mf.dvi

Size: px
Start display at page:

Download "mf.dvi"

Transcription

1 Λ y : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3 : : : : : : : : : : : : : : : : : : : : : : : : : : 3 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5 3 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 8 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 8 2 =CRR : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1 CRR : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 12 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 16 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 18 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 23 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 24 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 24 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 26 Doob : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 27 (EMM) : : : : : : : : : : : : : : : : : : : : : : : : : : : 28 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3 Λ 212 y ichiro@math.kyoto-u.ac.jp, URL: 1

2 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 31 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 31 3 Black-Scholes 32 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 32 Y k : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 33 Black-Scholes : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 37 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 38 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 39 CRR : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 43 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 44 : : : : : : : : : : : : : : : : : : : : : : : : : : : 47 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 49 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 52 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 55 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 56 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 61 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 61 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 62 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 63 7 Black-Scholes 63 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 63 Black-Scholes : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 64 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 65 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 65 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 66 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 68 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 69 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 72 2

3 t =,1;:::, T S t S t :5 : T K : T K 1 S T S T» K S T K S T >K K K S T S T K (S T K) + : H =(S T K) + : H =(K S T ) + ß(H) (derivative secureity) (contingent claim) : 1 fs t g, t =,1S =1 ( 2; p S 1 = 7:5; 1 p H =(S 1 K) + K =15 E[(S 1 K) + ] = (2 15) p + (1 p) =5p p =:5 2:5 1 3

4 ffl ffl viable (no arbitrage), ffl viable, ffl (arbitrage) ffl (no arbitrage) no free lunch (S T K) + (K S 1 ) + (1 + ρ) t t C t, P t ( ) (1.1) C t P t = S t (1 + ρ) (T t) K: t (1 + ρ) (T t) K T 1. C T P T =(S T K) + (K S T ) + 2. S T (1 + ρ) (T t) (1 + ρ) (T t) K S T K (1.1) t 4

5 S t B t B t (riskless security) (risky security) B t B t B t B t =(1+ρ) t ρ B t t S t t ( t ; t ) V t = t B t + t S t t B t + t S t = t+1 B t + t+1 S t (self financing) V T H =(S T K) + (duplication) V T = H ( t ; t ) V B t = 1 T =1( 1 ; 1 ) ( ; ) V = + S V 1 = + S 1 H = V 1 ( ; ) S 1 S 1 (! +) =2; S 1 (! ) =7:5; H(! +) =5; H(! ) = H(!) = + S 1 (!) 5

6 ( 5= +2 ; = +7:5 S S 1 H = +2 7:5 = +7:5 = 3; =:4 V = + S V = 3+:4 1 = 1 ffl (writer) t = :4 :4 1 4 t =1 S 1 = :6 : S 1 =7:5.4 :4 7: ß(H) > 1 1 ß(H) 1! ß(H) > 1 ffl (buyer) 6

7 t = :4 = :4 () : t =1 S 1 = :4 =:6 : S 1 =7: :4 7:5 3 ß(H) < 1 1 ß(H)! ß(H) < 1 S 1 = ( 2; p 5; 1 p ( 5= +2 ; = +5 = 5 3 ; = 1 3 V = + S V = = 5 3 : 7

8 3 S =1 S 1 = 8 >< >: 2; p 1 1; p 2 7:5; p 3 K =15 S 1 K >< >: 5= +2 ; = +1 ; = +7:5 : B t =(1+ρ) t fi = (1 + ρ) 1» 1 S, S 1 S 1 S 1 (! +); S 1 (! ) P (! +) =p, P (! ) =1 p p H H V 1 = H H = fi 1 + S 1. V = + S V 1 = fi 1 + S 1 : (1) (2) H(! +) =fi 1 + S 1 (! +) H(! ) =fi 1 + S 1 (! ) = H(! +) H(! ) S 1 (! +) S 1 (! ) 8

9 (1) S 1 (! ) (2) S 1 (! +) V S 1 (! )H(! +) S 1 (! +)H(! ) =fi 1 (S 1 (! ) S 1 (! +)) V = + S = fi(s 1(! +)H(! ) S 1 (! )H(! +)) S 1 (! +) S 1 (! ) = fi(s 1(! +)H(! ) S 1 (! )H(! +)) S 1 (! +) S 1 (! ) = S fis 1 (! ) = fi + H(! +) H(! ) S 1 (! +) S 1 (! ) S S 1 (! +) S 1 (! ) H(! +)+ fis 1(! +) S H(! ) S 1 (! +) S 1 (! ) ρ ff fi 1 S S 1 (! ) S 1 (! +) S 1 (! ) H(! +)+ S 1(! +) fi 1 S S 1 (! +) S 1 (! ) H(! ) = fi(qh(! +)+(1 q)h(! )): (1.2) q = fi 1 S S 1 (! ) S 1 (! +) S 1 (! ) ( H ) Q Q(f! +g) =q; Q(f! g) =1 q ß(H) =V = E Q [fih]: E Q [fis 1 ] E Q [fis 1 ]=fis 1 (! +)q + fis 1 (! )(1 q) = fis 1 (! +) fi 1 S S 1 (! ) S 1 (! +) S 1 (! ) + fis 1(! ) S 1(! +) fi 1 S S 1 (! +) S 1 (! ) = S ( ( 1(! +)S ( fis(((((( 1 (! +)S 1 (! )+ ( fis(((((( 1 (! )S 1 (! +) S 1 (! )S S 1 (! +) S 1 (! ) = (S 1(! +) S 1 (! ))S S 1 (! +) S 1 (! ) = S S, fis 1 ( ) 9

