Microsoft PowerPoint - 山本・物理モデル.ppt

Size: px
Start display at page:

Download "Microsoft PowerPoint - 山本・物理モデル.ppt"

Transcription

1 物理モデルの基礎と選択法 東京理科大学山本誠

2 目次 1. CFDの結果に影響する因子. 物理モデルとは? 3. 単相流 (RANS,LES,DES) 4. 混相流 5. 燃焼流 6. まとめ 物理モデル?

3 目次 1. CFDの結果に影響する因子. 物理モデルとは? 3. 単相流 (RANS,LES,DES) 4. 混相流 5. 燃焼流 6. まとめ 物理モデル?

4 CFD の適用事例ー Many hanks o sof venders ー

5

6 皆さんは これらの CFD を信用しますか? 正解 : 絵だけでは分からない!

7 CFD の結果に影響する因子 支配方程式 計算アルゴリズム 離散化スキーム 計算格子 物理モデル 境界条件 初期条件 その他 結果の 質 と 精度 に影響 すべてを正しく選択 設定しないと正しい解が得られない

8 非粘性項スキームの効果 (a) -order accracy TVD scheme (b) 3-order accracy TVD scheme (c) 4-order accracy TVD scheme (d) 4-order accracy Modfed scheme Mach Nmber Conors

9 CFD の結果に影響する因子 支配方程式 計算アルゴリズム 離散化スキーム 計算格子 物理モデル 境界条件 初期条件 その他 結果に対する影響力が大 私の話は この中から 物理モデルに注目

10 目次 1. CFDの結果に影響する因子. 物理モデルとは? 3. 単相流 (RANS,LES,DES) 4. 混相流 5. 燃焼流 6. まとめ 物理モデル?

11 物理モデルとは? 物理モデル : 物理現象を数式として表現したもの 支配方程式は物理モデルの一種 Naver Sokes 方程式 Mawel 方程式 ec 一般に 支配方程式を完結させるために導入される代数式や輸送方程式のこと乱流モデル 燃焼モデル 反応モデル 粒子モデル 気泡モデル 分裂モデル ec CFD の結果に強く影響する質 & 精度

12 目次 1. CFDの結果に影響する因子. 物理モデルとは? 3. 単相流 (RANS,LES,DES) 4. 混相流 5. 燃焼流 6. まとめ 物理モデル?

13 単相流 単相流で重要な物理モデルは乱流モデル ナビエ ストークス方程式の直接数値計算 (DNS) 膨大な計算時間 & メモリーが必要 ( 非実用的 ) NS 方程式を平均化 ( 時間 空間 ec) 式中に変動の相関項が出現 ( 例 :Re 応力 ) 乱流モデル : 平均化した NS 方程式で乱流中の乱れの効果を表現

14 乱流の数値計算法 RANS Re 平均モデル (k-εモデル SAモデル ec) URANS RANSのまま非定常計算 TRANS 定常 周期 ランダム (RANS) 成分に分解 CANS RANSの渦粘性を調整 ( 低減 ) LES SGSモデルによる渦粘性のみ (Smagornsky) VLES 計算スキームの人工粘性 SGSモデル RANS/LES Hybrd 壁近傍でRANS 壁遠方でLES DES 壁近傍でRANS 壁遠方でLES( 滑らかにSW) SAS 乱れに応じてSGS/RANSをスイッチ MILES 計算スキームの陰的な人工粘性のみ ( 圧縮性 ) QDNS 計算スキームの陰的な人工粘性のみ DNS 厳密 ( すべての人工粘性排除 ) Ohers 離散渦法, 格子ボルツマン法,ec

15 RANS/LES/DES の違い RANS LES DES Re 平均 ( 時間平均 ) モデル時間平均のため定常流向き本質的に非定常であるはく離は苦手空間平均モデル局所的な平均のため非定常流もOK 常に3 次元非定常計算が必要計算時間はRANSの10~100 倍壁近傍でRANS 壁遠方でLES 計算時間の点で実用的

16 RANS/LES/DES の違い RANS LES DES Re 平均 ( 時間平均 ) モデル時間平均のため定常流向き本質的に非定常であるはく離は苦手空間平均モデル局所的な平均のため非定常流もOK 常に3 次元非定常計算が必要計算時間はRANSの10~100 倍壁近傍でRANS 壁遠方でLES 計算時間の点で実用的

17 RANS (Reynolds-Averaged Naver-Sokes Smlaon) レイノルズ平均 ( 時間平均 ) レイノルズ平均ナビエ ストークス方程式時間変化対流圧力勾配粘性拡散乱流拡散 乱流拡散のモデル化が必要 RANS モデル = fd T f 1 U P U U U = 1 ρ

18 RANS モデルの分類 渦粘性モデル ( 等方 / 非等方 ) 0 方程式モデル 混合長,Baldwn-Loma RANS モデル 1 方程式モデル Johnson-Kng,Spalar- Allmaras,Baldwn-Barh 応力方程式モデル 方程式モデル k-ε,k-ω,k-l,k-τ,sst LRR,Gbson-Lander,SSG,Shma それぞれ高 Re/ 低 Re 型モデルがあるまた 代数応力方程式モデル 3 方程式モデル等の中間的モデルもある

19 RANS モデルの分類 渦粘性モデル ( 等方 / 非等方 ) 0 方程式モデル 混合長,Baldwn-Loma RANS モデル 1 方程式モデル Johnson-Kng,Spalar- Allmaras,Baldwn-Barh 応力方程式モデル 方程式モデル k-ε,k-ω,k-l,k-τ,sst LRR,Gbson-Lander,SSG,Shma それぞれ高 Re/ 低 Re 型モデルがあるまた 代数応力方程式モデル 3 方程式モデル等の中間的モデルもある

20 渦粘性 ブシネスク近似ーレイノルズ応力と平均速度の関係ニュートンの摩擦則からの類推 基本的に 卓越した速度勾配が存在する場合のみ有効付着境界層 dy d τ = k U U δ 3 = U y υ y y >> υ υ,,

21 k-ε モデル はく離, 旋回流, 流線曲率, 第 種 次流れなどは苦手 安定性と計算時間の短さから設計 解析計算の主流 定常乱流のフローパターンを把握するには最適 D k P k U k k k = ε σ E k f C P k f C U k = 1 1 ε ε σ ε ε ε ε ε ε k U P = k U U δ 3 = ε μ μ k f = C

22 高 Re 数型標準 k-ε モデル Lander-Spaldng(1974) モデル定数 & 関数 σ k = 1.0 σ ε = 1. 3 Cε1 = Cε = 1. 9 C μ = f1 = 1.0 f = 1. 0 f μ =1.0 D = 0. 0 E = 0. 0 壁関数 壁面第 1 格子点に境界条件格子数削減! 3 τ τ τ y k = ε = y = C κy μ U = ln Ey y > 11.6 κ τ κ = 0.41 E = ( ) ( ) 9.0 計算 境界

23 低 Re 数型標準 k-ε モデル Lander-Sharma(197) 壁関数は発達した付着境界層の近似式 適用範囲狭い 壁面まで解くためには 低 Re 数効果を考慮する必要あり モデル定数に補正関数 項を導入 モデル定数 & 関数 σ k = 1.0 σ ε = 1. 3 Cε1 = Cε = 1. 9 C μ = f 1 = 1.0 ( f ) = ep R 3.4 ep 1 50 f μ = R k R = ε 計算 境界

24 RNG k-ε モデル Yakoho-Orszag(1986) 繰り込み群理論に基づくモデルー量子論の流用 モデル定数が理論的に決定 標準モデルより拡散性の弱い定数 モデル定数 & 関数 σ k = σ ε =1/1.39 Cε1 =1. 4 Cε =1. 68 C μ = f1 = 1.0 f = 1. 0 f μ =1.0 D = 0. 0 E = 0. 0 はく離を標準モデルより良好に予測可能

25 k-ε モデルの計算例 低 Re 数型 1 高 Re 数型 Cp Epermen Nm (z/h=5%) Nm (z/h=50%) Lf Coeffcen of Smooh/Rogh Arfol (NACA001) /c (%) Sac Pressre Coeffcen of Gas Trbne Saor Vane

26 その他の渦粘性モデル (Baldwn-Lomaモデル) 0 方程式モデル - 代数式のみ使用 モデル式 - 境界層の内層 / 外層を分けてモデル化 ( μ ) nner = ρl ω ( μ ) = ρkc F F (y) oer CP WAKE ( μ ) ( μ ) μ = mn, Kleb [ ] nner oer 輸送方程式を解かないため 計算時間が短い 付着境界層なら良好に予測可能 圧縮性乱流 特に大規模計算で現在でも使用 ただし はく離は過小に予測

27 その他の渦粘性モデル (Spalar-Allmaras モデル ) 1 方程式モデル - 渦動粘性の輸送方程式のみ使用 モデル輸送方程式 乱れの物理過程をすべて含むー k-ε と同じポテンシャル 遷移に対する配慮もなされている 衝撃波 / 境界層干渉 翼胴干渉などでは k-ε より良好 ただし はく離は過大に予測 ( ) ( ) ~ ~ ~ ~ 1 ~~ 1 ~~ ~ U f y f C f C C S f C b w w b b Δ = κ σ

28 その他の渦粘性モデル (SST モデル,Mener,1994) 方程式モデル 壁からの距離を用いて k-ε と k-ω をスイッチ モデル輸送方程式 F1=1 のとき k-ω,f1=0 のときに k-ε に帰着 渦粘性モデルとしては高レベルの予測精度 ( ) = k k k k k μ σ μ ρω β τ ρ ρ * ~ ~ ( ) ( ) k F = ω ω σ ρ ω μ σ μ βρω τ γ ρω ρω ω ω 1 1 ~ ~

