Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo

Similar documents
2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara Sp(2, R) p

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

untitled

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+

( ) (, ) ( )

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ

1

Lebesgue Fubini L p Banach, Hilbert Höld

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j


prime number theorem

等質空間の幾何学入門

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

Z: Q: R: C: 3. Green Cauchy

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

非可換Lubin-Tate理論の一般化に向けて

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25

Z: Q: R: C:

( ) 1., ([SU] ): F K k., Z p -, (cf. [Iw2], [Iw3], [Iw6]). K F F/K Z p - k /k., Weil., K., K F F p- ( 4.1).,, Z p -,., Weil..,,. Weil., F, F projectiv

meiji_resume_1.PDF

1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, webpage,.,,.

( ),.,,., C A (2008, ). 1,, (M, g) (Riemannian symmetric space), : p M, s p : M M :.,.,.,, (, ).,, (M, g) p M, s p : M M p, : (1) p s p, (

Z: Q: R: C: sin 6 5 ζ a, b

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

平成 29 年度 ( 第 39 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 29 ~8 年月 73 月日開催 31 日 Riemann Riemann ( ). π(x) := #{p : p x} x log x (x ) Hadamard de

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2


III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou


Q p G Qp Q G Q p Ramanujan 12 q- (q) : (q) = q n=1 (1 qn ) 24 S 12 (SL 2 (Z))., p (ordinary) (, q- p a p ( ) p ). p = 11 a p ( ) p. p 11 p a p

SUSY DWs

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

Note.tex 2008/09/19( )

Jacobi, Stieltjes, Gauss : :


CIII CIII : October 4, 2013 Version : 1.1 A A441 Kawahira, Tomoki TA (Takahiro, Wakasa 3 )

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

G H J(g, τ G g G J(g, τ τ J(g 1 g, τ = J(g 1, g τj(g, τ J J(1, τ = 1 k g = ( a b c d J(g, τ = (cτ + dk G = SL (R SL (R G G α, β C α = α iθ (θ R


図 : CGC 回転面. 左の図は 正の場合の平行曲面として得られる平均曲率 一定回転面 ダラネーアンデュロイド 上 とノドイド 下, 中の図は その平行正 CGC 回転面 右の図は負 CGC 回転面 ミンディング曲面と呼 ばれる 図 2: 回転面でない位相的な円柱面 螺旋対称性を持つ. ダラネー

( 3) b 1 b : b b f : a b 1 b f = f (2.7) g : b c g 1 b = g (2.8) 1 b b (identity arrow) id b f a b g f 1 b b c g (2.9) 3 C C C a, b a b Hom C (a, b) h

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 (

Part () () Γ Part ,

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

A

newmain.dvi

第1章 微分方程式と近似解法

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

Morse ( ) 2014

第8章 位相最適化問題

第5章 偏微分方程式の境界値問題

数学概論I

App. of Leb. Integral Theory (S. Hiraba) Lebesgue (X, F, µ) (measure space)., X, 2 X, F 2 X σ (σ-field), i.e., (1) F, (2) A F = A c F, (3)

(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w

2000年度『数学展望 I』講義録


x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x


Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

TOP URL 1

2 2 L 5 2. L L L L k.....

cubic zeta 1ifting (Tomoyoshi IBUKIYAMA) (Department of Math., Graduate School of Sci., Osaka Univ. 1 \Re $\Phi^{\mathrm{J}}$ 1

コホモロジー的AGT対応とK群類似

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

R R P N (C) 7 C Riemann R K ( ) C R C K 8 (R ) R C K 9 Riemann /C /C Riemann 10 C k 11 k C/k 12 Riemann k Riemann C/k k(c)/k R k F q Riemann 15


untitled



TOP URL 1

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P

SO(2)

0. Intro ( K CohFT etc CohFT 5.IKKT 6.

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K


(note-02) Rademacher 1/57


構造と連続体の力学基礎

TOP URL 1

(1) (2) (3) (4) 1

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

C p (.2 C p [[T ]] Bernoull B n,χ C p p q p 2 q = p p = 2 q = 4 ω Techmüller a Z p ω(a a ( mod q φ(q ω(a Z p a pz p ω(a = 0 Z p φ Euler Techmüller ω Q


Transcription:

Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo] 2 Hecke ( ) 0 1n J n =, Γ = Γ n = Sp(n, Z) = {γ GL(2n, Z) t γj 1 n 0 n γ = J n } G = GSp(n, Q) + = {g M 2n (R) t gj n g = ν(g)j n, ν(g) R >0 } (2.1) g G g 1 Γ g Γ commensurable [Γ : Γ g 1 Γ g] <, [g 1 Γ g : Γ g 1 Γ g] < Γ G Hecke H(Γ, G) = H(Γ, G) C 1

