I , : ~/math/functional-analysis/functional-analysis-1.tex

Similar documents
2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1 appointment Cafe David K2-2S04-00 : C

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K


/ 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point R n set space R n R n x = x 1 x n y = y 1 y n distance dx,

数学Ⅱ演習(足助・09夏)

A 21 A.1 L p A A.3 H k,p () A


(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

n ( (

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

December 28, 2018

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

第5章 偏微分方程式の境界値問題

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

January 27, 2015

( ) ( )

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1)


1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

1 I

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3

Exercise in Mathematics IIB IIB (Seiji HIRABA) 0.1, =,,,. n R n, B(a; δ) = B δ (a) or U δ (a) = U(a;, δ) δ-. R n,,,, ;,,, ;,,. (S, O),,,,,,,, 1 C I 2

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy


微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

Lebesgue Fubini L p Banach, Hilbert Höld

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th

meiji_resume_1.PDF

1 a b = max{a, b}, a b = mi{a, b} a 1 a 2 a a 1 a = max{a 1,... a }, a 1 a = mi{a 1,... a }. A sup A, if A A A A A sup A sup A = + A if A = ± y = arct

Chap9.dvi

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

Morse ( ) 2014

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(, Goo Ishikawa, Go-o Ishikawa) ( ) 1

all.dvi

VI VI.21 W 1,..., W r V W 1,..., W r W W r = {v v r v i W i (1 i r)} V = W W r V W 1,..., W r V W 1,..., W r V = W 1 W

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

+ 1 ( ) I IA i i i 1 n m a 11 a 1j a 1m A = a i1 a ij a im a n1 a nj a nm.....

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3



numb.dvi

D 24 D D D

ver Web

untitled

Dynkin Serre Weyl

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y


1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

all.dvi

TOP URL 1

x x x 2, A 4 2 Ax.4 A A A A λ λ 4 λ 2 A λe λ λ2 5λ + 6 0,...λ 2, λ 2 3 E 0 E 0 p p Ap λp λ 2 p 4 2 p p 2 p { 4p 2 2p p + 2 p, p 2 λ {


2016

mugensho.dvi

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

6.1 (P (P (P (P (P (P (, P (, P.101

leb224w.dvi

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

I

6.1 (P (P (P (P (P (P (, P (, P.

chap1.dvi

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

2000年度『数学展望 I』講義録

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

( 3) b 1 b : b b f : a b 1 b f = f (2.7) g : b c g 1 b = g (2.8) 1 b b (identity arrow) id b f a b g f 1 b b c g (2.9) 3 C C C a, b a b Hom C (a, b) h

弾性定数の対称性について

untitled

i


Wide Scanner TWAIN Source ユーザーズガイド

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

構造と連続体の力学基礎

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

Part () () Γ Part ,

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t

2011de.dvi

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R

takei.dvi

数学の基礎訓練I

量子力学 問題

Transcription:

I 1 2004 8 16, 2017 4 30 1 : ~/math/functional-analysis/functional-analysis-1.tex

1 3 1.1................................... 3 1.2................................... 3 1.3..................................... 4 1.4 Fourier..................................... 4 2 R n 5 2.1................................... 5 2.2 R n Schwarz.................... 5 2.3 R n Euclid................................ 7 2.4........................................ 8 2.5 (1)............................ 10 2.6 Gram-Schmidt............... 13 2.7 QR....................................... 14 2.8 (1) (2)........... 15 2.9....................................... 16 2.10 (2)................. 16 2.11................................... 17 2.12 Riesz.................................. 19 3 C n 21 4 Hilbert 22 4.1................................ 22 4.2......................................... 22 4.3.......................................... 22 4.4................................... 23 4.5 Bessel................................... 23 4.6 Parseval................................... 24 4.7............................... 24 4.8....................................... 25 5 Lax-Milgram, Stampacchia 27 5.1 Lax-Milgram................................ 27 5.2 Stampacchia................................. 28 A 29 B 30 B.1......................................... 30 1

C 31 C.1....................................... 31 C.2......................... 31 C.3................................... 32 D 33 PDF http://nalab.mind.meiji.ac.jp/~mk/labo/text/functional-analysis-1.pdf 2

1 1.1 Fourier 1 CG [10] () 1.2 Hilbert 1. Schwarz 2. Bessel 3. () () 2, 3 Euclid 1 1 3