29 RANS モデルの分類 渦粘性モデル ( 等方 / 非等方 ) 0 方程式モデル 混合長,Baldwn-Loma RANS モデル 1 方程式モデル Johnson-Kng,Spalar- Allmaras,Baldwn-Barh 応力方程式モデル 方程式モデル k-ε,k-ω,k-l,k-τ,sst LRR,Gbson-Lander,SSG,Shma それぞれ高 Re/ 低 Re 型モデルがあるまた 代数応力方程式モデル 3 方程式モデル等の中間的モデルもある

30 応力方程式モデル 渦粘性は用いず Re 応力の輸送方程式を直接解く Re 応力の生産項が厳密に取り扱われる点 圧力歪相関項 ( 再分配項 ) により Re 応力間のエネルギー輸送が考慮される点でより実現象に近い Re 応力輸送方程式 旋回流 流線曲率 第 種 次流れ 衝突流 壁面噴流 比較的低振動数の非定常流等で渦粘性モデルより良好 l l l D P U φ ε = l l l D P U = ε ε ε ε ε ε ε

31 高 Re 数型標準応力方程式モデル,,,,,, Gbson-Lander モデル (1978) Re 圧力歪相関項 φ = φ( 1) φ() φ( w1) φ( w) ε φ = C kδ φ ( 1) 1 () = C P Pδ k 3 3 ' ε 3 3 φ( w1) = C1 lmnlnmδ ln nl lnnl f w k ' 3 3 φ( w) = C φ() lmnlnmδ φ() ln nl φ() lnnl f w 3 壁関数 1 P τ ( U = ln Ey ) τ v = τ y ε = κ ρ κy = 5. 1v v = 0. 9v w =. 3v

32 高 Re 数型応力方程式モデル Spezale-Sarkar-Gask(SSG) モデル (1991) Re 圧力歪相関項 φ = φ ( φ φ φ 1) () (1) () ' 1 = ε C1a C1 aa k aklaklδ 3 = C Pa C ks C 4 k a k S k 3 a k S k RDT や実現性条件を満たし さらに壁面からの距離を必要としないため 実用性が高いモデル 3 a kl S kl δ C 5 k ( a Ω a Ω ) k k k k

33 応力方程式モデルの計算例 r θ Flow Drecon Compaonal Doman r 0 =150 [mm] L=7000 [mm] 1.0 /r 0 =1.3 /r 0 =5.7 /r 0 =39.0 ep KEM RSM r/r o W/U m Tangenal Velocy Profles 直円管内旋回乱流実験 : 鬼頭, 他 3 名, 機論 B 編, 56 巻 57 号,(1990) pp

34 RANS/LES/DES の違い RANS LES DES Re 平均 ( 時間平均 ) モデル時間平均のため定常流向き本質的に非定常であるはく離は苦手空間平均モデル局所的な平均のため非定常流もOK 常に3 次元非定常計算が必要計算時間はRANSの10~100 倍壁近傍でRANS 壁遠方でLES 計算時間の点で実用的

35 Large Eddy Smlaon (LES) 空間平均モデル - フィルタリング モデル化コンセプト 直接計算 乱流渦 モデル化 SGS モデル 計算格子 大スケール渦の計算スキームと SGS モデルが重要

36 Large Eddy Smlaon (LES) 支配方程式 -NS 方程式のフィルタ操作 SGS 応力レオナード項クロス項レイノルズ項 形式的には RANS と同形の方程式 SGS 応力をどのような SGS モデルで表現するかが鍵 U P U U U = τ ρ 1 R C L = = τ

37 Large Eddy Smlaon (LES) Smagornsky モデル (1963) LES の標準モデル RANSの混合長モデルを流用 長さスケールは計算格子から決定 Δ = レイノルズ項のみをモデル化 (L C =0) τ = R = SGS = SGS S ( C fδ) S S S S = 3 ΔΔyΔz 1 U 壁近傍で乱れを弱めるため 減衰関数を導入 y f = 1 ep 5 U

38 Large Eddy Smlaon (LES) Smagornsky モデルの特徴 RANS が苦手とする大規模なはく離, 自由せん断層などを含む非定常乱流での優位性が明らかになっている Smagornsky 定数は流れによって最適値が異なる理論値 :0.17 壁乱流 :0.1~0.15 どのような問題でも 3 次元非定常計算が必要 計算時間がかかる (RANS の 10~100 倍 ) 解の格子依存性が顕著 壁近傍に高解像度の計算格子が必要 ( ストリークの再現 )

39 Large Eddy Smlaon (LES) 動的 Smagornsky モデル (1991) Grd-Scale 成分に第 のフィルタ (Tes Fler) を作用 GS 成分と TF 成分の流れ状態を用い Smagornsky 定数を自動決定 C = λmnm Δ M mn λ = U U U U M = α S S S S α = Δ Δ Germano Ideny フィルター幅の比

40 Large Eddy Smlaon (LES) 動的 Smagornsky モデルの特徴 Smagornsky 定数 C の調節の必要がない Germano Idenyの導入により 層流 / 遷移にも自然に対応可能 乱流エネルギーの逆カスケード現象も表現できる Cが陽な拡散性を保証しないため 計算が不安定 Cの平均化 数値粘性の導入等が必要 どのような問題でも 3 次元非定常計算が必要 計算時間がかかる 壁近傍に高解像度の計算格子が必要 ( ストリークの再現 ) ただし 減衰関数の導入は不必要

41 LES の計算例 ASMO まわりの流れ Cp 分布の比較 (Smagornsky モデル )

42 RANS/LES/DES の違い RANS LES DES Re 平均 ( 時間平均 ) モデル時間平均のため定常流向き本質的に非定常であるはく離は苦手空間平均モデル局所的な平均のため非定常流もOK 常に3 次元非定常計算が必要計算時間はRANSの10~100 倍壁近傍でRANS 壁遠方でLES 計算時間の点で実用的

43 Deached Eddy Smlaon (DES) LES では壁近傍に多数の計算格子が必要 - ストリーク構造の再現 - LES 用の壁関数も提案されているが 普遍性が低い 壁近傍で RANS 壁遠方で LES RANS/LES Hybrd, DES, SAS, ec Deached Eddy Smlaon(DES) が現在もっとも成功 Spalar e al. (1997) 壁近傍では Spalar-Allmaras モデルの RANS 壁遠方では 1 方程式型 SGS モデルの LES

44 Deached Eddy Smlaon (DES) DES のモデル方程式壁近傍 :y SA モデル壁遠方 :C DES Δ 1 方程式 SGS モデル 大規模はく離 鈍頭物体などで成功 壁近傍の格子を大きく削減 (RANS の制限はある ) ( ) 1 1 ~ ~ ~ ~ 1 ~~ ~~ ~ = d f C C S C w w b b σ ( ) ( ) 65 0.,, ma, mn = Δ Δ Δ Δ = Δ = DES DES C z y C y d

45 DES の計算例 円柱まわりの乱流 Sqre(004)

46 k-ε モデルでも OK な非定常流の例 Epermen:Chn and Sng (1996) Perodc perrbaon Xr/H U/Uc v/uc Y/H -0.0 S=0.19,/H= Y/H 0.6 Epermen Compaon S

47 目次 1. CFDの結果に影響する因子. 物理モデルとは? 3. 単相流 (RANS,LES,DES) 4. 混相流 5. 燃焼流 6. まとめ 物理モデル?

48 混相流の例 ( 管内流 ) 固気混相流 気液混相流

49 混相流のモデル化 連続相 - 流れを担う主要な相 分散相 - 連続相内に分散している相 相間の干渉の程度 One-Way Coplng 連続相 分散相体積分率小 座標系の取り扱い連続相 : オイラー分散相 : ラグランジュオイラー ラグランジュ Two-Way Coplng 連続相 分散相体積分率大 連続相 : オイラー分散相 : オイラーオイラー オイラー ( 流体モデル )

50 オイラー ラグランジュ One-Way 連続相 - 乱流モデル ( 例えば k-ε モデル ) 分散相 - 個々の分散物質の運動方程式 ( ) ( ) ( ) ec p D f f f p p F v a d d d a a C a a D D d d m D D m g m m d d m = Re τ π υ τ τ μ π υ μ π υ υ

51 オイラー ラグランジュ One-Way 撹拌槽造粒 (RSM) [m/s] Mean Sreamlnes100rpm ( Re=8,800 )

52 オイラー オイラー Two-Way 層流の場合 連続相 -NS 方程式 分散相からの寄与分散相から 分散相 - 分散物質の平均輸送方程式連続相から τ p : 分散相の特性時間 = 0 ( ) p p p p = ρτ ρ ρ 1 = 0 p p p ρ ρ ( ) p p p p p p p p = τ ρ ρ ρ

53 オイラー オイラー Two-Way 乱流の場合 連続相 - 平均方程式 分散相からの寄与分散相から 分散相 - 分散物質の平均輸送方程式連続相から仮定 : = 0 U ( ) p p p V U U P U U U = ρτ ρ ρ 1 = 0 p p p V ρ ρ ( ) p p p p p p p p p V U v v V V V = τ ρ ρ ρ ρ R v v = k C R p ε τ = 1 1

54 オイラー オイラー Two-Way マイクロバブル チャネル乱流 流体応力方程式モデル 100 Vod fracon Ep. (nle) Ep. (S1) Ep. (S) Cal. (nle) Cal. (S1) Cal. (S) Cf / Cf Dsance from pper wall Local vod fracon dsrbon (modfed model) Sngle α=0.08 phase α=0.1 0 Dsance from pper wall 1 Trblence Inensy of Bbble Calclaon calclaon Ep. epermenal by Kodama daa (001) Ep. by Merkle (1990) Mercle(1990) Average vod fracon Drag redcon

55 混相流の影響因子 分散物質 ( 粒子 気泡 ec) の形状 分散物質の直径および直径分布 連続相の乱れ状態 分散相の乱れ状態 分散相による連続相乱れの生産 散逸微小 : 乱れを減衰粗大 : 乱れを増幅 分散物質表面での蒸発 凝縮 吸着これら影響因子のモデル化は不十分 基本形 = 単相流の乱流モデル 補正項どの乱流モデルをベースとするか要注意!

