mthesis.dvi

Similar documents
Undulator.dvi

untitled

Mott散乱によるParity対称性の破れを検証

Donald Carl J. Choi, β ( )

main.dvi

Drift Chamber

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

1).1-5) - 9 -


From Evans Application Notes

X線分析の進歩36 別刷

untitled

J. Mass Spectrom. Soc. Jpn.: 58(5), (2010)

B

untitled

untitled

日本電子News vol.44, 2012

03J_sources.key

スライド 1

untitled

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

untitled

TSP-MPS-OM.book

CdTe γ 02cb059e :

PDF

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

thesis.dvi

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3

untitled

untitled

J-PARC E15 K K-pp Missing mass Invariant mass K - 3 He Formation K - pp cluster neutron Mode to decay charged particles p Λ π - Decay p Decay E15 dete

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

Microsoft Word - 章末問題

pp * Yw; Mq 1. 1L 20 cc [1] Sonoluminescence: Light emission from acoustic cavitation bubble. Pak-Kon Choi (Departm

2

i

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

1.06μm帯高出力高寿命InGaAs歪量子井戸レーザ

Canvas-tr01(title).cv3

untitled

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

3-2 PET ( : CYRIC ) ( 0 ) (3-1 ) PET PET [min] 11 C 13 N 15 O 18 F 68 Ga [MeV] [mm] [MeV]

An automated method to generate the collisional radiative model of multiple charged ions SASAKI Akira, NISHIHARA Katunobu, MURATA Masaki Quan

MOSFET HiSIM HiSIM2 1

PowerPoint Presentation

C: PC H19 A5 2.BUN Ohm s law

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

C-2 NiS A, NSRRC B, SL C, D, E, F A, B, Yen-Fa Liao B, Ku-Ding Tsuei B, C, C, D, D, E, F, A NiS 260 K V 2 O 3 MIT [1] MIT MIT NiS MIT NiS Ni 3 S 2 Ni

rcnp01may-2

SPECTにおける撮像時間短縮の研究

4‐E ) キュリー温度を利用した消磁:熱消磁

i

PET PET

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE

PET. PET, PET., PET 1, TPC 3.,. TPC,,.

1 1.1,,,.. (, ),..,. (Fig. 1.1). Macro theory (e.g. Continuum mechanics) Consideration under the simple concept (e.g. ionic radius, bond valence) Stru

10 nm SThM Fig.1 AFM 6) AFM 7) Fig.1 AFM 0.1 N/m 100 pn 10 nn 8) SThM STM AFM RTD Resistance Temperature Device SNOM Scanning Near-field Optical Micro

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge

2008/02/18 08:40-10:10, 12:50-14:20 14:30-16:00, 16:10-17:40,

text_0821.dvi

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

加速器の基本概念 V : 高周波加速の基礎

反D中間子と核子のエキゾチックな 束縛状態と散乱状態の解析

MPGD GEM

68 JAXA-RR r v m Ó e ε 0 E = - Ó/ r f f 0 f 1 f = f 0 + f 1 x k f 1 = f k e ikx Ó = Ó k e ikx Ó k 3

Ni PLD GdBa 2 Cu 3 O 7 x 2 6

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

OHO.dvi

薄膜結晶成長の基礎3.dvi

C 3 C-1 Cu 2 (OH) 3 Cl A, B A, A, A, B, B Cu 2 (OH) 3 Cl clinoatacamite S=1/2 Heisenberg Cu 2+ T N 1 =18K T N 2 =6.5K SR T N 2 T N 1 T N 1 0T 1T 2T 3T

Thick-GEM 06S2026A 22 3

放射線化学, 92, 39 (2011)

LD

hvac-dpos_dif.eps

320_…X…e†Q“õ‹øfiÁ’F

2 Zn Zn + MnO 2 () 2 O 2 2 H2 O + O 2 O 2 MnO 2 2 KClO 3 2 KCl + 3 O 2 O 3 or 3 O 2 2 O 3 N 2 () NH 4 NO 2 2 O + N 2 ( ) MnO HCl Mn O + CaCl(ClO