1.3 Gram-Schmidt Lanczos 1.4 Fourier Fourier () Fourier 4

2 R n 2.1 x, y (x, y) = x 1 y 1 + x 2 y 2 + x 3 y 3 (x, y) = (x ) (y ) cos θ (θ x y ) R R n n R n n n x x x T t x a v 1,, v m R n { m } Span(v 1,, v m ) := λ j v j ; (λ 1,, λ m ) R m a x A T 2.2 R n Schwarz n x = (x 1,, x n ) T, y = (y 1,, y n ) T R n (2.1) (x, y) def. = n x i y i i=1 (x, y) x y 2.2.1 ( ) R n (1) x R n (x, x) 0. x = 0 (x, x) = 0. (2) x, y, z R n λ, µ R (λx + µy, z) = λ(x, z) + µ(y, z). (3) x, y R n (x, y) = (y, x). 5

(1), (2), (3) (, ) (2.1) (x, y) R n Euclid (x, y) = y T x (AB) T = B T A T (Ax, y) = y T (Ax) = (y T A)x = (A T y) T x = (x, A T y) A (Ax, y) = (x, Ay) 2.2.2 ( ) A R n n (i), (ii) (i) A (ii) x, y R n (Ax, y) = (x, Ay). (i) = (ii) (ii) = (i) x, y R n (Ax, y) = (x, Ay) (Ax, y) = (x, A T y) (x, Ay) = (x, A T y). x Ay = A T y ( (x, Ay A T y) x = Ay A T y Ay A T y = 0) y A = A T. Schwarz 2.2.3 (Schwarz ) x, y R n (x, y) 2 (x, x)(y, y). x y 1 ( ) x y 1 t tx + y 0. (tx + y, tx + y) > 0. (x, x)t 2 + 2(x, y)t + (y, t) > 0. t 2 4 = (x, y) 2 (x, x)(y, y) < 0. (x, y) 2 < (x, x)(y, y). x y (x, y) 2 = (x, x)(y, y) 6

2.3 R n Euclid Euclid Euclid 2.3.1 (Euclid ) x R n x def. = (x, x) = n x i 2 i=1 x Euclid 2.3.2 () R n Euclid (1), (2), (3) (1) x R n x 0. x = 0 (2) x R n, λ R λx = λ x. (3) x, y R n x + y x + y. ( x y ) 7

2.4 2.4.1 () (, ) R n Euclid (1) x, y R n x y def. (x, y) = 0. x y (2) x R n, M R n x M def. y M x y x M (3) M R n, N R n M N def. ( x M) ( y N) x y M N (4) M R n M def. = {x R n ; x M} M 2.4.2 (, ) R n Euclid Euclid (1) (9) (1) x y y x, M N N M. (2) () x y x 2 + y 2 = x + y 2. (3) ( (parallelogram theorem)) x + y 2 + x y 2 = 2( x 2 + y 2 ). (4) ( (polarization identity)) (x, y) = 1 ( x + 4 y 2 x y 2 ). (5) {0} = R n, (R n ) = {0}. (6) M R n M R n (7) M 1 M 2 R n (M 1 ) (M 2 ). (8) M R n M (M ). (9) M R n M M = {0}. (1) (x, y) = (y, x) 8

(2) x + y 2 = (x + y, x + y) = (x, x + y) + (y, x + y) = (x, x) + (x, y) + (y, x) + (y, y) = x 2 + 2(x, y) + y 2 (x, y) = 0 x + y 2 = x 2 + y 2. (3) x + y 2 + x y 2 = (x + y, x + y) + (x y, x y) = [(x, x) + (x, y) + (y, x) + (y, y)] + [(x, x) (x, y) (y, x) + (y, y)] = 2 [(x, x) + (y, y)] = 2( x 2 + y 2 ). (4) 1 ( x + y 2 x y 2) = 1 {[(x, x) + (x, y) + (y, x) + (y, y)] [(x, x) (x, y) (y, x) + (y, y)]} 4 4 = 1 [(x, y) + (y, x)] = (x, y). 2 (5) x R n (x, 0) = 0, x 0 x {0}. R n {0}. {0} = R n. x (R n ) x : (x, x) = 0. x = 0. (R n ) = {0}. (6) x, y M z M λ, µ R (x, z) = (y, z) = 0. (λx + µy, z) = λ(x, z) + µ(y, z) = λ 0 + µ 0 = 0. λx + µy M. M (7) (8) x M y M (x, y) = 0. x (M ). M (M ). (9) x M M x : (x, x) = 0. x = 0. M M {0}. M M = {0}. M R n M R n V V V V V = R n R 3 V (1 ) V V (2 ) V V V 2.4.3 () V R n dim V = n dim V. 9