56 目次 1. CFDの結果に影響する因子. 物理モデルとは? 3. 単相流 (RANS,LES,DES) 4. 混相流 5. 燃焼流 6. まとめ 物理モデル?

57 化学反応モデル 詳細反応モデル - すべての素反応を考慮すべての反応物質が求まる着火遅れ 消炎 OK 時間刻みがきわめて小 Sffness 問題が起きやすい 簡略反応モデル - 素反応のうち遅い反応のみ考慮 総括反応モデル - ひとつの反応式にまとめる反応速度 >> 流体速度中間生成物が計算できない着火遅れ 消炎

58 化学反応モデルの計算例 (H 燃焼 ) 5 段階簡略反応モデル (Chen e al.,1995) Reacon 1. O H. H O 3. H OH 4. HO 5. O N OHO HOH HH O OH NO 計 8 化学種

59 化学反応モデルの計算例 (H 燃焼 ) H Mole Fracon Temperare H T [K]

60 乱流燃焼モデル 渦崩壊モデル - 反応速度 乱流渦の寿命 R = ρε A mn Y k f, Y r o ε/k : 乱れの寿命 ( 時間スケール ), Y f : 燃料の質量分率 Y o : 酸化剤の質量分率, r : 量論混合比における燃料に対する酸化剤の質量割合 層流火炎片モデル - 乱流火炎 = 層流火炎の集合 1 Y f R = ρχ, χ = D m f Y : 科学種 の濃度 f : 混合分率 χ χ: スカラー消散関数

61 燃焼流の問題 化学反応モデルが確立されていない詳細反応すら未完成 乱流燃焼モデルも十分でない単相乱流から見るとモデルが雑非定常性? 基本形 = 単相流の乱流モデル 補正項どの乱流モデルをベースとするか要注意!

62 目次 1. CFDの結果に影響する因子. 物理モデルとは? 3. 単相流 (RANS,LES,DES) 4. 混相流 5. 燃焼流 6. まとめ 物理モデル?

63 まとめ 現状の CFD は単相流の乱流モデルがベースとなっている どのタイプの乱流モデルを選ぶかが最重要! バランスの良いモデル選択に努める 乱流モデルのレベルに合わせたマルチ フィジックスモデルの導入スケール注意!

64 乱流モデルの選択方法 ( 目安 ) 計算時間 所有するコンピュータとの相談 短時間 長時間 高 Re k-ε 応力方程式低 Re k-ε DES LES DNS モデルの再現性 定常流 :RANS 付着流 :k-ε 熱伝達 : 低 Re k-ε ec 非定常流 :LES はく離 : 応力 LES 旋回流 : 応力 LES 熱流体現象を読む眼の涵養!

65 参考文献 計算力学ハンドブック (II 差分法 有限体積法熱流体編 ), 日本機械学会編, 丸善,(006) 数値流体力学ハンドブック, 小林他編, 丸善,(003) 乱流の数値流体力学, 大宮司, 三宅, 吉澤編, 東京大学出版会,(1998) 乱流解析, 数値流体力学会編集委員会編, 東京大学出版会,(1995) 燃焼 希薄流 混相流 電磁流体の解析, 東京大学出版会,(1995) 数値流体力学, 標, 鈴木, 石黒, 寺坂著, 朝倉書店, (1994)

オープン CAE 関東 数値流体力学 輪講 第 6 回 第 3 章 : 乱流とそのモデリング (5) [3.7.2 p.76~84] 日時 :2014 年 2 月 22 日 14:00~ 場所 : 日本 新宿 2013/02/22 数値流体力学 輪講第 6 回 1

オープン CAE 関東 数値流体力学 輪講 第 6 回 第 3 章 : 乱流とそのモデリング (5) [3.7.2 p.76~84] 日時 :2014 年 2 月 22 日 14:00~ 場所 : 日本 新宿 2013/02/22 数値流体力学 輪講第 6 回 1 オープン CAE 勉強会 @ 関東 数値流体力学 輪講 第 6 回 第 章 : 乱流とそのモデリング (5) [.7. p.76~84] 日時 :04 年 月 日 4:00~ 場所 : 日本 ESI@ 新宿 本日 日程パート部分ページ 04.0 第 章 : 乱流とそのモデリング担当セクション :.7. p.76~84 今回は北風が担当しました ご質問 記述ミス等に関するご指摘がありましたら 以下までご連絡下さい

More information

オープン CAE 関東 数値流体力学 輪講 第 4 回 第 3 章 : 乱流とそのモデリング (3) [3.5~3.7.1 p.64~75] 日時 :2013 年 11 月 10 日 14:00~ 場所 : 日本 新宿 2013/11/10 数値流体力学 輪講第 4 回 1

オープン CAE 関東 数値流体力学 輪講 第 4 回 第 3 章 : 乱流とそのモデリング (3) [3.5~3.7.1 p.64~75] 日時 :2013 年 11 月 10 日 14:00~ 場所 : 日本 新宿 2013/11/10 数値流体力学 輪講第 4 回 1 オープン CAE 勉強会 @ 関東 数値流体力学 輪講 第 4 回 第 3 章 : 乱流とそのモデリング (3 [3.5~3.7.1 p.64~75] 日時 :2013 年 11 月 10 日 14:00~ 場所 : 日本 ESI@ 新宿 1 数値流体力学 輪講に関して 目的 数値流体力学の知識 ( 特に理論ベース を深め OpenFOAM の利用に役立てること 本輪講で学ぶもの 数値流体力学の理論や計算手法の概要

More information

<4D F736F F D E B82CC89DF8B8E81458CBB8DDD814596A297882E646F63>

<4D F736F F D E B82CC89DF8B8E81458CBB8DDD814596A297882E646F63> 5 特集 RANS RANS モデルの過去 現在 未来 * 東京理科大学工学部山本誠 Pas Presen and Fuure of RANS Model Maoo YAMAMOTO Faculy of Engneerng Toyo Unversy of Scence はじめに乱流を計算するために様々な計算手法が開発 利用されているが レイノルズ平均 ( あるいは時間平均 ) に基づくものを Reynolds-Averaged

More information

Microsoft PowerPoint - Š’Š¬“H−w†i…„…C…m…‰…Y’fl†j.ppt

Microsoft PowerPoint - Š’Š¬“H−w†i…„…C…m…‰…Y’fl†j.ppt 乱流とは? 不規則運動であり, 速度の時空間的な変化が複雑であり, 個々の測定結果にはまったく再現性がなく, 偶然の値である. 渦運動 3 次元流れ 非定常流 乱流は確率過程 (Stochastic Process) である. 乱流工学 1 レイノルズの実験 UD = = ν 慣性力粘性力 乱流工学 F レイノルズ数 U L / U 3 = mα = ρl = ρ 慣性力 L U u U A = µ

More information

ERCOFTAC SIG15 test case ベンチマーク進捗報告

ERCOFTAC SIG15 test case ベンチマーク進捗報告 ERCOFTAC SIG15 TEST CASE ベンチマーク報告 http://www.ercoftac.org/fileadmin/user_upload/bigfiles/sig15/database/index.html 北風慎吾 shingo0323northwind@gmail.com 本報告のきっかけ 昨年の第 1 回初心者向け勉強会にて ERCOFTAC(European Research

More information

Microsoft PowerPoint - 乱流の数値解析2010_02.ppt

Microsoft PowerPoint - 乱流の数値解析2010_02.ppt 00 数値流体力学 目次 00 数値流体力学 乱流の数値解析 ~ 乱流の物理モデル ~ 平成 年 月 日筑波大学大学院システム情報工学研究科金子暁子 aneo@zsbaa 乱流とは何か 乱流の特徴 乱流の統計的表現 乱流の表現 流れのエネルギーとエネルギー方程式 乱流の特性と数値シミュレーション シミュレーション法の分類 渦粘性の概念 0- 方程式モデル - 方程式モデル - 方程式モデル LES

More information

ニュートン重力理論.pptx

ニュートン重力理論.pptx 3 ニュートン重力理論 1. ニュートン重力理論の基本 : 慣性系とガリレイ変換不変性 2. ニュートン重力理論の定式化 3. 等価原理 4. 流体力学方程式とその基礎 3.1 ニュートン重力理論の基本 u ニュートンの第一法則 = 力がかからなければ 等速直線運動を続ける u 等速直線運動に見える系を 慣性系 と呼ぶ ² 直線とはどんな空間の直線か? ニュートン理論では 3 次元ユークリッド空間

More information

<4D F736F F F696E74202D208BAB8A458FF08C8F82CC8AEE916282C68C8892E896402E707074>

<4D F736F F F696E74202D208BAB8A458FF08C8F82CC8AEE916282C68C8892E896402E707074> No.07-131 講習会 ( 流体工学部門企画 ) 境界条件の基礎と決定法 千葉科学大学 戸田和之 講演の流れ 数値解析とは何か 境界条件の役割と目的 境界の分類 計算法による 設定の違い 非圧縮流れ解析における境界条件の設定法 乱流解析における境界条件の設定法 圧縮性流れ解析における境界条件の設定法 1 流れの数値解析とは 偏微分型で書かれた基礎方程式を解く作業 連続の式 υ = 0 υ: 速度ベクトル

