<905694BD899E834A815B E786C7362>

Similar documents
<905694BD899E834A815B E786C7362>

練習問題

官能基の酸化レベルと官能基相互変換 還元 酸化 炭化水素 アルコール アルデヒド, ケトン カルボン酸 炭酸 H R R' H H R' R OH H R' R OR'' H R' R Br H R' R NH 2 H R' R SR' R" O R R' RO OR R R' アセタール RS S

Microsoft Word - 化学系演習 aG.docx

Microsoft Word - 化学系演習 aG.docx

Microsoft Word -

Microsoft Word - 問題解答.doc

有機化合物の反応9(2018)講義用.ppt

スライド 1

有機合成化学

7.6.2 カルボン酸の合成 è 酸化による合成 { 第一アルコールまたはアルデヒドの酸化 R Ä C 2 Ä! R Ä C Ä! R Ä C (7.104) [ 例 ]1-プロパノールを硫酸酸性の条件で二クロム酸カリウムを用いて酸化する 3C 3 C 2 C 2 + 2Cr 2 2Ä

Microsoft Word

2004 年度センター化学 ⅠB p1 第 1 問問 1 a 水素結合 X HLY X,Y= F,O,N ( ) この形をもつ分子は 5 NH 3 である 1 5 b 昇華性の物質 ドライアイス CO 2, ヨウ素 I 2, ナフタレン 2 3 c 総電子数 = ( 原子番号 ) d CH 4 :6

Microsoft PowerPoint - プレゼンテーション1

有機合成化学

電子配置と価電子 P H 2He 第 4 回化学概論 3Li 4Be 5B 6C 7N 8O 9F 10Ne 周期表と元素イオン 11Na 12Mg 13Al 14Si 15P 16S 17Cl 18Ar 価電子数 陽

<4D F736F F F696E74202D C8B4089BB8D8795A882CC94BD899E A>

2019 年度大学入試センター試験解説 化学 第 1 問問 1 a 塩化カリウムは, カリウムイオン K + と塩化物イオン Cl - のイオン結合のみを含む物質であり, 共有結合を含まない ( 答 ) 1 1 b 黒鉛の結晶中では, 各炭素原子の 4 つの価電子のうち 3 つが隣り合う他の原子との

17handout01

酸化的付加 (oxidative addition)

Microsoft PowerPoint - 有機元素化学特論11回配布用.pptx

有機化合物の反応10(2018)講義用.ppt

Taro-化学3 酸塩基 最新版

<576F F202D F94BD899E8EAE82CC8DEC82E895FB5F31325F352E6C7770>

二酸化炭素を用いる触媒的炭素 炭素結合生成反応の開発 京都大学工学研究科物質エネルギー化学専攻辻康之 1. はじめに二酸化炭素は炭素の最も高酸化状態の化合物であり, 熱力学的にも速度論的にも反応性の乏しい物質である この二酸化炭素を炭素源として触媒的に有用物質の合成に利用することが出来れば, 次世代

CHEMISTRY: ART, SCIENCE, FUN THEORETICAL EXAMINATION ANSWER SHEETS JULY 20, 2007 MOSCOW, RUSSIA Official version team of Japan.

2011年度 化学1(物理学科)

<4D F736F F D2093C58C8088C38B4C A F94708AFC96405F2E646F63>

第 11 回化学概論 酸化と還元 P63 酸化還元反応 酸化数 酸化剤 還元剤 金属のイオン化傾向 酸化される = 酸素と化合する = 水素を奪われる = 電子を失う = 酸化数が増加する 還元される = 水素と化合する = 酸素を奪われる = 電子を得る = 酸化数が減少する 銅の酸化酸化銅の還元

酸素を含む化合物

木村の有機化学小ネタ 糖の構造 単糖類の鎖状構造と環状構造 1.D と L について D-グルコースとか L-アラニンの D,L の意味について説明する 1953 年右旋性 ( 偏光面を右に曲げる ) をもつグリセルアルデヒドの立体配置が

Chap. 1 NMR

Microsoft Word - answer2013.doc


2014 年度大学入試センター試験解説 化学 Ⅰ 第 1 問物質の構成 1 問 1 a 1 g に含まれる分子 ( 分子量 M) の数は, アボガドロ定数を N A /mol とすると M N A 個 と表すことができる よって, 分子量 M が最も小さい分子の分子数が最も多い 分 子量は, 1 H

Word Pro - matome_7_酸と塩基.lwp

Microsoft Word - H29統合版.doc

2017 年度一般入試前期 A 日程 ( 1 月 23 日実施 ) 化学問題 (63 ページ 74 ページ ) 問題は大問 Ⅰ Ⅳ までありますが 一部 他科目との共通問題となっています 大問 Ⅰ は 化学基礎 + 生物基礎 の大問 Ⅰ と共通の問題です 大問 Ⅱ は 化学基礎 + 生物基礎 の大問

Microsoft PowerPoint - D.酸塩基(2)


無電解析出

必要があれば, 次の数値を使いなさい 原子量 O= 標準状態で mol の気体が占める体積. L 問題文中の体積の単位記号 L は, リットルを表す Ⅰ 次の問いに答えなさい 問 飲料水の容器であるペットボトルに使われているプラスチックを, 次の中から つ選び, 番号をマークしなさい ポリエチレン

PowerPoint プレゼンテーション

2 Zn Zn + MnO 2 () 2 O 2 2 H2 O + O 2 O 2 MnO 2 2 KClO 3 2 KCl + 3 O 2 O 3 or 3 O 2 2 O 3 N 2 () NH 4 NO 2 2 O + N 2 ( ) MnO HCl Mn O + CaCl(ClO

品目 1 四アルキル鉛及びこれを含有する製剤 (1) 酸化隔離法多量の次亜塩素酸塩水溶液を加えて分解させたのち 消石灰 ソーダ灰等を加えて処理し 沈殿濾過し更にセメントを加えて固化し 溶出試験を行い 溶出量が判定基準以下であることを確認して埋立処分する (2) 燃焼隔離法アフターバーナー及びスクラバ