2.4.1 () Pappus ( Pappus (B.C.260 ) ( ) Perga Apollonius (B.C.262 190) ) ( ) ( ) 2.4.4 () V R n (V ) = V. V (V ) V V dim ( (V ) ) = n dim(v ) = n (n dim V ) = dim V 2.4.5 V 1, V 2 R n (1) (V 1 + V 2 ) = (V 1 ) (V 2 ). (2) (V 1 V 2 ) = (V1 ) + (V2 ). 2.5 (1) 1. v ( 0) u p p Span (v) (2.2) p = λv, λ R (p u) v (p u, v) = 0. (2.2) (λv u, v) = 0. 10

v 0 λ = (u, v) (v, v) p = λv = p = (u, v) v 2 (u, v) (v, v) v. p Span(v), p u v p = ( ) v v u, v v n = v ( v ) v v p = (u, n)n (u, n) u v u v θ (u, n) = u cos θ u Span(v) ( ) () p u p u = min x u x Span (v) x u 2 = x p 2 + p u 2 x u 2 x p 2 2. 1 v 1, v 2 u Span (v 1, v 2 ) 11

Span(v) x x = λv 1 + µv 2, λ, µ R (x u, v i ) = 0 (i = 1, 2) i.e. (x, v i ) = (u, v i ) (i = 1, 2) 1 λ(v 1, v 1 ) + µ(v 2, v 1 ) = (u, v 1 ) λ(v 1, v 2 ) + µ(v 2, v 2 ) = (u, v 2 ) ( (v 1, v 1 ) (v 2, v 1 ) (v 1, v 2 ) (v 2, v 2 ) ) ( λ µ ) = ( (u, v 1 ) (u, v 2 ) ). Schwarz 1 1 λ, µ (Gram-Schmidt ) 2.5.1 ( ) R n V x R n y M, (x y) V y y x V (orthogonal projection) M 2.5.2 ( ) R n V x, y R n (i) y x V (ii) x y = min x v. v V [(i)= (ii)] y x V z V 3 x, y, z y y z V (x y, y z) = 0. x z 2 = (x y) + (y z) = x y 2 + y z 2. x z 2 x y 2, y z = 0 z = y. x y = min x z. z V 1 Gram 12

[(ii) = (i)] h V f : R R f(t) = x (y th) 2 = x y + th 2 (t R) (y th) V f 0 f (0) = 0 f(t) = x y 2 + 2t(x y, h) + t 2 h 2 (x y, h) = 0. h V x y V 1 2.5.3 (1 ) v 0 V = Span(v) = {λv; λ R} u R n V ( ) w = (u, v) (v, v) v 1 Schwarz Schwarz Schwarz y = 0 y 0 x V = Span(v) w = λy, (x, y) λ = 3 0, w, x (y, y) (x, x) = x 2 = x w 2 + w 2 w 2 = λ 2 y 2 = ( ) 2 (x, y) y 2 = (y, y) () (x, x)(y, y) (x, y) 2. (x, y)2 (y, y). (x w, x w) = 0 w = x x y 1 2.6 Gram-Schmidt Schmidt () 13

2.6.1 (Schmidt ) u 1,, u m R n v 1,, v m v 1 = u 1, v i = u i i 1 (u i, v j ) (v j, v j ) v j (v i, v j ) = 0 (1 j < i m), Span(u 1,, u i ) = Span(v 1,, v i ) (CG ) (i = 1, 2,, m). 2.6.2 (Gram-Shimidt ) u 1,, u m R n v 1 = u 1, w 1 = 1 (v1, v 1 ) v 1, i 1 v i = u i (u i, w j )w j, w i = w 1,, w m (w i, w j ) = δ ij (1 j, i m), 1 (vi, v i ) v i (i = 2, 3,, m) Span(u 1,, u i ) = Span(w 1,, w i ) (i = 1, 2,, m). 2.6.3 ( ) R n V V v 1,, v m V s.t. V = Span(v 1,, v m ) and (v i, v j ) = δ ij (1 i j m). 2.7 QR 2.7.1 (QR ) ( ) ( ) 2.7.2 (QR ) QR [7] 14