More information

Microsoft PowerPoint - 第7章(自然対流熱伝達 )_H27.ppt [互換モード]

Microsoft PowerPoint - 第7章(自然対流熱伝達 )_H27.ppt [互換モード] 第 7 章自然対流熱伝達 伝熱工学の基礎 : 伝熱の基本要素 フーリエの法則 ニュートンの冷却則 次元定常熱伝導 : 熱伝導率 熱通過率 熱伝導方程式 次元定常熱伝導 : ラプラスの方程式 数値解析の基礎 非定常熱伝導 : 非定常熱伝導方程式 ラプラス変換 フーリエ数とビオ数 対流熱伝達の基礎 : 熱伝達率 速度境界層と温度境界層 層流境界層と乱流境界層 境界層厚さ 混合平均温度 強制対流熱伝達 :

More information

技術資料 JARI Research Journal OpenFOAM を用いた沿道大気質モデルの開発 Development of a Roadside Air Quality Model with OpenFOAM 木村真 *1 Shin KIMURA 伊藤晃佳 *2 Akiy

技術資料 JARI Research Journal OpenFOAM を用いた沿道大気質モデルの開発 Development of a Roadside Air Quality Model with OpenFOAM 木村真 *1 Shin KIMURA 伊藤晃佳 *2 Akiy 技術資料 176 OpenFOAM を用いた沿道大気質モデルの開発 Development of a Roadside Air Quality Model with OpenFOAM 木村真 *1 Shin KIMURA 伊藤晃佳 *2 Akiyoshi ITO 1. はじめに自動車排出ガスの環境影響は, 道路沿道で大きく, 建物など構造物が複雑な気流を形成するため, 沿道大気中の自動車排出ガス濃度分布も複雑になる.

More information

Microsoft PowerPoint - product_run_report(K_Abe).pptx

Microsoft PowerPoint - product_run_report(K_Abe).pptx スケール相似則モデルの特徴を反映した非等方 SGS モデルの導入による高性能 LES/RANS ハイブリッド乱流モデルの構築 九州大学大学院工学研究院航空宇宙工学部門安倍賢一大学院工学府航空宇宙工学専攻漆間統 214 年 4 月 25 日先駆的科学計算に関するフォーラム 214 1 214 年 4 月 25 日先駆的科学計算に関するフォーラム 214 2 1 研究背景と目的 (1/2) 乱流解析手法として

More information

Microsoft PowerPoint - siryo7

Microsoft PowerPoint - siryo7 . 化学反応と溶液 - 遷移状態理論と溶液論 -.. 遷移状態理論 と溶液論 7 年 5 月 5 日 衝突論と遷移状態理論の比較 + 生成物 原子どうしの反応 活性錯体 ( 遷移状態 ) は 3つの並進 つの回転の自由度をもつ (1つの振動モードは分解に相当 ) 3/ [ ( m m) T] 8 IT q q π + π tansqot 3 h h との並進分配関数 [ πmt] 3/ [ ] 3/

More information

Microsoft Word - note02.doc

Microsoft Word - note02.doc 年度 物理化学 Ⅱ 講義ノート. 二原子分子の振動. 調和振動子近似 モデル 分子 = 理想的なバネでつながった原子 r : 核間距離, r e : 平衡核間距離, : 変位 ( = r r e ), k f : 力の定数ポテンシャルエネルギー ( ) k V = f (.) 古典運動方程式 [ 振動数 ] 3.3 d kf (.) dt μ : 換算質量 (m, m : 原子, の質量 ) mm

More information

<4D F736F F F696E74202D20906C8D488AC28BAB90DD8C7689F090CD8D488A D91E F1>

<4D F736F F F696E74202D20906C8D488AC28BAB90DD8C7689F090CD8D488A D91E F1> 人工環境設計解析工学構造力学と有限要素法 ( 第 回 ) 東京大学新領域創成科学研究科 鈴木克幸 固体力学の基礎方程式 変位 - ひずみの関係 適合条件式 ひずみ - 応力の関係 構成方程式 応力 - 外力の関係 平衡方程式 境界条件 変位規定境界 反力規定境界 境界条件 荷重応力ひずみ変形 場の方程式 Γ t Γ t 平衡方程式構成方程式適合条件式 構造力学の基礎式 ひずみ 一軸 荷重応力ひずみ変形

More information

<4D F736F F F696E74202D208D E9197BF288CF68A4A B8CDD8AB B83685D>

<4D F736F F F696E74202D208D E9197BF288CF68A4A B8CDD8AB B83685D> 離散化手法とスキームの基礎 と選択法 007//6 宇宙航空研究開発機構情報 計算工学センター嶋英志 本講習の目的 基礎的な計算法の性質を述べ 各手法の持つ長所短所を理解することによって 手法の背景を理解した正しい選択に近づくこと クーラン数 風上差分 等の広い範囲の CFD 技術に共通の概念について その意味とイメージを把握すること 本講習の方針 様々な流体方程式の基礎となる移流方程式を用いて色々な計算法の特徴を計算例を示しながら解説する

More information

Microsoft PowerPoint - qchem3-11

Microsoft PowerPoint - qchem3-11 8 年度冬学期 量子化学 Ⅲ 章量子化学の応用.6. 溶液反応 9 年 1 月 6 日 担当 : 常田貴夫准教授 溶液中の反応 溶液反応の特徴は 反応する分子の周囲に常に溶媒分子が存在していること 反応過程が遅い 反応自体の化学的効果が重要 遷移状態理論の熱力学表示が適用できる反応過程が速い 反応物が相互に接近したり 生成物が離れていく拡散過程が律速 溶媒効果は拡散現象 溶液中の反応では 分子は周囲の溶媒分子のケージ内で衝突を繰り返す可能性が高い

More information

Microsoft PowerPoint - シミュレーション工学-2010-第1回.ppt

Microsoft PowerPoint - シミュレーション工学-2010-第1回.ppt シミュレーション工学 ( 後半 ) 東京大学人工物工学研究センター 鈴木克幸 CA( Compter Aded geerg ) r. Jaso Lemo (SC, 98) 設計者が解析ツールを使いこなすことにより 設計の評価 設計の質の向上を図る geerg の本質の 計算機による支援 (CA CAM などより広い名前 ) 様々な汎用ソフトの登場 工業製品の設計に不可欠のツール 構造解析 流体解析

More information

Microsoft PowerPoint - 夏の学校(CFD).pptx

Microsoft PowerPoint - 夏の学校(CFD).pptx /9/5 FD( 計算流体力学 ) の基礎理論 性能 運動分野 夏の学校 神戸大学大学院海事科学研究科勝井辰博 流体の質量保存 流体要素内の質量の増加率 [ 単位時間当たりの増加量 ] 単位時間に流体要素に流入する質量 流体要素 Fl lm (orol olm) v ( ) ガウスの定理 v( ) /9/5 = =( ) b=b =(b b b ) b= b = b + b + b アインシュタイン表記

More information

パソコンシミュレータの現状

パソコンシミュレータの現状 第 2 章微分 偏微分, 写像 豊橋技術科学大学森謙一郎 2. 連続関数と微分 工学において物理現象を支配する方程式は微分方程式で表されていることが多く, 有限要素法も微分方程式を解く数値解析法であり, 定式化においては微分 積分が一般的に用いられており. 数学の基礎知識が必要になる. 図 2. に示すように, 微分は連続な関数 f() の傾きを求めることであり, 微小な に対して傾きを表し, を無限に

More information

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように 3 章 Web に Link 解説 連続式 微分表示 の誘導.64 *4. 連続式連続式は ある領域の内部にある流体の質量の収支が その表面からの流入出の合計と等しくなることを定式化したものであり 流体における質量保存則を示したものである 2. 連続式 微分表示 の誘導図のような微小要素 コントロールボリューム の領域内の流体の増減と外部からの流体の流入出を考えることで定式化できる 微小要素 流入

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

スライド 1

スライド 1 相対論的プラズマにおける PIC シミュレーションに伴う数値チェレンコフ不安定の特性ついて 宇宙物理学研究室 4 年池谷直樹 研究背景と目的 0 年 Ie Cube 国際共同実験において超高エネルギーニュートリノを検出 780Tev-5.6PeV 890TeV-8.5PeV 相互作用が殆んど起こらないため銀河磁場による軌道の湾曲が無く 正確な到来方向の情報 を得られる可能性がある ニュートリノから高エネルギー宇宙線の起源を追う

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

多次元レーザー分光で探る凝縮分子系の超高速動力学

多次元レーザー分光で探る凝縮分子系の超高速動力学 波動方程式と量子力学 谷村吉隆 京都大学理学研究科化学専攻 http:theochem.kuchem.kyoto-u.ac.jp TA: 岩元佑樹 iwamoto.y@kuchem.kyoto-u.ac.jp ベクトルと行列の作法 A 列ベクトル c = c c 行ベクトル A = [ c c c ] 転置ベクトル T A = [ c c c ] AA 内積 c AA = [ c c c ] c =

More information

A

A A04-164 2008 2 13 1 4 1.1.......................................... 4 1.2..................................... 4 1.3..................................... 4 1.4..................................... 5 2

