Microsoft Word - 圧縮材

Similar documents
第1章 単 位

構造力学Ⅰ第12回

上式を整理すると d df - N = 両辺を で割れば df d - N = (5) となる ところで

Microsoft PowerPoint - fuseitei_6

<4D F736F F D2097CD8A7793FC96E582BD82ED82DD8A E6318FCD2E646F63>

Microsoft PowerPoint - zairiki_3

Microsoft Word - 1B2011.doc

<4D F736F F D208D7E959A82A882E682D18F498BC78BC882B B BE98C60816A2E646F63>

スライド 1

第1章 単 位

PowerPoint Presentation

<4D F736F F D208D5C91A297CD8A7793FC96E591E6328FCD2E646F63>

Microsoft Word - 断面諸量

Microsoft PowerPoint - zairiki_11

<4D F736F F D208D5C91A297CD8A7793FC96E591E631308FCD2E646F63>

第 5 章 構造振動学 棒の振動を縦振動, 捩り振動, 曲げ振動に分けて考える. 5.1 棒の縦振動と捩り振動 まっすぐな棒の縦振動の固有振動数 f[ Hz] f = l 2pL である. ただし, L [ 単位 m] は棒の長さ, [ 2 N / m ] 3 r[ 単位 Kg / m ] E r

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション

断面の諸量

DVIOUT-SS_Ma

道路橋の耐震設計における鉄筋コンクリート橋脚の水平力 - 水平変位関係の計算例 (H24 版対応 ) ( 社 ) 日本道路協会 橋梁委員会 耐震設計小委員会 平成 24 年 5 月

< B795FB8C6094C28F6F97CD97E12E786477>

技術者のための構造力学 2014/06/11 1. はじめに 資料 2 節点座標系による傾斜支持節点節点の処理 三好崇夫加藤久人 従来, マトリックス変位法に基づく骨組解析を紹介する教科書においては, 全体座標系に対して傾斜 した斜面上の支持条件を考慮する処理方法として, 一旦, 傾斜支持を無視した

微分方程式による現象記述と解きかた

<4D F736F F D208D5C91A297CD8A7793FC96E591E631318FCD2E646F63>

新日本技研 ( 株 ) 技術報告 弾性横桁で支持された床版の断面力式 仙台支店 設計部高橋眞太郎 本社 顧問倉方慶夫 元本社 顧問高尾孝二 要旨 橋梁形式は 公共事業費抑制の要求を受けてコスト縮減を図ることができる合理化形式の採用が多くなっている この流れを受けて鈑桁形式では少数鈑桁橋

破壊の予測

Microsoft PowerPoint - zairiki_10

PowerPoint Presentation

パソコンシミュレータの現状

2018年度 東京大・理系数学

重要例題113

5. 変分法 (5. 変分法 汎関数 : 関数の関数 (, (, ( =, = では, の値は変えないで, その間の に対する の値をいろいろと変えるとき, の値が極地をとるような関数 ( はどのような関数形であるかという問題を考える. そのような関数が求められたとし, そのからのずれを変分 δ と

"éı”ç·ıå½¢ 微勃挹稉弑

Microsoft PowerPoint - zairiki_7

応用数学Ⅱ 偏微分方程式(2) 波動方程式(12/13)

Microsoft Word - 付録A,Bとその図

2011年度 筑波大・理系数学

44_417

材料の力学解答集

<4D F736F F D208D5C91A297CD8A7793FC96E591E6398FCD2E646F63>

耳桁の剛性の考慮分配係数の計算条件は 主桁本数 n 格子剛度 zです 通常の並列鋼桁橋では 主桁はすべて同じ断面を使います しかし 分配の効率を上げる場合 耳桁 ( 幅員端側の桁 ) の断面を大きくすることがあります 最近の桁橋では 上下線を別橋梁とすることがあり また 防音壁などの敷設が片側に有る

19年度一次基礎科目計算問題略解

喨微勃挹稉弑

2015-2017年度 2次数学セレクション(複素数)解答解説

<4D F736F F D EBF97CD8A B7982D189898F4B A95748E9197BF4E6F31312E646F63>

問題-1.indd

<4D F736F F D208D5C91A297CD8A7793FC96E591E6388FCD2E646F63>

2011年度 大阪大・理系数学

学習指導要領

PowerPoint Presentation

材料強度試験 ( 曲げ試験 ) [1] 概要 実験 実習 Ⅰ の引張り試験に引続き, 曲げ試験による機械特性評価法を実施する. 材料力学で学ぶ梁 の曲げおよびたわみの基礎式の理解, 材料への理解を深めることが目的である. [2] 材料の変形抵抗変形抵抗は, 外力が付与された時の変形に対する各材料固有