C H(Γ, G) = a i (Γ g i Γ ) g i G, a i C i: : L(Γ, G) = { i: a i(γ g i ) g i G, a i C} C- Γ (γ, i a i(γ g i )) i a i(γ g i γ) L(Γ, G) Γ L(Γ, G) Γ ( )( ) a i (Γ γ i ) b j (Γ δ j ) = a i b j (Γ γ i δ j ) i j i,j C- H(Γ, G) L(Γ, G) Γ, Γ gγ = r Γ g i Γ gγ i=1 r Γ g i ( Γ \Γ gγ Γ g 1 Γ g\γ [Γ gγ : Γ ] < ) H(Γ, G) i=1 2.1 H(Γ, G) 2.2 g G Γ gγ diag(a 1,..., a g, d 1,..., d g ) a i d i = ν(g), a i a i+1, a g d g (ν(g) (2.1)) [An1, Theorem 3.28] ( ) ( ) A B t 2.1 G involution g = G g D t B = = C D t C t A ν(g)g 1 α α = J n αjg 1 g G Γ gγ = Γ g Γ Hecke Hecke G (p) = G GL(2n, Z[1/p]) H(Γ, G) = H p, H p = H(Γ, G (p) ) p: g G (p) ν(g) p H p 2

2.3 ( 1n 0 T (p) = Γ 0 p1 n ), T i (p 2 ) = Γ 1 i p1 n i p 2 1 i p1 n i Γ (0 i n) H p = C[T (p), T i (p 2 ) (1 i n)] (cf. [An1, Theorem 3.40]) Hecke Satake 3 Hecke Satake H p = G p = GSp(n, Q p ), K p = G p GL(2n, Z p ) { ϕ: G p C ϕ K p - i.e. ϕ(k 1 gk 2 ) = ϕ(g), k 1, k 2 K p ϕ } H p convolution ϕ 1 ϕ 2 (h) = ϕ 1 (g)ϕ 2 (g 1 h)dg G p C- 3.1 H p = H(Γ, G (p) ) H p, Γ gγ ch(k p gk p ) C- H p GSp T = {diag(u 1,..., u g, v 1,..., v g ) u 1 v 1 = u 2 v 2 = = u g v g } GSp ( ) 1 A B N = 0 ν t A 1 GSp A =... 1 P = T N GSp minimal parabolic subgroup GSp T Hecke : H p (T ) = {ψ : T (Q p ) C T (Z p )- } 3

T GL 1 n + 1 H p (T ) = C[X ± 0, X± 1,..., X± n ] ( ( 1n 0 X 0 = ch T (Z p ) 0 p1 n ( ( ) Si 0 X i = ch T (Z p ) 0 S 1 T (Z p ) i ) ) T (Z p ), ) i, S i = diag( 1,..., 1, p, 1,..., 1) T GSp N(T ) = {g GSp g 1 T g T } GSp Weyl W = N(T )/T T 3.2 W S n (Z/2Z) n S n n T t = diag(u 1,..., u n, v 1,..., v n ) n {(u 1, v 1 ), (u 2, v 2 ),..., (u n, v n )} (Z/2Z) n ε i ( i 1 0 ) u i v i W T T Hecke H p (T ) H p (T ) = C[X ± 0, X± 1,..., X± n ] W = S g (Z/2Z) n S g X 1,..., X n (Z/2Z) n ε i X 0 X 0 X i X i X 1 i X j X j (j i) H p (T ) W - H p (T ) W H p H p (T ) C- (Satake ) S : H p H p (T ), S(f)(g) = δ(t) 1/2 f(tn) dn δ(t) modulus n = Lie(N) δ(t) = det(ad n (t) p t = diag(u 1,..., u g, u 0 u 1 1,..., u 0u 1 n ) δ(t) = u n(n+1)/2 0 u 2 1u 4 2 u 2n n N 3.3 Satake C- H p H p (T ) W = C[X 0 ±, X± 1,..., X± n ] W 4

[Sa] p Bruhat-Tits [Ca] H p M G p KMK KMK = i M i K, M i = p l = ν(m) i ( ) p r i1 0 Ai B i 0 p l t A 1, A i =... i p r in 3.4 M n ch(kmk) X0 l (p j X j ) r ij i j=1 H p C[X ± 0, X± 1,... X± n ] W C- 3.3 3.4 X 0 p 3.3 n S(ch(KMK)) p ln(n+1)/4 X0 l (p j X j ) r ij i j=1 (cf. [AS, Lemma 1]) 3.4 4 Siege L H n = {Z M n (C) t Z = Z, Im(Z) > 0 ( )} Siegel GSp(n, R) + H n ( ) g Z = (AZ + B)(CZ + D) 1 A B H, g = G C D g GSp(n, R) + k Z H n f f k g(z) = ν(g) nk n(n+1)/2 det(cz + D) k f(g Z ) (4.1) 4.1 H n f Γ = Sp(n, Z) k Siegel 5

