確率論と統計学の資料

Similar documents
基礎数学I

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

tokei01.dvi

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

: , 2.0, 3.0, 2.0, (%) ( 2.


Part () () Γ Part ,

Note.tex 2008/09/19( )


A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

L A TEX ver L A TEX LATEX 1.1 L A TEX L A TEX tex 1.1 1) latex mkdir latex 2) latex sample1 sample2 mkdir latex/sample1 mkdir latex/sampl

b3e2003.dvi

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =


数理統計学Iノート

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

201711grade1ouyou.pdf

untitled

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

³ÎΨÏÀ

Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

24.15章.微分方程式

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x


Microsoft Word - 信号処理3.doc

1 1 [1] ( 2,625 [2] ( 2, ( ) /

i 18 2H 2 + O 2 2H 2 + ( ) 3K


(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

TOP URL 1

Lebesgue Fubini L p Banach, Hilbert Höld


..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A



newmain.dvi

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.


meiji_resume_1.PDF

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

1

Untitled

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

構造と連続体の力学基礎

Z: Q: R: C: sin 6 5 ζ a, b


名称未設定

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

ii

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

統計学のポイント整理

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

TOP URL 1

2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

1 1 ( ) ( % mm % A B A B A 1

第1章 微分方程式と近似解法

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

2000年度『数学展望 I』講義録

30

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

December 28, 2018

数学の基礎訓練I

I

第86回日本感染症学会総会学術集会後抄録(II)

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

Z: Q: R: C:

( ) ± = 2018


1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

/02/18

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

Transcription:

5 June 015

ii........................ 1 1 1.1...................... 1 1........................... 3 1.3... 4 6.1........................... 6................... 7 ii ii.3.................. 8.4.......................... 10.5........................... 11.6................... 1.7.......................... 14.8.................. 15.9........................ 16 3 18 3.1 1.................... 18 3.1.1.................. 18 0 1 alpha A α beta B β gamma Γ γ delta δ epsilon E ϵ, ε zeta Z ζ eta H η theta Θ θ, ϑ iota I ι kappa K κ lambda Λ λ mu M µ nu N ν omicron O o xi Ξ ξ pi Π π, ϖ rho P ρ, ϱ sigma Σ σ, ς tau T τ upsilon Υ υ phi Φ ϕ, φ chi X χ psi Ψ ψ omega Ω ω

1 1 1.1 a r (a r) a [r] a(a 1)(a ) (a r + 1) a r r 0 a [0] 1 a a r r [r] r(r 1)(r ) 1 r! (r > 0), 0 [0] 0! 1 a r (a r) ( ) a a[r] a(a 1)(a ) (a r + 1) r r! r(r 1)(r ) 1 (r > 0), ( ) a 1 0 n r n r 0 n n [r] n! r!, nc r n! n(n 1)(n ) 3 1 ( ) n r n! r!(n r)! n (n k + 1) (a) n r n r (b) n r n [r] (c) n r ( n r) (d) n r ( ) ( n+r 1 n 1 n+r 1 ) r k1 n k k1 ( ) ( ) n n (e) 1 0 n ( ) ( ) n n (f) r n r ( ) ( n n 1 (g) r r ) + ( ) n 1 r 1 (Pascal s triangle) 1.1.1 (Binomial Theorem) n ab (a + b) n k0 ( ) n 0 ( ) n a k b n k k b n + ( ) n a 1 b n 1 + + 1 ( ) n a n n

1 ( ) ( ) n n (h) (1 + t) n + t + + 0 1 ( ) n (i) (1 t) n ( 1) k t k k k0 ( ) n (j) n k k0 ( ) n t n n ( ) n (k) 0 ( 1) k k k0 (l) n+1 1 ( ) n n + 1 + 1 ( ) n + + 1 0 1 r + 1 ( ) a + b ( )( ) a b (m) n k n k k0 k0 ( ) n t k k ( ) n + + 1 r n + 1 ( ) n n 1.1. (Multinomial Theorem) nk t 1, t,, t k (t 1 + t + + t k ) n n! r 1!r! r k! tr1 1 tr trk k r 1 0, r 0,, r k 0, r 1 + r + + r k n (r 1, r,, r k ) k k1 n(n + 1)(n + 1) 6 k k1 k k1 k1 n(n + 1) n(n + 1)(n + 1) 6 k 3 n (n + 1) 4 k 4 n 30 (n + 1)(n + 1)(3n + 3n 1) k1 k 5 n 1 (n + 1) (n + n 1) k 6 n 4 (n + 1)(n + 1)(3n4 + 6n 3n + 1) k1 k1 (k + 1) 3 k 3 3k + 3k + 1 k 1 n 3 1 3 3 3 3. (n + 1) 3 n 3 (n + 1) 3 1

