N rm ) N t Ṽ 1 m Q m N t N t Q m Ṽ 0 m 0 N t N t (N t Q m ) Ṽ 0 m H m H m (m m) c 2010 13/(18)

m N rm (N t Q m ) H m Ṽ 0 m Q m H m Ṽ 0 m = U m Σ m [V 1 m V 0 m] H (7 55) U m N rm N rm Σ m Q m 0 0 N rm (N t Q m ) V 1 m Q m (N t Q m ) (N t Q m ) Q m V 0 m 0 (N t Q m ) (N t Q m ) (N t Q m Q m ) p m Q m p m (N t Q m ) V 1 m (N t Q m ) p m V 1 m p m > Q m Q m m p m = Q m V 1 m V1 m V 1 m Ṽ0 m F F = [Ṽ 0 1V 1 1 Ṽ 0 MV 1 M ]Λ1/2 (7 56) Λ P P P t 5) 2 1 m p m = 1 m N rm w m 7 4 w 1 HH 1 w M HH M -1 Channel 1 H 1 n 1 y 1 Receiver 1 w 1 x 1 d S(i) Channel M Receiver M Precoder H M n M y M w K x M 7 4 m x m (i) (7 26) x m (i) = w H my m (i) = ( w H mh m ) S(i) + w H m n m (i) (7 57) c 2010 14/(18)

x m (i) M X(i) X(i) = [x 1 (i) x 2 (i) x M (i)]h (7 58) Y(i) X(i) H m w H mh m F channel inversion F w m MMSE w m w m = Y m (i)y H m(i) 1 Y m (i)d m(i) = [ H m F d(i)d H (i) F H H H m + n m (i)n H m(i) ] 1 [ Hm F d(i)d m(i) ] = ( H m FF H H H m + σ 2 ni Nr ) 1 Hm F m (7 59) σ 2 n n m (i)n H m(i) = σ 2 ni Nr (7 60) d(i)d H (i) = I Nr (7 61) {w m 1 m M} F {w m 1 m M} F 1) D. Gerlach and A. Paulraj, Adaptive transmitting antenna arrays with feedback, IEEE Signal Processing Letters, vol.1, no.10, pp.150-152, Oct. 1994. 2) C.B. Peel, B.M. Hochwald, and A.L. Swindlehurst, A vector-perturbation technique for near-capacity multi-antenna multiuser communication - Part I: channel inversion and regularization, IEEE trans. Commun., vol.53, no.1, pp.195-202, Jan. 2005. 3) B.M. Hochwald and C.B. Peel, Vector precoding for the multi-antenna, multi-user channel, in Proceedings Allerton Conference on Communication, Control, and Computing, Monticello, LI, Oct. 2003. 4) R. Fischer, C. Windpassinger, A. Lampre, and J. Huber, MIMO precoding for decentralized receivers, in Proceedings IEEE International Symposium on Information Theory, Lausanne, Switzerland, p.496, June/July 2002. 5) Q.H. Spencer, A.L. Swindlehurst, and M. Haardt, Zero-forcing methods for downlink spatial multiplexing in multi-user MIMO channels, IEEE Trans. Signal Processing, vol.52, no.2, pp.461-471, Feb. 2004. c 2010 15/(18)

4 -- 1 -- 7 7--4 SVD-MIMO 2009 8 N M MIMO 7--4--1 MIMO H L MIMO L H SVD: Singular Value Decomposition H = V L ΣU H L (7 62) U L H H H N U 1 L N L H H H = UΛU H (7 63) Λ diag(λ 1,, λ L, 0,, 0) N λ j HH H j λ j λ 1 λ 2... λ L > λ L+1 =... = λ N = 0 (7 64) V L HH H M V 1 L M L HH H = VΛ V H (7 65) Λ diag(λ 1,, L λ, 0,, 0) M H H H Σ diag( λ 1,, λl ) H L = min(m, N) (7 5) SVD MIMO 7 5 L SVD λi λ i MIMO L SM multiplexing gain 7--4--2 SVD MIMO L c 2010 16/(18)

7 5 MIMO H H H L U L = (u 1 u L ) L HH H L V L = (v 1 v L ) VL H H e V H L HU L V H L V LΣU H L U L Σ (7 66) L E-SDM: Eigenbeam Eigenmode -SDM Water Filling i P i P total P N P total P i J = N ( Pi λ ) i N log 2σ + 1 a 2 P i P total i=1 i=1 (7 67) J/ P i = 0 P i 0 P i ( ) 1 P i = max a 2σ2, 0 (7 68) λ i c 2010 17/(18)

a N P i = P total i=1 (7 69) 7 6 SN 2σ 2 /λ i 2σ 2 /λ i 1/a i 7 6 1), 2009 2), 2006 c 2010 18/(18)