<4D F736F F D B4389F D985F F4B89DB91E88250>

Microsoft Word - 建築研究資料143-1章以外

Math-Aquarium 例題 図形と計量 図形と計量 1 直角三角形と三角比 P 木の先端を P, 根元を Q とする A 地点の目の位置 A' から 木の先端への仰角が 30,A から 7m 離れた AQB=90 と なる B 地点の目の位置 B' から木の先端への仰角が 45 であ るとき,

2018年度 2次数学セレクション(微分と積分)

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように

<4D F736F F D2091E6368FCD92508F838E788E9D82CC8BE98C6094C582F089F082AD4E CC95FB96402E646F63>

Microsoft PowerPoint - H21生物計算化学2.ppt

<4D F736F F D E682568FCD CC82B982F192668BAD9378>

RC 規準 3 条改定案 平成 0 年 3 月 3 日 /4 月 日第 回公開小委員会提出用 5. 前各項の算定のほか, 梁は次の限度に従うこと. () 長期荷重時に正負最大曲げモーメントを受ける部分の引張鉄筋断面積は,0.004 bd または存在応力によって必要とされる量の 4/3 倍のうち, 小

Microsoft Word - 建築研究資料143-1章以外

2011年度 東京工大・数学

Microsoft Word - 中村工大連携教材(最終 ).doc

3 数値解の特性 3.1 CFL 条件 を 前の章では 波動方程式 f x= x0 = f x= x0 t f c x f =0 [1] c f 0 x= x 0 x 0 f x= x0 x 2 x 2 t [2] のように差分化して数値解を求めた ここでは このようにして得られた数値解の性質を 考

Microsoft PowerPoint - 10.pptx

Microsoft Word - 微分入門.doc

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X (

Microsoft PowerPoint - 静定力学講義(6)

集水桝の構造計算(固定版編)V1-正規版.xls

. 軸力作用時における曲げ耐力基本式の算定 ) ここでは破壊包絡線の作成を前提としているので, コンクリートは引張領域を無視した RC 断面時を考える. 圧縮域コンクリートは応力分布は簡易的に, 降伏時は線形分布, 終局時は等価応力ブロック ( 図 -2) を考えることにする. h N ε f e

Microsoft PowerPoint - ‚æ2‘Í.ppt

座標軸以外の直線のまわりの回転体の体積 ( バウムクーヘン分割公式 ) の問題の解答 立体の体積の求め方 図 1 の立体の体積 V を求める方法を考えてみる 図 1 図 1 のように 軸の から までの長さを 等分する そして とおく とすると となる 図 1 のように のときの 軸に垂直な平面 に

<4D F736F F D C082CC8BC882B08B7982D182B982F192668E8E8CB12E646F63>

学習指導要領

2016年度 筑波大・理系数学

線積分.indd

Microsoft Word - NumericalComputation.docx

Microsoft Word - thesis.doc

塑性設計指針正誤表

技術者のための構造力学 5 線形座屈理論概説, 講習会資料目次. はじめに. 基礎式の一覧 6. バネの関係式 6. 柱の関係式 6. はりのたわみの微分方程式 6. 板のたわみの微分方程式 7.5 柱の座屈の微分方程式 7.6 板の座屈の微分方程式 8.7 補剛板の座屈の微分方程式 8. 微分方程

ギリシャ文字の読み方を教えてください

p tn tn したがって, 点 の 座標は p p tn tn tn また, 直線 l と直線 p の交点 の 座標は p p tn p tn よって, 点 の座標 (, ) は p p, tn tn と表され p 4p p 4p 4p tn tn tn より, 点 は放物線 4 p 上を動くこと

Microsoft PowerPoint - 構造設計学_2006

FEM原理講座 (サンプルテキスト)

<4D F736F F F696E74202D AD482DC82C682DF2E B8CDD8AB B83685D>

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ

<8D5C91A28C768E5A8F91836C C768E5A8F A2E786C73>

静的弾性問題の有限要素法解析アルゴリズム

Microsoft PowerPoint - fuseitei_4

2014年度 名古屋大・理系数学

Microsoft PowerPoint - 応用数学8回目.pptx

航空機の運動方程式

前期募集 令和 2 年度山梨大学大学院医工農学総合教育部修士課程工学専攻 入学試験問題 No.1/2 コース等 メカトロニクス工学コース 試験科目 数学 問 1 図 1 は, 原点 O の直交座標系 x,y,z に関して, 線分 OA,OB,OC を 3 辺にもつ平行六面体を示す. ここで, 点 A

