1 I

Similar documents
π, R { 2, 0, 3} , ( R),. R, [ 1, 1] = {x R 1 x 1} 1 0 1, [ 1, 1],, 1 0 1,, ( 1, 1) = {x R 1 < x < 1} [ 1, 1] 1 1, ( 1, 1), 1, 1, R A 1

¿ô³Ø³Ø½øÏÀ¥Î¡¼¥È

III ϵ-n ϵ-n lim n a n = α n a n α 1 lim a n = 0 1 n a k n n k= ϵ-n 1.1

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

数学概論I

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N.

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16,

no35.dvi

Chap9.dvi

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

function2.pdf

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x

koji07-02.dvi

基礎数学I

漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト


高校生の就職への数学II

04.dvi

(1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9


2009 I 2 II III 14, 15, α β α β l 0 l l l l γ (1) γ = αβ (2) α β n n cos 2k n n π sin 2k n π k=1 k=1 3. a 0, a 1,..., a n α a

.1 1,... ( )


ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

newmain.dvi

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

応用数学特論.dvi

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

高等学校学習指導要領

高等学校学習指導要領

koji07-01.dvi

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ

1

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

³ÎΨÏÀ

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X

「産業上利用することができる発明」の審査の運用指針(案)

i

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

- II

(2000 )

2000年度『数学展望 I』講義録

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.


, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

2010 IA ε-n I 1, 2, 3, 4, 5, 6, 7, 8, ε-n 1 ε-n ε-n? {a n } n=1 1 {a n } n=1 a a {a n } n=1 ε ε N N n a n a < ε

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

3 0407).3. I f x sin fx) = x + x x 0) 0 x = 0). f x sin f x) = x cos x + x 0) x = 0) x n = /nπ) n = 0,,... ) x n 0 n ) fx n ) = f 0 lim f x n ) = f 0)

日本内科学会雑誌第102巻第4号

OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f


(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

Chap11.dvi

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

[ ] x f(x) F = f(x) F(x) f(x) f(x) f(x)dx A p.2/29

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n

熊本県数学問題正解

( [1]) (1) ( ) 1: ( ) 2 2.1,,, X Y f X Y (a mapping, a map) X ( ) x Y f(x) X Y, f X Y f : X Y, X f Y f : X Y X Y f f 1 : X 1 Y 1 f 2 : X 2 Y 2 2 (X 1

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a

1 X X T T X (topology) T X (open set) (X, T ) (topological space) ( ) T1 T, X T T2 T T T3 T T ( ) ( ) T1 X T2 T3 1 X T = {, X} X (X, T ) indiscrete sp


2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

v er.1/ c /(21)

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1,

1 29 ( ) I II III A B (120 ) 2 5 I II III A B (120 ) 1, 6 8 I II A B (120 ) 1, 6, 7 I II A B (100 ) 1 OAB A B OA = 2 OA OB = 3 OB A B 2 :

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i


() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (


a n a n ( ) (1) a m a n = a m+n (2) (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 552

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S

ii

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

Transcription:

1 I

3 1 1.1 R x, y R x + y R x y R x, y, z, a, b R (1.1) (x + y) + z = x + (y + z) (1.2) x + y = y + x (1.3) 0 R : 0 + x = x x R (1.4) x R, 1 ( x) R : x + ( x) = 0 (1.5) (x y) z = x (y z) (1.6) x y = y x (1.7) 1( 0) R : 1 x = x x R (1.8) x R : x 0 R, 1 x 1 R : x x 1 = 1 y 0 x y 1 x/y (1.9) a (x + y) = a x + a y x + ( y) x y, x y xy x, y R x < y, x = y, x > y x < y x = y x y (2.1) x y, y z = x z. (2.2) x y = a + x a + y a R. (2.3) x y, a 0 = ax ay. R (A, B) max A min B