高 1 化学冬期課題試験 1 月 11 日 ( 水 ) 実施 [1] 以下の問題に答えよ 1)200g 溶液中に溶質が20g 溶けている この溶液の質量 % はいくらか ( 整数 ) 2)200g 溶媒中に溶質が20g 溶けている この溶液の質量 % はいくらか ( 有効数字 2 桁 ) 3) 同じ

カールフィッシャー法と濃度計算問題

医薬品創製化学特論_1.pptx

新技術説明会 様式例

EC No. 解糖系 エタノール発酵系酵素 基質 反応様式 反応 ph 生成物 反応温度 温度安定性 Alcohol dehydrogenase YK エナントアルデヒド ( アルデヒド ) 酸化還元反応 (NADPH) 1ヘプタノール ( アルコール ) ~85 85 で 1 時

香りがナビゲートする 有機化学 理学博士長谷川登志夫著 コロナ社 コロナ社

Taro-化学5 無機化学 最新版

化学 1( 応用生物 生命健康科 現代教育学部 ) ( 解答番号 1 ~ 29 ) Ⅰ 化学結合に関する ⑴~⑶ の文章を読み, 下の問い ( 問 1~5) に答えよ ⑴ 塩化ナトリウム中では, ナトリウムイオン Na + と塩化物イオン Cl - が静電気的な引力で結び ついている このような陽イ

4 1 Ampère 4 2 Ampere 31

有機合成化学

<4D F736F F D2089BB8A778AEE E631358D E5F89BB8AD28CB3>

1/120 別表第 1(6 8 及び10 関係 ) 放射性物質の種類が明らかで かつ 一種類である場合の放射線業務従事者の呼吸する空気中の放射性物質の濃度限度等 添付 第一欄第二欄第三欄第四欄第五欄第六欄 放射性物質の種類 吸入摂取した 経口摂取した 放射線業 周辺監視 周辺監視 場合の実効線 場合

Ⅹ-4 標準液の調製と標定 Ⅹ-4-1 酸標準液 塩酸または硫酸 * 加熱を要するときは硫酸がよい ( 塩酸は揮発性 ) * 硫酸塩を沈殿するようなとき (Ca 2+,Sr 2+,Ba 2+,Pb 2+ ) は塩酸を用いる * 標定の一次標準物質 : 炭酸ナトリウム Na 2 CO 3 (105.9

木村の化学重要問題集 2014 解答編解説補充 脂肪族化合物 ( 有機化合物の分類を含む ) 202. 代表的なアルデヒドとカルボン酸 フェーリング反応 銀鏡反応 : アルデヒド 還元糖の検出反応 1. フェーリング反応 フェーリン


品目 1 エチルパラニトロフェニルチオノベンゼンホスホネイト ( 別名 EPN) 及びこれを含有する製剤エチルパラニトロフェニルチオノベンゼンホスホネイト (EPN) (1) 燃焼法 ( ア ) 木粉 ( おが屑 ) 等に吸収させてアフターバーナー及びスクラバーを具備した焼却炉で焼却する ( イ )

PowerPoint プレゼンテーション

Microsoft Word - 化学構造式集 doc

SO の場合 Leis の酸塩基説 ( 非プロトン性溶媒までも摘要可 一般化 ) B + B の化学反応の酸と塩基 SO + + SO SO + + SO 酸 塩基 酸 塩基 SO は酸にも塩基にもなっている 酸の強さ 酸が強い = 塩基へプロトンを供与する能力が大きい 強酸 ( 優れたプロトン供与

平成 24 年度維持管理記録 ( 更新日平成 25 年 4 月 26 日 ) 1. ごみ焼却処理施設 (1) 可燃ごみ焼却量項目単位年度合計 4 月 5 月 6 月 7 月 8 月 9 月 10 月 11 月 12 月 1 月 2 月 3 月 A B 炉合計焼却量 t 33, ,972

(Microsoft Word - 409M327 \217C\230_)

1. 構造式ファイルの作成について 平成 31 年度からの少量新規化学物質の申出には電子データ ( ML ファイル形式 ) の提出が必要となります 本講演資料における 構造式ファイル は ML ファイルのことを指しています 経済産業省推奨構造式描画ソフトウェア以下のソフトウェアを用いて ML ファイ

木村の化学重要問題集 015 解答編解説補充 第 4 周期の遷移元素がとる酸化数酸化数 Sc Ti 4 V 4 5 Cr Mn Fe Co 4 5 Ni 4 Cu 1 d 軌道と 4s 軌道のエネルギー差がわずかなので, 酸化により抜けるのは d 軌道と

キレート滴定

第二節

応用有機化学基礎論

酢酸エチルの合成

有機化学I 小テスト4 回答                  担当:石川勇人

Untitled

化学基礎 化学 化学基礎 化学 ( 全問必答 ) 第 1 問次の各問い ( 問 1~ 6 ) に答えよ 解答番号 1 ~ 8 ( 配点 25) 問 1 次の a ~ c に当てはまるものを, それぞれの解答群 1~4 のうちから一つずつ 選べ a Al 3+ と物質量の比 2 :3 で化合物をつくる

研究成果報告書(基金分)

第 14 章 l 到 達 目 標 l 共 役 ジエンの 性 質 及 びアルケンとの 相 違 点 に ついて 説 明 できる l 化 学 反 応 で 用 いられる 速 度 支 配 熱 力 学 支 配 という 用 語 の 意 味 を 説 明 できる l Diels-Alder 反 応 の 特 徴 を 具

分析化学講義資料 ( 容量分析 ) 林譲 (Lin, Rang) 容量分析概要容量分析法 (volumetric analysis) は滴定分析法 (titrimetric analysis) とも呼ばれている この方法は, フラスコ中の試料液の成分とビュレットに入れた濃度既知の標準液 (stand

無機化学 II 2018 年度期末試験 1. 窒素を含む化合物にヒドラジンと呼ばれる化合物 (N2H4, 右図 ) がある. この分子に関し, 以下の問いに答えよ.( 計 9 点 ) (1) N2 分子が 1 mol と H2 分子が 2 mol の状態と, ヒドラジン 1 mol となっている状態