10 2 =CRR S, S 1, S 2 ;:::, S T ( (1 + b)st 1 p S t = (1 + a)s t 1 1 p B t =(1+ρ) t ; V t = t B t + t S t ( t ; t ) (t 1;t] a <ρ<b (1 + b) 3 S (1 + b) 2 S (1 + b)s (1 + a)(1 + b) 2 S p S (1 + a)(1 + b)s 1 p (1 + a)s (1 + a) 2 (1 + b)s (1 + a) 2 S (1 + a) 3 S 1: CRR 1

11 (1.2) fi =(1+ρ) 1 ; q = fi 1 S (1 + a)s = ρ a (1 + b)s (1 + a)s b a V = E Q [fih]=fi(qh b +(1 q)h a ) 2 H bb V b q V H ba H ab 1 q V a 2: 2 CRR H aa 11

12 H T 2 V T 2 T 1 V a, V b (1.3) (1.4) V b = fi(qh bb +(1 q)h ba ) V a = fi(qh ab +(1 q)h aa ): V b, V a T 2 (1.5) V = fi(qv b +(1 q)v a ) (1.5) (1.3),(1.4) (1.6) V = fi 2 (q 2 H bb + q(1 q)h ba +(1 q)qh ab +(1 q) 2 H aa ) S T 2 = S H =(S T K) + (1.7) V = fi 2 fq 2 ((1 + b) 2 S K) + +2q(1 q)((1 + a)(1 + b)s K) + +(1 q) 2 ((1 + a) 2 S K) + g CRR TX T V = fi T q t (1 q) T t ((1 + b) t (1 + a) T t S K) t + t= TX T TX T = S (1 + ρ) q T t (1 q) T t (1 + b) t (1 + a) T t K(1 + ρ) T t t t=a t=a TX t T t T 1+b 1+a TX T = S q t (1 q) T t K(1 + ρ) T t 1+ρ 1+ρ t t=a A = minfk; S (1 + b) k (1 + a) T k >Kg: q = ρ a b a ; q = q 1+b 1+ρ q 1+b +(1 q)1+a 1+ρ 1+ρ = q b a 1+ρ + 1+a 1+ρ 12 t=a q t (1 q) T t q t (1 q) T t

13 = ρ a b a b a 1+ρ + 1+a 1+ρ = ρ a ρ a b a 1+ρ + 1+a 1+ρ =1 (1.8) V = S TX t=a T t q 2 (; 1); 1 q =(1 q) 1+a 1+ρ (q ) t (1 q ) T t K(1 + ρ) T TX = S Ψ(A; T;q ) K(1 + ρ) T Ψ(A; T;q) t=a T q t (1 q) T t t Ψ(m; n; p) = nx j=m n p j (1 p) n j : j (1.8) Cox-Ross-Rubinstein (CRR) t XT t T t V t = fi T t s s= q s (1 q) T t s ((1 + b) s (1 + a) T t s S t K) + (1.9) = S t Ψ(A t ; T t; q ) K(1 + ρ) (T t) Ψ(A t ; T t; q) A t =minfk; S t (1 + b) k (1 + a) T t k >Kg: (t 1;t] ( t ; t ) V t = t (1 + ρ) t + t S t V t (1.9) S t S t S t 1 (t 1;t] 2 S t =(1+b)S t 1 S t =(1+a)S t 1 Vt b, Vt a V b t = t (1 + ρ) t + t (1 + b)s t 1 ; V a t = t (1 + ρ) t + t (1 + a)s t 1 13

14 (1.1) t = V t b Vt a ; t = (b a)s t 1 (1 + b)v a t (1 + a)v b t (1 + ρ) t (b a) (1.9) V b t = S t 1 (1 + b)ψ(a b t; T t; q ) K(1 + ρ) (T t) Ψ(A b t; T t; q) V a t = S t 1 (1 + a)ψ(a a t ; T t; q ) K(1 + ρ) (T t) Ψ(A a t ; T t; q) A b t =minfk; S t 1 (1 + b)(1 + b) k (1 + a) T t k >Kg A a t =minfk; S t 1 (1 + b) k (1 + a)(1 + a) T t k >Kg A b t =minfk; S t 1 (1 + b) k+1 (1 + a) T t k >Kg =minfk 1; S t 1 (1 + b) k (1 + a) T t k+1 >Kg =minfk 1; S t 1 (1 + b) k (1 + a) T (t 1) k >Kg =minfk; S t 1 (1 + b) k (1 + a) T (t 1) k >Kg 1 = A t 1 1 A a t =minfk; S t 1 (1 + b) k (1 + a)(1 + a) T t k >Kg =minfk; S t 1 (1 + b) k (1 + a) T t k+1 >Kg =minfk; S t 1 (1 + b) k (1 + a) T (t 1) k >Kg = A t 1 V b t = S t 1 (1 + b)ψ(a t 1 1; T t; q ) K(1 + ρ) (T t) Ψ(A t 1 1; T t; q) V a t = S t 1 (1 + a)ψ(a t 1 ; T t; q ) K(1 + ρ) (T t) Ψ(A t 1 ; T t; q): Vt b, Vt a S t 1 (1.1) t, t S t 1 V b t V a t = S t 1 (1 + b)ψ(a t 1 1; T t; q ) K(1 + ρ) (T t) Ψ(A t 1 1; T t; q) S t 1 (1 + a)ψ(a t 1 ; T t; q )+K(1 + ρ) (T t) Ψ(A t 1 ; T t; q) T t = S t 1 (1 + b)fψ(a t 1 ; T t; q )+ (q ) A t 1 1 (1 q ) T t A t 1+1 g A t