Microsoft PowerPoint - 14.菅谷修正.pptx

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

36 th IChO : - 3 ( ) , G O O D L U C K final 1


着色斜め蒸着膜の光学的性質~無機偏光膜への応用

4_Laser.dvi


75 unit: mm Fig. Structure of model three-phase stacked transformer cores (a) Alternate-lap joint (b) Step-lap joint 3 4)

研究成果報告書

nsg02-13/ky045059301600033210

d > 2 α B(y) y (5.1) s 2 = c z = x d 1+α dx ln u 1 ] 2u ψ(u) c z y 1 d 2 + α c z y t y y t- s 2 2 s 2 > d > 2 T c y T c y = T t c = T c /T 1 (3.

質量数30-40,100領域の高スピン変形状態の研究


25 3 4

untitled

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

15

Transcription:

Study of multiple electron transfer processes to Highly charged ions with microcapillary targets : 96941 2001/01/19

1 5 1.1... 5 1.2... 6 1.2.1... 6 1.2.2 Classical over barrier(cob)... 7 1.2.3... 8 1.3... 11 1.4... 13 1.5... 16 2 1 18 2.1... 18 2.1.1 EBIS... 18 2.1.2... 19 2.1.3... 20 2.1.4 Microcapillary Target... 23 2.2... 24 2.2.1 Xe q+ (q=3,6,9)... 24 2.2.2 Xe 6+... 27 2.3 2... 28 3 2 31 3.1... 31 3.1.1 ECR... 31 3.1.2... 31 3.1.3... 34 3.2... 42 3.3 5 kev/q Xe 6+ (MCP )... 44 3.3.1... 44 3.3.2 5 kev/q Xe 6+... 44 3.4 5 kev/q Xe 6+ (Ni Microcapillary )... 50 3.4.1 Xe 6+... 50 3.4.2 Xe 6+... 54 3.4.3 5keV/q Xe 6+... 58 1

3.4.4 1 kev/q Xe 6+... 59 4 63 64 65 2

1.1... 6 1.2... 7 1.3 classical over barrier model... 9 1.4 H. Winter Xe q+ (1 q 33) [4].......... 10 1.5... 11 1.6 Briand Ar 17+ X [5]... 12 1.7... 12 1.8... 13 1.9... 14 1.10 5 kev/q Xe 6+... 17 2.1 mini-ebis... 18 2.2 mini-ebis-... 19 2.3 Wien Filter... 20 2.4 Wedge Meander Strip Anode PSD... 21 2.5 PSD... 22 2.6 Ni SEM... 23 2.7 800 ev/q Xe q+... 24 2.8 Auger Monte Calro Simulation... 25 2.9 Auger... 26 2.10 800 ev/q Xe 6+... 27 2.11 2.1 kev/u N 6+ [15]... 29 3.1 RIKEN 14.5GHz Caprice... 32 3.2 ECR -... 33 3.3... 34 3.4... 35 3.5 Delay Line Anode PSD... 37 3.6 Delay Line Anode... 38 3.7 241 Am PSD... 38 3.8 (MCP)... 39 3.9... 40 3.10... 41 3.11 Ni MCP... 43 3.12.......... 45 3

3.13... 46 3.14 Mylar nano tube 3keV Ne +7 [17]... 46 3.15 MCP Xe 6+ (q f =0, 1)... 47 3.16 MCP Xe 6+ (q f =2, 3, 4)... 49 3.17 Xe 6+... 50 3.18 Ni ( )... 51 3.19 Ni Xe 6+ (0 q f 5)... 52 3.20 Ni Xe 6+... 53 3.21 Xe 6+... 54 3.22 Xe 6+ ( )... 56 3.23 Xe 6+ (Y )... 57 3.24 Xe 6+... 58 3.25 5 kev/q Xe 6+... 60 3.26 Xe 6+... 61 3.27 1 kev/q Xe 6+... 62 4

1 1.1 1950 Bell Laboratory Hagstrum [1] potential emission potential emission Auger Auger 1980 Ryufuku Classical over barrier model (COBm) [2] 1991 J. Burgdörfer [3] 1993 H. Winter Xe q+ (1 q 33) Al [4] (Hollow Atom, HA) 1990 Briand Ar 17+ Ag K-X [5] K-X COBm K-X (HA2) (HA1) 1991 Meyer N 6+ Ar q+ (q =7, 8, 9) Au Auger HA1 [6] HA1 Yamazaki [7] 5