RAA-05(201604)MRA対応製品ver6

(Microsoft PowerPoint - \211\273\212w\225\275\215t.ppt)

(Microsoft Word - Q35Jfin_\211\374\202Q_.doc)

Microsoft Word - æœ•æŒ°ã…Łã……ç´€éŒ¢é•£ã…‹ã…flㅅ㇯ㇹ2019å¹´3朋呷.docx

Microsoft PowerPoint - 第3回技術講演会 修正 [互換モード]

■ 質量分析計の原理 ■

303合成の定義事例集[読み取り専用]

Problem P5

物理化学I-第12回(13).ppt

内容 1. 化学結合 2. 種類と特性 3. 反応の種類 4. 反応機構 5. 高分子材料の特性 6. 高分子合成 7. 有機構造解析

フォルハルト法 NH SCN の標準液または KSCN の標準液を用い,Ag または Hg を直接沈殿滴定する方法 および Cl, Br, I, CN, 試料溶液に Fe SCN, S 2 を指示薬として加える 例 : Cl の逆滴定による定量 などを逆滴定する方法をいう Fe を加えた試料液に硝酸

Microsoft PowerPoint - presentation2007_04_ComplexFormation.ppt

田耕氏 ) 永 学位の種類 薬 なが 186 ),7学博たいち士 学位記番号論 \ 薬 - 一博.A. 第 1 2 号 学位授与の日付昭和,39 年 9 月 2 9 日 学位授与 oj 要件 学位論文題目 学位規則第 5 粂第 2 項該当 チオヒドロキザム酸の金属キレートに関する研究 ( 主査 )

イオン化傾向 イオン化傾向 1 金属の単体はいずれも酸化されて陽イオンになりうる 金属のイオンのなりやすさを表したものをイオン化傾向という イオン化傾向 K Ca Na Mg Al Zn Fe Ni Sn Pb (H) Cu Hg Ag Pt Au e- を出してイオンになりやすい酸化されやすい イ

平成 2 9 年 3 月 2 8 日 公立大学法人首都大学東京科学技術振興機構 (JST) 高機能な導電性ポリマーの精密合成法を開発 ~ 有機エレクトロニクスの発展に貢献する光機能材料の開発に期待 ~ ポイント π( パイ ) 共役ポリマーの特性制御には 末端に特定の官能基を導入することが重要だが

Microsoft PowerPoint - 有機基礎1_14_7.ppt [互換モード]

Untitled

Site-Selective Radical C-H/C-C Conversion via Decatungstate Photocatalysis

PowerPoint プレゼンテーション

第35回有機金属若手の会 夏の学校を終えて

鎖状立体制御概論 ここでは鎖状立体制御の考え方の基本をざっくりとまとめておきます 有機化学では 考え方の習得 は 図を書いて他人に説明できる ことを意味しますので 図を何回も書くことが習得の近道となります 習得 はつまるところ 体得 です 有機化学が 好き なだけではなく 上達する ことや 研究でき

Transcription:

薬剤師 ( ケミスト ) になるための 99 の反応 fumitheory.com アルケン アルキン 1 水の酸触媒付加 2 オキシ水銀化反応 ( オキシマーキュレーション ) 3 ヒドロホウ素化反応 ( ハイト ロホ レーション ) 4HBrのラジカル付加 5 ハロゲン化水素 HX の付加 (X=Cl, Br, I) 6 ハロゲンX 2 の付加 (Ⅹ=Cl,Br) 7 ハロヒドリンとエポキシドの合成 8 過酸によるエポキシドの合成 9オゾン酸化 10 四酸化オスミウム酸化 11 塩基性過マンガン酸カリウム酸化 12 酸性過マンガン酸カリウム酸化 13 接触還元と加水素分解 14 ブタジエンの共役付加 15 DielsAlder( シ ールス アルタ ー ) 反応 16 アンチ脱離 1ブロモー 2メチルシクロヘキサンのE2 反応 17 Hofmann( ホフマン ) 脱離 18 水のアルキンへの付加

ハロゲン化物 19 ハロゲン化水素 HXのアルキンへの付加 (Ⅹ=Cl,Br,I ) 20 ハロゲンX 2 のアルキンへの付加 (Ⅹ=Cl,Br) 21 Lindler( リント ラー ) 還元 22 アルキンの金属還元 ( 液アン/ リチウム 還元 ) 23 アセチリドアニオンのアルキル化 24 ハロゲン化水素の二重脱離 アルキンの合成 25 ハロゲン化合物の反応 酸性でのS N 1とE1の競合 26 ハロゲン化合物の反応 塩基性でのS N 2とE2の競合 27 Williamson( ウィリアムソン ) のエーテル合成 28 Williamson( ウィリアムソン ) のエーテル合成の適用例 29 マロン酸エステル合成 30 アセト酢酸エステル合成 31 ナトリウムアジドによるアミン合成 32 Gabriel( カ フ リエル ) アミン合成 33 メタンのラジカル塩素化 34 ベンジル位 アリル位のラジカル臭素化 35 アルデヒドとケトンの酸触媒ハロゲン化 36 アルデヒドとケトンの塩基触媒ハロゲン化 37 アルコールと SCl 2, PBr 3 の反応 38 カルボン酸とSCl 2,PBr 3 の反応 39 アルコールのHXによるハロゲン化反応

アルコール エーテル 40 アルコールの硫酸触媒による脱水反応エポキシド 41 エーテルの強酸による開裂 42 エポキシドの水 アルコールによる開環 43 エポキシドのアミン グリニャール試薬による開環 44 Jones( シ ョーンス ) 酸化 45 PCC 酸化 46 過ヨウ素酸酸化 ジオールの開裂芳香族化合物 47 ベンゼン環の塩素化 臭素化 ( 芳香族求電子置換 ) 48 ベンゼン環のニトロ化 スルホン化 ( 芳香族求電子置換 ) 49 FriedelCrafts( フリーテ ル クラフツ ) 反応 ( 芳香族求電子置換 ) 50 ピリジン ピロールの臭素化 ( 芳香族求電子置換 ) 51 ジアゾニウムカップリング ( 芳香族求電子置換反応 ) 52 Sandmyer( サ ント マイヤー ) 反応 ( ラジカル置換反応 ) 53 ベンジル位の KMn 4 酸化 54 白金触媒による芳香環の接触還元 55 Birch( ハ ーチ ) 還元 芳香環の 液アン / リチウム 還元 56 WolfKishner( ウォルフ キシュナー ) 還元と Clemmensen( クレメンセ ン ) 還元 57 芳香族ニトロ基の還元カルボニル化合物 58 アセタール チオアセタールの合成 59 イミン エナミンの合成 60 アルデヒド, ケトンの還元的アミノ化