1. 3 k k1 n(n + 1) { } 3k + 3k + 1 3 k + 3 k + 1 k1 1 n k1 (n + 1) 3 n 3 1. 3 k1 k1 k1 k1 k n(n + 1) + 3 + n (n + 1) 3 1 3 k n(n + 1) + 3 + n k1 3 k (n + 1) 3 n(n + 1) 1 3 n k1 n + 1 { } n + 4n + 3n n(n + 1)(n + 1) 1..1 (1 + 1 n )n, (n 1,, ) lim n + (1 + 1 n )n Napier s constante e π e x e x exp(x) 1..1 (l Hospital s rule) f (x) g(x) x a lim f (x) lim g(x) 0, x a x a f (x) lim x a g (x) f (x) lim x a g(x) f (x) lim x a g(x) lim f (x) x a g (x)

4 1 1.. F(t) h(t) g(t) f (x ; t) dt f (x ; t)g(t)h(t) df(t) dt h(t) g(t) f (x ; t) t dt + f (h(t) ; t) dh(t) dt f (g(t) ; t) dg(t) dt 1..3 (Taylor expansion) f (x) k f (k) (x) (0 k n 1) [a, b] f (n 1) (x) (a, b) c (a, b) f (b) n 1 k0 f (k) (a) (b a) k + R n, k! R n f (n) (c) (b a) n n! 1.3 1.3.1 x > 0 Γ(x) 0 t x 1 e t dt Γ(x) Γ function 1.3. x > 0y > 0 B(x, y) 1 0 t x 1 (1 t) y 1 dt B(x, y) B function (a) x > 0 Γ(x + 1) xγ(x) (b) n Γ(n + 1) n! (c) n ( Γ n + 1 ) ( n 1 )( n 3 ) 3 1 (d) x > 0y > 0 B(x, y) Γ(x)Γ(y) Γ(x + y)

1.3 5 (e) ( 1 1 Γ ) 1.3.1 (Stirling s formula) x Γ(x) πx x 1/ e x x 1 n n! πn n+1/ e n (n ) Γ ( 1 ) π d dx Sin 1 (x) 1 1 x ( 1 B, 1 ) 1 0 1 0 1 [ 0 x 1/ (1 x) 1/ dx 1 x(1 x) dx 1 dx ( 1 ) (x 1 ) 1 Sin 1 ( x 1 1 ) ( 1 B Γ, 1 π ) π ( 1 ] 1 ) π 0

6.1.1.1 Ω sample spaceb Ω (i) Ω B (ii) A B A c B (iii) A 1, A, B i1 A i B B σ-fieldb (event).1. Pr{ } B (i) A B Pr{A} 0 (ii) Pr{Ω} 1 (iii) B A 1, A, { } Pr A i i1 Pr{A i } i1 Pr{ } probability(ω, B, Pr{ }) probability space.1.3 A B (Ω, B, Pr{ }) B Pr{B} > 0 Pr{A B} B A conditional probaility Pr{A B} Pr{A B} Pr{B}.1.1 (Theorem of total probabilities) (Ω, B, Pr{ }) B 1, B,, B n (i) Ω n k1 B k (ii) Pr{B k } > 0 (k 1,,, n) A B Pr{A} Pr{A B k } Pr{B k } k1