4 1 1.2 A R 1.2.1. A (bounded from above) α R x A x α ( α R : x α x A.) A (bounded from below) β R x A x β ( β R : x β x A.) A A (bounded) ( α, β R : β x α x A.) α A (upper bound) β A (lower bound) α A α α α A A, A a, b R a < b [a, b] = {x R; a x b} : (a, b) = {x R; a < x < b} : (a, b] = {x R; a < x b} : [a, b) = {x R; a x < b} : [a, ) = {x R; a x} : (, b] = {x R; x b} : (a, ) = {x R; a < x} : (, b) = {x R; x < b} : (, ) = R : 1.2.2. (1) A = (0, 1] A 1 1.5 A 1 0

1.2. 5 (2) A = { 1 n } n=1,2,... = {1, 1/2, 1/3, 1/4,...} A 1 1 (3) A = [1, ) 0 (4) A = {n} n=1,2,3,... = {1, 2, 3,...} 1 1.2.3. A α α A A (maximum) α = max A { x α, x A α = max A α A A β β A A (minimum) β = min A { x β, x A β = min A β A 1.2.4. (1) A = [0, 1] max A = 1, min A = 0. (2) A = {1, 1/2, 1/3,...} max A = 1, min A (3) A = [1, ) min A = 1, max A (4) A = {1, 2, 3,...} min A = 1, max A 1.2.5. R A, B (A, B) R (cut) (1) A, B. (2) A B = R. (3) A B =. (4) x A, y B, x < y. (Dedekind) R (A, B) max A min B

6 1 1.2.6. (A, B) max A, min B (A, B) α = max A, β = min B α A, β B (4) α < β α < (α+β)/2 < β (α+β)/2 R (2) (α+β)/2 A (α+β)/2 B ( (α+β)/2 A α = max A 1.2.7. A A B α A (supremum) α = sup A A sup A = A A B β A (infimum) β = inf A A inf A = 1.2.8. (1) A = [0, 1] sup A = 1, inf A = 0. (2) A = {1, 1/2, 1/3,...} sup A = 1, inf A = 0. (3) A = [1, ) inf A = 1, sup A = +. (4) A = {1, 2, 3,...} inf A = 1, sup A = +. (5) A = (1, 2] [3, 5) sup A = 5, inf A = 1. 1.2.9 ( (Weierstrass) ). E E B A = R \ B (A, B) R E B E a E a 1 E a 1 A A, B. A, B A B = R, A B = x A, y B x E z E : x < z.

1.3. 7 y E z y x < z y, x < y. (A, B) R max A min B α = max A α A α E z E : α < z. (α + z)/2 < z (α + z)/2 E (α+z)/2 A. α = max A min B = sup E 1.2.10. F F = { x; x F } sup( F ) = inf F 1.2.11. A (1) A { (i) x α, x A α = sup A (ii) ε > 0, x A : α ε < x (i) α A (ii) α A (2) A β = inf A { (i) x β, x A (ii) ε > 0, x A : β + ε > x 1.3 (sequence) a 1, a 2, a 3,... {a n } {a n } n=1 1.3.1. {a n } a a a {a n } ε > 0, N N : n N = a n a < ε.

8 1 ε > 0 N n N n a n a < ε For any ε > 0, there exists N N such that for all n N, a n a < ε. lim a n = a a n a (n ) {a n } (divergent) M > 0, N N : n N = a n M {a n } lim a n = + M > 0, N N : n N = a n M {a n } lim a n = 1.3.2. c a n = c (n = 1, 2,...) ε > 0 N N = 1 n N = 1 n a n c = c c = 0 < ε lim c = c 1.3.3. a n = 1/n ε > 0 N N = [1/ε] + 1 n N n 1/n < ε 0 < ε 1 n 1 lim n = 0

1.3. 9 x [x] x (Gauss) x [3] = 3, [3.1] = 3, [1/3] = 0. x 1 < [x] x. 1 lim = 0 n ε = 1/10 N N = 11 11 n 1 0 < 1/10 n ε = 1/100 N N = 101 101 n 1 0 < 1/100 n ε = 1/1000 N N = 1001 1001 n 1 0 < 1/1000 n ε > 0 N n a n a < ε ε > 0 N = [ 1 ] + 1 ε 2 lim 1 n = 0 1.3.4. {a n } a, b ε > 0 N 1 N : n N 1 = a n a < ε/2, N 2 N : n N 2 = a n b < ε/2 N = max(n 1, N 2 ) N N 1, N N 2 a N a < ε/2, a N b < ε/2 a = b a b a a N + a N b < ε.