2.8 (1) (2) 2 2.8.1 (, (projection theorem)) V R n x R n V y V v 1,, v m m y = (x, v j )v j V v 1,, v m x R n V y v i : m (2.3) λ 1,, λ m R s.t. y = λ j v j. (x y) V {v i } (2.3) ( m ) (y, v i ) = λ j v j, v i = (x y, v i ) = 0 (i = 1, 2,, m) (x, v i ) = (y, v i ) (i = 1, 2,, m) m λ j (v j, v i ) = λ i = (x, v i ) (i = 1, 2,, m) y = m (x, v j )v j x V y z = x y x = y + z, y V, z V y + z = y + z x = y + z, y V, z V y = y and z = z. y y = z z V V = {0} 0 () R n = V V 15 m λ j δ ji = λ i

2.9 V 1, V 2 R n (V 1 V 2 ) V 1 + V 2 = {v 1 + v 2 ; v 1 V 1, v 2 V 2 } V 1 V 2 V 1 V 2 () V 1 V 2 x V 1 V 2 x = v 1 + v 2 (v 1 V 1, v 2 V 2 ) v 1, v 2 x = v 1 + v 2 (v 1 V 1, v 2 V 2 ) v 1 v 1 = v 2 v 2 V 1, V 2 V 1 V 2 V 1 V 2 0 : v 1 = v 1, v 2 = v 2. v 1 v 1 = v 2 v 2 = 0. 2.9.1 [5] V 1 +V 2 V 1 V 2 [6] V 1 V 2 2.10 (2) 2.10.1 () V R n dim(v ) = n dim V. R n u 1,, u n m u 1,, u m V Gram-Schmidt v 1,, v n Span(v 1,, v m ) = Span(u 1,, u m ) = V v 1,, v m V V = Span(v m+1,, v n ) x R n n x = (x, v j )v j x V (x, v j ) = 0 (j = 1, 2,, m) x V x Span(v m+1,, v n ). V Span(v m+1,, v n ). V Span(v m+1,, v n ) (2.4) V (V ) = V (2.4) 16

2.11 ( ) 2.11.1 ( ) V R n P x = x V P : R n R n V 2.11.2 () R n V P (1) P (2) P : P 2 = P. (3) P : P T = P. (1) x 1 R n, x 2 R n λ 1 R, λ 2 R P x 1 = y 1, P x 2 = y 2 y 1, y 2 V x 1 y 1 V, x 2 y 2 V. λ 1 y 1 + λ 2 y 2 V (λ 1 x 1 + λ 2 x 2 ) (λ 1 y 1 + λ 2 y 2 ) = λ 1 (x 1 y 1 ) + λ 2 (x 2 y 2 ) V. P (λ 1 x 1 + λ 2 x 2 ) = λ 1 y 1 + λ 2 y 2 = λ 1 P x 1 + λ 2 P x 2. (2) x R n P x = y y V, x y V y V, y y = 0 V P y = y. P 2 x = P x. P 2 = P. (3) V v 1,, v m ( m ) (P x, y) = (x, v j )v j, y = (x, P y) = ( x, ) m (y, v j )v j = m (x, v j )(v j, y), m (y, v j )(x, v j ). (P x, y) = (x, P y). P T = P P 2 = P, P T = P P V 2.11.3 () P R n n P 2 = P, P T = P V = {x R n ; P x = x} = ker(i P ) R n V V P 17

V = ker(i P ) R n x R n P x = y P 2 = P P y = P (P x) = (P P )x = P 2 x = P x = y V y V. v V P v = v (x y, v) = (x, v) (y, v) = (x, v) (P x, v) = (x, v) (x, P v) = (x, v) (x, v) = 0. x y V. y x V P 2 = P, P T = P P R n n V ker(i P ) 2.11.4 P R n n ker(i P ) = {x R n ; P x = x} = image P. ker(i P ) = {x R n ; (I P )x = 0} = {x R n ; P x = x}. {x R n ; P x = x} image P P 2 = P {x R n ; P x = x} image P y image P x R n s.t. P x = y P y = P (P x) = P 2 x = P x = y y {x R n ; P x = x}. 2.11.5 () P R n n Q def. = I P ( I ) (1), (2), (3) (1) Q (2) R n = image P + image Q. (3) image P image Q. (4) x R n x = y + z, y image P, z image Q y = P x, z = Qx. (1) Q Q 2 = (I P ) 2 = I 2 IP P I + P 2 = I 2P + P 2 = I 2P + P = I P = Q, Q T = (I P ) T = I T P T = I P = Q. (2) I = P + (I P ) = P + Q x R n x = P x + Qx image P + image Q. R n image P + image Q. (3) x, y R n (P x, Qy) = (x, P Qy) = (x, P (I P )y) = (x, P y P 2 y) = (x, P y P y) = (x, 0) = 0 image P image Q. 18