カルボン酸誘導体 61 アルドール反応 62 アルドール縮合 63 Wittig( ウィッティッヒ ) 反応 64 Michael( マイケル ) 反応とRobinson( ロヒ ンソン ) 環化反応 65 BayerVilliger( ハ イヤー ヒ リカ ー ) 転位 66 Beckmann( ヘ ックマン ) 転位 67 Grignard( ク リニャール ) 試薬の合成と水との反応 68 Grignard( ク リニャール ) 試薬のカルボニル化合物との反応 69 Grignard( ク リニャール ) 試薬とエステル ニトリルの反応 70 LAH 還元 71 SBH 還元 72 求核アシル置換によるアシル化 Nアシル化 73 Fischer( フィッシャー ) のエステル化 74 シアン化による増炭反応と加水分解によるカルボン酸合成 75 第一級アミドの脱水によるニトリルの合成 76 Claisen( クライセ ン ) 縮合 77 Dieckmann( テ ィックマン ) 縮合 78 Hofmann( ホフマン ) 転位 著作者古川淳 2018 fkj

H 2 C CH 2 H 2, H 3 P 4 250 CH 2 H 2, H 2 S 4

1 水の酸触媒付加 H H 2, H 3 P 4 H 250 H 2, H 2 S 4 ( エタノールの工業的製造法 ) methylenecyclopentane ( マルコフニコフ付加 ) マルコフニコフ則 = 金持ちが儲かる法則. H を金貨と思えば 二枚の金貨を持つ C は更に一枚の金貨を得ている. 持てる人は与えられ いよいよ豊かならん.( マタイ伝 13 章 )

1) Hg(Ac) 2, H 2 2) NaBH 4

2 オキシ水銀化反応 ( オキシマーキュレーション ) H 2 1) Hg(Ac) 2, H 2 2) NaBH 4 マルコフニコフ則に従う. 環状水銀中間体はブロモニウムイオンに類似. 反応系に存在する求核種 H 2,RH,AcH が付加する.

1) BH 3 2) H 2 2, NaH

3 ヒドロホウ素化反応 ( ハイト ロホ レーション ) 1) BH 2) H 3 2 2, NaH H [1,2] 移動 H アンチ マルコフニコフ則に従う重要反応. [1,2] 移動 : 移動する基に関して立体保持.

HBr, (PhC) 2

4 HBr のラジカル付加 B HBr, (PhC) 2 AntiMarkovnikov product アンチマルコフニコフでラジカル付加する HX は HBr のみ.

H 3 C CH 2 HBr H

5 ハロゲン化水素 HX の付加 (X=Cl, Br, I) H+ Br H 3 C CH 2 HBr H 3 C + CH 3 H H 3 C CH 3 H H Br マルコフニコフ則に従う. 反応性は酸の強さと同順 (HF<HCl<HBr<HI). H + は 3 員環中間体を作る能力がなく X 2 の様にアンチ付加とは限らない.

H 3 C H H CH 3 Br 2

6 ハロゲン X 2 の付加 (Ⅹ=Cl,Br) bromonium ion S R trans Br アンチ付加 meso 反応性は電気陰性度と同順 (F 2 >Cl 2 >Br 2 >I 2 ).Cl 2 と Br 2 の反応が実用的. Cl,Br は 3 員環を作る能力があるために立体的にアンチ付加する.

Cl 2 H 2 NaH H 2 NBS H 2, DMS

7 ハロヒドリンとエポキシドの合成 H 2 Cl 2 H 2 NaH H 2 クロロニウムイオン クロロヒドリン NBS H 2, DMS ブロモヒドリン 3 員環中間体を攻撃するのは大量に存在する H 2 である. NBS は Br 2 をゆっくりと発生する. DMS は溶解補助.

H Cl

8 過酸によるエポキシドの合成 H mcpba Cl H H + Cl H 安息香酸

3 (CH 3 ) 2 S 1) 3 2) Zn/CH 3 CH +

9 オゾン酸化 3 オゾニド (CH 3 ) 2 S 1) 3 2) Zn/CH 3 CH Zn/AcH の代わりに (CH 3 ) 2 S を使うのが簡便である. また NaBH 4 で還元すればアルコールが生成する.

CH 3 s 4 CH 3 Py NaHS 3, H 2

10 四酸化オスミウム酸化 CH 3 CH 3 cis 付加 s Py CH 3 CH 3 s NaHS 3, H 2 CH 3 H H CH 3 シン付加 NaHS 3 ( 還元剤 ) や NaCl 3 ( 酸化剤 ) がよく使われる

KMn 4, H

11 塩基性過マンガン酸カリウム酸化 KMn 4, H + Mn 2 norbornene Mn H H シン付加.

KMn 4 H + KMn 4 H +

12 酸性過マンガン酸カリウム酸化 KMn 4 + Mn 2+ H + KMn 4 H + + Mn 2+ isopropylidenecyclohexanone

CH 3 H 2, Pt 2, CH 3 C 2 H CH 3 H H 2, Pt NHCH 3

13 接触還元と加水素分解 H 2, Pt 2, CH 3 C 2 H ( 接触還元 ) H 2, Pt S ( 加水素分解 ) エフェト リン d アンフェタミン Pt 2 は Pt に還元される. Pd ー C( 活性炭にまぶした Pd) も使われる. 接触還元では水素がシン付加する. ベンジル位の C 切断など一重結合の切断を加水素分解という.

