1 yousuke.itoh/lecture-notes.html [0, π) f(x) = x π 2. [0, π) f(x) = x 2π 3. [0, π) f(x) = x 2π 1.2. Euler α

Similar documents
(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

1 1 u m (t) u m () exp [ (cπm + (πm κ)t (5). u m (), U(x, ) f(x) m,, (4) U(x, t) Re u k () u m () [ u k () exp(πkx), u k () exp(πkx). f(x) exp[ πmxdx

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

body.dvi

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

chap1.dvi

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

ft. ft τfτdτ = e t.5.. fx = x [ π, π] n sinnx n n=. π a π a, x [ π, π] x = a n cosnx cosna + 4 n=. 3, x [ π, π] x 3 π x = n sinnx. n=.6 f, t gt n 3 n

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

高等学校学習指導要領

高等学校学習指導要領

[] x < T f(x), x < T f(x), < x < f(x) f(x) f(x) f(x + nt ) = f(x) x < T, n =, 1,, 1, (1.3) f(x) T x 2 f(x) T 2T x 3 f(x), f() = f(t ), f(x), f() f(t )

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)


simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a


S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

Microsoft Word - 信号処理3.doc

phs.dvi

DVIOUT

i

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0

( z = x 3 y + y ( z = cos(x y ( 8 ( s8.7 y = xe x ( 8 ( s83.8 ( ( + xdx ( cos 3 xdx t = sin x ( 8 ( s84 ( 8 ( s85. C : y = x + 4, l : y = x + a,

構造と連続体の力学基礎

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

Chap11.dvi

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

untitled

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

³ÎΨÏÀ

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2


v er.1/ c /(21)

Note.tex 2008/09/19( )

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

[1.1] r 1 =10e j(ωt+π/4), r 2 =5e j(ωt+π/3), r 3 =3e j(ωt+π/6) ~r = ~r 1 + ~r 2 + ~r 3 = re j(ωt+φ) =(10e π 4 j +5e π 3 j +3e π 6 j )e jωt

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a


A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

4 R f(x)dx = f(z) f(z) R f(z) = lim R f(x) p(x) q(x) f(x) = p(x) q(x) = [ q(x) [ p(x) + p(x) [ q(x) dx =πi Res(z ) + Res(z )+ + Res(z n ) Res(z k ) k

Gmech08.dvi

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1.

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

2000年度『数学展望 I』講義録



2011de.dvi

熊本県数学問題正解

Acrobat Distiller, Job 128


i


1 Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier analog digital Fourier Fourier Fourier Fourier Fourier Fourier Green Fourier

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT


No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

1

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

振動と波動

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

- II

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x

keisoku01.dvi

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10


A

°ÌÁê¿ô³ØII

Part () () Γ Part ,

Euler Appendix cos, sin 2π t = 0 kx = 0, 2π x = 0 (wavelength)λ kλ = 2π, k = 2π/λ k (wavenumber) x = 0 ωt = 0, 2π t = 0 (period)t T = 2π/ω ω = 2πν (fr

Transcription:

1 http://sasuke.hep.osaka-cu.ac.jp/ yousuke.itoh/lecture-notes.html 1.1. 1. [, π) f(x) = x π 2. [, π) f(x) = x 2π 3. [, π) f(x) = x 2π 1.2. Euler dx = 2π, cos mxdx =, sin mxdx =, cos nx cos mxdx = πδ mn, sin nx sin mxdx = πδ mn, cos nx sin mxdx = (1.1a) (1.1b) (1.1c) (1.1d) (1.1e) (1.1f) 1.3. 1