More information

第 3 章二相流の圧力損失

第 3 章二相流の圧力損失 第 3 章二相流の圧力損失 単相流の圧力損失 圧力損失 (/) 壁面せん断応力 τ W 力のバランス P+ u m πd 4 τ w 4 τ D u τ w m w πd : 摩擦係数 λ : 円管の摩擦係数 λ D u m D P τ W 摩擦係数 層流 16/Re 乱流 0.079 Re -1/4 0.046 Re -0.0 (Blasius) (Colburn) 大まかには 0.005 二相流の圧力損失液相のみが流れた場合の単相流の圧力損失

More information

<4D F736F F D2097AC91CC97CD8A7789EF EF8E8F8CB48D B89EA8F4390B3816A2E646F63>

<4D F736F F D2097AC91CC97CD8A7789EF EF8E8F8CB48D B89EA8F4390B3816A2E646F63> 日本流体力学会数値流体力学部門 Web 会誌第 巻第 号 3 年 5 月 RANS モデルによる工学問題への対応 RANS Turbulence Modeling for Engineering Applications * 須賀一彦 * 豊田中央研究所 Kazuhiko Suga * Toyota Central R & D Labs., Inc. E-mail:k-suga@mosk.tytlabs.co.p

More information

Microsoft PowerPoint - 第3回OpenCAE初歩情報交換会@北東北_若嶋2.pptx

Microsoft PowerPoint - 第3回OpenCAE初歩情報交換会@北東北_若嶋2.pptx 調査報告 乱流モデルの選択および設定について 一関高専 若嶋 OpenFOAM 2.3.x についてのみ調査 2014/12/5 第 3 回 OpenCAE 初歩情報交換会 @ 北東北 1 OpenFOAM で設定できる乱流モデル http://www.openfoam.org/features/turbulence.php Incompressible Compressible RAS(RANS)

More information

(Microsoft PowerPoint - \221\34613\211\361)

(Microsoft PowerPoint - \221\34613\211\361) 計算力学 ~ 第 回弾性問題の有限要素解析 (Ⅱ)~ 修士 年後期 ( 選択科目 ) 担当 : 岩佐貴史 講義の概要 全 5 講義. 計算力学概論, ガイダンス. 自然現象の数理モデル化. 行列 場とその演算. 数値計算法 (Ⅰ) 5. 数値計算法 (Ⅱ) 6. 初期値 境界値問題 (Ⅰ) 7. 初期値 境界値問題 (Ⅱ) 8. マトリックス変位法による構造解析 9. トラス構造の有限要素解析. 重み付き残差法と古典的近似解法.

More information

<4D F736F F F696E74202D F F8F7482CC944E89EF8AE989E6835A E6F325F8CF68A4A94C55231>

<4D F736F F F696E74202D F F8F7482CC944E89EF8AE989E6835A E6F325F8CF68A4A94C55231> 日本原子力学会 2010 年春の年会茨城大学計算科学技術部会企画セッション シミュレーションの信頼性確保の あり方とは? (2) 海外における熱流動解析の信頼性評価の取り組み 平成 22 年 3 月 28 日東芝中田耕太郎 JNES 笠原文雄 調査対象 OECD/NEA CFD ガイドライン NEA/CSNI/R(2007)5 単相 CFD の使用に関する体系的なベストプラクティスガイドライン 原子炉安全解析に対する単相

More information

Microsoft PowerPoint - H21生物計算化学2.ppt

Microsoft PowerPoint - H21生物計算化学2.ppt 演算子の行列表現 > L いま 次元ベクトル空間の基底をケットと書くことにする この基底は完全系を成すとすると 空間内の任意のケットベクトルは > > > これより 一度基底を与えてしまえば 任意のベクトルはその基底についての成分で完全に記述することができる これらの成分を列行列の形に書くと M これをベクトル の基底 { >} による行列表現という ところで 行列 A の共役 dont 行列は A

More information

領域シンポ発表

領域シンポ発表 1 次元の減衰運動の中の強制振動 ) ( f d d d d d e f e ce ) ( si ) ( 1 ) ( cos ω =ω -γ とおくと 一般解は 外力 f()=f siω の場合 f d d d d si f ce f ce si ) cos( cos si ) cos( この一般解は 1 φ は外力と変位との間の位相差で a 時間が経つと 第 1 項は無視できる この場合の振幅を

More information

First Aerodynamics Prediction Challenge (APC-I) 143 First Aerodynamics Prediction Challenge (APC-I) 2015/7/3 TAS MEGG3D 格子による解析 M = 0.847, α = M

First Aerodynamics Prediction Challenge (APC-I) 143 First Aerodynamics Prediction Challenge (APC-I) 2015/7/3 TAS MEGG3D 格子による解析 M = 0.847, α = M First Aerodynamics Prediction Challenge (APC-I) 143 First Aerodynamics Prediction Challenge (APC-I) 2015/7/3 TAS MEGG3D 格子による解析 M = 0.847, α = -0.62 M = 0.847, α = 2.47 M = 0.847, α = 2.94 M = 0.847, α

More information

Microsoft PowerPoint - 発表II-3原稿r02.ppt [互換モード]

Microsoft PowerPoint - 発表II-3原稿r02.ppt [互換モード] 地震時の原子力発電所燃料プールからの溢水量解析プログラム 地球工学研究所田中伸和豊田幸宏 Central Research Institute of Electric Power Industry 1 1. はじめに ( その 1) 2003 年十勝沖地震では 震源から離れた苫小牧地区の石油タンクに スロッシング ( 液面揺動 ) による火災被害が生じた 2007 年中越沖地震では 原子力発電所内の燃料プールからの溢水があり

More information

FEM原理講座 (サンプルテキスト)

FEM原理講座 (サンプルテキスト) サンプルテキスト FEM 原理講座 サイバネットシステム株式会社 8 年 月 9 日作成 サンプルテキストについて 各講師が 講義の内容が伝わりやすいページ を選びました テキストのページは必ずしも連続していません 一部を抜粋しています 幾何光学講座については 実物のテキストではなくガイダンスを掲載いたします 対象とする構造系 物理モデル 連続体 固体 弾性体 / 弾塑性体 / 粘弾性体 / 固体

More information

ポリトロープ、対流と輻射、時間尺度

ポリトロープ、対流と輻射、時間尺度 宇宙物理学 ( 概論 ) 6/6/ 大阪大学大学院理学研究科林田清 ポリトロープ関係式 1+(1/) 圧力と密度の間にP=Kρ という関係が成り立っていると仮定する K とは定数でをポリトロープ指数と呼ぶ 5 = : 非相対論的ガス dlnp 3 断熱変化の場合 断熱指数 γ, と dlnρ 4 = : 相対論的ガス 3 1 = の関係にある γ 1 等温変化の場合は= に相当 一様密度の球は=に相当

More information

物性物理学I_2.pptx

物性物理学I_2.pptx The University of Tokyo, Komaba Graduate School of Arts and Sciences I 凝縮系 固体 をデザインする 銅()面上の鉄原子の 量子珊瑚礁 IBM Almaden 許可を得て掲載 www.almaden.ibm.com/vis/stm/imagesstm5.jpg&imgrefurl=http://www.almaden.ibm.com/vis/

More information

SPring-8ワークショップ_リガク伊藤

SPring-8ワークショップ_リガク伊藤 GI SAXS. X X X X GI-SAXS : Grazing-incidence smallangle X-ray scattering. GI-SAXS GI-SAXS GI-SAXS X X X X X GI-SAXS Q Y : Q Z : Q Y - Q Z CCD Charge-coupled device X X APD Avalanche photo diode - cps 8

More information

オープン CAE シンポジウム @ 名古屋 C17 遷 速における OpenFOAM の圧縮性ソルバーの 較 2017 年 12 9 松原 輔 ( オープンCAE 勉強会 @ 関 ) 1 お詫びと訂正 講演概要集で誤記がありました 記載されている計算結果は 粘性 の速度の発散項はupwind で った結果となっております 境界条件にも誤記があります ( 後に します ) 申し訳ありません 2 目次

More information

3 数値解の特性 3.1 CFL 条件 を 前の章では 波動方程式 f x= x0 = f x= x0 t f c x f =0 [1] c f 0 x= x 0 x 0 f x= x0 x 2 x 2 t [2] のように差分化して数値解を求めた ここでは このようにして得られた数値解の性質を 考

3 数値解の特性 3.1 CFL 条件 を 前の章では 波動方程式 f x= x0 = f x= x0 t f c x f =0 [1] c f 0 x= x 0 x 0 f x= x0 x 2 x 2 t [2] のように差分化して数値解を求めた ここでは このようにして得られた数値解の性質を 考 3 数値解の特性 3.1 CFL 条件 を 前の章では 波動方程式 f x= x = f x= x t f c x f = [1] c f x= x f x= x 2 2 t [2] のように差分化して数値解を求めた ここでは このようにして得られた数値解の性質を 考える まず 初期時刻 t=t に f =R f exp [ik x ] [3] のような波動を与えたとき どのように時間変化するか調べる

More information

III,..