1.2 1.2.1 1.1: (x, y, z) x-y (z = 0) z 0 (0, 0,Z i ) q Fig.1.1 (0, 0, Z i ) z =0 z 0 (x, y, z) z 0 U(x, y, z) 3 (1.1) U(x, y, z) = 1 4z q x 2 + y 2 +(z + Z i ) 2 q x 2 + y 2 +(z Z i ) 2 (1.1) (1.1) 1 2 3 (x, y, z) =(0, 0, 40) Fig(1.2) (a) (x, y, z) =(0, 0, 20) Fig(1.2) (b) (1.1) Z s U s 6

1.2: Z s Z i 8q (1.2) 2q U s (1.3) Z i 1.2.2 Classical over barrier(cob) Classical over barrier(cob) Ryufuku [2] Burgdörfer [3] - - Z c (1.3) U s = W 2q Z c W (1.4) 7

E n q/2z 1/4z n c E n = q2 2n 2 c E n = W (1.5) + q 2Z i 1 4Z i (1.5) E n = W = q2 2n 2 c + q 2Z i 1 4Z i (1.6) Z i (1.4) n c n c = q { } (1 + 2 2)q 1 1/2 2 (1.7) W 2q q 1/2 n c = = = { } 1/2 q (1 + 2 2)q W 2q q 2 W (1 + 8) q q W 1 2(1 + q 8 ) (1.8) W 0.2 a.u. n c q (1.9) Xe 6+ Al 20 a.u (1.5) Fig.1.3 Al n=8 1.2.3 8

1.3: classical over barrier model Xe 6+ Al Z c =20a.u Z i W Al W 0.15 a.u 9

q 2 (z) E = dz (1.10) 4z2 COB Z c 2q Z c (q) = (1.11) W E = W 3 2 q3/2 (1.12) H. Winter Xe q+ (1 q 33) Al (Fig. 1.4) (Fig.1.4(B)) (Fig.1.4(C)) COB (1.12) [4] 1.4: H. Winter Xe q+ (1 q 33) [4] 10

Meyer Pb q 3/2 [8] 1.3 (1.4) 1 (1.4) q q 1 1.5: Auger Briand Ar 17+ Ag X K L (Fig.1.6)[5] 10keV 10 15 10 14 sec (HA1) Auger Auger 10 15 10 13 sec 11

(A) (B) 1.6: Briand Ar 17+ X [5] Auger X (1.10) q Fig.1.7 Z c (q) Z c (q) 10 13 sec 1.7: 12

1.4 1.3 10 13 sec Yamazaki (Fig.1.8) Ne 9+ K K 6 [7] 1.8: - 13

1.9: (A) (B) (1) (2) ( ) (3) : (4) : (5) (C) (B) 14

Fig.(1.9) (B) (1) (2) (3) (4) (3) (5) (C) (B) (B) (1) Z c (q) ( (1.4)) q f ρ q F (q) = ρ2 (ρ Z c (q)) 2 ρ 2 2Z c(q) ρ (1.13) 200nm 6 99% 1% q f q f F (q f ) F (q f ) = (ρ Z c(q f )) 2 (ρ Z c (q f + 1)) 2 ρ 2 2ρ(Z c(q f +1) Z c (q f )) ρ 2 8(q f +1) 8q f Wρ (1.14) (1.14) F (q f ) q f Fig.(1.9) 15

(1.10) (1.11) q f 1.5 EBIS(Electron Beam Ion Source) (RIKEN) ECRIS(Electron Cyclotron Resonance Ion Soource) Fig.1.10(a) 5 kev/q Xe 6+ (PSD) -2.5kV +2.5kV PSD Fig.1.10(b) 5 kev/q Xe 6+ PSD 16

1.10: 5 kev/q Xe 6+ 17

2 1 2.1 2.1.1 EBIS (EBIS) Donetz [9] Fig.2.1 mini-ebis 2.1: mini-ebis EBIS Okuno [10] Kakutani [11] 2keV 18