15 T t K(1 + ρ) (T t) fψ(a t 1 ; T t; q)+ (q) A t 1 1 (1 q) T t A t 1+1 g A t 1 1 S t 1 (1 + a)ψ(a t 1 ; T t; q )+K(1 + ρ) (T t) Ψ(A t 1 ; T t; q) = S t 1 (b a)ψ(a t 1 ; T t; q ) T t + S t 1 (1 + b) (q ) A t 1 1 (1 q ) T t A t 1+1 A t 1 1 T t K(1 + ρ) (T t) (q) A t 1 1 (1 q) T t A t 1+1 A t 1 1 t = V t b V a t (b a)s t 1 =Ψ(A t 1 ; T t; q )+ 1+b b a t (1 + b)v a t (1 + a)v b t K(1 + ρ) (T t) (b a)s t 1 T t A t 1 1 =(1+b)S t 1 (1 + a)ψ(a t 1 ; T t; q ) T t A t 1 1 (q ) A t 1 1 (1 q ) T t A t 1+1 (q) A t 1 1 (1 q) T t A t 1+1 : (1 + b)k(1 + ρ) (T t) Ψ(A t 1 ; T t; q) T t (1 + a)s t 1 (1 + b)fψ(a t 1 ; T t; q )+ (q ) A t 1 1 (1 q ) T t A t 1+1 g A t 1 1 T t +(1+a)K(1 + ρ) (T t) fψ(a t 1 ; T t; q) (q) A t 1 1 (1 q) T t A t 1+1 g A t 1 1 = (b a)k(1 + ρ) (T t) Ψ(A t 1 ; T t; q) (1 + a)(1 + b)s t 1 T t A t 1 1 +(1+a)K(1 + ρ) (T t) T t A t 1 1 t = (1 + b)v a t (1 + a)v b t (1 + ρ) t (b a) = K(1 + ρ) T Ψ(A t 1 ; T t; q) (1 + a)(1 + b) T t (1 + ρ) t (b a) S t 1 A t 1 1 (1 + a) T t + b a K(1 + ρ) T A t 1 1 (q ) A t 1 1 (1 q ) T t A t 1+1 (q) A t 1 1 (1 q) T t A t 1+1 : 15 (q ) A t 1 1 (1 q ) T t A t 1+1 (q) A t 1 1 (1 q) T t A t 1+1 :

16 t, t S t 1 predictable S T K S t K ( ) (hedge) 2. (Ω; F ;P) T = f; 1;:::;Tg ff t g, t =; 1; 2 :::;T (S t ) ff t g d-s 1 ;S 2 ;:::;S d S S =(S ;S 1 ;S 2 ;:::;S d ) S S 1 ;S 2 ;:::;S d (riskless security) (risky security) Ω F t S t ff-field fi t = 1 (discount factor) S St t =(1+ρ) t fi t = (1 + ρ) t S deterministic fi t t 1 fi t t S, S 1 ;:::;S d t =( t ; 1 t ;:::; d t ) (trading strategy) (value process) (2.1) (2.2) V ( ) = 1 S ; V t ( ) = t S t = dx i= i ts i t; t 1 t 1 t (t 1;t] t t S t t+1 t t+1 t+1 t t F t 1 16

17 ff-field (predictable) t 1 t S t 1 S t t t S t t S t t S t 1 ( ) (X t ) X t = X t X t 1 (2.3) t S t (gain process) G : (2.4) (2.5) G ( ) =; G t ( ) = 1 S S t S t : 2.1. (self-financing) (): (2.6) t S t = t+1 S t ; 1» t» T 1: t t S t t+1 S t self-financing t+1 S t t S t = t+1 S t (2.7) t S t 1 =; 2» t» T: self-financing 2.2. : (2.8) (2.9) (2.1) t S t 1 =; 2» t» T; V t ( ) = t S t ; t =1;:::;T: V t ( ) =V ( )+G t ( ); t =; 1;:::;T: (2.8) (2.9) (2.8) t =2;:::;T t S t 1 = t 1 S t 1 t =1 V t ( ) = t S t t 1 S t 1 = t S t t S t 1 = t S t (2.9) V 1 ( ) =V 1 ( ) V ( ) = 1 S 1 1 S = 1 S 1 17

18 (2.9) (2.1) (2.9) V t ( ) =V ( )+ = V ( )+ tx tx s=1 s=1 V s ( ) s S s = V ( )+G t ( ): (* (2.3) ) (2.1) (2.1) (2.8) (2.1) t 1 t 2 t 2 (2.8) V t ( ) = G t ( ) = t S t : V t ( ) = t S t t 1 S t 1 : ο t οο S t t 1 S t 1 = t S t = ο t οο S t t S t 1 : ( t t 1 ) S t 1 = ( ) (numéraire) S t S t self-financing t S t 1 =, t ( 1 S t 1 )= ( ) =(S t ) 1 = fi t (S 1 t ) 1 S = fi t S t := fi t S t (S t ) (discounted security price process) (S t ) V, G : (2.11) V ( ) = 1 S 18

19 (2.12) (2.13) (2.14) V t ( ) = t S t ; t 1 G ( ) =; G t ( ) = 1 S S t S t : 2.3 S (2.15) (2.16) (2.17) t S t 1 =; 2» t» T; V t ( ) = t S t ; t =1;:::;T; V t ( ) =V ( )+G t ( ); t =; 1;:::;T: (2.15) self-financing self-financing V V t ( ) = t S t = t fi t S t = fi t t S t = fi t V t ( ) G t ( ) G t ( ) self-financing (2.17) G t ( ) =V t ( ) V ( ) = fi t V t ( ) fi V ( ) = fi t (V ( )+G t ( )) fi V ( ) = fi t G t ( )+(fi t fi )V ( ) V ( ) = G t ( ) =fi t G t ( ) S =1 V ( ) =V ( ) G( ) t S t =1t =; 1;:::;T t V ( ) i, i =1;:::;d 2.3. V predictable process 1 ;:::; d predictable process =( ; 1 ;:::; d ) self-financing : (2.18) t = V + t 1 X u=1 ( 1 u S 1 u + + d u S d u) ( 1 t S 1 t d t S d t 1): =( ; 1 ;:::; d ) self-financing V t ( ) = t + 1 t S 1 t + + d t S d t = V + G t = V + tx u=1 ( 1 u S 1 u + + d u S d u): 19