10 1 1.3.5. {a n }, {b n } a, b (i) {a n + b n } a + b lim (a n + b n ) = a + b. (ii) {a n b n } ab lim (a nb n ) = ab. c {ca n } ca lim (ca n) = ca. (iii) b 0 {a n /b n } a/b a n lim = a b n b. N n b n 0 {a n /b n } n=n (iv) a n b n (n = 1, 2,...) a b. (v) a n c n b n (n = 1, 2,...) a = b {c n } lim c n = a (v) a = b ε > 0, N 1 N : n N 1 = a n a < ε, N 2 N : n N 2 = b n a < ε. N = max(n 1, N 2 ) n N c n a < ε. a ε < a n c n b n < a + ε.

1.3. 11 1.3.6. (i) 1 lim n = lim 1 2 n lim 1 n = 0. (ii) [ 1 + n 1 lim = lim n 2 n + 1 ] 2 n 1 = lim n + lim 2 1 n = 0. (iii) lim n n = 1. a n = n n 1 a n 0 n n = 1 + a n n n = (1 + a n ) n = 1 + n C 1 a n + n C 2 a 2 n + n(n 1) a 2 2 n. 2 0 a n n 1. 2 n lim = 0 (v) lim a n = 0. lim n 1 n n = lim (a n + 1) = lim a n + 1 = 1. 1.3.7. (1) A α = sup A x n A α = lim x n {x n } (2) A β = inf A x n A β = lim x n {x n } (1) {x n } α = sup A (2) {x n } β = inf A (1). n 1.2.9 α 1/n < x n α x n A 1.3.6 (v) {x n } lim x n = α 1.3.8.

12 1 1.3.9. {a n } {a n } ε = 1 N N : n N = a n a < ε = 1 a b a b a n < a + 1 (n N). M = max{ a 1, a 2,..., a N 1, a + 1} a n M (n = 1, 2,...) {a n } 1.3.10. {a n } n=1 {a n} n 1 < n 2 < {a nk } k=1 1.3.11. a a {a n } a ε > 0, N N; n N = a n a < ε {a nk } k=1 {a n} n 1 < n 2 < K N n K N k K a nk a < ε. 1.3.12. {a n } n=1 a 1 a 2 a 1 a 2 1.3.13. {a n } lim a n = sup{a n ; n = 1, 2,...} {a n } lim a n = inf{a n ; n = 1, 2,...}

1.3. 13 α = sup{a n ; n = 1, 2,...} 1.2.11 ε > 0 α ε < a N a N n N {a n } α {a n } α ε < a N a N+1 α n N a n α < ε. lim a n = α 1.3.14 ( (Napier) ). {a n = ( 1 + 1 n) n} e ( 1 ) n. e = lim 1 + n a n = 1 + n ( 1 ) n(n 1) ( 1 ) 2 n(n 1) 2 1( 1 ) n + + + n 2! n n! n = 1 + 1 + 1 ( 1 ) 1 ( 1 ) ( n 1) 1 + + 1 1. 2! n n! n n a n+1 = 1 + 1 + 1 ( 1 ) 1 ( 1 ) ( n 1) 1 + + 1 1 2! n + 1 n! n + 1 n + 1 + 1 ( 1 ) ( n ) 1 1. (n + 1)! n + 1 n + 1 a n < a n+1 {a n } n! 2 n 1 a n 1 + 1 + 2 1 + + 2 (n 1) < 2 + 2 1 1 1/2 = 3. {a n } 1.3.13 lim a n 1.3.15 ( (Archimedes) ). a, b > 0, n N : na > b. a, b > 0 n na b n b/a N α [α] + 1 > α [α] + 1 α = sup N