. 7.1. (Bayes formula) (Ω, B, Pr{ }) B 1, B,, B n (i) Ω n k1 B k (ii) Pr{B k } > 0 (k 1,,, n) Pr{A} > 0 A B Pr{B k A} Pr{A B k } Pr{B k } nj1 Pr{A B j } Pr{B j } Pr{B k } B k prior probabilitypr { B k A } B k posterior probability.1.4 A B B A B Pr{A B} Pr{A} Pr{B}...1 (Ω, B, Pr{ }) X X( ) Ω X x {ω : X(ω) x} B.. 1 1 X (a, b] Pr{a < X b} Pr{X (a, b]} x Pr{X x} x F(x) X cumulative distribution function: cdf (a) F( ) lim F(x) 0, x F(+ ) lim F(x) 1 x + (b) F(x) F(x) F(y) (x y) (c) F(x) lim x a F(a) F(a) X x 1, x, X discrete random variable Pr{X x i } f X (x i ) f X (x i ) 1 X i i F(x) Pr{X x} {x i:x i x} f X (x i )

8 f X (x i ) (probability function) f (x) 0 f (x) dx 1 f (x) F(x) Pr{X x} X continuous random variable f (x) (probability density function: pdf ) A Borel X A Pr { X A } Pr { X A } p i, Pr { X A } f (x) dx x f (t) dt x i A A pdf..1 X f (x) g(x) X Y 1 1 X h(y) h( ) Y f { h(y) } h (y).3.3.1 X F(x) x df(x) X expectation E[X] x df(x) Stieltjes E[X] x i f X (x i ) i x f X (x) dx (X ), (X ).3. X E[X] µ E[(X µ) ] σ Var(X) E[(X µ) ] variance σ Var(X) standard deviation

.3 9.3.3 m r E[X r ] r (rth momentµ r E[(X µ) r ] r (rth central moment.3.4 3 E[(X µ) 3 ] σ 3 skewnessx X 0 4 E[(X µ) 4 ] σ 4 kurtosisx X 3 E[X] m r µ r (a) X g(x) g(x i ) f X (x i ) (b) X g(x) i E[g(X)] g(x i ) f X (x i ) i g(x) f (x) dx < E[g(X)] g(x) f (x) dx (c) ab 1 b b k g 1 (x)g (x) g k (x) k E[a + b 1 g(x) + b g(x) + + b k g(x)] a + b 1 E[g 1 (X)] + b E[g (X)] + + +b k E[g k (X)] E[ a + b 1 g(x) + b g(x) + + b k g(x) ] (d) ab Y a + bx E[Y] a + be[x], Var(Y) b Var[X], µ r (Y) b r µ r (X) pdf.3.5 F(x) q q-quantile F(ξ) q ξ { } inf F(x) q x

10.3.6 F(x) median F(ξ) 0.5 ξ 0.5.3.7 X F(x) X moment generating function t E[e tx ] e tx df(x) F(x) Laplace transformation E[e tx ] e txi f X (x i ) X i e tx f (x) dx X t ii 1 characteristic function e itx df(x) t F(x) Fourier transformation.4.4.1 (Schwart s inequality) X ε > 0 { } Pr X ε E[X] ε.4. (Qebywv s inequality) X ε > 0 { } Pr X ε E[X] ε.4.3 (Qebywv s inequality) X µ σ ε > 0 { } Pr X µ εσ 1 ε

.5 11.4.1 k(u) u 1 u α(0 α 1) k(αu 1 + (1 α)u ) αk(u 1 ) + (1 α)k(u ).4.4 Minkowski E[g 1 (X)] E[g (X)] { E[ g 1 (X) ± g (X)} ] E[g 1 (X)] + E[g (X)].4.5 (Jensen s inequality) k(x) X E[X] E[k(X)] k(e[x]).5 X 1, X, X.5.1 X { } Pr lim X n X 1 n {X n } n1 X almost sure convergence X n a.s. X.5. ε > 0 } lim { X Pr n X > ε n {X n } n1 X convergence in probability X n in P X 0