(1) γ Γ f k γ = f (2) n = 1 f cusp Fourier f(z) = ν=0 a(ν)e 2πiνz n 2 (2) (Koecher ) f Fourier f(z) = S n A 0 C(A)e 2πi Tr(AZ) (4.2) S n A 0 A f (3) det(im(z)) k/2 f(z) f cusp k M k (Γ ) cusp S k (Γ ) Siegel Hecke H(Γ, G) Γ gγ Γ γγ = r i=1 Γ γ i f k [Γ gγ ] = r f k γ i H(Γ, G) M k (Γ ) S k (Γ ) i=1 [Gu1] Siegel A = A Q Q GSp(n, A) = GSp(n, Q)GSp(n, R) + p GSp(n, Z p ) () g = γg k f M k (Γ ) GSp(n, A) φ f ( ) φ f (g) = det(ci + D) k A B f(g i1 n ), g = C D Siegel GSp(n, A) g G p f k [Γ gγ ] = φ f ch(k p gk p ) 6

convolution, GSp(n, A) φ, ψ φ ψ(g) = (n, A)φ(gh)ψ(h 1 ) dh GSp S k (Γ ) Petersson, Z = X + iy H n H n d Z d Z = det Y (g+1) dxdy dx dy Lebesgue d Z Sp(n, R) f, g S k (Γ ) f, g = f(z)g(z) det(y ) k d Z Γ \H n S k (Γ ) cusp Γ αγ H(G) f k Γ αγ, g = f, g k Γ αγ H(G) S k (Γ ) H(G) f S k (Γ ) Hecke X H(G) f X = λ(x) f f 3.4 p λ f : H p = C[X 0 ±, X± 1,..., X± n ] W C C[X 0 ±, X± 1,..., X± n ] C[X 0 ±, X± 1,..., X± n ] W integral λ f C[X 0 ±, X± 1,..., X± n ] C : λ f X 0, X 1,..., X n C- H p C (C ) n+1 /W 4.2 f p (n + 1) {α p,0, α p,1,..., α p,n } f Satake Siegel L Satake Satake Hecke L Weyl 7

4.3 (1) f {α p,0, α p,1,..., α p,n } Satake 2 L L p st(f, t) = (1 t) 1 n i=1 L p spin (f, t) = (1 α p,0t) 1 ( 1 αp,i t ) 1( 1 αp,i 1 t ) 1 n (1 α p,0 α p,i1 α p,ir t) 1 r=1 1 i 1 < <i r n (2) f s C L st (f, s) = p L spin (f, s) = p L p st(f, p s ) L p spin (f, p s ) Re(s) 0 s L st (f, s) standard L L spin (f, s) spinor L spinor L Euler L spin (t) L spin (f, t) α i X i C[X 0 ±,..., X± n ] W [t] H p [t] ( ) T (p k ) {g G p M 2n (Z p ) ν(g) p k } H p H p H n (t) = T (p k )t k 2 n 2 P n (t) H n (t) = P n (t)l spin (p n(n+1)/2 t) spinor L k=0 L Sp n ( [Yo], connected L-group ) GSp n GSpin(2n + 1, C) = ( C 1 Spin(2n + 1, C) ) /Z, (Z Spin(2n + 1, C) 2 a ( 1, a) ) Spin n 1 {±1} Spin n SO n 1 8

standard L Spin n+1 SO n+1 SO n+1 standard spinor L spin SO n+1 2n + 1 2 n L L 4.1 (Böcheler [Bö]) f M k (Γ n ) ε n 1 0 ( ) s + ε n Λ(f, s) = (2π) ns π s/2 Γ Γ(s + k j)l st (f, s) 2 j=1 s- Λ(f, s) = Λ(f, s) 4.2 f M k (Γ n ) L spin (f, s) s- s nk n(n + 1) 2 + 1 s n = 2 Andrianov ([An1]) 4.3 (Andrianov) Ψ(f, s) = Γ(s)Γ(s k + 2)(2π) 2s L spin (f, s) Ψ(f, s) Ψ(f, 2k 2 s) = ( 1) k Ψ(f, s) n = 3 Asgari-Schmidt L spin ([AS]) 5 L n M = p1 2n = diag(p,..., p) G Satake (3.4) ch(γ MΓ ) = p n(n+1)/2 X0 2 X 1 X n 9