14 1 1.3.16 ( ). a < b = p Q : a < p < b. Q a < 0 < b 0 0 a < b b a(> 0) 1 1.3.15 n N : n(b a) > 1. 1 na 1.3.15 n N : n > na. n m m 1 na < m m n m 1 n a < m n = m 1 n + 1 n a + 1 n < b. a < b 0 0 b < a b < q < a q 1.3.17 (). [a n, b n ] (n = 1, 2,...) [a 1, b 1 ] [a 2, b 2 ] n=1[a n, b n ] (b n a n ) 0 ) n=1[a n, b n ] (n a 1 a 2 a n b n b 2 b 1 {a n } {b n } 1.3.13 a = lim a n = sup{a n ; n = 1, 2,...}, b = lim b n = inf{b n ; n = 1, 2,...}. n a n a, b b n n=1[a n, b n ] a, b. n=1[a n, b n ] b n a n 0 (n ) a = b n=1[a n, b n ] = {a}

1.3. 15 1.3.18. I n = (0, 1/n) (n = 1, 2,...) I 1 I 2 1/n 0 (n ) n=1i n = 1.3.19. (i) (ii) (iii) (iv) (i) = (ii) = (iii) = (iv) (iv) = (i) (A, B) R a A, b B a < b (a + b)/2 A a 1 = (a + b)/2, b 1 = b (a + b)/2 B a 1 = a, b 1 = (a + b)/2 [a 1, b 1 ] (a 1 + b 1 )/2 A a 2 = (a 1 + b 1 )/2, b 2 = b 1 (a 1 + b 1 )/2 B a 2 = a 1, b 2 = (a 1 + b 1 )/2 [a 2, b 2 ] [a n, b n ] [a 1, b 1 ] [a 2, b 2 ], b n a n = (b a)/2 n, a n A, b n B b n a n 0 (n ) α R n=1[a n, b n ] = {α} α A α B α A α < β β R ε = β α (> 0) b n a n 0 n b n a n < ε. a n α b n α b n < a n + ε α + ε = β. β B α = max A α B α = min B

16 1 1.4 1.4.1. {a n } a {a n } {a n } a 1.4.2. {a n } a {a n } a {1, 1, 1, 1,...} 1, 1 1.4.3 ( (Bolzano-Weierstrass)). {a n } c < d c a n d (n = 1, 2,...) [c, (c + d)/2], [(c + d)/2, d] a n [c 1, d 1 ] [c 1, (c 1 + d 1 )/2], [(c 1 + d 1 )/2, d 1 ] a n [c 2, d 2 ] [c n, d n ] [c 1, d 1 ] [c 2, d 2 ] [c n, d n ], d n c n 0 (n ) α n=1[c n, d n ] = {α} [c 1, d 1 ] a n1 [c 2, d 2 ] n 1 < n 2 a n2 [c 2, d 2 ] n 1 < n 2 <, a nk [c k, d k ] (k = 1, 2,...) c k a nk d k, lim c k = α, lim d k = α k k {a nk } k=1 α 1.4.4. {a n } ε > 0 N N n, m N n, m a n a m < ε ε > 0, N N : n, m N = a n a m < ε.

1.4. 17 1.4.5. {a n } a ε > 0, N N : n N = a n a < ε/2. n, m N a n a m a n a + a a m < ε/2 + ε/2 = ε. {a n } 1.4.6. {a n } 0 a < 1 a n+1 a n a a n a n 1, n = 2, 3,... {a n } a n+1 a n a a n a n 1 a 2 a n 1 a n 2 a n 1 a 2 a 1 n > m a n a m a n a n 1 + a n 1 a n 2 + a n 2 a n 3 + + a m+1 a m (a n 2 + a n 3 + a m 1 ) a 2 a 1 am 1 (1 a n m ) a 2 a 1 1 a am 1 1 a a 2 a 1. 0 a < 1 ε > 0 N a N 1 1 a a 2 a 1 < ε n > m N a n a m < ε