20 t = V + = V + = V + tx u=1 t 1 X u=1 t 1 X u=1 ( 1 u S 1 u + + d u S d u) 1 t S 1 t + + d t S d t ( 1 u S 1 u + + d u S d u)+( 1 t S 1 t + + d t S d t ) 1 t S 1 t + + d t S d t ( 1 u S 1 u + + d u S d u) 1 t S 1 t d t S d t 1 (2.18) (2.18) t predictable V t( ) =V +G t ( ) self-financing self-financing strategy SF 2.4. self-financing (arbitrage opportunity) V ( ) =; V T ( ) ; E[V T ( )] > : E[V T ( )] > P (V T ( ) > ) > 2.5. (viable 2.4 V T ( ) 2 SF V ( ) = ) V T ( ) = V ( ) =; V t ( ) 8t 2 T; E[V T ( )] > 2.6. t V t ( ) A = f t S t < g A 2 F t, P (A) > u S u for u>t ffi A c ffi u =A ffi u (!) =; u» t 2

21 ffi u(!) = u(!) t S t S t (!) ; ffii u(!) = i u(!); i =1;:::;d; u>t ffi predictable self-financing A c V u (ffi) = A ffi t+1 S t =( ffi u u u = t +1 ) A ffi t+1 = ffi t+1 = t+1 t S t ; St ffi i t+1 = t+1; i i =1;:::;d: ffi t+1 S t = ffi t+1s t + dx i=1 ffi i t+1s i t =( t+1 t S t )S St t + = t+1s t t S t + dx i=1 dx i=1 i t+1s i t i t+1s i t = t+1 S t t S t = self-financing V u (ffi) P (V T (ffi) > ) > A c V u (ffi) =A u» t V u (ffi) =u >t V u (ffi) =ffi u S u = us u ( t S t )S u S t = u S u ( t S t ) S u : St + dx i=1 i us i u u S u, u>t ( t S t ) <, S V u (ffi) A V T (ffi) > t S t < H 1 H F T H 2 SF (2.19) V T ( ) =H (attainable, replicable) viable V t ( ), 2 SF V T ( ) = V T ( ) = H V t ( ) = V t ( ) t 21

22 2.7. viable market H self-financing, ffi V T ( ) =V T (ffi) =H V ( ) 6= V (ffi) t <T V u ( ) =V u (ffi); u<t V t ( ) 6= V t (ffi) t A = fv t ( ) > V t (ffi)g P (A) > X = V t ( ) V t (ffi) F t S 1 self-financing ψ ψ u = u» t ψ u =(fi t X u u + ffi u )1 A ; u>t ψ predictable self-financing u <t ψ u+1 =u >t,, ffi self-financing u = t A c ψ A ψ t = ψ t S t =: ψ t +1 S t =(fi t X t +1 t +1 + ffi t +1) S t = fi t XSt t +1 S t + ffi t +1 S t = fi t XSt t S t + ffi t S t (* SF t +1 S t = ffi t +1 S t =) =(St ) 1 (V t ( ) V t (ffi))st V t ( )+V t (ffi) =: ψ t S t = self-financing V T (ψ) =(fi t XS T V T ( )+V T (ffi))1 A = fi t XS T 1 A : ψ viable t = ψ = ψ 1 self-financing u> V (ψ) = V (ψ) =ψ 1 S =(fi X ffi 1 ) S =(S ) 1 XS 1 1 S + ffi 1 S = X V ( )+V (ffi) = 22

23 ff-field G X 2 L 1 A 2 G (2.2) E[X1 A ]=E[Y 1 A ] G Y X G E[XjG ] G disjoint A 1 ;:::;A K [ j A j =Ω G A 1 ;:::;A K (2.21) E[XjG ]= X j 1 P (A j ) E[X1 A j ]1 Aj 1. E[ffX + fiy jg ]=ffe[xjg ]+fie[y jg ]. 2. X E[XjG ]. 3. ' '(E[XjG ])» E['(X)jG ]. 4.» X n " X E[X n jg ] " E[XjG ]. 5.» X n E[lim inf n!1 X n jg ]» lim inf n!1 E[XjG ]. 6. G 1 G 2 E[E[XjG 2 ]jg 1 ]=E[XjG 1 ] 7. E[E[XjG ]] = E[X] 8. X G - E[XY jg ]=XE[Y jg ]. 9. X G E[XjG ]=E[X]. 8 XY 2 L 1, Y 2 L 1 8 XE[Y jg ] 2 L 1 jxe[y jg ]j»e[jxy jjg ] 8 X A 2 G X =1 A B 2 G E[(1 A E[Y jg ])1 B ]=E[1 A B E[Y jg ]] = E[1 A B Y ]=E[1 A B Y ]=E[(1 A Y )1 B ]: E[1 A Y jg ]=1 A E[Y jg ] E[XY jg ]=XE[Y jg ] G Φ Φ Φ» X 1» X 2» ::: X E[X n Y jg ]=X n E[Y jg ] 23

24 E[XY jg ]=XE[Y jg ] Dynkin Φ G Y 2 L 1 G X XY 2 L 1 X n = X1 fjxj»ng X n E[X n Y jg ]=X n E[Y jg ]: n!1 E[XY jg ] XE[Y jg ] E[XY jg ]=XE[Y jg ] fi t (2.22) ffi» tg 2F t Z +- fi ff-fileld F fi (2.23) F fi = fa 2 F ; A ffi» tg 2F t 8tg fi 2.8. fi A 2 F fi ( fi(!)! 2 A (2.24) fi A (!) = 1! 62 A fi A (2.22) A 2 F fi ffi A» tg = ffi» tg A 2 F t : ff-fields ff t g t2t (M t ) (F t )- adapted (2.25) E[M t+1 jf t ]=M t ; t =1; 2;:::;T 1 (2.26) E[ M t+1 jf t ]=; t =1; 2;:::;T 1 24