( より不安定な遷移状態 ) + HBr(1 mol) H + ( より安定な遷移状態 ) Br Br より安定な生成物高温での主生成物熱力学的支配による生成物 より不安定な生成物低温での主生成物速度論的支配による生成物

14 ブタジエンの共役付加 ( より不安定な遷移状態 ) + HBr(1 mol) H + ( より安定な遷移状態 ) Br Br より安定な生成物高温での主生成物熱力学的支配による生成物 より不安定な生成物低温での主生成物速度論的支配による生成物 高温では可逆反応 より不安定な生成物は より安定な生成物に変化. 低温では不可逆反応 より不安定な生成物もそのまま生成物になる.

Δ Δ

15 DielsAlder( シ ールス アルタ ー ) 反応 Δ Δ [4+2] 環化付加反応 (cycloaddition) とよぶ. 基本的に endo 付加する ( アルダーのエンド則 ). 電子豊富な diene と電子不足の ene の組み合わせが反応に有利.

KH EtH KH EtH

16 アンチ脱離 1 ブロモー 2 メチルシクロヘキサンの E2 反応 H = = H KH EtH KH EtH ザイツェフ則よりもアンチ脱離の要求が優先する.

過剰量の CH 3 I Ag 2, H 2 Δ

17 Hofmann( ホフマン ) 脱離 NH 2 過剰量の N + I Ag 2, N + H CH 3 I H 2 Δ 脱離基が N + Me 3 や S + Me 2 のときは脱離の方向はホフマン則に従う. プロトン放出が先行し 生成するアニオン的遷移状態から脱離基が離れる. カルボアニオンは置換が少ない方が安定なのでザイツェフ則と逆の結果.

HgS 4 ( 触媒 ) H 2 S 4 H 2

18 水のアルキンへの付加 2+ HgS 4 ( 触媒 ) H 2 S 4 H 2 H 2 H + 2+ Hg H + H + ケト / エノール互変異性 マルコフニコフ付加. 触媒として HgS 4 のほかに Hg(Ac) 2 も使われる.

HBr HBr

19 ハロゲン化水素 HX のアルキンへの付加 (Ⅹ=Cl,Br,I ) HBr HBr Br Br Br マルコフニコフ則 ( 金持ちが儲かる法則 ) にしたがう.

Br 2 Br 2

20 ハロゲン X 2 のアルキンへの付加 (Ⅹ=Cl,Br) Br Br 2 trans Br 2 H Br Br Br Br Br H

H 2, Pd/C H 2, Lindler 触媒

21 Lindler( リント ラー ) 還元 H 2, Pd/C H 2, Lindler 触媒 cis リンドラー触媒は活性を落とした ( 被毒した ) パラジウム触媒.

Li/liq NH 3

22 アルキンの金属還元 ( 液アン / リチウム 還元 ) Li Li Li/liq NH 3 アニオンラジカル R R R H R H + H + R H R trans リンドラー還元ではシス 液アン リチウムではトランスの二重結合.

RC CH NaNH 2 R'CH 2 Br

23 アセチリドアニオンのアルキル化 RC CH NaNH 2 RC C Na + R'CH 2 Br RC CCH 2 R' 脱 HX 反応が起きるので第一級ハロゲン化物のみの反応.

H Br 2 H CH 2 Cl 2 KH EtH

24 ハロゲン化水素の二重脱離 アルキンの合成 H Br 2 H Br H CH 2 Cl 2 Br H KH Br H EtH 85% 1 段階目の脱離反応では anti 脱離で cis 体が生成する. 2 段階目の脱離反応は syn 脱離となるためにかなり遅い.

C H 3 H CH 3 Br S N 1 EtH, Δ ( 中性 ~ 酸性 ) E1

25 ハロゲン化合物の反応 酸性でのS N 1とE1の競合 EtH 1 1 EtH, Δ ( 中性 ~ 酸性 ) S N 1 ラセミ体 E1 安定型異性体 talkyl, benzyl, allyl で容易.1 と 2 が競合し 1 ではラセミ体が生成. 2 では安定異性体が生成 ( ザイツェフ則 = 貧乏人が損をする法則 ). されど 持たぬ人はその持てるものをも取らるべし ( マタイ伝 13 章 )

C H 3 H CH 3 Br KEt, EtH,Δ ( 塩基性 ) S N 2 E2

26 ハロゲン化合物の反応 塩基性での S N 2 と E2 の競合 KEt, EtH, Δ ( 塩基性 ) Et 3 S N 2 立体反転した生成物 Et 4 E2 基質に依存した異性体 第 1 2 級アルキルで一般的. 第 3 級では立体障害のため E2 が優先. 3 ではワルデン反転をともなう 4 ザイツェフ則にも従うが アンチ脱離の条件が優先する

Br Et, EtH Br Et, EtH Br Et, EtH

27 Williamson( ウィリアムソン ) のエーテル合成 Br Et, EtH S N 2 E2 Br Et, EtH S N 2 < E2 Br Et, EtH S N 2 E2 E2 反応と S N 2 反応の競合がおきる. 2 級 RX は低収率のため 3 級 RX は E2 反応のためエーテル合成に不適.

Cl H H H nbubr K N 2 C 3, acetone 2 NaH SH Et 2 H Ag 2 CH H 3 I H

28 Williamson( ウィリアムソン ) のエーテル合成の適用例 H nbubr K N 2 C 3, acetone 2 NaH S SH Cl Et 2 H H Ag 2 CH 3 H CH CH 3 H 3 I H αdglucose nbu N 2 CH 3 CH3 CH 3

1) NaEt, EtH 2) nbubr HCl, Δ 1) NaEt, EtH 2) MeBr HCl, Δ

29 マロン酸エステル合成 1) NaEt, EtH 2) nbubr HCl, Δ 1) NaEt, EtH 2) MeBr HCl, Δ β ケトカルボン酸は加熱で脱炭酸する.