学習指導要領

<4D F736F F F696E74202D AB97CD8A E631318FCD5F AB8D5C90AC8EAE816A2E B8CDD8AB B83685D>

点におけるひずみの定義 ( その1)-(ε, ε,γ ) の定義ひずみは 構造物の中で変化しているのが一般的である このために 応力と同様に 構造物内の任意の点で定義できるようにした方がよい また 応力と同様に 一つの点に注目しても ひずみは向きによって値が異なる これらを勘案し あ

<82658C5E95578EAF928C208BAD93788C768E5A8F >

Chap3.key

学習指導要領

Transcription:

応用力学 Ⅱ 講義資料 / 圧縮材 1 圧縮材 圧縮材 (compssion mm) または柱 (column): 軸方向の圧縮力を受ける部材 圧縮材の破壊形態による分類 ( 破壊形態 ) 短柱 (shot column): 比較的太く短い圧縮材 圧潰 (cushing failu) 長柱 (long column) : 比較的細長い圧縮材 座屈 (uckling) 細長比 (slndnss atio): : 柱長 : 最小回転半径 : 柱の最小断面 次モーメント : 柱の断面積 圧縮力がある限界値に達すると 部材軸に直角方向のたわみを生じ それが増加して圧縮力に抵抗できなくなって破壊する現象 圧縮材の荷重状態による分類中心圧縮材 : 軸方向圧縮力の作用線が完全に部材軸に一致している圧縮材偏心圧縮材 (ccntic column): 軸方向圧縮力の作用線が部材軸から偏心している圧縮材はり 柱 (am-column): 圧縮力のみならず 横荷重あるいは両端に曲げモーメントを受ける圧縮材 = F q 中心圧縮材 偏心圧縮材 : 偏心距離 (ccnticit) はり 柱

応用力学 Ⅱ 講義資料 / 圧縮材 短柱 (shot column) 壁 h D 重心 G C 上図のような長方形断面柱に荷重 が 軸方向にのみ だけ偏心して 位置 0, に載荷された場合に生じる 軸断面の直応力 について考える このとき 軸断面の応力は次の式で与えられる N (1) ここで 3 h N,, h, 1 だから 1 1 1 3 h h h いま の点について考えると 中立軸中立軸 中立軸 h 0 6 6 6 1 1 h h 1 6 したがって のとき 0 全面圧縮 6 のとき 0 限界状態 6 のとき 0 部分的引張 6 この議論を 任意形状の断面に対して 荷重 が任意の位置, は 次のように与えられる その場合 断面の直応力, N ここに 回転半径 1, 1 である, に載荷された場合に拡張する ()

次に 右図のような場合の中立軸の方程式を求めると 中立軸の定義は 1 0 (3) ここで 切片, 切片について考えると 0 のとき 切片 n,0 は n (4) n 0のとき 切片 0,n は n (4) 逆に 切片と 切片 n, nが与えられるとき 偏心荷重の載荷位置, は 次のように表される n 切片には次のような性質がある n n (5) n const tan. (6) 応用力学 Ⅱ 講義資料 / 圧縮材 3, 0であるから n G n α n 中立軸 さらに 議論を断面全体に拡張する 中立軸右図のように 横断面に接するような中立軸 Ⅰ-Ⅰを考える Ⅱ Ⅲ と その, 切片 n, nが与えられるので (5) 式より 荷重 の載荷位置 1, は決定される Ⅰ 3 G このようなにして横断面に中立軸が接するような荷重載荷位 Ⅰ 置を横断面全体にわたって求めれば 右図のような閉曲線の包 1 絡線が得られる この閉曲線を核線 (co lin) といい その内 部の領域を断面の核 (co of sction) 核線上の点を核点(co Ⅱ Ⅲ point) という この断面の核内に軸方向圧縮力が作用するときには 横断面内に引張応力が生じない このため 断面の核を知ることは 引張に弱い材料 ( コンクリート, 石, 煉瓦など ) を用いて構造物を構築する際に重要となる C