III,.. III,.. 7.1, :. j I (= ) : [Ω, Ω + dω] dw dω = sin θ dθ dφ dw j I [1/s] [1/s m 2 ] = dσ [m2 ]. dσ dω [m2 ] :., σ tot = dσ = dω dσ dω [m2 ] :. 2.4 章では非定常状態の摂動論を用いて 入射平面波 eik x 摂動 ON 入射平面波 + 散乱平面波 X k0 0

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 反応工学 Raction Enginring 講義時間 ( 場所 : 火曜 限 (8-A 木曜 限 (S-A 担当 : 山村 火 限 8-A 期末試験中間試験以降 /7( 木 まで持ち込みなし要電卓 /4( 木 質問受付日講義なし 授業アンケート (li campus の入力をお願いします 晶析 (crystallization ( 教科書 p. 濃度 溶解度曲線 C C s A 安定 液 ( 気

More information

Microsoft Word - EM_EHD_2010.doc

Microsoft Word - EM_EHD_2010.doc H のための電磁気学 機能材料工学科阿部洋 . 電磁気学電磁気学電磁気学電磁気学の基礎基礎基礎基礎 - マクスウェルマクスウェルマクスウェルマクスウェルの応力応力応力応力静電場の条件は e div ρ ( ) ot ( ) である 体積 V で電荷密度 ρ e に働く力はクーロン力から ρ dv F e ( 3) と表せる ( 3) 式に ( ) を代入すると ( ) dv div F ( 4) となる

More information

大気環境シミュレーション

大気環境シミュレーション 第 3 回 (Q) 各自 eelを用いて 次の漸化式 + = の解の初期値依存性を調べよ.は50まで () 0 =.0 () 0 =.5 (3) 0 =.0 締切 04 年 月 6 日 ( 月 ) 夕方まで 提出先 347 室 オーバーフロー失敗ゴメンなさい (Q) 各自 eelを用いて 次の漸化式 + = の解の初期値依存性を調べよ.は50まで () 0 =.330 () 0 =.33 (3) 0

More information

PowerPoint Presentation

PowerPoint Presentation Non-linea factue mechanics き裂先端付近の塑性変形 塑性域 R 破壊進行領域応カ特異場 Ω R R Hutchinson, Rice and Rosengen 全ひずみ塑性理論に基づいた解析 現段階のひずみは 除荷がないとすると現段階の応力で一義的に決まる 単純引張り時の応カーひずみ関係 ( 構成方程式 ): ( ) ( ) n () y y y ここで α,n 定数, /

More information

風力発電インデックスの算出方法について 1. 風力発電インデックスについて風力発電インデックスは 気象庁 GPV(RSM) 1 局地気象モデル 2 (ANEMOS:LAWEPS-1 次領域モデル ) マスコンモデル 3 により 1km メッシュの地上高 70m における 24 時間の毎時風速を予測し

風力発電インデックスの算出方法について 1. 風力発電インデックスについて風力発電インデックスは 気象庁 GPV(RSM) 1 局地気象モデル 2 (ANEMOS:LAWEPS-1 次領域モデル ) マスコンモデル 3 により 1km メッシュの地上高 70m における 24 時間の毎時風速を予測し 風力発電インデックスの算出方法について 1. 風力発電インデックスについて風力発電インデックスは 気象庁 GPV(RSM) 1 局地気象モデル 2 (ANEMOS:LAWEPS-1 次領域モデル ) マスコンモデル 3 により 1km メッシュの地上高 70m における 24 時間の毎時風速を予測し 2000kW 定格風車の設備利用率として表示させたものです 数値は風車の定格出力 (2000kW)

More information

I II III IV V

I II III IV V I II III IV V N/m 2 640 980 50 200 290 440 2m 50 4m 100 100 150 200 290 390 590 150 340 4m 6m 8m 100 170 250 µ = E FRVβ β N/mm 2 N/mm 2 1.1 F c t.1 3 1 1.1 1.1 2 2 2 2 F F b F s F c F t F b F s 3 3 3

More information

19年度一次基礎科目計算問題略解

19年度一次基礎科目計算問題略解 9 年度機械科目 ( 計算問題主体 ) 略解 基礎科目の解析の延長としてわかる範囲でトライしてみたものです Coprigh (c) 7 宮田明則技術士事務所 Coprigh (c) 7 宮田明則技術士事務所 Ⅳ- よってから は許容荷重として は直径をロ - プの断面積 Ⅳ- cr E E E I, から Ⅳ- Ⅳ- : q q q q q q q q q で絶対値が最大 で絶対値が最大モーメントはいずれも中央で最大となる

More information

超伝導状態の輸送方程式におけるゲージ不変性とホール効果

超伝導状態の輸送方程式におけるゲージ不変性とホール効果 超伝導状態の輸送方程式におけるゲージ不変性とホール項 輸送方程式について 研究の歴史 微視的導出法 問題点 - 項 超伝導体の 効果の実験 北大 理 物理北孝文 非平衡状態の摂動論 の方法 輸送方程式の微視的導出と問題点 ゲージ不変性とホール項 まとめ バイロイト 月 - 月 カールスルーエ 月 - 月 カールスルーエのお城 モーゼル渓谷 ザルツカンマ - グート ( オーストリア ) バイロイト近郊

More information

伝熱学課題

伝熱学課題 練習問題解答例 < 第 章強制対流熱伝達 >. 式 (.9) を導出せよ (.6) を変換する 最初に の微分値を整理しておく (.A) (.A) これを用いて の微分値を求める (.A) (.A) (.A) (.A6) (.A7) これらの微分値を式 (.6) に代入する (.A8) (.A9) (.A) (.A) (.A) (.9). 薄い平板が温度 で常圧の水の一様な流れの中に平行に置かれている

More information

Microsoft PowerPoint - suta.ppt [互換モード]

Microsoft PowerPoint - suta.ppt [互換モード] 弾塑性不飽和土構成モデルの一般化と土 / 水連成解析への適用 研究の背景 不飽和状態にある土構造物の弾塑性挙動 ロックフィルダム 道路盛土 長期的に正確な予測 不飽和土弾塑性構成モデル 水頭変動 雨水の浸潤 乾湿の繰り返し 土構造物の品質変化 不飽和土の特徴的な力学特性 不飽和土の特性 サクション サクション s w C 飽和度が低い状態 飽和度が高い状態 サクションの効果 空気侵入値 B. サクション増加

More information

Probit , Mixed logit

Probit , Mixed logit Probit, Mixed logit 2016/5/16 スタートアップゼミ #5 B4 後藤祥孝 1 0. 目次 Probit モデルについて 1. モデル概要 2. 定式化と理解 3. 推定 Mixed logit モデルについて 4. モデル概要 5. 定式化と理解 6. 推定 2 1.Probit 概要 プロビットモデルとは. 効用関数の誤差項に多変量正規分布を仮定したもの. 誤差項には様々な要因が存在するため,

More information

Microsoft Word - thesis.doc

Microsoft Word - thesis.doc 剛体の基礎理論 -. 剛体の基礎理論初めに本論文で大域的に使用する記号を定義する. 使用する記号トルク撃力力角運動量角速度姿勢対角化された慣性テンソル慣性テンソル運動量速度位置質量時間 J W f F P p .. 質点の並進運動 質点は位置 と速度 P を用いる. ニュートンの運動方程式 という状態を持つ. 但し ここでは速度ではなく運動量 F P F.... より質点の運動は既に明らかであり 質点の状態ベクトル

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,. 23(2011) (1 C104) 5 11 (2 C206) 5 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 ( ). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5.. 6.. 7.,,. 8.,. 1. (75%

More information

τ τ

τ τ 1 1 1.1 1.1.1 τ τ 2 1 1.1.2 1.1 1.1 µ ν M φ ν end ξ µ ν end ψ ψ = µ + ν end φ ν = 1 2 (µφ + ν end) ξ = ν (µ + ν end ) + 1 1.1 3 6.18 a b 1.2 a b 1.1.3 1.1.3.1 f R{A f } A f 1 B R{AB f 1 } COOH A OH B 1.3

More information

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b) (5) 74 Re, bondar laer (Prandtl) Re z ω z = x (5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b) (5) 76 l V x ) 1/ 1 ( 1 1 1 δ δ = x Re x p V x t V l l (1-1) 1/ 1 δ δ δ δ = x Re p V x t V

More information

計算機シミュレーション

計算機シミュレーション . 運動方程式の数値解法.. ニュートン方程式の近似速度は, 位置座標 の時間微分で, d と定義されます. これを成分で書くと, d d li li とかけます. 本来は が の極限をとらなければいけませんが, 有限の小さな値とすると 秒後の位置座標は速度を用いて, と近似できます. 同様にして, 加速度は, 速度 の時間微分で, d と定義されます. これを成分で書くと, d d li li とかけます.

More information

Microsoft Word - Freefem減ページ原稿.doc

Microsoft Word - Freefem減ページ原稿.doc 月刊下水道 2015 11 月号 VOL.38 No.13 有限要素法 (FreeFem++) による三次元流体解析 - 手軽に流れを観察するその2 - 中日本建設コンサルタント ( 株 ) 中根進 1. まえがき筆者は 本誌 Vol.36.No.10 (2013 年増刊号 ) で 格子ボルツマン法による下水流れの可視化 - 手軽に流れを観察する- と題して フリーソフト(Blender:Fluid)

More information

Microsoft PowerPoint - qchem3-9

Microsoft PowerPoint - qchem3-9 008 年度冬学期 量子化学 Ⅲ 章量子化学の応用 4.4. 相対論的効果 009 年 月 8 日 担当 : 常田貴夫准教授 相対性理論 A. Einstein 特殊相対論 (905 年 ) 相対性原理: ローレンツ変換に対して物理法則の形は不変 光速度不変 : 互いに等速運動する座標系で光速度は常に一定 ミンコフスキーの4 次元空間座標系 ( 等速系のみ ) 一般相対論 (96 年 ) 等価原理

More information

nsg02-13/ky045059301600033210

nsg02-13/ky045059301600033210 φ φ φ φ κ κ α α μ μ α α μ χ et al Neurosci. Res. Trpv J Physiol μ μ α α α β in vivo β β β β β β β β in vitro β γ μ δ μδ δ δ α θ α θ α In Biomechanics at Micro- and Nanoscale Levels, Volume I W W v W