2.1.2 Fig.2.2 Wien (m/q) 2.2: mini-ebis- Wien EBIS 1 Wien Wien Fig.2.3 Wien v B E v = E (2.1) B Wien Velocity Selecter 19

V ex v = 2qeV ex m (2.2) e ) (2.1) m q = 2eV exb 2 E 2 (2.3) Wien slit m/q 2.3: Wien Filter 2.1.3 Fig.2.2 0.5 mm 5mm 10 mm 70 mm 35 mm) (Position Sensitive Detector, PSD) Wedge-Meander-Strip anode PSD Fig.(2.4) (PSD) (MCP) Wedge-Meander-Strip anode MCP MCP 5 15 20

3 MCP Al 2 O 3 MCP Al Ge Wedge-Meander-Strip anode [12] MCP 2.7kV MCP MCP Au W Mesh(100 mesh/inch) MCP Mesh MCP MCP MCP MCP -100 V (a) Mesh insulator triple stacked MCP Ge Layer W.M.S anode W output M output S output fast output (b) (c) Strip y Wedge Meander x 1.5 mm 2.4: Wedge Meander Strip Anode PSD MCP Ge Wedge-Meander-Strip PSD (x, y) Wedge Meander Strip Q w Q m Q s x = Q s Q w + Q m + Q s, y = Q w Q w + Q m + Q s (2.4) PSD 241 Am α ( 0.41 mm 16 mesh/inch) MCP PSD Mesh α α Fig.(2.5) 2 PSD 21

2.5: PSD 22

2.1.4 Microcapillary Target Fig.(2.6) 2.1 ρ[nm] 100 l[nm] 700 [% ] 65 Ni 2.1: ( ) 2.6: Ni SEM [(a) (b) (3) 45 ] 23

2.2 2.2.1 Xe q+ (q=3,6,9) Ni 800eV/q Xe q+ (q=3,6,9) Fig.(2.7) 80% (1.13) 1% 20 20% U COBm (1.14) q f U Ninomiya N 6+ [13] Tőkési 2.7: 800 ev/q Xe q+ 800eV/q Xe +6 200nm 700nm Ni Auger Monte Calro Simulation (Fig.2.8)[14] q =6 1% 1% 24

q =6 q f =5, 4, 3, 2, 1, 0 Auger q f =6 q f Auger COBm Auger 20nm 80% Fig.(2.9) 2.8: Auger Monte Calro Simulation 800eV/q Xe +6 200nm 700nm Ni [15] 25

2.9: Auger [ (q f =6) 20 nm ] 26

2.2.2 Xe 6+ Fig.(2.10) Xe 6+ q f 10 2.10: 800 ev/q Xe 6+ 2 (1) : (2) : q f =0 6 (3)2 : 3 (1),(2),(3) COB (1) (1.12) 15 ev 4.8 kev 15/4800 56 mrad( 3.2 ) Fig.(2.10) 0.5 (2.2) 27

(1.10) (1.11) Z c (q) 1 / Angle[degree] E im [ev ] q f Exp. Calc. Exp. Calc. 0 0.19 3.27 5.4e-2 15.7 1 0.16 3.25 3.7e-2 15.5 2 0.24 3.22 8.4e-2 15.2 3 0.28 3.15 1.1e-1 14.6 4 0.42 3.07 2.6e-1 13.9 5 0.47 2.97 3.2e-1 13.0 6 0.15-3.3e-2-2.2: 800 ev/q Xe 6+ (2) (2.2) q f =6 6 2 q f =0 q f =1 (3) 2 Fig.(1.9) 6 2 2.1 kev/u N 6+ Tőkési (Fig.2.11)[15] (3) 2.3 2 COB COBm 28

2.11: 2.1 kev/u N 6+ [15] 29

Ninomiya 1/10 ( 50%) 50% 2 20 nm SEM (1) (2) (3) 2 3 (Micro channel plate, MCP) MCP 1 µm (1.13) 0.1% 1 MCP Ni 30