1.1 : [a, b) f(x) b a f p (x) [a + n, b + n) f p (x) f p (x) = f(x n), a + n x < b + n (1.2) 1. [, π) f(x) = x π ( ) f(x) F (x) n nπ x < (n + 1)π F (x) = x nπ F (x) = x nπ for nπ x < (n + 1)π (n Z) (1.3) 2. [, π) f(x) = x 2π ( ) f o (x) f o (x) = x ( x < π) 2π F o (x) n (2nπ 1) x < (2n+1)π F o (x) = x 2nπ 3. [, π) f(x) = x 2π ( ) f e (x) f e (x) = x ( x < π) 2π F e (x) n (2nπ 1) x < (2n+1)π F e (x) = x 2nπ 4. Euler ( ) e i(m+n)x = cos(m + n)x + i sin(m + n)x =e imx e inx = (cos mx + i sin mx)(cos nx + i sin nx) =(cos mx cos nx sin mx sin nx) + i(sin mx cos nx + cos mx sin nx) (1.4) cos(m + n)x = (cos mx cos nx sin mx sin nx), (1.5) sin(m + n)x = (sin mx cos nx + cos mx sin nx) (1.6) 2

5. ( ) dx = 2π, (1.7) cos nxdx =, (1.8) sin nxdx =, (1.9) cos mx cos nx = 1 [cos(m n)x + cos(m + n)x], (1.1) 2 cos mx cos nxdx = 1 [cos(m n)x + cos(m + n)x] dx 2 [ ] 2π+ 1 = 2(m n) sin(m n)x + 1 2(m+n) sin(m + n)x = m n π + 1 4m sin 2mx 2π+ = π m = n (1.11) sin mx cos nx = 1 [sin(m + n)x + sin(m n)x], (1.12) 2 sin mx cos nxdx = 1 [sin(m n)x + sin(m + n)x] dx 2 [ ] 2π+ 1 = 2(m n) cos(m n)x 1 cos(m + n)x = 2(m + n) (1.13) sin mx sin nx = 1 [cos(m n)x cos(m + n)x], (1.14) 2 sin mx sin nxdx = 1 [cos(m n)x cos(m + n)x] dx 2 [ ] 2π+ 1 = 2(m n) sin(m n)x 1 2(m+n) sin(m + n)x = m n π 1 4m sin 2mx 2π+ = π m = n (1.15) 3

2 x < π f(x) a n = 1 π b n = 1 π f(x) cos nxdx, (2.1) f(x) sin nxdx (2.2) f(x) a 2 + (a n cos nx + b n sin nx) (2.3) 2.1. x < π 1. f(x) = x 2. f(x) = x 4

2.1 : x < π 1. f(x) = x ( ) n a n = 1 x cos nxdx π [ ] π 1 = x sin nx 1 sin nxdx nπ nπ [ ] π 1 = n 2 cos nx = (2.4) π b n = 1 x sin nxdx π [ ] π 1 = x cos nx + 1 cos nxdx nπ nπ = 2( 1)n n f(x) (2.5) 2( 1) n sin nx (2.6) n a n cos nx (n N) 2. f(x) = x ( ) a a = 1 π n 1 n x dx = 2 π xdx = π (2.7) a n = 1 x cos nxdx = 2 x cos nxdx π π [ ] π 2 = x sin nx 2 sin nxdx nπ nπ [ ] π 2 = n 2 cos nx = 2(( 1)n 1) π n 2 π b n = 1 π (2.8) x sin nxdx =, (2.9) 5

f(x) π 2 + = π 2 k= 2(( 1) n 1) n 2 π cos nx 4 (2k + 1) 2 cos(2k + 1)x (2.1) π b n 6

3 3.1. [, π) g(x) 1, x <, g(x) = (3.1) 1, x < π 3.2. g(x) [, π) f(x) = x g(x) = f (x) (3.2) f(x) g(x) [ f(x) ] 7