1.5.3 F n (x) X n F(x) X F(x) x lim F n(x) F(x) n {X n } n1 X convergence in distribution X n in d X.5.1 a.s. in P (i) X n X X n X in P in d (ii) X n X X n X.6.6.1 k k (X 1, X,, X k ) F X1,X,,X k (x 1, x,, x k ) Pr{X 1 x 1, X x,, X k x k } (X 1, X,, X k ) simultaneous probability distribution function x 1, x,, x k k (X 1, X,, X k ) (X 1, X,, X k ) f X1,X,,X k (x 1, x,, x k ) Pr{X 1 x 1, X x,, X k x k } f X1,X,,X k (x 1i1, x i,, x kik ) 1 i 1,i,,i k (X 1, X,, X k ) i 1,i,,i k F X1,X,,X k (x 1, x,, x k ) Pr{X 1 x 1, X x,, X k x k } f X1,X,,X k (x i1, x i,, x ik ) i 1,i,,i k x i1 x 1, x i x,, x ik x k i 1, i,, i k i 1,i,,i k (X 1, X,, X k ) f (x 1, x,, x k ) 0 f (x 1, x,, x k ) dx 1 dx k 1 f (x 1, x,, x k ) x1 xk F X1,X,,X k (x 1, x,, x k ) f (t 1, t,, t k ) dt 1 dt k

.6 13 f (x 1, x,, x k ) (probability density function: pdf ).6. X Y (Ω, B, Pr{ }) F X,Y (x, y) F X (x) F X,Y (x, + ), F Y (x) F X,Y (+, y) X Y marginal probability distribution X Y F X,Y (x, y) F X,Y (x, y) {x 1:x 1 x} {x :x x} F X (x) F X,Y (x, + ) f X,Y (x, y) y f X,Y (x 1, x ) Y X y F Y (y) F X,Y (+, y) f X,Y (x, y) X Y F X,Y (x, y) F X,Y (x, y) f X,Y (s, t) dt ds {s:s x} x {t:t y} F X (x) F X,Y (x, + ) f X,Y (x, t) dt Y y y x.6.3 X Y f X,Y (x, y) Y y X conditional discrete probability function f X,Y (x, y) f (x y) ( f Y (y) 0), f Y (y) X Y ( f Y (y) 0)

14.6.4 X Y f X,Y (x, y) Y y X conditional discrete cumulative distribution F X Y (x y) Pr{X x Y y} f X Y (x, y) {x i:x i x} Y f Y (y) f Y (y) 0 y.6.5 X Y f X,Y (x, y) Y y X conditional continuous probability function f X,Y (x, y) f (x y) ( f Y (y) 0), f Y (y) X Y ( f Y (y) 0).6.6 X Y f X,Y (x, y) Y y X conditional continuous cumulative distribution F X Y (x y) Pr{X x Y y} f X Y (t, y) dt Y f Y (y) f Y (y) 0 y {t:t x}.7 (X 1, X,, X k ) (X 1, X,, X k ) Pr { X 1 x 1i1 } p1i1, Pr { X x i } pi,, Pr { X k x kik } pkik.7.1 i 1,, i k p i1 i k Pr { } X 1 x 1i1, X x i,, X k x kik Pr { } { } { } X 1 x 1i1 Pr X x i Pr Xk x kik p1i1 p i p kik X 1, X,, X k mutually independent (X 1, X,, X k ) (X 1, X,, X k ) f 1 (x 1 ), f (x ),, f k (x k ).7. (x 1, x,, x k ) f (x 1, x,, x k ) f 1 (x 1 ) f (x ) f k (x k ) X 1, X,, X k mutually independent