3 2 3.1 3.1.1 ECR ECR (Electron Cyclotron Resonance Ion Source, ECRIS) (Electron Cyclotron Resonance) B f c f c = eb (3.1) m e f rf f c = f rf (ECR ) ECR ECR f rf ECR 14.5GHz Caprice (BL1, BL2, BL3, BL4) Fig. 3.1 14.5GHz Caprice 1kV 20kV 3.1.2 Fig.3.2 ECR analyzing magnet quadrupole magnet switching magnet switching magnet BL3 BL3 steering deflector Einzel four jaw slit 1700 mm 1.5 mm four jaw slit 1.5 mm 10 8 Torr 31

3.1: RIKEN 14.5GHz Caprice 32

3.2: ECR - 33

3.1.3 Fig.3.3 φ φ 0.3 3.3: 400mm ICF152 1.5 mmφ 15 mm 0.3 mmφ x-y ( 60 mm 60 mm) 10 mm 5kV (Fig.1.10(b)) PSD 12 mm Fig.3.4 34

3.4: 35

Delay Line Anode PSD Fig.3.5(a) PSD Fig.3.5(b) (c) (a) PSD 2 MCP Al 2 O 3 Delay Line PSD MCP 2.1.3 Wedge-Meander-Strip anode PSD Delay Line Delay Line Bare Cu (Fig.3.6) Delay Line 2 (X1s, X2s) Delay Line Delay Line Delay Line Delay Line(reference wire) Bare Cu Lecher cable [16] Delay Line anode PSD PSD 241 Am α MCP 3mm ( 3mm 250 µm) PSD Fig.3.7 241 Am α Hg α discriminator 241 Am.3.1 PSD MCP V f -2100 V Signal wire V s 400 V MCP V b 0V Reference wire V s 350 V Anode Holder V h 100 V Mesh V m 0V 3.1: Delay Line anode PSD 36

3.5: Delay Line Anode PSD 37

3.6: Delay Line Anode 3.7: 241 Am PSD 38

MCP (Micro channel plate, MCP) MCP Fig.3.8 3.8: (MCP) (a)mcp (b)mcp Al (c)mcp (d) :6 µm :300 µm :59% MCP 25 mm 300 µm 6 µm 2.1.3 3.1.3 PSD MCP MCP ( :0 ) Al Al 3 µm MCP (Fig.3.8 (b)) Fig.3.9 MCP MCP 39

3.9: [(a)mcp (b) (a) (c) ( ) (d) ( )] 40

(2) (2) 7mmφ (1) MCP MCP 7mmφ 1mm 5mm (3) (2) (4) 5mmφ MCP 1 Fig.3.9(c) (d) MCP 34 mm Ni 3mmφ Ni 6mm 5mmφ (Fig.3.3) Fig.3.10 θ ϕ 3.10: 41

3.2.3.2 Ni 10 MCP 1/50 20 mrad 2 ±0.1 ( 1.7 mrad) Ni MCP 2.3 1 Ni MCP Ni φ5mm 200mm 12 mm Current Integrator Fig.3.11 / MCP 6 µm 300 nm 300 µm 1500 nm 50 5 59 % 35 % ( Al ) Ni 3.2:.3.2 Fig.3.11 MCP Ni 25% Ni SEM 42

3.11: Ni MCP 43

3.3 5 kev/q Xe 6+ (MCP ) 3.3.1 3.2 MCP MCP 3.2 Fig.3.12 θ ϕ 0 0.5 q f =0 q f =1 q f =0 q f =1 PSD Fig.3.12 (1) (2) q f =0 q f =1 (1) MCP (2) (Fig.3.13) q f =1 (2) MCP Stolterfoht Mylar 80 nm 10 µm Ne 7+ 5 [17] 0.5 q f =2 (1) (2) 3.3.2 5 kev/q Xe 6+ 3.3.1 MCP (2) Fig.3.15 (a) q f =0 q f =1 (b) Y q f =0 q f =1 q f =0 q f =1 (1) (2) Fig.3.16 (a) q f =2 q f =3 q f =4 (b) Y q f =0 q f =2 q f =3 q f =4 q f =3 q f =4 (b) 44