3.1 1. [, π) g(x) 1, x <, g(x) = (3.3) 1, x π g(x) a n = 1 π dxg(x) cos nx =, (3.4) b n = 1 dxg(x) sin nx = 2 dx sin nx π π [ = 2 ] π cos nx = 2(1 ( 1)n ) nπ nπ 2(1 ( 1) n ) nπ 2. x x π 2 sin nx = k= k= (3.5) 4 sin(2k + 1)x (3.6) (2k + 1)π 4 (2k + 1) 2 cos(2k + 1)x (3.7) π d dx ( ) = 4 sin(2k + 1)x (3.8) (2k + 1)π k= g(x) 8

4 [, π) f(x) f(x) f(x) a n a n = 1 f(x) cos nxdx = 1 π π x = t a n = 1 π f(x) cos nxdx 1 π f( t) = f(t) a n = 1 π b n f(x) cos nxdx + 1 π b n = 1 π f(x) cos nxdx + 1 π π f(t) cos ntdt = 2 π f(x) sin nxdx f( t) cos( nt)dt f(x) cos nxdx f(x) cos nxdx x = t f( t) = f(t) sin( nt) = sin nt b n = 1 π π f(t)( sin nt)dt = 1 π f(t) sin ntdt = b n f(x) f(x) a n = 2 π b n =, f(x) cos nxdx, (4.1a) (4.1b) 4.1. [, π) f(x) f(x) a n =, (4.2) b n = 2 π f(x) sin nxdx (4.3) 4.2. [, π) (1) x 2 (2) x 3 (4.4) 4.3. [, π) (1) tan x (2) x 3 (3) 3.1 (4.5) 9

4.1 : 1. [, π) f(x) a n a n = 1 π dxf(x) cos nx = 1 π dxf(x) cos nx + 1 π dxf(x) cos nx [, ] y = x = 1 π dxf(x) cos nx + 1 π f( y) = f(y) = 1 π b n b n = 1 π dxf(x) cos nx 1 π f(x) sin nxdx = 1 π dxf(x) sin nx + 1 π π ( dy)f( y) cos( ny) dyf(y) cos ny = (4.6) dxf(x) sin nx [, ] y = x = 1 π dxf(x) sin nx + 1 π f( y) = f(y) = 1 π = 2 π dxf(x) cos nx + 1 π π ( dy)f( y) sin( ny) dyf(y) cos ny dxf(x) cos nx (4.7) 2. [, π) 1

(a) f(x) = x 2 b n = a n a = 2 π a n = 2 π x 2 dx = 2 3 π2, (4.8) x 2 cos nxdx = 4( 1)n n 2, (n > ) (4.9) (b) f(x) = x 3 a n = b n b n = 2 π x 3 sin nxdx = 2( 1)n n ( ) 6 n 2 π2 (4.1) 3. [, π) (a) tan x x = ±π/2 lim =, x π/2+ lim =, x /2+ lim =, (4.11) x π/2 lim =, (4.12) x /2 (b) x 3 [, π) (c) g(x) = sgn(x) [, π) x = lim = 1, x + lim = 1 (4.13) x 11

5 D n (x) 1 n 2 + cos kx (5.1) k=1 5.1. n 1 π D n(x)dx = 1 (5.2) 5.2. 2π δ p (x) = δ(x 2πn) (5.3) n= 5.3. f(x) = x ( x < π) 2π 2( 1) n f(x) sin nx (5.4) n f(x) D n (x) f(x) ( y ) 12

5.1 : 1. D n (x) D n (x)dx = n ( ) 1 n 2 + cos kx dx = π (5.5) k=1 2. a n = 1 π = 1 π δ p (x) cos nxdx ( + δ(x + 2π) + δ(x) + δ(x 2π) + ) cos nxdx = 1, (5.6) b n = 1 δ p (x) sin nxdx = 1 π π δ(x 2nπ) cos nxdx =, n= (5.7) δ p (x) 1 2 + cos nx = D n (x) (5.8) ( ) 3. f(x) f (x) 2( 1) n cos nx = 2 cos nπ cos nx = {cos(nx + nπ) + cos(nx nπ)} { } 1 = 1 2 + cos(nx + nπ) + 1 2 + cos(nx nπ) = 1 D n (x π) D n (x + π) (5.9) 13