(4) x = y + z, y image P, z image Q y image P P y = y. z image Q = ker(i Q) = ker P P z = 0. P x = P y + P z = y + 0 = y. Qx = Qy + Qz = 0 + z = z. 2.12 Riesz 2.12.1 (Riesz (Riesz representation theorem)) f R n f : R n R a R n f(x) = (x, a) (x R n ) Riesz ( R n ) R n a = (a 1,, a n ) T f(x) = (x, a) = a 1 x 1 + + a n x n a j = f(e j ), e j = (δ ij ) (j = 1, 2,, n) a a V = {x R n ; f(x) = 0} V u a u a = λu λ λ f(x) = (x, a) = (x, λu) x = u f(u) = (u, λu) = λ(u, u) λ = f(u) (u, u). f(x) = (x, a), a def. = f(u) (u, u) u f = 0 (a = 0 ) f 0 V def. = ker f = {x R n ; f(x) = 0} R n V R n. y R n \ V y V z u = y z u V u 0 x R n y = x f(x) f(u) u 19

f(y) = f(x) f(x) f(u) = f(x) f(x) = 0 f(u) y ker f = V. (y, u) = 0 ( (y, u) = x f(x) ) f(u) u, u = (x, u) f(x) (u, u) f(u) f(x) = f(x) (u, u) = (x, u). f(u) (x, u)f(u) (u, u) = a = f(u) (u, u) u ( x, f(u) ) (u, u) u. 20

3 C n Hermite C z z z C n n C n n n x x x T t x 21

4 Hilbert 4.1 1 SpanL 4.2 4.2.1 () X C X X (x, y) x, y C (i), (ii), (iii) (i) x, x 0. x = 0 (ii) x, y = y, x. (iii) αx + βy, z = α x, z + β y, z. 4.2.2 (), (inner product space, pre-hilbert space) Banach Hilbert (Hilbert space) 4.3 4.3.1 () R n Euclid Hilbert 4.3.2 () C n Hermite Hilbert 4.3.3 (L 2 ) 4.3.4 (l 2 ) f, g = Ω l 2 def. = {x = (x 1, x 2, ); f(x)g(x) dµ(x) x j 2 < }. 22

4.4 4.4.1 (, ) X (1) X {u j } j N (orthonormal system) (u j, u k ) = δ jk (2) X {u j } j N (complete orthonormal system) (orthonaormal basis) {u j } : x X {α n } n N X N N v α j u j 0 (N ) {u j } j N X x n x = α n u n i.e. lim n x α j u j = 0 n=1 α n = (x, u n ) x 2 = (x, u n ) 2. n=1 4.5 Bessel 4.5.1 (Bessel ) X {u n } n N x, u j 2 x 2 x X n N (x X). n x, u j u j x Span(u 1, u 2,, u n ) n 2 n 2 x, u j u j + x x, u j u j = x 2. n 2 x, u j u j x 2. 23

n 2 x, u j u j = n x, u j u j 2 = n x, u j 2 n x, u j 2 x 2. n x, u j 2 x 2. X {u j } x X x, u j u j j Cauchy X 4.5.2 Hilbert X {u n } n N x X p = x, u j u j x M := Span{u j } p M, (x p) M. 4.6 Parseval 4.7 4.7.1 () X (separable) X D D = X 4.7.2 () Hilbert X {φ n } n N {x n } n N Schmidt {u n } n N (u i, u j ) = δ ij (i, j = 1, 2, ), () n N Span(x 1,, x n ) = Span(u 1,, u n ). 24