/ θ [degree] ϕ [degree] (a) 0 0 (b) -0.5 +0.5 (c) 0 +0.5 (d) +0.5 +0.5 3.12: 45

3.13: 3.14: Mylar nano tube 3keV Ne +7 [17] 46

3.15: MCP Xe 6+ (q f =0, 1) [(a) (b) Y ] 47

q f =2 (c) q f =2 q f =3 q f =4 (d) q f q f =0 q f =4 q f =5 q f =5 q f =6 PSD q f =6 q f 4 q f =5 q f =6 q f =6 PSD MCP q f =6 q f =5 q f =6 q f =5 MCP q f =0 q f =4 Fig.3.17 (a) (b) (a) Y (b) PSD (FWHM) 4ch PSD 1ch 0.08 mm 0.32 mm 0.3 mmφ PSD 170 mm θ i θ i 0.16 2 0.15 2 170 0.3 mrad(0.02 ) (3.2) q f =2, 3, 4 FWHM 0.4 mm 0.8 mrad( 0.05 ) 20 mev (1.10) 10 20 ev 10 mev 48

3.16: MCP Xe 6+ (q f =2, 3, 4) [(a) q f =0, 1. (b) (a) Y. (c) q f =0, 1. (d) (c) Y.] 49

3.17: Xe 6+ [(a) Xe 6+ (b) (a) Y ] 3.4 5 kev/q Xe 6+ (Ni Microcapillary ) Ni [18] Fig.3.18 Ni ( ) SEM 3.2 3.4.1 Xe 6+ Fig.3.19 (a) (b) (c) (d) Y 5 kev/q Xe 6+ q f Fig.3.20 Experiment. (1.13) (1.14) Fig.3.20 Calculation. U Tökesi COB Auger Fig.3.20 Simulation with Auger process. SEM 200 nm Ni SEM 100 nm 20 nm COB 50

3.18: Ni ( ) (a) (b) (c) 45 51

3.19: Ni Xe 6+ (0 q f 5) [(a) q f =0, 1, 2. (b) q f =2, 3, 4, 5. (c) (a) Y. (d) (b) Y.] 52

3.20: Ni Xe 6+ [Auger ( :300nm)] 53

3.4.2 Xe 6+ 3.3.2 COBm 2 3.3.2 0.3 mmφ 5mmφ ( ) Fig.3.21 Fig.??(b) FWHM 4ch 0.32 mm (3.2) θ i θ i 0.3 mrad (0.02 ) 3.21: Xe 6+ [(a) Xe 6+ (b) (a) Y ] Fig.3.19 Fig.3.22 Fig.3.23 q f 0.4 mm 0.9 mrad (0.05 ) 10 mev 3.3.1 (1) (3.3) (1.10) (1.11) Ni 54

(2) Fig.3.23 (a) (b) q f =0 q f =1 (1) Ni MCP q f =0 q f =1 FWHM 2.5 mm 1.9 mm 7.7mrad(0.44 ) 5.9mrad(0.34 ) 1.8 ev 1.1 ev / Angle[degree] E im [ev ] q f Exp. Calc. Exp. Calc. 0 0.05 1.31 2.1e-2 15.7 1 0.05 1.30 2.1e-2 15.5 2 0.05 1.29 2.1e-2 15.2 3 0.05 1.26 2.1e-2 14.6 4 0.07 1.23 4.2e-2 13.9 5 0.07 1.19 4.0e-2 13.0 6 0.03-3.6e-2-3.3: 5 kev/q Xe 6+ PSD 3.3 Ni Ni SEM (Fig.3.18) (a) 310 nmφ (b) 380 nmφ Ni 1.3 3.3 1.3 (Fig. 1.9) 55