6 6.1. [, π) f(x) f(x) S(x) 1. x = f(x) = sgn(x) + 1 S(x) x = S() 2. x = f(x) = cosh(sin 2 x ) S(x) x = S() 6.2. 1. [, π) f(x) = x 1/2 2. [, π) f(x) = x 1/2 6.3. 4.3 x 2 x 3 x 2 π 3 + 4( 1) n n 2 cos nx, (6.1) x 3 2( 1) n ( ) 6 n n 2 π2 sin nx (6.2) x 3 /3 1 d 2( 1) n 3 dx n = ( ) 6 n 2 π2 sin nx ( 4( 1) n n 2 2( 1)n π 2 3 x 2 ) cos nx (6.3) 14

6.1 1. f(+) + f( ) 1. S() = = 2 = 1 + 1 + ( 1) + 1 2 sgn(+) + 1 + sgn( ) + 1 2 = 1, (6.4) 2. S() = f() = cosh(sin 2 )) = cosh = 1, (6.5) 2. (a) x 1/2 [, π) (b) x 1/2 sgn(x)/(2 x 1/2 ) x = 3. [, π) f(x) 2π Θ(x) F (x) f(x 2nπ)Θ(x (2n 1)π)Θ((2n + 1)π x) (6.6) n= f(x) = x 3 /3 F { (x) (x 2nπ) 2 Θ(x (2n 1)π)Θ((2n + 1)π x) n= (x 2nπ)3 + δ(x (2n 1)π)Θ((2n + 1)π x) 3 } (x 2nπ)3 Θ(x (2n 1)π)δ((2n + 1)π x) 3 n = a = 1 dx (x 2 + x3 x3 δ(x + π) δ(π x) π 3 3 n > a n = 1 π ) = 2π2 (6.7) 3 π2 3 π2 3 = ) dx (x 2 + x3 x3 δ(x + π) δ(π x) cos nx 3 3 (6.8) = 4( 1)n n 2 2( 1)n π 2, 3 (6.9) b n =, (6.1) F (x) ( 4( 1) n n 2 2( 1)n π 2 ) cos nx (6.11) 3 15

x 3 x 2 x 3 2π x = (2n+1)π (n Z) 16

7 f(x) a 2 + (a n cos nx + b n sin nx) (7.1) Parseval ( ) 1 π {f(x)} 2 dx = a2 π 2 + (a 2 n + b 2 n) (7.2) 7.1. [, π) x 2 2π x 2 = π2 3 + 4( 1) n n 2 cos nx (7.3) 1 n 2 = π2 6, (7.4a) 1 n 4 = π4 9, (7.4b) g(x) a x < b (b a = > ) a n = 2 b n = 2 b a b a g (ξ) cos 2πnξ dξ, (7.5a) g (ξ) sin 2πnξ dξ (7.5b) g(x) a 2 + ( a n cos 2πnx + b n sin 2πnx ) (7.6) 7.2. [ /2, /2) (1) x 2 (2) x 3 (7.7) 17

7.1 1. 1 n 2 = π2 6, (7.8a) 1 n 4 = π4 9, (7.8b) x = π x 2 = π2 3 + 4( 1) n n 2 cos nx (7.9) π 2 = π2 3 + 4 n 2 (7.1) π 2 6 = 1 n 2 (7.11) x 2 x 2 a = 2π2 3, (7.12) a n = 4( 1)n n 2, (7.13) b n =, (7.14) 1 π {x 2 } 2 dx = 2π4 π 5, (7.15) 2 + (a 2 n + b 2 n) = 1 ( ) 2π 2 2 ( ) 4( 1) n 2 + 2 3 n 2 a 2 = 2π4 9 + 16 1 n 4 (7.16) π 4 9 = 1 n 4 (7.17) 18