.8 15.8 (X 1, X,, X k ) g(x 1, x,, x k ) i 1,i,,i k g(x 1i1, x i,, x kik ) p i1 i k g(x 1, x,, x k ) (X 1, X,, X k ) g(x 1, x,, x k ) E[g(X 1, X,, X k )] g(x 1, x,, x k ) E[g(X 1, X,, X k )] i 1,i,,i k g(x 1i1, x i,, x kik )p i1 i k g(x 1, x,, x k ) f (x 1, x,, x k ) dx 1 dx k g(x 1, x,, x k ) f (x 1, x,, x k ) dx 1 dx k.8.1 a, b 1,, b r g 1 (x 1, x,, x k ), g (x 1, x,, x k ),, g r (x 1, x,, x k ) r E[a + b 1 g 1 (X 1, X,, X k ) + b g (X 1, X,, X k ) + + b r g r (X 1, X,, X k )] a + b 1 E[g 1 (X 1, X,, X k )] + b E[g (X 1, X,, X k )] + + b r E[g r (X 1, X,, X k )].8.1 (X 1, X,, X k ) α r1 r k E[X r1 1 Xr Xrk k ] r i 1r j 0 ( j i) α r1 r k X i E[X i ] m i µ r1 r k E[(X 1 m 1 ) r1 (X m ) r (X k m k ) rk ] r i r j 0 ( j i) µ r1 r k X i Var(X i ) r i r j 1r k 0 (k i, j) σ i µ (X i ) E[(X i m i ) ] σ i j µ 11 (X i, X j ) E[(X i m i )(X j m j )] X i X j i j µ 11 (X i, X j ) σ (X i ) 0 < σ i <, 0 < σ j < ρ i j ρ(x i, X j ) σ i j σii σ j j X i X j

16.8. k k Σ (σ i j ) (X 1, X,, X k ) variance-covarinace matrixk k (rho i j ) correlation coefficient matrix.8. k (X 1, X,, X k ) a 1, a,, a k (i) k Var( a i X i ) i1 k k a i a j Cov(X i, X j ) i1 j1 k a i Var(X i) + a i a j Cov(X i, X j ) i1 1 i< j n (ii) (X 1, X,, X k ) k Var( a i X i ) i1 k a i Var(X i) i1.9.9.1 k (X 1, X,, X k ) t 1, t,, t k φ(t 1, t,, t k ) E[exp(i(t 1 X 1 + t X + + t k X k ))] (X 1, X,, X k ) characteristic function.9.1 (i) k (X 1, X,, X k ) φ(t 1, t,, t k ) φ(t 1 )φ(t ) φ(t k ) (ii) k (X 1, X,, X k ).9. k (X 1, X,, X k ) f (x 1, x,, x k ) k y i g i (x 1, x,, x k ) (x 1, x,, x k ) (y 1, y,, y k ) x 1, x,, x k x i g i (y 1, y,, y k )

.9 17 x i, (i 1,,, k) y i x 1 x 1 x 1 y 1 y y k x x x (x 1, x,, x k ) (y 1, y,, y k ) y 1 y y k...... 0 x k x k x k y 1 y y k Y 1, Y,, Y k Y i g i (X 1, X,, X k ), (i 1,,, k) (Y 1, Y,, Y k ) { } (x 1, x,, x k ) f h 1 (y 1, y,, y k ), h (y 1, y,, y k ),, h k (y 1, y,, y k ) (y 1, y,, y k ).9.3 Convolution X Y f (x) g(y) Z X + Y h(z) h(z) f (z y)g(y) dy g(z x) f (y) dy

18 3 3.1 1 pdf 1 3.1.1 N equally likely) N Pr { X x } 1, (x 1,,, N) N N + 1 N 1 1 µ 3 N(N + 1) 4 µ 4 (N + 1)(N + 1)(3N + 3N 1) 30 N j1 1 N e jt µ r E[X r ] r µ r E[X µ r ] r 1 p q 1 p p Pr { X 0 } p, Pr { X 1 } 1 p q p pq µ r p q + pe t n B(n, p) n n p X (n, p) X Bi(n, p) Pr { X k } ( ) n p k (1 p) n k (k 0, 1,, n) k np npq µ 3 npq(q p) (q + pe t ) µ 4 3n p q + npq(1 6pq) X Y X Bi(n 1, p), Y Bi(n, p) X + Y Bi(n 1 + n, p)

3.1 1 19 X Bi(n, p) n X np npq in d N(0, 1 ) in d 1 N(0, 1 ) 1 X Bi(n, p) np λ λ n X in d Po(λ) Po(λ) λ K M K M n x Pr { X k } ( K )( M K x n x ) ( M n ) (x 0, 1,,, n) n K M n K M M K N M n M 1 E[X(X 1) (X r + 1)] )( n r) r! ( K r ( M r ) Poisson K M K M n x Pr { X k } ( K )( M K x n x ) ( M n ) (x 0, 1,,, n) n K n K M K M n E[X(X 1) (X r + 1)] M M N M 1 )( n r) r! ( K r ( M r )