25 E[ M t+1 ]= E[M t+1 ]=E[M t ] (2.25) E[M t+1 jf t ] M t ; t =1; 2;:::;T 1 E[M t+1 jf t ]» M t ; t =1; 2;:::;T X =(X t ) predictable process ffi =(ffi t ) ffi X (2.27) (ffi X) t = ffi 1 X 1 + ffi 2 X ffi t X t t =1;:::;T; (ffi X) = 2.1. ffi F 1 F 1 F 1 = F ffi (ffi X) = ffi X (2.28) (ffi X) t (ffi X) = ffi 1 X 1 + ffi 2 X ffi t X t t =1;:::;T; (ffi X) = ffi X ffi X ffi X X t 2 T X t L 1 ) ffi X X 2 ffi X 2 ffi X 2 ffi 2 ffi X Hölder X = (X t ) 2.19 (martingale transform) 2.9 (2.5), selffinancing 2.1. X predictable process ffi ffi X X 2 ffi 2 ffi X X predictable process ffi ffi X 25

26 ffi X E[(ffi X) t+1 jf t ]=E[(ffi X) t + ffi t+1 X t+1 jf t ] =(ffi X) t + E[ffi t+1 X t+1 jf t ] =(ffi X) t + ffi t+1 E[ X t+1 jf t ] =(ffi X) t : (* (2.26)) ffi X X ffi ffi t+1 E[ X t+1 jf t ] ffi X (F t )-adapted (M t ) predictable process ffi (2.29) E[(ffi M) t ]=E[ tx u=1 ffi u M u ]= M X = ffi M X = E[(ffi M) t ]=E[X ]= (2.29) predictable process ffi t A 2 F t ffi t+1 = 1 A u ffi u = =E[(ffi M) T ]=E[1 A M t+1 ]: A E[ M t+1 jf t ]=M Doob (X t ) ff, fi ff» fi (2.3) E[X fi jf ff ]» X ff X (2.3) 26

27 ffi =(ffi t ) ffi t =1 fff<t»fig fff <t» fig = fff <tg ffi <tg c ffi predictable ffi X fi fi» k k 2 N j(ffi X) t j»jx j + + jx k j = (ffi X) t Z = Z k = X fi X ff A 2 F ff =E[Z ] E[Z k ]=E[X fi X ff ]: ff A = ( ff;! 2 A k;! 62 A fi A = ( fi;! 2 A k;! 62 A ff A, fi A 2.8 ff A, fi A E[X fi ; A]» E[X ff ; A] X fi fi X fi X fi t = X fi^t X ( ) fi X fi ( ) Doob X X (2.31) X t = X + M t A t : (M t ) M =(A t ) A = predictable A t = A t 1 + X t 1 E[X t jf t 1 ]; M t = M t 1 + X t E[X t jf t 1 ]: 27

28 (EMM) discounted (S) (S) Q E Q [ S i tjf t 1 ]=; i =1;:::;d V t ( ) =V ( )+G t ( ) = 1 S + tx u=1 u S u = 1S + X i=1 i 1S i + tx u=1 i u S i u V t ( ) i u (V t ( )) 2.18 (V t ( )) (V t ( )) self-financing V ( ) = V T ( ) (V t ( )) Q E[V T ( )] = E[V ( )]= V T ( ) = Q-a.e. Q P (i.e., P (A) =, Q(A) =) V T ( ) = P -a.e P Q (S) viable (S) P (equivalent martingale measure = EMM) ffl viable V t ( ) Q Q H 2 SF H = V T ( ) fi T H Q- V t ( ) (2.32) V t ( ) =fi 1 t E Q [fi T HjF t ] 28

29 H = V T ( ) V = V ( ) () V t t = T V T = fi T H V t n 2 N A n = fj t j»n; jv t 1 j»ng A n 2 F t 1 self-financing V t = V t 1 + t S t : 1 An (2.33) V t 1 An = V t 1 1 An + t S t 1 An : V t 1 1 An t S t 1 An : V t 1 1 An = E[V t 1 1 An jf t 1 ] E[ t S t 1 An jf t 1 ]= 1 An t E[ S t jf t 1 ]=: n!1 V t 1 Q-a.e. (2.33) E[V t 1 An ]=E[V t 1 1 An ]+E[ t S t 1 An ]=E[V t 1 1 An ]: n!1 E[V t ]=E[V t 1 ] V t V t (V t ) A 2 F t 1 (2.33) 1 A E[V t 1 An 1 A ]=E[V t 1 1 An 1 A ]+E[ t S t 1 An 1 A ]=E[V t 1 1 An 1 A ]: n!1 E[V t 1 A ]=E[V t 1 1 A ]: V t ( ) =E Q [fi T HjF t ] V t ( ) =fi 1 t E Q [fi T HjF t ] 29

30 ( T ) H ( ) ß(H) (2.34) ß(H) =V ( ) =E Q [fi T HjF ]=E Q [fi T H] H V ( ) H x V T ( ) H (x; H)- (superhedging) H V T ( ) =H (minimal hedge) (seller's price) ß s =inffz ; 9 2 SF s.t. V T ( ) =z + G T ( ) Hg (buyer's price) ß b =supfy ; 9 2 SF s.t. y + G T ( ) Hg 2.2. viable : (2.35) ß b» E Q [fi T H]» ß s : V T ( ) =z + G T ( ) H z = V ( ) V T = V + G T S E Q [G T ]= inf ß b» E Q [fi T H] z = V ( ) =E Q [V T ]=E Q [fi T V T ] E Q [fi T H] ß s E Q [fi T H] viable H ß s = ß b = E Q [fi T H] 3