1) NaCH 3 2) (CH 3 ) 2 S 4 HCl, Δ 1) NaCH 3 2) PhCH 2 Cl HCl, Δ NaH, Δ

30 アセト酢酸エステル合成 1) NaCH 3 2) (CH 3 ) 2 S 4 HCl, Δ 1) NaCH 3 2) PhCH 2 Cl HCl, Δ NaH, Δ β ケトカルボン酸は加熱で脱炭酸する. 塩基でのアセチル基の開裂はハロホルム反応と同じ機構.

Br NaN 3 1) LiAlH 4, Et 2 2) H 2

31 ナトリウムアジドによるアミン合成 + Br N N N NH 2 NaN 3 1) LiAlH 4, Et 2 2) H 2 ハロゲン化アルキルとアミンの反応でのポリアルキル化を回避できる.

1) KH, EtH 2) RX, DMF NaH, H 2

32 Gabriel( カ フ リエル ) アミン合成 1) KH, EtH NH 2) RX, DMF NR NaH, H 2 RNH 2 ハロゲン化アルキルとアミンの反応でのポリアルキル化を回避できる.

開始反応 hν 成長反応 停止反応

33 メタンのラジカル塩素化 開始反応 hν Cl 成長反応 Cl HCl Cl 2 Cl CH 3 CH 3 Cl Cl 2 停止反応 Cl Cl Cl CH 3 CH 3 Cl CH 3 CH 3 C 2 H 6 CH 2 Cl 2, CHCl 3, CCl 4

Br 2, hν or NBS, hν : NBS, hν, NBS, (PhC 2 ) 2, in CCl 4 in CCl 4

34 ベンジル位 アリル位のラジカル臭素化 Br, hν or NBS, hν : NBS, h, NBS, (PhC 2 ) 2, in CCl 4 in CCl 4 光照射 (h ν) の代わりに ラジカル開始剤の (PhC) 2 がよく使われる. NBS はゆっくりと分解して Br 2 を発生する.

Br 2 CH 3 CH 20 Br 2 CH 3 CH Pyridine Δ

35 アルデヒドとケトンの酸触媒ハロゲン化 Br 2 CH 3 CH E0 Br 2 CH 3 CH Pyridine Δ Py 酸触媒 : ハロゲン量を制限すれば入るハロゲンの数を制御できる. 非対称ケトンではエノール化し易い多置換側がハロゲン化される.

Br 2 NaH H 2 0 o

36 アルデヒドとケトンの塩基触媒ハロゲン化 Br 2 H NaH H 2 0 o H + (7174%) + HCBr 3 Bromoform 酸触媒と異なり塩基触媒の場合は入るハロゲンの個数を制限できない. メチルケトンの場合はハロホルム反応と呼ばれる.

SCl 2 RCH 2 H PBr 3

37 アルコールと SCl 2, PBr 3 の反応 Et 2 + HCl + S 2 PBr 3 Et 2 + HPBr 2 Br 2,3 級アルコールでは脱水反応が起きることがある.

R H SCl 2 R H PBr 3 R H (CCl) 2

(CCl) 2 Cl + HCl + C 2 + C 38 カルボン酸と SCl 2,PBr 3 の反応 Cl SCl 2 + HCl + S 2 Br PBr 3 + HPBr 2 酸ハロゲン物の合成では (CCl) 2, (CBr) 2 も使われる.

R H H CH 3 H HCl HCl gas, 1 当量 C 5 H 12, 10

39 アルコールの HX によるハロゲン化反応 R H H HCl Cl H S ( ラセミ化 ) + H Cl R CH 3 H HCl gas, 1 当量 C 5 H 12, 10 CH 3 Cl 第 3 級 アリル ベンジルアルコールはカルボカチオンが安定なので S N 1. 第 1 級アルコールは反応しにくく ~120 で S N 2.

H H 2 S 4 130 (S N 2) H H 2 S 4 25 (E1)

40 アルコールの硫酸触媒による脱水反応 H 2 S 4 130 (S N 2) H ( エーテルの工業的合成法 ) H 2 S 4 25 (E1) 硫酸は HX と異なり求核反応を起こしにくい. 第 1 級アルコールは高温で S N 2,E2 でエーテル, オレフィンを与える. 第 3 級と第 2 級アルコールは E1 で脱水する. ザイツェフ則に従う.

HI HBr TFA

41 エーテルの強酸による開裂 HI H + I S N 2 H + I HBr S N 1 H + Br TFA E1 H + 強酸 HBr,HI, TFA で可能 HCl では不可. エーテルは立体障害の小さい側から S N 2 開裂する. 但し 3 級炭素においては 強酸で S N 1 または E1 で開裂する.

H + H H + CH 3

42 エポキシドの水 アルコールによる開環 H 2 H H +, H 2 (S N 2) H H, H 2 (S N 2) H +, H CH 3 H (S N 1 + S N 2) CH CH 3 H CH (S N 2) 酸 アルカリ アルコキシドで開環する. エポキシドは立体障害の小さい側から S N 2 開環する. 但し 3 級炭素においては 酸で S N 1 と S N 2 の中間型で開環する.

CH 3 1) H 2 NCH(CH 3 ) 2 2) H 2, PdC CH 3 CH 3 H 3 C 1) PhMgBr H CH 2) H + 3

43 エポキシドのアミン グリニャール試薬による開環 1) H 2 NCH(CH 3 ) 2 2) H 2, PdC メトフ ロロール (β 遮断薬 ) 1) PhMgBr 2) H + エポキシドは立体障害の小さい側から S N 2 開環. メトプロロール合成の 2 段階目はベンジル位 C の加水素分解.

RCH 2 H Cr 3, H 2 S 4, H 2 Acetone

44 Jones( シ ョーンス ) 酸化 Cr 3, H 2 S 4, H 2 (Jones 試薬 ) RCH 2 H Acetone H 2 R H H H R Cr H H H ( クロム酸エステル ) R H Cr H H ( クロム酸エステル ) RCH RCH 希硫酸に Cr 3 を溶かした試薬をアルコールのアセトン溶液に滴下する. 一級アルコールはカルボン酸に酸化される.