2. (a) [ /2, /2) x 2 a n = 2 b n = 2 /2 /2 /2 /2 x 2 cos 2πnx dx, (7.18a) x 2 sin 2πnx dx (7.18b) ξ = 2πx/ ã n, b n x 2 [, π) a n = 2 4π 2 1 π b n = 2 4π 2 1 π ξ 2 cos nξdξ = 2 4π 2 ãn, ξ 2 sin nξdξ = 2 4π 2 b n (7.19a) (7.19b) [, π) x 2 4.2 x 2 = 2 12 + 2 ( 1) n n 2 π 2 cos 2πnx (7.2) (b) [ /2, /2) x 3 x 2 ( ) 3 a n = ã n, (7.21a) 2π ( ) 3 b n = bn (7.21b) 2π [, π) x 3 4.2 x 3 3 ( 1) n 4π 3 n ( ) 6 n 2 π2 sin 2πnx (7.22) 19

8 8.1. 1. [ /2, /2) f(x) = x 2. [, ) f(x) = x 8.2. [ /2, /2) f(x) = x 8.3. [, π) f(x), g(x) (a m, b m ),(c m, d m ) 1 π π f(x)g(x)dx = 1 2 a c + (a n c n + b n d n ) (8.1) 2

8.1 : 1. (a) [ /2, /2) f(x) = x a = 2 a n = 2 b n = 2 = 2 /2 /2 /2 /2 /2 /2 xdx =, (8.2) x cos 2nπx dx =, (8.3) x sin 2nπx dx [ 2nπx x cos 2nπ = ( 1)n nπ ] /2 /2 + 1 /2 nπ /2 cos 2nπx dx (8.4) x ( 1) n nπ sin 2nπx (8.5) (b) [, ) f(x) = x a = 2 a n = 2 = 2 [ = 1 nπ b n = 2 = 2 xdx =, (8.6) x cos 2nπx dx 2nπx x sin 2nπ = nπ ] [ 2nπx cos 2nπ x sin 2nπx dx [ 2nπx x cos 2nπ 1 nπ ] ] sin 2nπx dx = (8.7) + 1 nπ cos 2nπx dx (8.8) x 2 2nπx sin nπ (8.9) 21

2. [ /2, /2) f(x) = x /2 c = 1 xdx =, (8.1) /2 c n = 1 /2 ( ) 2nπix x exp dx /2 = 1 [ ( )] /2 2nπix 2nπi x exp + 1 /2 ( ) 2nπix exp dx 2nπi /2 = i( 1)n 2nπ x n=,n /2 i( 1) n 2nπ ( ) 2nπix exp (8.11) (8.12) 3. [, π) f(x), g(x) (a m, b m ),(c m, d m ) 1 π π f(x)g(x)dx = 1 2 a c + 1 π f(x)g(x)dx = 1 π π (a n c n + b n d n ) (8.13) ( ) c dxf(x) 2 + (c n cos nx + d n sin nx) = c dxf(x) 2π + 1 ) (c n dxf(x) cos nx + d n dxf(x) sin nx π = a c + (a n c n + b n d n ) (8.14) 2 22

9 9.1. T u(x, t) t = k 2 u(x, t) x 2, (9.1a) u(x, ) = f(x), ( x ), ( ) (9.1b) u(, t) = T, u(, t) =, ( ) (9.1c) ( ) 3 x f(x) = T (9.2) 9.2. x u(x, t) t = k 2 u(x, t) x 2, (9.3a) u(x, ) = f(x), ( x < 2π), ( ) u(, t) = u(2π, t), u(, t) x = (9.3b) u(2π, t), ( ) (9.3c) x f(x + 2π) = f(x) 23