18 1 1.4.7. A R A {a n } a A lim a n = a 1.4.8 ( ). R R R {a n } Step 1. {a n } ε = 1 N N : n N = a n a N < 1 a n a n a N + a N 1 + a N ( n N). M = max{ a 1,..., a n 1, a N + 1} a n M (n = 1, 2,...) {a n } Step 2. {a n } ε > 0, N N : n, m N = a n a m < ε/2. Step 1 {a n } Bolzano-Weierstrass {a nk } k=1 lim k a nk = a ε > 0, K N : k K = a nk a < ε/2. n K N n N a n a a n a nk + a nk a < ε/2 + ε/2 = ε. lim a n = a 1.4.9. R R \ {a} {a + 1/n} R \ {a} R \ {a}

19 2 2.1 2.1.1. (c, d) a (c, d) (c, d) \ {a} f(x) (1) A ε > 0, δ > 0 : 0 < x a < δ = f(x) A < ε f(x) x a A (2.1.1) lim x a f(x) = A (2) f(x) A (x a) M > 0, δ > 0 : 0 < x a < δ = f(x) M lim x a f(x) = M > 0, δ > 0 : 0 < x a < δ = f(x) M lim x a f(x) = (3) A ε > 0, M > 0 : x > M = f(x) A < ε lim x f(x) = A lim x f(x) = A, lim x ± f(x) = ±

20 2 2.1.2. (2.1.1) lim x a x a a 2.1.3. (1) f(x) = x + b lim x a f(x) = a + b. ε > 0 δ = ε 0 < x a < δ (2) lim x 1 x 2 1 x 1 f(x) (a + b) = (x + b) (a + b) = x a < δ = ε = 2. x 1 x 2 1 x 1 = (x 1)(x + 1) x 1 = x + 1 (1) lim x 1 x 2 1 x 1 = 2 2.1.4. lim x a f(x) = A x n a lim x n = a {x n } lim f(x n ) = A lim x a f(x) = A ε > 0, δ > 0 : 0 < x a < δ = f(x) A < ε. x n a lim x n = a {x n } N N : n N = 0 < x n a < δ f(x n ) A < ε lim f(x n ) = A. lim x a f(x) = A ε > 0 : δ > 0 : x : 0 < x a < δ, f(x) A ε. δ = 1/n x n 0 < x n a < 1/n, f(x n ) A ε. lim x n = a, (x n a) lim f(x n ) = A

2.1. 21 2.1.5. f(x), g(x) x a A, B lim x a f(x) = A, lim x a g(x) = B (i) lim x a (f(x) + g(x)) = A + B. (ii) lim x a cf(x) = ca. c (iii) lim x a f(x)g(x) = AB. (iv) B 0 lim x a f(x)/g(x) = A/B. (v) f(x) g(x), (x (c, d) \ {a}) A B. 2.1.4 1.3.5 2.1.6 ( ). (c, d) a (c, d) (c, d) \ {a} f(x) A ε > 0, δ > 0 : 0 < x a < δ = f(x) A < ε f(x) x a + 0 A lim f(x) = A f(x) A (x a + 0) x a+0 ε > 0, δ > 0 : δ < x a < 0 = f(x) A < ε f(x) x a 0 A lim f(x) = A f(x) A (x a 0) x a 0 2.1.7. f(x) = [x] lim x 1+0 f(x) = 1, lim x 1 0 f(x) = 0 2.1.8. lim x a f(x) = A lim x a+0 f(x), lim x a 0 f(x) lim x a+0 f(x) = lim x a 0 f(x) = A