More information

Microsoft PowerPoint - 卒業論文 pptx

Microsoft PowerPoint - 卒業論文 pptx 時間に依存するポテンシャルによる 量子状態の変化 龍谷大学理工学部数理情報学科 T966 二正寺章指導教員飯田晋司 目次 はじめに 次元のシュレーディンガー方程式 3 井戸型ポテンシャルの固有エネルギーと固有関数 4 4 中央に障壁のある井戸型ポテンシャルの固有エネルギーと固有関数 3 5 障壁が時間によって変化する場合 7 6 まとめ 5 一次元のシュレディンガー方程式量子力学の基本方程式 ψ (

More information

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ 数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュレーションによって計算してみる 4.1 放物運動一様な重力場における放物運動を考える 一般に質量の物体に作用する力をとすると運動方程式は

More information

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m 1 1 1 + 1 4 + + 1 n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m a n < ε 1 1. ε = 10 1 N m, n N a m a n < ε = 10 1 N

More information

Techniques for Nuclear and Particle Physics Experiments Energy Loss by Radiation : Bremsstrahlung 制動放射によるエネルギー損失は σ r 2 e = (e 2 mc 2 ) 2 で表される為

Techniques for Nuclear and Particle Physics Experiments Energy Loss by Radiation : Bremsstrahlung 制動放射によるエネルギー損失は σ r 2 e = (e 2 mc 2 ) 2 で表される為 Techniques for Nuclear and Particle Physics Experiments.. Energy Loss by Radiation : Bremsstrahlung 制動放射によるエネルギー損失は σ r e = (e mc ) で表される為 質量に大きく依存する Ex) 電子の次に質量の小さいミューオンの制動放射によるエネルギー損失 m e 0.5 MeV, m

More information

コロイド化学と界面化学

コロイド化学と界面化学 環境表面科学講義 http://res.tagen.tohoku.ac.jp/~liquid/mura/kogi/kaimen/ E-mail: mura@tagen.tohoku.ac.jp 村松淳司 分散と凝集 ( 平衡論的考察! 凝集! van der Waals 力による相互作用! 分散! 静電的反発力 凝集 分散! 粒子表面の電位による反発 分散と凝集 考え方! van der Waals

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 有効理論を用いた vector like クォーク模型に対する B 中間子稀崩壊からの制限 (Work in progre) 広大院理 高橋隼也 共同研究者 : 広大院理, 広大 CORE-U 広大院理 島根大総合理工 両角卓也 清水勇介 梅枝宏之 導入 標準模型 (SM) のクォーク 標準模型は 6 種類のクォークの存在を仮定 アップタイプ ダウンタイプ u c t d 更にクォークが存在する可能性は?

More information

テンソル ( その ) テンソル ( その ) スカラー ( 階のテンソル ) スカラー ( 階のテンソル ) 階数 ベクトル ( 階のテンソル ) ベクトル ( 階のテンソル ) 行列表現 シンボリック表現 [ ]

テンソル ( その ) テンソル ( その ) スカラー ( 階のテンソル ) スカラー ( 階のテンソル ) 階数 ベクトル ( 階のテンソル ) ベクトル ( 階のテンソル ) 行列表現 シンボリック表現 [ ] Tsor th-ordr tsor by dcl xprsso m m Lm m k m k L mk kk quott rul by symbolc xprsso Lk X thrd-ordr tsor cotrcto j j Copyrght s rsrvd. No prt of ths documt my b rproducd for proft. テンソル ( その ) テンソル ( その

More information

素粒子物理学2 素粒子物理学序論B 2010年度講義第2回

素粒子物理学2 素粒子物理学序論B 2010年度講義第2回 素粒子物理学2 素粒子物理学序論B 2010年度講義第2回 =1.055 10 34 J sec =6.582 10 22 MeV sec c = 197.33 10 15 MeV m = c = c =1 1 m p = c(mev m) 938M ev = 197 10 15 (m) 938 =0.2 10 13 (cm) 1 m p = (MeV sec) 938M ev = 6.58

More information

Microsoft PowerPoint - 先端GPGPUシミュレーション工学特論(web).pptx

Microsoft PowerPoint - 先端GPGPUシミュレーション工学特論(web).pptx 数値流体力学への応用 ( 支配方程式 CPU プログラム ) 長岡技術科学大学電気電子情報工学専攻出川智啓 今回の内容 支配方程式 Taylor Gree 渦 Cavty 流れ 798 数値流体力学 数値計算を利用して 流体の挙動を計算 Computatoal Flud Dyamcs( 略して CFD) 計算機の性能向上に伴い 必要不可欠な設計ツールとなっている 流体を取り扱う機器の性能評価 流体中を移動する物体が受ける抵抗の評価など

More information

素粒子物理学2 素粒子物理学序論B 2010年度講義第4回

素粒子物理学2 素粒子物理学序論B 2010年度講義第4回 素粒子物理学 素粒子物理学序論B 010年度講義第4回 レプトン数の保存 崩壊モード 寿命(sec) n e ν 890 崩壊比 100% Λ π.6 x 10-10 64% π + µ+ νµ.6 x 10-8 100% π + e+ νe 同上 1. x 10-4 Le +1 for νe, elμ +1 for νμ, μlτ +1 for ντ, τレプトン数はそれぞれの香りで独立に保存

More information

<4D F736F F F696E74202D2091E6328FCD E9F8CB392E88FED944D936093B1298D758B F E291E892C789C1292E B8CDD8

<4D F736F F F696E74202D2091E6328FCD E9F8CB392E88FED944D936093B1298D758B F E291E892C789C1292E B8CDD8 第 章一次元定常熱伝導 伝熱工学の基礎 : 伝熱の基本要素 フーリエの法則 ニュートンの冷却則 次元定常熱伝導 : 熱伝導率 熱通過率 熱伝導方程式 次元定常熱伝導 : ラプラスの方程式 数値解析の基礎 非定常熱伝導 : 非定常熱伝導方程式 ラプラス変換 フーリエ数とビオ数 対流熱伝達の基礎 : 熱伝達率 速度境界層と温度境界層 層流境界層と乱流境界層 境界層厚さ 混合平均温度 強制対流熱伝達 :

More information

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >

More information

LLG-R8.Nisus.pdf

LLG-R8.Nisus.pdf d M d t = γ M H + α M d M d t M γ [ 1/ ( Oe sec) ] α γ γ = gµ B h g g µ B h / π γ g = γ = 1.76 10 [ 7 1/ ( Oe sec) ] α α = λ γ λ λ λ α γ α α H α = γ H ω ω H α α H K K H K / M 1 1 > 0 α 1 M > 0 γ α γ =

More information

修士論文

修士論文 SAW 14 2 M3622 i 1 1 1-1 1 1-2 2 1-3 2 2 3 2-1 3 2-2 5 2-3 7 2-3-1 7 2-3-2 2-3-3 SAW 12 3 13 3-1 13 3-2 14 4 SAW 19 4-1 19 4-2 21 4-2-1 21 4-2-2 22 4-3 24 4-4 35 5 SAW 36 5-1 Wedge 36 5-1-1 SAW 36 5-1-2

More information

ハートレー近似(Hartree aproximation)

ハートレー近似(Hartree aproximation) ハートリー近似 ( 量子多体系の平均場近似 1) 0. ハミルトニアンの期待値の変分がシュレディンガー方程式と等価であること 1. 独立粒子近似という考え方. 電子系におけるハートリー近似 3.3 電子系におけるハートリー近似 Mde by R. Okmoto (Kyushu Institute of Technology) filenme=rtree080609.ppt (0) ハミルトニアンの期待値の変分と

More information

研究成果報告書

研究成果報告書 様式 C-19 科学研究費補助金研究成果報告書 研究種目 : 若手研究 ( スタートアップ ) 研究期間 :7~8 課題番号 :19861 研究課題名 ( 和文 ) 大規模火災旋風の性状予測および被害評価 平成 1 年 5 月 9 日現在 研究課題名 ( 英文 ) Understandingthenatureof,andevaluatingthedamagecaused bylarge-scalefirewhirls

More information

重力渦動による反重力推進の可能性 ( 電磁型フォワード エンジンの検討 ) ToM Possibility of Antigravity Propulsion by Gravitational Vortex 1. 序論 R.L. フォワードは Guidelines to Antigravity (1

重力渦動による反重力推進の可能性 ( 電磁型フォワード エンジンの検討 ) ToM Possibility of Antigravity Propulsion by Gravitational Vortex 1. 序論 R.L. フォワードは Guidelines to Antigravity (1 重力渦動による反重力推進の可能性 ( 電磁型フォワード エンジンの検討 ) ToM Possibility of Antigravity Propulsion by Gravitational Vortex 1. 序論 R.L. フォワードは Guidelines to Antigravity (1) で 加速された大質量による非ニュートン的な重力効果を利用した 図 1に示す重力マシンの可能性について検討している

More information

で通常 0.1mm 程度であるのに対し, 軸受内部の表面の大きさは通常 10mm 程度であり, 大きさのスケールが100 倍程度異なる. 例えば, 本研究で解析対象とした玉軸受について, すべての格子をEHLに用いる等間隔構造格子で作成したとすると, 総格子点数は10,000,000のオーダーとなる

で通常 0.1mm 程度であるのに対し, 軸受内部の表面の大きさは通常 10mm 程度であり, 大きさのスケールが100 倍程度異なる. 例えば, 本研究で解析対象とした玉軸受について, すべての格子をEHLに用いる等間隔構造格子で作成したとすると, 総格子点数は10,000,000のオーダーとなる 論文の内容の要旨 論文題目 転がり軸受における枯渇弾性流体潤滑とマクロ流れのマルチスケール連成解析手法の開発 氏名柴﨑健一 転がり軸受は, 転動体が, 外輪および内輪上の溝を転がることにより, 軸を回転自在に支持する機械要素であり, 長寿命化, 低摩擦化が強く求められている. 軸受の摩耗や焼付を防ぎ, 寿命を延ばすため, 通常は潤滑油またはグリースなどの潤滑剤が用いられる. 潤滑油は, 転がり接触する二表面間に表面粗さよりも厚い膜を形成し,

