2008/02/18 08:40-10:10, 12:50-14:20 14:30-16:00, 16:10-17:40,

Similar documents
Ni PLD GdBa 2 Cu 3 O 7 x 2 6

1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e

03J_sources.key

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

36 th IChO : - 3 ( ) , G O O D L U C K final 1

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

µµ InGaAs/GaAs PIN InGaAs PbS/PbSe InSb InAs/InSb MCT (HgCdTe)


The Physics of Atmospheres CAPTER :

21世紀COE講義2006_5.ppt

4‐E ) キュリー温度を利用した消磁:熱消磁


(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

2 Zn Zn + MnO 2 () 2 O 2 2 H2 O + O 2 O 2 MnO 2 2 KClO 3 2 KCl + 3 O 2 O 3 or 3 O 2 2 O 3 N 2 () NH 4 NO 2 2 O + N 2 ( ) MnO HCl Mn O + CaCl(ClO

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

微粒子合成化学・講義

untitled

LLG-R8.Nisus.pdf

untitled

1章

元素分析

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

4 1 Ampère 4 2 Ampere 31



( ) ,

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

Yuzo Nakamura, Kagoshima Univ., Dept Mech Engr. perfect crystal imperfect crystal point defect vacancy self-interstitial atom substitutional impurity

コロイド化学と界面化学

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

Microsoft Word - 章末問題

温泉の化学 1

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

H1-H4

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

pdf

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)


Microsoft Word - 00”ŒŁ\”ƒf.doc

hv (%) (nm) 2

2_R_新技術説明会(佐々木)

1/120 別表第 1(6 8 及び10 関係 ) 放射性物質の種類が明らかで かつ 一種類である場合の放射線業務従事者の呼吸する空気中の放射性物質の濃度限度等 添付 第一欄第二欄第三欄第四欄第五欄第六欄 放射性物質の種類 吸入摂取した 経口摂取した 放射線業 周辺監視 周辺監視 場合の実効線 場合

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C602E646F63>

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( )

untitled

RAA-05(201604)MRA対応製品ver6

30

RN201602_cs5_0122.indd

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

I II

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef


C: PC H19 A5 2.BUN Ohm s law

untitled



物理化学I-第12回(13).ppt

77

all.dvi

2011de.dvi

(Blackbody Radiation) (Stefan-Boltzmann s Law) (Wien s Displacement Law)

,,., (,, SiO 2, Si-N, ),,,,,.,.,,, (Schottky). [ ].,..,.,., 1 m µm 10., 10 5, [ ] (6N-103)..,.,. [ ] 1. (,, ) :,.,,.., (HF),.

TOP URL 1

吸収分光.PDF

OHO.dvi

untitled

sikepuri.dvi

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

prime number theorem

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

修士論文

日本電子News vol.44, 2012

eto-vol1.dvi

QMII_10.dvi

(1) θ a = 5(cm) θ c = 4(cm) b = 3(cm) (2) ABC A A BC AD 10cm BC B D C 99 (1) A B 10m O AOB 37 sin 37 = cos 37 = tan 37

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

スライド 1



1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

Part () () Γ Part ,

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

C 3 C-1 Cu 2 (OH) 3 Cl A, B A, A, A, B, B Cu 2 (OH) 3 Cl clinoatacamite S=1/2 Heisenberg Cu 2+ T N 1 =18K T N 2 =6.5K SR T N 2 T N 1 T N 1 0T 1T 2T 3T

さくらの個別指導 ( さくら教育研究所 ) A 2 2 Q ABC 2 1 BC AB, AC AB, BC AC 1 B BC AB = QR PQ = 1 2 AC AB = PR 3 PQ = 2 BC AC = QR PR = 1

登録プログラムの名称 登録番号 初回登録日 最新交付日 登録された事業所の名称及び所在地 問い合わせ窓口 JCSS JCSS 年 12 月 1 日 2018 年 5 月 23 日公益社団法人日本アイソトープ協会川崎技術開発センター 神奈川県川崎市川崎区殿町三丁目


本文/目次(裏白)

Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

1).1-5) - 9 -

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

Transcription:

008/0/18 08:40-10:10, 1:50-14:0 14:30-16:00, 16:10-17:40,

1pt A

1911 Leiden Heike Kammelingh-Onnes

H.Kammelingh Onnes 1907 He 1 4. K

H H c T c T

H c Hg:40 mt, Pb:80 mt, Sn:30 mt 100 mt I c

H c

H c H c1 H H c H c T c T

H c H c T c H c

1957 BCS 10 K 10 K T c

I, Br, Ca, S, Li :C 6 I 4 O, C 6 I 6 : CsI, BiI :SnI 4 (O) (Fe) vol.38 No.1 (003) p69~8

vol.38 No.1 (003) p.69~8

NbTi Nb 3 Sn 50 SQUID

1911 Kammerlingh Onnes Kunzler Nb 3 Sn 6 T 15 T 0 T

NbTi Nb 3 Sn Tc

Nb 3 Ge

1986 IBM La -x Sr x CuO 4 La -x Ba x CuO 4 T c ~30 K

1987 YBa Cu 3 O 7-δ Tc 77K

Y O 3, BaO, CuO,

1988 1 Bi Ca Sr Cu 3 O 10 Tl Hg H c MgB

YBa Cu 3 O 7-δ (YBCO) Bi Ca Sr Cu 3 O 10 (Bi3)

T c H c I T

I

I

15 T GM Refrigerator 1st stage (30~50 K) Vacuum space High Tc SC lead (Bi 3) Radiation Shield Compressor SC Magnet

I

Bi3 Bi Ca Sr Cu 3 O 10

(Bi3) T c 110K

I c ( 4.mm x 0.mm 0.9mm ) 10A 10

BSCCO : 85% DI-BSCCO : 100%

Albany

DC LNG

NMR NMR(Nuclear Magnetic Resonance) B ω = γb proton) 4.6 MHz @ 1 T I ω Bruker & Oxford 950 MHz @ ~.3 T JEOL JASTEC 930 MHz @ ~ T B 1GHz @ 4 T

NIMS) JEOL JASTEC 930 MHz @ ~ T NIMS

(1) 1mm (77K) 00A () (3) (4) 1,800m

800 1

( )

(4K) 0K

1

http://fir.fir.fukui-u.ac.jp/

P=πfε 0 ε r tanδ E f : ε 0 : ε r : tanδ : E :

eb ωc ( GHz) = = 8B(T) m

http://www.enecho.meti.go.jp/e-ene/handbook/04_sikumi/401_type_a.html

B 4 C B 4 C BN( (cubic) )

B 4 C,., B 4 C, (HIP) (SPS).,.. B 4 C, B 4 C

,,,,.,,.

B 4 C, HIP.. He.,,.,,.,,,,.

,,..,,,.,, ( ).,,, 100 90%, B4C 90%,.

~0.1% % ~10%

c Al 3+ O - Cr 3+

1891 Al O 3 Cr O 3 000 10cm

Al O 3 Cr O 3

Al O 3 Cr O 3

10-15 m 10-10 m 10-15 m

E = 1 mv e r

r e m p r e mv E 1 = = mv Q p = Schrödinger r e z y x m r e m p + + = = h H + + z y x

φ H φ = E r e z y x m r e m p + + = = h H

r e mr l r r dr m + + = h h H + + = x y y x z x x z y z z y l l φ H φ E = r e z y x m r e m p + + = = h H

r e mr l r r dr m + + = h h H ), ( ) ( ϕ θ φ Y r R = ) ( ) ( r R r e mr r r dr m r R + + = h λh H 1 ), ( ), ( ϕ θ ϕ θ Y Y = l H 18 19

) ( ) ( r R r e mr r r dr m r R + + = h λh H 1 4 n me h = 1 E n=1,,3, n= n=1

H Y ( θ, ϕ) = l Y ( θ, ϕ) Y ( θ, ϕ) Y ( θ, ϕ) = Θ ( θ ) Φ ( ϕ) lm m l m

n, l, m, n= n= 3 n= E 1 4 me = h n n= 1 λ~130 nm λ 400 700 nm

n=1,,3 l=s,p,d,f,. s: l=0, p: l=1, d: l=, X n=1 l=0 : s n= l=0, 1 : s,p, n=3 l=0, 1, : s,p,d

n=1,,3 l=s,p,d,f,. l=0:s, l=1:p, l=:d, H:1s 1, H + :1s 0, He:1s, Li:1s s 1, Be:1s s, B:1s s p 1,C:p,N:p 3,O:p 4,F:p 5, Nep 6 He:1s Li:1s s 1

Ne:1s s p 6 ( 10, Ar:1s s p 6 3s 3p 6 ( 18, K:1s s p 6 3s 3p 6 4s 1, Ca:1s s p 6 3s 3p 6 4s, 3d 4s Sc:1s s p 6 3s 3p 6 3d 1 4s, Ti:3d 4s, V:3d 3 4s, Cr:3d 4 4s, Mn:3d 5 4s, Fe:3d 6 4s, Co:3d 7 4s, Ni:3d 8 4s, Cu:3d 9 4s, Zn:3d 10 4s