応用力学 Ⅱ 講義資料 / 圧縮材 4 長柱 (long column) 等断面中心圧縮材 断面寸法が部材長に比して充分に小さい直線部材に 軸方向圧縮力が部材軸に沿って作用する場合 その部材に特有なある圧縮応力度に達すると 部材は突然側方に湾曲し始め もはや圧縮力の増加に抵抗できなくなる この種の現象を座屈 (uckling) という 座屈荷重 (uckling load): 座屈が生じる限界の圧縮力座屈荷重は 次の要因に左右される 1 材料の弾性係数 横断面の形状 寸法 3 部材長 4 支持条件 5 初期不整 ( 避けられない荷重の偏心 初期たわみ 残留応力など ) 座屈応力度 (uckling stss): 座屈荷重を部材の断面積で除した限界の圧縮応力度弾性座屈 (lastic uckling): 座屈応力度が比例限度以下の場合の座屈弾塑性座屈 (lasto-plastic uckling): 座屈応力度が比例限界を超える場合の座屈一般に構造物を構成する圧縮材に座屈現象が生ずると それが直接的原因となって構造物全体が崩壊することがあるので 圧縮材の設計にあたっては 座屈に対する安全性を保証することが重要 初期不整が全く存在しない理想状態の等断面中心圧縮材の弾性座屈について考える このような座屈については Lonhad ul が基礎微分方程式を誘導し 種々の支持条件に対して座屈荷重の解を与えた 右図のように 部材長, 曲げ剛性 の中心圧縮材に軸方向圧縮 力 が作用し それが 0 から次第に増加して座屈荷重に達すると 圧縮材にたわみが生ずる いま 一端 から距離 にある点においてたわみ を生じたとすると その断面には圧縮力 により なる曲げモーメントが曲げ剛性 : 誘発される この を曲げ部材のたわみの基礎微分方程式に代入す ると 次のようになる d d 曲げモーメント (1) この (1) 式を変形すると 次式に示すような座屈して弾性変形を生 じた中心圧縮材のたわみ に関する同次微分方程式が得られる d d d 0 o 0 () d d d この微分方程式 () の一般解は 次のようになる sincos (3) ここに (4) 一般解 (3) に含まれる積分定数, の中の 1 つは支持条件により決まる 補足参照 次頁以降に代表的な各種の支持条件に対する解について述べる

応用力学 Ⅱ 講義資料 / 圧縮材 5 (1) 両端回転 ( 単純 ) 支持 両端回転 ( 単純 ) 支持の場合の境界条件は 次の通りである (a) 0 のとき 0 () のとき 0 境界条件 (a) より 0 境界条件 () より sin 0 ここで 0 とすると 0 となって無意味となるから 0 でなければならず 結局 次の 式が満足されなければならないことになる 座屈条件式 (uckling chaactistic quation) sin 0 n n1,,3, (5) 式 (5) を用いると 座屈時のたわみ曲線の式は次のようになる sin n (6) 式 (6) から明らかなように 弾性座屈時のたわみ曲線は下図のように正弦波形を呈する 式 (6) の n 値を 1,,3,4 というようにとると それに応じてそれぞれ左から正弦半波が 1 つ, つ,3 つ,4 つ含まれるような形状のたわみ曲線が現れる 座屈によって生ずるこのようなたわみ波形を座屈モード (uckling mod) という 次に 式 (5) と式 (4) から を消去し について解くと 第 n 次座屈モードを生ずるときの弾性座屈荷重 n が次のように得られる n n n n (7) 実際に 第 n 次座屈モードを生成するためには ( n 1 ) 個の反曲点に たわみが生じないように拘束 を加えておかなければならない 中間に何らの拘束を加えることなく 圧縮力 を 0 から漸増する場合には n 1 に対応する最小の座屈荷重 (8) で 下図の最左側に示すような正弦半波の座屈モードで座屈する このとき 式 (8) で与えられる 値 を ul の座屈荷重という ある軸に関して断面 次モーメントが最小あるいは最大となるとき この軸を弱軸あるいは強軸という 弱軸回りに曲がって座屈するとき ul の座屈荷重は最小値をとる 1 3 4 1 3 4 n=1 n= n=3 n=4 1 4 3 9 4 16