22 2 2.2 I f(x) a I 2.2.1. (1) f(x) x = a (continuous) ε > 0, δ > 0 : x a < δ (x I) = f(x) f(a) < ε (2) f(x) I I 2.2.2. f(x) x = a x a A f(a) lim x a f(x) = f(a) f(x) x = a f : cont. at x = a, I f : cont. in I 2.2.3. lim x a+0 f(x) = f(a) f(x) x = a lim x a 0 f(x) = f(a) x = a f(x) x = a x = a 2.2.4. (1) f(x) = c R a R ε > 0 δ > 0 x a < δ = f(x) f(a) = c c = 0 < ε. (2) f(x) = x R a R ε > 0 δ = ε(> 0) x a < δ = f(x) f(a) = x a < δ = ε. 2.2.5. f(x) I a f(a) 0 x = a x f(x) f(a) δ > 0 : x a < δ = f(x)f(a) > 0. f(a) > 0 ε = f(a)(> 0) δ > 0 : x a < δ = f(x) f(a) < ε. f(a) ε = 0 < f(x)

2.2. 23 2.2.6. f(x) x = a lim x n = a lim f(x n ) = A 2.1.4 2.2.7. (i) f(x), g(x) I x = a I f(x) + g(x), cf(x) (c ), f(x)g(x), f(x)/g(x) (g(a) 0 ) x = a (ii) y = f(x) x = a z = g(y) y = f(a) g(f(x)) x = a 2.1.5 2.2.8. f(x) = x 2 (= x x) R f(x) = x n (n = 1, 2,...) R (1), (2) (1) P (x) = a n x n + a n 1 x n 1 + + a 1 x + a 0 R. (2) R(x) = P (x)/q(x) P (x), Q(x) Q(x) 0 x (3) f(x) = sin x, f(x) = cos x R f(x) = tan x cos x 0 sin x x ( sin x sin y = x + y sin + x y ) ( x + y sin x y ) 2 2 2 2 = 2 cos x + y sin x y 2 2 2 sin x y 2 x y x = a ε > 0 δ = ε x a < δ sin x sin a x a < δ = ε sin x x = a cos x = sin(π/2 x) cos x R tan x = sin x/ cos x R \ {x R; cos x = 0}

24 2 (4) f(x) = e x ( e x = lim 1 + x n. n) e x R e x > 0, e 0 = 1. e x+y = e x e y. x < y = e x < e y. 2.2.9 ( ). f(x) I = [a, b] f(x) I α = sup{f(x); x I} α = +. x n I α = lim f(x n ) {x n } {x n } {x nk } k=1 c a x n k b a c b c I = [a, b]. f(x) x = c f(c) = lim k f(x nk ) = α α f 2.2.10. [a, ) f(x) = x (0, 1) f(x) = x (0, 1) f(x) = 1 x 2.2.11 ( ). f(x) I = [a, b] α = f(a), β = f(b) α β α β γ (γ α, β) f(c) = γ c (a, b) 1 f α < β α < γ < β E = {x I; f(x) < γ} f(a) < γ E

2.2. 25 c = sup E 2.2.5 c (a, b) x n E : x n c (n ). f(x) f(c) = lim f(x n ) γ. f(c) < γ 2.2.5 c f(x) < γ c f(c) = γ 2.2.12. 2.2.9 2.2.11 I = [a, b] f(x) α = min x I f(x), β = max x I f(x) f([a, b]) = [α, β] α = β [α, β] = {α} 2.2.13. I f(x) x 1, x 2 I, x 1 < x 2 f(x 1 ) < f(x 2 ) f(x) I x 1, x 2 I, x 1 < x 2 = f(x 1 ) > f(x 2 ) 2.2.14. y = f(x) I = [a, b] α = f(a), β = f(b) α = f(b), β = f(a) f(x) x = f 1 (y) [α, β] f(x) [a, b] f([a, b]) = [α, β] f(x) x = f 1 (y) f 1 (y) y 1 < y 2 y 1 = f(x 1 ), y 2 = f(x 2 ) x 1, x 2 [a, b] x 1 = f 1 (y 1 ), x 2 = f 1 (y 2 ) x 1 x 2 f(x) (y 1 =)f(x 1 ) (y 2 = )f(x 2 ) y 1 < y 2 x 1 < x 2 f 1 (y 1 ) < f 1 (y 2 ). f 1 (y) [α, β]