(4.1) M f M k (Γ ) f k M = p nk n(n+1) f f Satake {α 0,..., α n } α0α 2 1 α n = p nk n(n+1)/2 (5.1) 5.1 ( ) 1 0 n = 1 Γ = SL(2, Z) T p Γ Γ 0 p Γ ( ) 1 0 Γ = Γ 0 p ( ) p 0 Γ = 0 1 ( ) 1 0 0 p Γ 0 b p 1 ( ) p b Γ 0 1 3.4 X 0 + X 0 X 1 C[X ± 0, X± 1 ]W f M k (Γ ) T (p)f = λ p f Satake prameter {α 0, α 1 } (5.1) α 0 + α 0 α 1 = λ p, α 2 0α 1 = p k 1 L spin (f, s) = p = p (1 α 0 p s ) 1 (1 α 0 α 1 p s ) 1 (1 λ p p s + p k 1 2s ) spinor L L L(f, s) Spin 3 = SL 2 GSpin(3, C) = GL(2, C) spinor GL(2, C) standard standard L L st (f, s) = p (1 p s ) 1 (1 α 1 p s ) 1 (1 α 1 1 p s ) 1 1 λ p t + p k 1 t 2 = (1 α 0 t)(1 α 0 α 1 t) α 2 0 = p k 1 α 1 1, α 0 (α 0 α 1 ) = p k 1, (α 0 α 1 ) 2 = p k 1 α 1 L st (f, s k + 1) = p (1 α 2 0p s ) 1 (1 α 2 0α 1 p s ) 1 (1 α 2 0α 2 1p s ) 1 = L(f, s, Sym 2 ) = ζ(2s 2k + 2) 10 n=1 a(n 2 ) n s

( [Is] ) standard L 2 L accidental Spin(3, C) = SL(2, C) 2:1 SO(3, C) GL(3, C) ([Na2] : SL(2, R) 2:1 SO(2, 1) C ) SL 2 2 L standard L 5.2 Eisenstein Siegel Eisenstein E n k (Z) = ( A B C D ) Γ n \Γ n det(cz + D) k k n + 2 {( ) } Γ n A B = Γ n 0 D k n = 1 2ζ(k)Ek(z) 1 = (cz + d) k (c,d) Z 2 (0,0) Ek n(z) M k(γ n ) Ek n (Z) Hecke ( Zharkovskaya ) 5.1 Siegel Eisensetein E n k Satake α 0 = 1, α i = p k i (1 i n) n = 1 Ek 1 T p 1 + p k 1 n Zharkovskaya Siegel Φ 5.1 f M k (Γ n ) Φ(f) M k (Γ n 1 ) Φ(f)(z) = lim λ f (( )) z 0, z H 0 iλ n 1 11

f Fourier (4.2) Φ(f) Φ(f)(z) = Fourier (cf [Gu2, 3.3]). S n 1 a 0 C Φ(E n k ) = E n 1 k (( )) a 0 e 2πiaz 0 0 5.2 (Zharkovskaya ) C- ψ : H p (Γ n ) H p (Γ n 1 ) (X 0, X 1,..., X n 1, X n ) (p k n X 0, X 1,..., X n 1, p n k ) f M k (Γ n ) T H p (Γ n ) Φ(f k T ) = Φ(f) k ψ(t ) [An2, Theorem 4.19] n = 2 Zharkovskaya Satake α 0 = p k 2, α 1 = p k 1, α 2 = p 2 k 3.2 W ε 2 α 0 = 1, α 1 = p k 1, α 2 = p k 2 5.1 n L st (Ek n, s) = ζ(s) ζ(s k + i)ζ(s + k i) i=1 [An1] A.N. Andrianov Euler prodcts associated with Siegel modular forms of degree two, Russ. Math. Surveys 29, 3, 45-116 (1974). [An2] A.N. Andrianov Indroduction to Siegel modura forms and Dirichlet series, Universitext. Springer, New York (2009). [AS] M. Asgari and R. Schmidt, Siegel modular forms and representations. Manuscripta Math. 104, no. 2, 173-200 (2001). 12

[Bö] S. Böcherer Über die Funktionalgelichung automprpher L-Funktionen zur Siegelschen Modulgruppe. J. reine angew. Math. 362, 146-168 (1985). [Ca] P. Cartier, Representations of p-adic groups: a survey. Automorphic forms, representations and L-functions, Part 1, pp. 111-155, Proc. Sympos. Pure Math., 33, Amer. Math. Soc., Providence, R.I. (1979). [Fr] E. Freitag, Siegelsche Modulfunktionen, Grundl. Math. Wiss. 254. Springer-Verlag, Berlin. [vg] G. van der Geer, Siegel modular forms and their applications. The 1-2-3 of modular forms, 181-245, Universitext, Springer, Berlin, (2008) [Gu1], GL 2, [Gu2], Siegel Eisensetein Fourier, [Is], L, 16 L (2009), p3-36. [Na1], L, 16 L (2009), p137-169. [Na2], Accidental, [Sa] I. Satake, Theory of spherical functions on reductive groups over p-adic fields, Publ. Math. I.H.E.S. 18, 5-69 (1963). [Yo], Functoriality Principle, 13