31 fi t C t = E Q [fi T (S T K) + jf t ] fi t P t = E Q [fi T (K S T ) + jf t ] C t P t = fi 1 t E Q [fi T (S T K) + jf t ] fi 1 t E Q [fi T (K S T ) + jf t ] (1.1) = fi t 1 E Q [fi T (S T K)jF t ] = fi t 1 E Q [fi T S T jf t ] fi t 1 E[fi T KjF t ] = fi t 1 fi t S t (1 + ρ) t (1 + ρ) T K = S t (1 + ρ) (T t) K Q V t (2.36) V t =(1+ρ) (T t) E Q [((S T K) + jf t ] E Q [ jf t ] Q R t = S t S t 1 Q R 1, R 2 ;:::, R T Q(R t =1+b) =q; Q(R t =1+a) =1 q q = ρ a b a E Q [R t ] = (1 + b) ρ a b a +(1+a)b ρ b a ρ a + bρ ba + b ρ + ab aρ = (b a)(1 + ρ) = b a =1+ρ: b a 31

32 E Q [fis t+1 jf t ]=fie Q [S t R t+1 jf t ] = fis t E Q [R t+1 jf t ] = fis t E Q [R t+1 ] (* R t+1 F t ) = fis t (1 + ρ) =S t : ffi t S t g : Q (1 + ρ) (T t) E Q [(S T K) + jf t ] E Q [fi t+1 S t+1 jf t ]=fi t S t : =(1+ρ) (T t) E Q [(S t R t+1 :::R T K) + jf t ] XT t T t =(1+ρ) (T t) q s (1 q) T t s (S t (1 + b) s (1 + a) T t s K) s + = V t : s= (1.9) 3. Black-Scholes 2 Black-Scholes [;T] N h N = T N f;h N; 2h N ;:::;Nh N g N 2 a; b; ρ N a N a h N h r, ff> a; b; ρ N 1+b log 1+ρ 1+a log 1+ρ ρ = rh r = ff p T h = ff N r ; = ff p T h = ff N : ρ lim (1 + N!1 ρ)n = lim 1+ rt N N!1 N = e rt 32

33 u, d ( N ) u =1+b = 1+ rt e ffp T N N d =1+a = kh S k 1+ rt N e ffp T N : R k = S k S k 1 ( N ) Q(R k =1+b) =q = ρ a b a ; Q(R k =1+a) =1 q = b ρ b a : fy k g k=1;:::;n Y k = log Rk : 1+ρ Z N = NX Y k = NX log R k N log(1 + ρ) k=1 k=1 T = Nh ρ NX k=1 Y k ff Y N S N = S R k = S (1 + ρ) N exp = S (1 + ρ) N e Z N k=1 C =(S N K) + (3.1) V (C) =fi N E Q [(S N K) + ] = fi N E Q [(S (1 + ρ) N e Z N K) + ] = E Q [(S e Z N (1 + ρ) N K) + ] N!1 Yk Y k μ, v»log E Q [Y k ]=E Q Rk 1+ρ 1+b 1+a = log q + log (1 q) 1+ρ 1+ρ 33

34 2 = ff p hq ff p h(1 q) =(2q 1)ff p h: Rk E Q [Yk 2 ]=E»log Q 1+ρ ρ 1+b = log 1+ρ ff 2 q + ρ log = ff 2 hq + ff 2 h(1 q) =ff 2 h ff 2 1+a (1 q) 1+ρ v = E Q [Y 2 k ] E Q [Y k ] 2 = ff 2 h (2q 1) 2 ff 2 h: q 1 q = b ρ b a 1+b (1 + ρ) = 1+b (1 + a) = (1 + ρ)e ffph (1 + ρ) (1 + ρ)e ffp h (1 + ρ)e ffp h p h 1 = eff e ffp h e ffp h 2q 1=1 2(1 q) e ffph 1 =1 2 e ffp h e ffp h p h e ffph 2e ffph +2 = eff e ffp h e ffp h = 2 p h eff e ffp h e ffp h e ffp h = 1 cosh ffp h sinh ff p h ο 1 2 ffp h: Nμ = N(2q 1)ff p h ο N 1 2 ffp h ff p h = 1 2 ff2 Nh = 1 2 ff2 T: Nv = Nff 2 h N(2q 1) 2 ff 2 h = ff 2 T (2q 1) 2 ff 2 T ο ff 2 T: 34

35 3.1. N 2 N fyk N P μ N, ffn 2 Nμ N! μ, NffN 2! ± 2 N Z N = Y N k=1 k μ, ± 2 g k=1;:::;n Z N 1 2 ff2 T, ff 2 T Z (3.1) N!1 (3.2) V (C) =E Q [(S e Z e rt K) + ] Black-Scholes X = 1 ff p Z + 1 T 2 ff2 T X N(; 1) V (C) V (C) = Z 1 1 Z = ff p TX 1 2 ff2 T (S e 1 2 ff2 T +ff p Tx e rt K) + 1 p 2ß e 1 2 x2 : x K log =(r S 1 2 ff2 )T + ff p Tx x = log( K S ) (r 1 2 ff2 )T ff p T : fl V (C) = Z 1 fl = S Z 1 (S e 1 2 ff2 T +ff p Tx e rt 1 K) p e 1 2 x2 dx 2ß fl = S Z 1 fl = S Z 1 fl ff p T e 1 2 ff2 T +ff p Tx 1 p 2ß e 1 2 x2 dx e rt K Z 1 e 1 2 (x ffp T ) 2 1 p 2ß dx e rt K(1 Φ(fl)) e 1 2 x2 1 p 2ß dx e rt K(1 Φ(fl)) 35 fl 1 p 2ß e 1 2 x2 dx