H PCC, CH 2 Cl 2

45 PCC 酸化 ( クロム酸エステル ) PCC: PyH + PCC, CH 2 Cl 2 H Cl 無水 CH 2 Cl 2 中 第一アルコールからアルデヒドが得られる. PCC 酸化は酸性の反応なので異性化などの可能性あり.

CH 3 H HI 4, H H H 2, THF

46 過ヨウ素酸酸化 ジオールの開裂 CH 3 H H H HI 4, H 2, THF CH 3 H I H CH 3 CH 四酸化オスミウム酸化と組み合わせて使われることも多い.

X 2, FeX 3 Br 2, FeBr 3

47 ベンゼン環の塩素化 臭素化 ( 芳香族求電子置換 ) X + FeX 4 X 2, FeX 3 X = Br or Cl Br 2, FeBr3 KH Br + ルイス酸 FeCl 3,FeBr 3 を触媒とする. 2 例目は p 臭化アニリンの合成法. ほとんど o 置換体は生成しない.

HN 3, KH H 2 S 4 S 3, HN 3, dil.h 2 S 4, H 2 S 4 H 2 S 4 Δ KH

48 ベンゼン環のニトロ化 スルホン化 ( 芳香族求電子置換 ) HN 3, KH H 2 S 4 E N + 2 S 3, H 2 S 4 HN 3, H 2 S 4 希 H 2 S 4, Δ KH 第 1 例 : 立体障害の為 o ニトロアニリンはほとんど生成し無い. 第 2 例 : スルホン化は可逆なので スルホン基を保護基として使用.

CH 3 CH 2 CH 2 Cl AlCl 3 CH 3 CH 2 CCl AlCl 3

49 FriedelCrafts( フリーテ ル クラフツ ) 反応 ( 芳香族求電子置換 ) CH 3 CH 2 CH 2 Cl, AlCl 3 ( アルキル化 ) クメン CH 3 CH 2 CCl, AlCl 3 ( アシル化 ) H 2, Pd アルキル化ではアルキル基が活性化基なのでポリアルキル化する. アシル化ではアシル基が不活性化基なのでモノアシル体で止まる.

N Br 2 300 H N Br 2 0

50 ピリジン ピロールの臭素化 ( 芳香族求電子置換 ) N Br 2 300 N Br 30% H N Br 2 0 H N Br 92% ピリジン : 窒素の電気吸引性とルイス酸との塩形成で環の電子密度低下. ニトロ化は低収率. フリーデル クラフツ反応は成功しない. ピロール :5 員環に 6 電子が存在して電子密度が高い. フラン チオフェンもピロールと同様に反応性が高い.

NH 2 NaN 2, HCl Cl + N N N

51 ジアゾニウムカップリング ( 芳香族求電子置換反応 ) NH 2 HN N N N Cl H + N N NaN 2, HCl Cl + N N N N N N バターイエロー

X + N N CuCN CuX (X=Cl, Br)

52 Sandmyer( サ ント マイヤー ) 反応 ( ラジカル置換反応 ) X + N N CN CuCN X CuX (X=Cl, Br)

CH 3 KMn4

53 ベンジル位の KMn 4 酸化 KMn 4 ベンジル位の CH 結合が酸化されて安息香酸に酸化される.

CH 3 CH 3 H 2, Pt 2 EtH 130 atm 25 CH 2 C 2 H H 2, Pt 2 CH 3 CH 3 atm 25

54 白金触媒による芳香環の接触還元 CH 3 H 2, Pt 2 H CH 3 CH 3 EtH 130 atm 25 H CH 3 CH 2 C 2 H CH 2 C 2 H H 2, Pt 2 CH 3 CH 3 atm 25 Pt 2 は還元されて Pt として機能する. 強い還元条件が必要.

CH 3 Li, NH 3 CH Li, NH 3

55 Birch( ハ ーチ ) 還元 芳香環の 液アン / リチウム 還元 Li Li, NH 3 Li H + H + Li, NH 3 Li Li H + 初めに電子が送り込まれる位置は置換基できまる 芳香族求核反応. 最終的に共役しない二重結合が残る.

H 2, PdC H 2 NNH 2, KH Zn(Hg), HCl

56 WolfKishner( ウォルフ キシュナー ) 還元と Clemmensen( クレメンセ ン ) 還元 H 2, PdC ( 加水素分解 ) N NH 2 H 2 NNH 2, KH (WolffKishner 還元 ) Zn(Hg), HCl (Clemmensen 還元 ) フリーデル クラフツのアシル化を経てモノアルキルベンゼンを合成. 酸性ではクレメンゼン還元 塩基性ではウォルフ キシュナー還元を使う.

CH 3 N 2 N 2 Fe, HCl, H 2, EtH, 還流 C 2 Et 2 N H 2 (3 atm), Pt (from Pt 2 ), EtH, 25

57 芳香族ニトロ基の還元 CH 3 N 2 CH 3 NH 2 N 2 Fe, HCl, H 2, EtH, 還流 NH 2 74% C 2 Et C 2 Et 2 N H 2 (3 atm), Pt (from Pt 2 ), EtH, 25 H 2 N 91100% それぞれ金属還元と加水素分解である. 金属還元では金属 Fe, Zn, Sn, SnCl 2 は電子を供給 酸は H + を供給する.

1) LiAlH 4, H + 2) H 2 ( 保護 ) 3) H + ( 脱保護 ), H + Raney Ni

58 アセタール チオアセタールの合成 ( 保護 ), H + 1) LiAlH 4 2) H 2 3) H + ( 脱保護 ), H + Raney Ni アセタールはエーテル 塩基性には抵抗するが酸性では加水分解.

RNH 2 R 2 NH H 2 NH 2,4DNP

59 イミン エナミンの合成 RNH 2 R N imin R 2 NH NR 2 enamin H 2 NH H N oxim 2,4DNPH 2 N N N H hydrazone N 2

NH 3 H 2, Ni 加水素分解 接触還元

60 アルデヒド, ケトンの還元的アミノ化 Ph Ph NH 3 H 2, Ni Ph NH 2 H NH 接触還元 加水素分解 Ph NH 2 amphetamine

NaH, EtH 4~5

61 アルドール反応 2 x アセトアルデヒド NaH, EtH 4~5 H + 酸で中和して 生成物を単離 アルドール (50%) カルボニル化合物のエノール / エノラートのアルデヒド / ケトンへの付加.