0................................................................. 11..................................................................... 6................................................................ 8................................................................ 6............................................................... 1................................................................ 7............................................................ 8.............................................................. 4...................................................................8...................................................... 9, 15................................................................. 16 r............................................9, 15.................................................... 11................................................................ 7..................................................................... 6................................................................ 7............................................................ 3........................................................... 13.................................................... 10............................................................ 6.................................................. 13.................................................. 14.......................................... 13, 14..................................................... 5............................................................. 9, 19............................................................. 10............................................................ 6..................................................................... 9............................................................... 16........................................................... 16............................................................................................................................. 17 (Qebywv).....................................10............................................................. 19............................................................ 4........................................................... 1...................................................... 18............................................................ 10, 16............................................................... 7, 14................................................................. 11............................................................................................................................... 18............................................................. 18 r......................................... 18............................................................... 18.............................................................. 3........................................................1................................................................ 8................................................................ 6........................................................... 10...................................................................9................................................................. 8, 16......................................................... 16............................................................ 1, 19 r......................................... 9, 15............................................................ 7.............................................................. 4......................................................... 18............................................................. 18 r......................................... 18............................................................... 18 Poisson............................................................ 19........................................................... 19............................................................ 6................................................ 11............................................................... 10 r................................................ 9, 15 r.............................................. 9, 15........................................................... 10........................................................... 18............................................................. 18 r......................................... 18............................................................... 18 r....................................... 18............................................................ 7............................................................ 7.......................................................... 8.......................................................... 3..................................................................... 9

1 A almost sure convergence.................................................. 11 B Bayes formula........................................................... 7 Bernoulli distribution.................................................... 18 Beta function............................................................. 4 binomial distribution..................................................... 18 Binomial Theorem........................................................ C characteristic function................................................ 10, 16 Qebywv s inequality.................................................. 10 conditional continuous cumulative distribution.............................. 14 conditional continuous probability function.................................14 conditional discrete cumulative distribution.................................13 conditional discrete probability function................................... 13 conditional probability.................................................... 6 continuous random variable................................................ 8 convergence in distribution............................................ 1, 19 convergence in probability................................................ 1 convex function......................................................... 11 convolution............................................................. 17 correlation coefficient.................................................... 16 correlation coefficient matrix..............................................16 covariance.............................................................. 16 cumulative distribution function............................................ 7 D discrete random variable................................................... 7 discrete uniform distribution.............................................. 18 E equally likely............................................................18 event.................................................................... 6 expectation............................................................... 8 F Fourier transformation................................................... 10 G Gamma function.......................................................... 4 H hypergeometric distribution............................................... 19 I independence.............................................................7 J Jensen s inequality....................................................... 11 K kurtosis.................................................................. 9 L Laplace transformation................................................... 10 l Hospital s rule.......................................................... 3 M marginal probability distribution.......................................... 13 median................................................................. 10 Minkowski s inequality...................................................11 moment rth central..................................................... 9, 15 rth............................................................ 9, 15 moment generating function.............................................. 10 Multinomial Theorem..................................................... mutually independence................................................... 14 N Napier s constant......................................................... 3 normal distribution.................................................... 9, 19 P Pascal s triangle.......................................................... 1 Poisson distribution...................................................... 19 posterior probability.......................................................7 prior probability.......................................................... 7 probability density function................................................ 8 probability function....................................................... 8 probability space..........................................................6 probability............................................................... 6 Q quantile.................................................................. 9 R random variable.......................................................... 7 rth central moment.................................................... 9, 15 rth moment........................................................... 9, 15 S sample space............................................................. 6 Schwart s inequality..................................................... 10 σ-field................................................................... 6 simultaneous probability distribution function.............................. 1 skewness.................................................................9 standard deviation........................................................ 8 Stirling s formula......................................................... 5 T Taylor expansion......................................................... 4 Theorem of total probabilities.............................................. 6 V variance.............................................................. 8, 16 variance-covarinace matrix............................................... 16