36 = S (1 Φ(fl ff p T )) e rt K(1 Φ(fl)): Φ N(; 1) Φ(x) = Z x 1 d = fl, d + = d + ff p T 1 p 2ß e 1 2 y2 dy: 1 Φ(fl) =Φ( fl) =Φ(d ) 1 Φ(fl ff p T )=Φ(d + ) d ± = log( K S ) (r ± 1 2 ff2 )T ff p T V (C) =S Φ(d + ) e rt KΦ(d ): Black-Scholes t (3.3) V t (C) =S t Φ(d + t ) e r(t t) KΦ(d t ): d ± t = log( K S t ) (r ± 1 2 ff2 )(T t) ff p T t (3.3) c c S t, t, K, T, r, ff c 1. c S t t V t (C) = c(s t ;t) c(x; t) Black-Scholes : ff2 x + rx rc ffl ffl ffl ffl ffl lim c(s t ;t)=(s t K) > lim c(s t ;t)=s t ff!1 lim c(s t ;t)=(s t Ke r(t t) ) + =Φ(d 36

37 4. ffl viable, ffl viable, Ω Banach 4.1. L R n K L K L ffi: R n! R L ffi(x) = K ffi(x) > claim 1 C R n : 62 C, ψ ψ c> on C. * B = B(;r)=fx; jxj <rg B C 6= ; z 2 B C. C x 2 C, 2 [; 1]! y = x +(1 )z 2 C jzj 2»j x +(1 )zj 2 = 2 jxj 2 +2 (1 )x z +(1 ) 2 jzj 2 : 2 jxj 2 +2 (1 )x x +( 2 2 )jzj 2 jxj 2 + 2(1 )x z +( 2)jzj 2 x z jzj 2 : ψ(x) =x z C ψ jzj // claim 2 C = K L = fk l; k 2 K; l 2 Lg C 62 C. * x n = k n l n x k n k nj k 2 K l nj = k nj x nj! k x L k x 2 L x = k l 2 K L. // claim 2 C claim 1 ψ c on K L x = k l ψ(k) ψ(l) >c!1or! 1 ψ(l) = ψ(k) >c. 37

38 (Ω; F ;P) S S 1 ;:::;S d Ω n Ω X Ω R n C C = fx : Ω! R; X! 2 Ω X(!) > g: 2 a V t ( ) =G t ( ) 62 C if V ( ) = (self-financing strategy) = ( ; 1 ;:::; d ) ^ = ( 1 ;:::; d ) ^ t =1,2;:::;T G t (^ ) = tx u=1 u S(u) = G T (^ ) 2 C fi t =(S t ) 1 tx u=1 dx i=1 i u S i u: V T ( ) =fi 1 T V T ( ) =fi 1 T fv ( )+G T ( )g = fi 1 T G T (^ ) viability G T (^ ) 62 C 4.2. viable predictable R d - ^ G T (^ ) C 4.3. viable viable C! F (!)! F (! ) > Ω viable 4.2 G T (^ ) 62 C L = fg T (^ ); ^ =( 1 ;:::; d ); i (i =1;:::;d) predictableg Ω Ω =! 1 ;:::;! n p i = P (f! i g) > 38

39 L C K = fx 2 C; E P [X] =1g Ω L K f f : f(x) =x q = ο i =(;:::;; 1 p i ; ;:::;) E P [ο] =1 ο i 2 K f(ο) P = q i p i > q i > g = f, ff = n q ff i=1 i p Λ i = q i ff P Λ P Λ ο P g(x) = 1 ff f(x) =onl EP Λ [G T (^ )] = ^ self-financing strategy V ( ) = E P Λ [G T ( )] = E P Λ» T X u=1 i u S i u 2.8 S i P Λ nx i=1 x i q i : =: EMM Q viable (Q; (F t ))- M predictable process fl (4.1) M t = M + tx u=1 fl u S u = M + tx u=1 dx i=1 fl i u S i u: M (Q; (F t ))- M H = M T S T 2 a V T ( ) =H V T ( ) =M T V Q- V t ( ) =E Q [V T ( )jf t ]=E Q [M T jf t ]=M t : M t = V t ( ) =V ( )+ tx u S u = M + tx u=1 u=1 u S u 39

40 (4.1) H M M t = E Q [fi T HjF t ] M t (4.1) i t = fl i t; i =1;:::;d t = M t fl t S t self-financing t S t 1 =. t S t 1 = S t 1( M t [ = = = dx dx i=1 dx i=1 i=1 dx i=1 fl i ts i t]) + dx i=1 S i t 1 fl i t (S t 1[fl i t S i t (fl i ts i t fl i t 1S i t 1)] + S i t 1 fl i t) (St 1[ ρ ρ flts i i t flts i i t 1 ( ρ ρ flts i i t flt 1S i i t 1)] + St 1 fl i t) i S i t 1( fl i t fl i t)=: V t ( ) = t S t = t + fl t S t = M t V T ( ) =M T = fi T H V T ( ) =H EMM 4.6. viable EMM Q Q H 2 a fi T H = V T ( ) =V ( )+ S Q Q TX u=1 u S u : E Q [fi T H]=V ( ) =E Q [fi T H]: 4