応用力学 Ⅱ 講義資料 / 圧縮材 6 ul の座屈荷重 を圧縮材の断面積 で除した応力度 を ul 座屈応力度という すると ここに は 断面回転半径である そこで 次式により細長比 (slndnss atio): を定義する (9) 式 (9) を導入すれば ul 座屈応力度は次式で表される (10) 式 (10) から明らかなように ul 座屈応力度 は細長比 の 乗に逆比例する そこで を に対してプロットすれば 下図の曲線 CD のように描かれる 式 (10) は弾性座屈理論により得られた ものであるから は比例限度 p 以下の場合においてのみ有効である したがって 下図において区間 C のみが有効である もし が p より大きくなると 断面は弾塑性状態になるので曲げ剛性 より低下している その ため 一般に CD 曲線より低い C 曲線で表される弾塑性座屈応力度 cp で座屈する このように座屈応力度が点 C で代表されるときの細長比 p は 弾性座屈と弾塑性座屈の境界になっ ている そのような意味で p を限界細長比 (citical slndnss atio) という p の値は 式 (10) において = p とおいたときのλ 値として得られる すなわち p p p p (11) となる D 降伏点 : 比例限度 : p cp C 短柱 O 中間柱 p 長柱 弾塑性座屈 弾性座屈 補足 弾性座屈時のたわみ曲線の一般解 (3) に含まれる積分定数, のうち 1 つしか支持条件より決定で 1 きなかったのは たわみ曲線の曲率 として 近似値 1 d d を用いたことに起因する もし 曲率として厳密式を用いて 式 () の代わりに 右式を用いれば d 弾性座屈時のたわみ曲線の形状を一意的に確定することができる d 0 3 右式を用いて求めた座屈形状をエラスチカ (lastica) という d 1 d

応用力学 Ⅱ 講義資料 / 圧縮材 7 () 一端固定, 他端自由 右図に示すように 部材長, 曲げ剛性 の一端固定 ( 点 ), 他端自由 ( 点 ) の圧縮材 ( 長柱 ) において 弾性座屈が生ずるときの自由端 のたわみを とすると 右下図より 任意点 における曲げモーメント は 次のように表される 0 よって 弾性座屈時のたわみ の基礎微分方程式は d d のように表され これを とおいて整理すると 次のよう な非同次微分方程式が得られる d (1) d この微分方程式 (1) の一般解は 次のようになる sincos (13) 一端固定, 他端自由の場合の境界条件は 次の通りである (a) 0 のとき 0 () 0 のとき d d 0 (c) のとき 境界条件 (a) より 境界条件 () より 0 これらを一般解の式 (13) に代入すると ( 1 cos ) 境界条件 (c) より ( 1cos ) cos 0 ここで 0 であるから 座屈条件式は次のようになる n 1 cos 0 n 1,,3, (14) したがって 座屈時のたわみ曲線の式は次のようになる n 1 1cos (15) よって 最小の座屈荷重 ( n 1のとき ) は 次のようになる 4 δ (16) 曲げモーメント 曲げ剛性 : δ 曲げモーメントの釣合 0

応用力学 Ⅱ 講義資料 / 圧縮材 8 (3) 一端固定, 他端回転 ( 単純 ) 支持 右図に示す部材長, 曲げ剛性 の一端固定 ( 点 ), 他端回転支持 ( 点 ) の長柱では 固定端 に固定端モーメント が生じることになる このとき モーメントの釣合条件が成立するためには 柱の両端に大きさの相等しい水平力 がそれぞれ図示の方向に作用しなければならない さて 右下図のように考えて 任意の位置 での曲げモーメント を求 めると 次のように表される よって 弾性座屈時のたわみ の基礎微分方程式は 次のようになる d d d d ここで とおくと 次のような非同次微分方程式が得られる d (17) d この微分方程式 (17) の一般解は 次の式で与えられる sin cos (18) 曲げモーメントの釣合一端固定, 他端回転支持の場合の境界条件は 次の通りである (a) 0 のとき 0 () 0 のとき d d 0 (c) のとき 0 境界条件 () より d cossin だから 0 d sin 境界条件 (c) より sincos0 tan cos これらを一般解の式 (18) に代入すると sin tancos sintancos 境界条件 (a) より tan 0 ここで 0 であるから 座屈条件式は次のようになる tan 4.4934095,7.755,10.9041,14.066194, (19) したがって 座屈時のたわみ曲線の式は次のようになる sintan 1cos o sin cos (0) よって 最小の座屈荷重 は 次のようになる 4 4934095 01907893.. 0.19 0.7 (1)