CH 3 + H NaH, EtH,

62 アルドール縮合 NaH, EtH, アセトフェノン ベンズアルデヒド 15~30 H 2 脱水で平衡が生成系に移動 (85%) 脱水反応が伴う場合にはアルドール縮合と呼ぶ.

+ Ph 3 PCH 3 Br nbuli, THF 1) CH 3 MgBr, 2) PCl 3

63 Wittig( ウィッティッヒ ) 反応 CH 3 Br Ph 3 P + Ph 3 PCH 3 Br nbuli, THF Ph 3 P=CH 2 (Wittig の試薬 ) Ph 3 P=CH 2, THF 1) CH 3 MgBr, (9 : 1) PPh 3 は NR 3 と同様のルイス塩基 Ph 3 P + CH 3 Br は NR 4 + X に相当する.

NH 2 CH 3 酸 or 塩基

64 Michael( マイケル ) 反応と Robinson( ロヒ ンソン ) 環化反応 NH 2 CH 3 ( マイケル反応 ) 酸 or 塩 ( ロビンソン環化反応 = マイケル反応 + アルドール縮合 ) ロヒ ンソン環化反応ではマイケル反応に続いてアルト ール縮合が起きている.

mcpba

65 BayerVilliger( ハ イヤー ヒ リカ ー ) 転位 H + mcpba [1,2] 移動 mcpba 非対称ケトン : talkyl > secalky l> aryl > nalkyl>methyl の順で移動. アルデヒド :H が移動してカルボン酸を生成する. [1,2] 移動 : 移動する基に関して立体保持.

NH 2 H H 2 S 4

66 Beckmann( ヘ ックマン ) 転位 NH 2 H H 2 S 4 [1,2] 移動 ε カプロラクタム 重合 ナイロン 6 一般的に H とアンチにある置換基が転位する. [1,2] 移動 : 移動する基に関して立体保持.

Mg Et 2 Mg Et 2 Mg H 2 Et 2 H 2

67 Grignard( ク リニャール ) 試薬の合成と水との反応 Mg Et 2 Mg Et 2 H 2 Mg Et 2 H 2

MgBr HCH 1) PhMgBr CH 2) H 2 1) EtMgBr, Et 2 2) H 2 H Br TMSCl, Et 3 N 1. Mg, Et 2 2. CH 3 CH 3. H +

68 Grignard( ク リニャール ) 試薬のカルボニル化合物との反応 MgBr HCH H (1 級アルコール ) 1) PhMgBr CH 2) H 2 1) EtMgBr, Et 2 2) H 2 H H Ph (2 級アルコール ) (3 級アルコール ) TMSCl, 1. Mg, Et 2 Br Si H Br Et 3 N 2. CH 3 CH nbu 4 NF H H Si H TMS エーテルは LiF nbu 4 NF クエン酸 炭酸カリなどで脱保護できる. F

1) MeMgBr 2) H 2 1) EtMgBr, Et 2 2) H +

69 Grignard( ク リニャール ) 試薬とエステル ニトリルの反応 MeMgBr MeMgBr 1) MeMgBr 2) H 2 1) EtMgBr, Et 2 2) H +

RCH RCR' RCH RCNH 1. LiAlH 2 4 RCN 2. H + RCH 2 N 3 RCH 2 N 2 RCR' RX, RTs

70 LAH 還元 RCH RCR' RCH 1. LiAlH 4 2. H + RCH 2 H RCNH 2 RCN RCH 2 N 3 RCH 2 NH 2 RCH 2 N 2 RCR' R(R')CHH RX, RTs RH 還元力が強力でプロトン性溶媒と反応するためエーテル系溶媒を使う.

RCH 1) NaBH 4 2) H + RCR' 1) NaBH 4 2) H +

71 SBH 還元 RCH 1. NaBH 4 2. H + RCH 2 H 1. NaBH 4 RCR' 2. H + R(R')CHH 水やアルコールを反応溶媒に使うことが可能. ケトン, アルデヒド, イミンを還元できるが エステルの還元は普通は遅い.

H CH NaH NH 2 H NaH

72 求核アシル置換による アシル化 N アシル化 NaH アスピリン NaH アセトアミノフェン 四面体中間体を通る反応. 酸ハロゲン化物 酸無水物が使われる. 求核反応性は一般に N のほうが よりも強い.

H EtH, H 2 S 4 (cat. amt.) reflux

73 Fischer( フィッシャー ) のエステル化 H + EtH, H 2 S 4 (cat. amt.) 還流 H + EtH H + 四面体中間体

Br NaCN KH CH KCN H 2 S 4

74 シアン化による増炭反応と加水分解によるカルボン酸合成 Br NaCN CN KH フェニル酢酸 CH CH H H CN H H CH KCN H 2 S 4 シアノヒト リンマンテ ル酸

NH 2 SCl 2, PhH, 80

75 第一級アミドの脱水によるニトリルの合成 NH 2 SCl 2, PhH, R C N + S 2 80

H 3 C Et 1) NaEt, EtH 2) H +

76 Claisen( クライセ ン ) 縮合 H 3 C 2 Et 1) NaEt, EtH H 3 C Et CH 2 Et Na + H 3 C H 3 C Na + 2) H + H Et H H C 2 Et Na + C H 3 Et Et アセト酢酸エステル縮合ともよばれる.

C 2 Et C 2 Et 1) NaEt, EtH 2) H +

77 Dieckmann( テ ィックマン ) 縮合 1) NaEt, EtH Na + Na + Na + 2) H + 分子内クライゼン縮合の別名.

NaBr

78 Hofmann( ホフマン ) 転位 NaBr H H H C 2 [1,2] 移動 isocyanate NaBr の調製 :Br 2 +2NaH NaBr+NaCl+H 2 家庭用漂白剤の次亜塩素酸ソーダ (NaCl) も使用できる. [1,2] 移動 : 移動する基に関して立体保持.