Al Al:1s s p 6 3s 3p 1 Al 3+ :1s s p 6 ( 13 ( 10 Ne O O:1s s p 4 ( 7 Ne O - :1s s p 6 ( 10 - Al +3 O - s p

Cr Cr:1s s p 6 3s 3p 6 3d 4 4s ( 4 Cr 3+ :1s s p 6 3s 3p 6 3d 3 Al O 3 Cr O 3 Fe O 3 Al O 3 Cr 3+ Fe 3+

Cr 3+ :1s s p 6 3s 3p 6 3d 3 3d l+1=5 Cr +3 s d p

Cr 3+ Al O 3

d d H 1 E = mv p = m e r e r h = m e r H h = m e r 6 + Ze R i i r n=3 l= (3d)

h H = m 6 Ze R i i r e r 6 + Ze R i i r Y ( θ, ϕ) = Θ ( θ ) Φ ( ϕ) lm m n=3 l= (3d)

n= n= 3 n= E 1 n= 4 me = h n n= 5 n= λ~130 4 nm l= (3d) n= 1 n= 3 λ~400 nm ~700 nm

n= n= 3

Be 3 Al Si 6 O 18 Cr 3+

Ca(PO 3 ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

(D) (T) D + D -> He3 + n + 3.3 MeV D + D -> T + n + 4.03 MeV http://p-grp.nucleng.kyoto-u.ac.jp/fusion/fusion.html#fusion http://www.nifs.ac.jp/index-j.html

Au: 4f 14 5s 5p 6 5d 10 5f 0 6s

Au: 4f 14 5s 5p 6 5d 10 5f 0 6s + +

E = E exp( iω ) 0 t m&& x = ee ee0 x = mω N P = enx = Ne mω E 0

Ne P = enx = E 0 D = εe = E + P mω Ne ε ( ω) = 1 mω ω < ω p ω > ω p ω p = 1 ω ω = p Ne m ε ε

P - + + - P

P - +

http://www.grn.mmtr.or.jp/~noriko/goldcolloid/explanati on.html

[ ] G.Mie, "Beitrage zur Optik truber Medien, speziell kolloidaler Metallosungen", Annalen Physik, 5, 377-445 (1908). Mie J.C.Maxwell-Garnett, "Colours in Metal Glasses and in Metallic Films", Phylosophical Transactions, 30, 385-40 (1904). Maxwell-Garnett C.A.Foss, Jr., G.L.Hornyak, J.A.Stockert, and C.R.Martin, "Template- Synthesized Nanoscopic Gold Particles: Optical Spectra and the Effects of Particle Size and Shape", Journal of Physical Chemistry, 98, 963-971 (199). P.B.Johnson and R.W.Christy, "Optical Constants of the Noble Metals", Physical Review B 6, 4370-4379 (197).

3

1100~1300ºC

Al Si O 5 (OH) 4

1616

http://www.k3.dion.ne.jp/~m_kato/kakiemon.html#

- - 1,800 61 6 7 1 : : :

1958 4 169

6 α-fe O 3

17 α-feooh 17

18

1707

FeS +(Fe 11 S 1 ~Fe 7 S 8 ) +O FeSO 3 +SO 3 +SO +O FeSO 3 +H O Fe + +SO 4 - +H O Fe + +SO 4 - +H O FeSO 4 7H O FeSO 4 7H O FeSO 4 H O 700 1~ FeSO 4 H O α-fe O 3 +SO 3 +SO +MSO 4

FeSO 4 H O α-fe O 3 +SO 3 +SO +MSO 4 PbO-SiO, B O 3 -SiO, PbO-B O 3 -SiO

10%~5% 100 700

a)fe O 3 b)fe O 3 c)fe O 3

Fe O 3 Fe O 3 Fe O 3 Fe O 3 % 760 Fe O 3 5% 760 800 900 10% 800 900 0% 900 1100

Fe O 3 Fe O 3

Fe O 3 10~0 700 900 Fe O 3 Fe O 3 Fe O 3

Fe O 3 Fe O 3 S1 660 S: 700 S3 800 S4 900 α Fe O 3 0% 700 15

S1 0.05µ m S 0.05µ m S3 0.15µ m S4 0.5µ m

Fe O 3 660 α Fe O 3 0% 700 15 800 15 900 15 1000 15 0.05 µm 0.1 µm 0.5 µm 0.3 µm

Fe O 3 660 α Fe O 3 0% 700 800 900 1000 15 1 3

Fe O 3

α

α-fe O 3

α-fe O 3 α-fe O 3 α-fe O 3

vol.59, No1, (006) 141-143

a 100

Fe O 3

150 µ α-al O 3 1µm 0.3µm α-al O 3 c: 1 /min

4

1pt A