More information

Microsoft PowerPoint - 第8章

Microsoft PowerPoint - 第8章 講義予定 案. 9/ 数値シミュレーションの手続き テキスト第 章. 9/ 9 偏微分方程式と解析解 テキスト第 章 3. 9/6 休講 4. 9/30 差分方程式とそのスキーム テキスト第 3 章 変換 テキスト第 4 章 5. 0/ 7 計算 テキスト第 5 章 連立一次方程式の解法 テキスト第 6 章 6. 0/ 流れ関数 ポテンシャルによる解法 テキスト第 7 章 7. 0/8 流速 圧力を用いた解法

More information

画像処理工学

画像処理工学 画像処理工学 画像の空間周波数解析とテクスチャ特徴 フーリエ変換の基本概念 信号波形のフーリエ変換 信号波形を周波数の異なる三角関数 ( 正弦波など ) に分解する 逆に, 周波数の異なる三角関数を重ねあわせることにより, 任意の信号波形を合成できる 正弦波の重ね合わせによる矩形波の表現 フーリエ変換の基本概念 フーリエ変換 次元信号 f (t) のフーリエ変換 変換 ( ω) ( ) ωt F f

More information

位相最適化?

位相最適化? 均質化設計法 藤井大地 ( 東京大学 ) 位相最適化? 従来の考え方 境界形状を変化させて最適な形状 位相を求める Γ t Ω b Γ D 境界形状を変化させる問題点 解析が進むにつれて, 有限要素メッシュが異形になり, 再メッシュが必要になる 位相が変化する問題への適応が難しい Γ Γ t t Ω b Ω b Γ D Γ D 領域の拡張と特性関数の導入 χ Ω ( x) = f 0 f x Ω x

More information

プランクの公式と量子化

プランクの公式と量子化 Planck の公式と量子化 埼玉大学理学部物理学科 久保宗弘 序論 一般に 量子力学 と表現すると Schrödinger の量子力学などの 後期量子力学 を指すことが多い 本当の量子概念 には どうアプローチ? 何故 エネルギーが量子化されるか という根本的な問いにどうこたえるか? どのように 量子 の扉は叩かれたのか? 序論 統計力学 熱力学 がことの始まり 総括的な動き を表現するための学問である

More information

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k 63 3 Section 3.1 g 3.1 3.1: : 64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () 3 9.8 m/s 2 3.2 3.2: : a) b) 5 15 4 1 1. 1 3 14. 1 3 kg/m 3 2 3.3 1 3 5.8 1 3 kg/m 3 3 2.65 1 3 kg/m 3 4 6 m 3.1. 65 5

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

耳桁の剛性の考慮分配係数の計算条件は 主桁本数 n 格子剛度 zです 通常の並列鋼桁橋では 主桁はすべて同じ断面を使います しかし 分配の効率を上げる場合 耳桁 ( 幅員端側の桁 ) の断面を大きくすることがあります 最近の桁橋では 上下線を別橋梁とすることがあり また 防音壁などの敷設が片側に有る

耳桁の剛性の考慮分配係数の計算条件は 主桁本数 n 格子剛度 zです 通常の並列鋼桁橋では 主桁はすべて同じ断面を使います しかし 分配の効率を上げる場合 耳桁 ( 幅員端側の桁 ) の断面を大きくすることがあります 最近の桁橋では 上下線を別橋梁とすることがあり また 防音壁などの敷設が片側に有る 格子桁の分配係数の計算 ( デモ版 ) 理論と解析の背景主桁を並列した鋼単純桁の設計では 幅員方向の横桁の剛性を考えて 複数の主桁が協力して活荷重を分担する効果を計算します これを 単純な (1,0) 分配に対して格子分配と言います レオンハルト (F.Leonhardt,1909-1999) が 1950 年初頭に発表した論文が元になっていて 理論仮定 記号などの使い方は その論文を踏襲して設計に応用しています

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

Microsoft PowerPoint - 12_2019裖置工�榇諌

Microsoft PowerPoint - 12_2019裖置工å�¦æ¦‡è«Œ 1 装置工学概論 第 12 回 蒸留装置の設計 (3) 流動装置の設計 (1) 東京工業大学物質理工学院応用化学系 下山裕介 2019.7.15 装置工学概論 2 第 1 回 4 /15 ガイダンス : 化学プロセスと装置設計 第 2 回 4 /22 物質 エネルギー収支 第 3 回 5 /6( 祝 ) 化学プロセスと操作変数 5 /13 休講 第 4 回 5 /20 無次元数と次元解析 第 5 回

More information

Microsoft Word - MHD-wave.doc

Microsoft Word - MHD-wave.doc 電磁流体力学波 基礎方程式と線形化 谷一郎著 流れ学 を参考にして以下説明する. 流体の運動と電磁場の作用が相互に干渉する 結果, 磁場が存在する場合の導電性気体中の小さい撹乱は, 普通の音波や電磁波とは異なる波の 形で伝播する. 特に伝播速度は, 伝播の方向が磁場の方向となす角に関係する. このような伝播 の法則を明らかにすることは, 導電性気体中の物体の運動を正しく理解するためにも重要なもの である.

More information

線形弾性体 線形弾性体 応力テンソル とひずみテンソルソル の各成分が線形関係を有する固体. kl 応力テンソル O kl ひずみテンソル

線形弾性体 線形弾性体 応力テンソル とひずみテンソルソル の各成分が線形関係を有する固体. kl 応力テンソル O kl ひずみテンソル Constitutive equation of elasti solid Hooke s law λδ μ kk Lame s onstant λ μ ( )( ) ( ) linear elasti solid kl kl Copyright is reserved. No part of this doument may be reprodued for profit. 線形弾性体 線形弾性体

More information

1.500 m X Y m m m m m m m m m m m m N/ N/ ( ) qa N/ N/ 2 2

1.500 m X Y m m m m m m m m m m m m N/ N/ ( ) qa N/ N/ 2 2 1.500 m X Y 0.200 m 0.200 m 0.200 m 0.200 m 0.200 m 0.000 m 1.200 m m 0.150 m 0.150 m m m 2 24.5 N/ 3 18.0 N/ 3 30.0 0.60 ( ) qa 50.79 N/ 2 0.0 N/ 2 20.000 20.000 15.000 15.000 X(m) Y(m) (kn/m 2 ) 10.000

More information

untitled

untitled ( ) c a sin b c b c a cos a c b c a tan b a b cos sin a c b c a ccos b csin (4) Ma k Mg a (Gal) g(98gal) (Gal) a max (K-E) kh Zck.85.6. 4 Ma g a k a g k D τ f c + σ tanφ σ 3 3 /A τ f3 S S τ A σ /A σ /A

More information

2016 Star Japanese Conference

2016 Star Japanese Conference [ 流体技術 : Room C ] STAR Japanese Conference 2016 YOKOHAMA JUNE 9-10, 2016 空気砲を用いた熱流体の輸送における 拡散および熱伝達特性の LES 解析 Large Eddy Simulation of the diffusion and heat transfer characteristics in transport of the

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 反応工学 Reacio Egieerig 講義時間 場所 : 火曜 限 8- 木曜 限 S- 担当 : 山村 補講 /3 木 限 S- ジメチルエーテルの気相熱分解 CH 3 O CH 4 H CO 設計仕様 処理量 v =4.8 m 3 /h 原料は DME のみ 777K 反応率 =.95 まで熱分解 管型反応器の体積 V[m 3 ] を決定せよ ただし反応速度式反応速度定数 ラボ実験は自由に行ってよい

More information

2011 年度第 41 回天文 天体物理若手夏の学校 2011/8/1( 月 )-4( 木 ) 星間現象 18b 初代星形成における水素分子冷却モデルの影響 平野信吾 ( 東京大学 M2) 1. Introduction 初代星と水素分子冷却ファーストスター ( 初代星, PopIII) は重元素を

2011 年度第 41 回天文 天体物理若手夏の学校 2011/8/1( 月 )-4( 木 ) 星間現象 18b 初代星形成における水素分子冷却モデルの影響 平野信吾 ( 東京大学 M2) 1. Introduction 初代星と水素分子冷却ファーストスター ( 初代星, PopIII) は重元素を 2011 年度第 41 回天文 天体物理若手夏の学校 2011/8/1( 月 )-4( 木 ) 星間現象 18b 初代星形成における水素分子冷却モデルの影響 平野信吾 ( 東京大学 M2) 1. Introduction 初代星と水素分子冷却ファーストスター ( 初代星, PopIII) は重元素を含まない原始ガスから形成される 宇宙で最初に誕生する星である 初代星はその後の星形成や再電離など宇宙初期の天文現象に強く関係し

More information

untitled

untitled 熱対流現象 山中透 2005 年 3 月 概要 流体を熱源に接触させ, 流体に温度傾度を与えたときを考える. 流体の温度傾度が小さいときは, 熱拡散のみが起こるが, 流体の温度傾度が閾値を越えると, 熱拡散だけでは温度傾度を解消できなくなって不安定となり, 対流が生じる. これをベナール対流とよぶ. ここでは, ベナール対流を記述する非線型方程式の線型安定性の解析によって, 流体が不安定化する条件を求め,

More information