26 2 f 1 (y) y 0 [α, β] (1) ε 0 > 0 : δ > 0, y [α, β] : y y 0 < δ, f 1 (y) f 1 (y 0 ) ε 0. δ = 1/n y n y n = f(x n ) x n [a, b] y n y 0 < 1/n, f 1 (y n ) f 1 (y 0 ) ε 0 {x n } {x nk } k=1 lim k x nk = x 0 x 0 [a, b] f(x) [a, b] lim k f(x nk ) = f(x 0 ). y n y 0 y 0 = f(x 0 ) f 1 (y nk ) f 1 (y 0 ) = x nk x 0 0 (n ) (1) f 1 (y) [α, β] 2.2.15. a < b f(x) I = (a, b) f((a, b)) = (α, β) y = f(x) x = f 1 (y) (α, β) f(x) [c, d] (a, b) 2.2.14 2.2.16. y = f(x) : [a, b] [α, β] x = f 1 (y) : [α, β] [a, b] x y = f 1 (x) y = f 1 (x), x [α, β] x = f(y), y [a, b]. y = x 2.2.17. y = x n/m n, m N n/m m y = x m : [0, ) [0, ) y = x 1/m : [0, ) [0, ) m y = x m : (, ) (, ) y = x 1/m : (, ) (, ) y = x n/m = (x 1/m ) n y = x 1/2 = x [0, ) y = x 1/3 = 3 x (, )

2.2. 27 2.2.18. f(x) = log x y = e x y = log x, (x > 0) x = e y f(x) = log x x > 0 y = log x : (0, ) R y = e x : R (0, ) 2.2.19. a > 0 f(x) = a x a x = e x log a a > 1 a x 0 < a < 1 a x 2.2.20. (1) f(x) = sin x [ π/2, π/2] [ 1, 1] [ 1, 1] [ π/2, π/2] f 1 (x) = Sin 1 x y = Sin 1 x x = sin y, π/2 y π/2. (2) f(x) = cos x [0, π] [ 1, 1] [ 1, 1] [0, π] f 1 (x) = Cos 1 x y = Cos 1 x x = cos y, 0 y π. (3) f(x) = tan x ( π/2, π/2) (, ) (, ) ( π/2, π/2) f 1 (x) = Tan 1 x y = Tan 1 x x = tan y, π/2 < y < π/2. 2.2.21. I f(x) I ε > 0 δ > 0 x y < δ x, y I f(x) f(y) < ε ε > 0, δ > 0 : x y < δ = f(x) f(y) < ε.

28 2 2.2.22. I I ε > 0 δ > 0 f(x) I a I, ε > 0, δ > 0 : x a < δ = f(x) f(a) < ε. f(x) I ε > 0, δ > 0 : x a < δ = f(x) f(a) < ε. ε > 0 δ > 0 2.2.23. (1) f(x) = x (0, 1] (2) f(x) = x 2 R ε > 0 : δ > 0, x 1, x 2 R : x 1 x 2 < δ, f(x 1 ) f(x 2 ) ε. ε = 1 δ > 0 x 1 x 2 = δ/2, x 1 + x 2 > 2/δ x 1, x 2 R x 2 1 x 2 2 = x 1 x 2 x 1 + x 2 > δ 2 2 δ = 1. 2.2.24. f(x) I = [a, b] I f(x) I ε > 0 : δ > 0, x 1, x 2 I : x 1 x 2 < δ, f(x 1 ) f(x 2 ) ε. δ = 1/n x 1,n, x 2,n I (1) x 1,n x 2,n < 1/n, f(x 1,n ) f(x 2,n ) ε. {x 1,n } I {x 1,nk } lim k x 1,nk = x 0 I

2.2. 29 x 0 I x 1,nk x 2,nk < 1/n k lim k x 2,nk = x 0 f(x) lim f(x 1,n k ) = f(x 0 ) = lim f(x 2,nk ). k k f(x 1,nk ) f(x 2,nk ) 0 (k ) (1) 2.2.25. f(x) = x 2 I = [a, b] 2.2.24 R