3.22: Xe 6+ ( ) 56

3.23: Xe 6+ (Y ) 57

Z c 3.4.3 5keV/q Xe 6+ 3.4.2 3.4.2 5 kev/q Xe 6+ 3.3.2 0.3 mmφ 5mmφ ( ) Fig. 3.24 FWHM 0.04 θ 3.24: Xe 6+ [(a) Xe 6+ (b) ] Fig. 3.25 q f 3.3 58

q f (Fig. 1.9) 3.4.4 1 kev/q Xe 6+ 5 kev/q Xe 6+ q f 3.4.2 3.4.3 PSD PSD 1 kev/q q f 3.3.2 0.3 mmφ 5mmφ ( ) Fig. 3.26 0.1 1 kev/q Xe 6+ Ni q f Fig. 3.27 (1.10) (1.11) 3.4 / Angle[degree] E im [ev ] q f Exp. Calc. Exp. Calc. 0 0.16 2.92 4.6e-2 15.7 1 0.14 2.90 3.5e-2 15.5 2 0.21 2.88 8.0e-2 15.2 3 0.22 2.82 8.8e-2 14.6 4 0.23 2.75 9.7e-2 13.9 5 0.33 2.66 2.0e-1 13.0 6 0.10-1.8e-2-3.4: 1 kev/q Xe 6+ 59

3.25: 5 kev/q Xe 6+ 60

θ 3.26: Xe 6+ [(a) Xe 6+ (b) ] 2.2.2 3.4.2 10 mev ( 15 mev) 2 q f 5 kev Xe 6 q f 1 kev/q Xe 6+ PSD Ni Ni 2.3 61

3.27: 1 kev/q Xe 6+ 62

4 mini-ebis RIKEN 14.5GHz Caprice Xe 6+ (MCP) Ni 3 COB Auger COB Fig.1.9 q f 5keV/q 1keV/q Ni Ni (1.11) MCP MCP 300 µm 1kV TOF 63

Wien K. Tőkési PSD PSD PSD MCP D4 PSD D2 - D2 EBIS D2 M2 PSD PC Franzen M2 M1 64

[1] H. D. Hagstrum: Phys. Rev. 91, 543 (1953) [2] H. Ryuhuku, K. Sasaki and T. Watanabe : Phys. Rev. A21, 7451 (1980) [3] J. Burgdörfer, P. Lerner and F. W. Meyer : Phys. Rev. A44, 5674 (1991) [4] H. Winter, C. Auth, R. Schuch and E. W. Beebe : Phys. Rev. Lett. 71, 1939 (1993) [5] J. P. Briand, L. de Billy, P. Charles, S. Essabaa, P. Briand, R. Geller, J. P. Desclaux, S. Bliman and C. Ristori : Phys. Rev. Lett. 65, 159 (1990) [6] F. W. Meyer, S. H. Overbury, C. C. Havener, P. A. Zeijlmans van Emmichoven, J. Burgdörfer and D. M. Zehner : Phys. Rev. A44, 7214 (1991) [7] Y. Yamazaki, S. Ninomiya, F. Koike, H. Masuda, T. Azuma, K. Komaki, K. Kuroki, M. Sekiguchi : J. Phys. Soc. Jpn. 65, 1199 (1996) [8] F. W. Meyer, L. Folkerts, H. O. Folkerts and S. Schippers : Nucl. Instrum. Meth. Phys. Res. B98, 441 (1995) [9] E. D. Donetz : IEEE Trans. Nucl. Sci. NS-23, 904 (1976). [10] K. Okuno : Jpn. J. Appl. Phys. 28, 1124 (1989). [11] K. Kakutani: PhD Thesis, Institute of Physics, University of Tokyo (1995) [12] N. Okabayashi: Master s Thesis, Institute of Physics, University of Tokyo (1999) [13] S. Ninomiya, Y. Yamazaki, F. Koike, H. Masuda, T. Azuma, K. Komaki, K. Kuroki, M. Sekiguchi : Phys. Rev. Lett. 78, 4557 (1997) [14] K. Tőkési, L. Wirtz, C. Lemell and J. Burgdörfer : Phys. Rev. A61, 020901(R) (2000) [15] K. Tőkési : private communication. [16] S. E. Sobottka and M. B. Williams : IEEE Trans. Nucl. Sci. 35, 348 (1988) [17] N. Stolterfoht, J. H. Bremer, V. Hoffmann and D. Fink : 10th International Conference on the Physics of Highly Charged Ions, Berkeley, Ca, July/August 2000 [18] H. Masuda, M. Ohya, K. Nishio, H. Asoh, M. Nakao, M. Nohtomi, A. Yokoo and T. Tamamura : Jpn. J. Appl. Phys. 39, L1039 (2000) 65