9.1 1. T u(x, t) t = k 2 u(x, t) x 2, (9.4a) u(x, ) = f(x), ( x ), ( ) (9.4b) u(, t) = T, u(, t) =, ( ) (9.4c) ( ) 3 x f(x) = T (9.5) ( ) u 1 (x) u 1 (x, t) t = k 2 u 1 (x, t) x 2, (9.6a) u 1 (x, ) = g(x), ( x ), ( ) (9.6b) u 1 (, t) = T, u 1 (, t) =, ( ) (9.6c) u 2 u 2 (x, t) t = k 2 u 2 (x, t) x 2, (9.7a) u 2 (x, ) = f(x) g(x), ( x ), ( ) (9.7b) u 2 (, t) =, u 2 (, t) =, ( ) (9.7c) u = u 1 + u 2 u 2 u 1 (x, t) = T x + T (9.8) g(x) = T x + T (9.9) u(x, t) = T x + T + ( A n exp k π2 n 2 ) t 2 sin πnx (9.1) 24

A n = 2 ( f(x) + T ) x T sin πnx dx (9.11) A n = 2T ( ( ) 3 x + x 1 = 2T 1 ( ) 3 x f(x) = T (9.12) ) sin πnx dx ( (1 ζ) 3 + ζ 1 ) sin πnζdζ = 12T n 3 π 3 (9.13) ζ = x/ u(x, t) = T x + T 12T π 3 ( 1 n 3 exp k π2 n 2 ) t 2 sin πnx (9.14) 1..8.6.4.2.2.4.6.8 1. 1: (9.14) 1 x/ u(x, t)/t 2 /(kπ 2 ) t = f(x) ( ) t/( 2 /(kπ 2 )) =.2,.1 2. x u(x, t) t = k 2 u(x, t) x 2, (9.15a) u(x, ) = f(x), ( x < 2π), ( ) u(, t) = u(2π, t), u(, t) x = (9.15b) u(2π, t), ( ) (9.15c) x 25

f(x + 2π) = f(x) ( ) u(x, t) = e kλ2t (Ae iλx + Be iλx ), λ, u(x, t) = Ax + B, λ = (9.16) λ = u(x, t) =( ) λ u(, t) = e kλ2t (A + B) = e kλ2t (Ae i2πλ + Be i2πλ ) = u(2π, t) u(, t) x = e kλ2t iλ(a B) = e kλ2t iλ(ae i2πλ Be i2πλ ) = (9.17a) u(2π, t) x (9.17b) B(1 e 2πiλ ) = A(e 2πiλ 1) (9.18) B(1 e 2πiλ ) = A(1 e 2πiλ ) (9.19) e 2πiλ = 1 (9.2) λ = n ( ) u(x, t) = a 2 + e kλ2t (a n cos nx + b n sin nx) (9.21) a n, b n f(x) 26

1 1.1. x, y 1 2 u(x, y, t) c 2 s t 2 + 2 u(x, y, t) x 2 + 2 u(x, y, t) y 2 =, (1.1a) u(x, y, ) u(x, y, ) = f(x, y), =, (1.1b) t u(, y, t) = u( x, y, t) = u(x,, t) = u(x, y, t) =, (1.1c) f(x, y) = x( x x)y( y y) (1.1) 27

11 3 11.1. 24 ( x < ) u(x, t) = k 2 u(x, t) t x 2, (11.1a) u(, t) = T sin ωt, lim u(x, t) =, ( ) (11.1b) x 1 t ω = 2π/864[Hz] 2 11.2. D = {(x, y) x x, y y } 2 u(x, y) x 2 + 2 u(x, y) y 2 =, (11.2) u(, y) =, u( x, y) =, (11.3) u(x, ) y =, u(x, y) y = sin πx x (11.4) (x, y) 1 T T T 2 864 = 24 6 6 28

12 Gibbs 1..5-3 -2-1 1 2 3 -.5-1. 2: f(x) = sgn(x) ( x < π) S f n(x) : n = 5 : n = 15 : n = 5 1.2 1.1 1..9.8.1.2.3.4.5 3: f(x) = sgn(x) ( x < π) S f n(x) x 29