応用力学 Ⅱ 講義資料 / 圧縮材 9 (4) 両端固定 右図に示すような部材長, 曲げ剛性 の両端固定の長柱では 弾性座屈時に固定端, に固定端モーメント が生じることになる さて 右下図のように考えて 任意の位置 での曲げモーメント を求める と 次のように表される よって 弾性座屈時のたわみ の基礎微分方程式は 次のようになる d d d d ここで とおくと 次のような非同次微分方程式が得られる d () d この微分方程式 () の一般解は 次の式で与えられる sin cos (3) 両端固定の場合の境界条件は 次の通りである (a) 0 のとき 0 () 0 のとき d d 0 (c) のとき 0 (d) のとき d d 0 曲げモーメントの釣合 境界条件 (a) より sin0cos0 0 境界条件 () より d cossin だから cos0 sin 0 0 0 d これらを一般解の式 (3) に代入すると 1cosだから d sin d 境界条件 (c) より 1cos 0 境界条件 (d) より sin 0 ここで 0, 0であるから 座屈条件式は次のようになる 1cos 0 かつ sin 0 n n1,,3, (4) すなわち したがって 座屈時のたわみ曲線の式は次のようになる n 1cos よって 最小の座屈荷重 ( n 1のとき ) は 次のようになる 4 4 (5) (6)

応用力学 Ⅱ 講義資料 / 圧縮材 10 一般に 任意の支持条件を有する中心圧縮材の弾性座屈荷重 が 同一断面を有し 長さ の両端回転 ( 単純 ) 支持中心圧縮材の ul 座屈荷重に等しい場合 この長さ をその支持条件を有する中心圧縮材の有効座屈長 (ffctiv uckling lngth) または換算座屈長 (modifid uckling lngth) という 有効座屈長を用いると いかなる支持条件の中心圧縮材の弾性座屈荷重 も 次のような両端回転 ( 単純 ) 支持の中心圧縮材に対する式 (8) と同型の次式で与えられる (7) 各種支持条件を有する中心圧縮材の有効座屈長 は 部材長を とするとき の形で表される この は 中心圧縮材の両端の支持条件のみによって定まる係数であり これを換算係数という 各種支持条件を有する中心圧縮材の換算係数 と有効座屈長 は 次のようになる (1) 両端回転 ( 単純 ) 支持 1 () 一端固定 他端自由 (8) (3) 一端固定 他端回転 ( 単純 ) 支持 0.7 0.7 (4) 両端固定 0.5 0.5 さらに 式 (7) で与えられる弾性座屈荷重 を断面積 で除して 各種支持条件の中心圧縮材の弾性座屈応力度 を求めると 式 (10) と同型の次式で与えられる (9) ここに この を有効細長比 (ffctiv slndnss atio) という (30)

各種支持条件を有する中心圧縮材の弾性座屈モード 応用力学 Ⅱ 講義資料 / 圧縮材 11 座屈モード ( 両端回転支持 ) 曲げ剛性 : 曲げモーメント 1 次 次 3 次 4 次 座屈モード ( 一端固定 他端自由 ) δ 曲げモーメント 曲げ剛性 : δ 曲げモーメントの釣合 0 1 次 次 3 次 4 次 座屈モード ( 一端固定 他端回転 ) 曲げモーメントの釣合 1 次 次 3 次 4 次 座屈モード ( 両端固定 ) 曲げモーメントの釣合 1 次 次 3 次 4 次

応用力学 Ⅱ 講義資料 / 圧縮材 1 各種支持条件を有する中心圧縮材の弾性座屈 支持条件 両端 回転 一端固定 他端自由 一端固定 他端回転 両端 固定 弾性座屈時のたわみの微分方程式 d 0 d d d d d ( ) d d 境界条件 0 as 0 0 as 0 as 0 d d 0 as 0 as 0 as 0 d d 0 as 0 0 as 0 as 0 d d 0 as 0 0 as d d 0 as 座屈条件式 sin 0 i.. n ( n 13,,, ) cos 0 i.. n 1 ( n 1,,3, ) tan 1 cos 0 and sin 0 i.. n ( n 13,,, ) 次数 座屈モード弾性座屈時のたわみ曲線式座屈荷重 1 1 3 3 3 4 4 4 1 1 05. 15. 3 3 5. 4 4 35. 1 1 4. 4934095 7. 755 3 3 10. 9041 4 4 14. 066194 1 1 4 3 3 6 4 4 8 n sin (n 1) 1 cos sin tan ( 1cos ) sin ( ) ( ) cos n 1 cos 4 ( ) 019. (. 07) 4 (. 05) 有効座屈長 ( 換算係数 ) ( 1 ) ( ) 07. ( 07. ) 05. ( 05. )