4.7.3 () Hilbert X {φ n } 5 (i) (v) (i) V := Span{φ n }, M := V M = X. (ii) u X u = n u, φ n φ n. (iii) u X u 2 = n u, φ n 2. (iv) u, v X u, v = n u, φ n v, φ n. (v) u X n u, φ n = 0 = u = 0. 4.8 4.8.1 () X Hilbert V x X V y δ = inf x z z V (y n ) n N V N x y n δ (n ) 2( x y n 2 + x y m 2 ) = (x y n )+(x y m ) 2 + (x y n ) (x y m ) 2 = 4 x y n + y m + y 2 m y n 2. 2 0 y m y n 2 = 2( x y n 2 + x y m 2 ) 4 x y 2 n + y m 2 2( x y n 2 + x y m 2 ) 4δ 2. n, m 2(δ 2 + δ 2 ) 4δ 2 = 0 {y n } n N Cauchy lim n y n = y V y V. x y = min x z. z V x y V h V f(θ) = x y θh 2 θ = 0 δ f (0) = 0. f(θ) = x y 2 2θRe (x y, h) + θ 2 h 2 25

f (0) = Re (x y, h) Re (x y, h) = 0. h ih 0 = Re (x y, ih) = Re ( i(x y), h) = Im (x y, h). (x y, h) = 0. h V x y V. 4.8.2 V Hilbert (V ) = V. 4.8.3 ( ) K Hilbert X x X x y = min x v v K y K y K Re (x y, v y) 0 (v K) 26

5 Lax-Milgram, Stampacchia 5.1 Lax-Milgram 5.1.1 (Lax Milgram ) H Hilbert a: H H R H φ H (1), (2) (1) (W) (W) Find u H s.t. (5.1) a(u, v) = φ, v (v H). (2) a (W) u (V) (V) Find u H s.t. { } 1 1 (5.2) a(u, u) φ, u = min a(v, v) φ, v. 2 v H 2 u H (5.1) (5.2) (V) 5.1.2 F (v) def. = 1 a(v, v) φ, v 2 F (u) = 0 (5.1) 27

5.2 Stampacchia 5.2.1 (Stampacchia ) H Hilbert K H a H φ H (i), (ii) (i) (W S ) (W S ) Find u K s.t. (5.3) a(u, v u) φ, v u (v K) (ii) a (W S ) u (V S ) (V S ) Find u K s.t. { } 1 1 (5.4) a(u, u) φ, u = min a(v, v) φ, v. 2 v K 2 u K (5.3) (5.4) (V S ) 5.2.2 F (v) def. = 1 a(v, v) φ, v 2 F (u) = 0 (5.2) 5.2.3 K = u 0 + V = {u 0 + v; v V } (u 0 H, V : H ) a(u, v u) φ, v u (v H) a(u, v) = φ, v (v H). 28

A 29

B B.1 B.1.1 V 1, V 2 R n 3 (i) V 1 + V 2 V 1 V 2 (ii) V 1 V 2 = {0}. (iii) dim(v 1 + V 2 ) = dim V 1 + dim V 2. B.1.2 ( ) V 1, V 2 V 1 V 2 = {0} R n V 1 + V 2 V 1 V 2 V 1 V 2 V 1 V 2 V 1 V 2 = {0} V 1 + V 2 30

C C.1 C.1.1 (von Neumann) X (X X ) x + y 2 + x y 2 = 2( x 2 + y 2 ) (x, y X) Yosida [11] C.2 C.2.1 (, ) X V x X (C.1) x = y + z, y V, z V y x V y x V y V, x y V ( ) (C.1) y, z x = y + z = y + z, y, y V, z, z V y y = z z V V 0 : y y = z z = 0. y = y, z = z. 31

C.3 x 0 (x x, a) = 0 l x 0 x a (x, a) = c (x 0 x, a) a a 2 l = (x 0 x, a). a l = (x 0, a) c. a R 2 (x 0, y 0 ) ax + by = c l = ax 0 + by 0 c a2 + b 2. R 3 (x 0, y 0, z 0 ) ax + by + cz = d l = ax 0 + by 0 + cz 0 d a2 + b 2 + c 2. 32

D 33

[1], I, II, (1966, 1969). [2], 1, 2,, (1997, 199?). [3],, (1980, 1999). [4],, (1994). [5],, (1966). [6],, (1985). [7],,,, (1994). [8],,,, (1988). [9], Fourier, (2003). [10],,, ( ), (1978). [11] Kôsaku Yosida, Functional analysis, sixth edition, Springer (1980). 34