41 E Q [H] =E Q [H] Q = Q viable X L = fc + TX u=1 ^ u S u : ^ =( 1 ;:::; d ) is predictableg: Ω L (Ω;P) L (Ω;P) R n fi T X 62 L fi T X 2 L fi T X = V T (^ ) = ( ; ^ ) selffinancing ((2.18)) fi T X = V T ( ), X = V T ( ) X L L (Ω;P) L Z E Q [YZ]=; 8Y 2 L: 1 2 L E[Z] =R =1+ Z 2kZk 1 Q = RQ R 1 2. Q P Q T Y = c + ^ u=1 u S u 2 L E Q [Y ]=E Q [RY ]=E Q 1 [Y ]+ E Q [YZ]=E Q [Y ]=c: 2kZk 1 c = E Q [Y ]= E Q [ TX u=1 ^ u S u ]=: Q CRR CRR St =(1+ρ) t S t = R t S t 1 R t i.i.d. ( 1+b; q = ρ a b a R t = 1+a; 1 q = b ρ b a 1 < a < ρ < b viable EMM u = 1+b, d = 1 + a, E Q [R t ] = w F t = fffr u ; u» tg m t = tx u=1 (R u w) (m t ) 41

42 4.7. M = Q- (4.2) M t = tx u=1 u m u =( t ) predictable M t F t M t = f t (R 1 ;:::;R t ) (4.2) M t = t m t f u t f d t = f t (R 1 ;:::;R t 1 ;u) = f t (R 1 ;:::;R t 1 ;d) f u t f t 1 = t (u w); f d t f t 1 = t (d w) t = f t u f t 1 u w = f t d f t 1 d w E Q [ M t jf t 1 ]= qf u t +(1 q)f v t = f t 1 = qf t 1 +(1 q)f t 1 : f u t f t 1 q 1 = f d t f t 1 q w = E Q [R 1 ]=uq + v(1 q) q = w d u d ; q 1=w u u d 42

43 4.5 M t = M + P t u=1 fl u S u m u w =1+ρ E Q [R t ]=(1+b)q +(1+a)(1 q) =(1+b) ρ a b a +(1+a)b ρ b a ρ(1 + b 1 a) a ba + b + ab = b a (1 + ρ)(b a) = b a =1+ρ: S t =(1+ρ) t S t (1 + ρ) t+1 S t 1 =(1+ρ) t (S t 1 R t (1 + ρ)s t 1 ) =(1+ρ) t S t 1 (R t (1 + ρ)) =(1+ρ) t S t 1 (R t w) =(1+ρ) t S t 1 m t 5. t =,1;:::, T S, S 1 ;:::;S d fi t = (St ) 1 S = (S ;S 1 ;:::;S d ) t ff-field F t t 2 T f t (S) viable P P fi t (5.1) ffi» tg 2F t Z +- Z +- T T- fi 43

44 f fi (S) E[fi fi f fi (S)] fi T- (5.2) x = sup E[fi fi f fi (S)] fi hedge (5.3) V t ( ) f t (S) t V ( ) =E[V fi ( )] = E[fi fi V fi ( )] E[fi fi f fi (S)] V ( ) x (5.3) V ( ) =x (5.2) 5.1. X Z (Snell envelope) Z T = X T 1 =maxfx t 1 ;E[ jf t 1 ]g t =1; 2;:::;T: 5.2. ( ) (X t ) 1. Z X 2. fi Λ = minft ; = X t g Z fi Λ X t 1 E[ jf t ] Z Y = (Y t ) Y t X t Y T X T = Z T Y t Y t 1 X t 1 Y t 1 E[Y t jf t 1 ] E[ jf t 1 ]: (* ) (* Y ) Y t 1 maxfx t 1 ;E[ jf t 1 ]g = 1 : 44

45 Z fi Λ ffi t =1 ffi Λ tg ffi predictable Z fi Λ t Z fi Λ t = Z + tx u=1 ffi u Z u : Z fi Λ t 1 = ffi t ( 1 )=1 ffi Λ tg( 1 ): fi Λ (!) t 1 (!) >X t 1 (!) 1 (!) =E[ jf t 1 ](!) E[Z fi Λ t Z fi Λ t 1jF t 1 ]=E[1 ffi Λ tg( E[ jf t 1 ])jf t 1 ] Z fi Λ =1 ffi Λ tge[( E[ jf t 1 ])jf t 1 ]=: 5.3. fi X (5.4) E[X fi ] = sup E[X ff ] ff 5.4. ( ) (X t ) (5.5) fi Λ = minft ; = X t g fi Λ X (5.6) Z = sup E[X ff ] ff 5.2 Z fi Λ Z = E[Z fi Λ ]=E[Z fi Λ T ]=E[Z fi Λ]=E[X fi Λ]: fi Z fi fi Λ Z = E[Z fi ] E[Z fi T ]=E[Z fi ] E[X fi ]: 5.5. fi (5.7) ( Zfi = X fi (Z fi ) 45

46 ()) fi (Z fi ) Z = E[X fi jf ]» E[Z fi jf ]: E[Z fi jf ]» Z : E[Z fi jf ]=E[X fi jf ]: Z fi X fi Z fi = X fi Z = E[Z fi jf ] Z fi Z E[Z fi t jf ] E[Z fi T jf ] E[Z fi t jf ]=E[Z fi T jf ]=E[E[Z fi T jf t ]jf ] Zt fi E[ZT fi jf t ] Zt fi = E[ZT fi jf t ] (Z fi ) (() (Z fi ) Z = E[Z fi jf ] Z fi = X fi Z = E[X fi jf ]. 5.4 (5.6) fi (5.5) fi Λ ( ) (M t ) (A t ) A = (5.8) = M t A t (5.9) ν = ( T if AT = infft; A t+1 6=g if A T 6= ν 5.6. ν (X t ) ν (A t ) j» ν A j =Z j = M j Z ν = X ν Z ν ν Z ν = X ν Z ν = TX j= 1 fν=jg Z j +1 fν=t g Z T = TX j= 1 fν=jg maxfx j ;E[Z j+1 jf j )g +1 fν=t g Z T : 46

47 Doob E[Z j+1 jf j ]=M j A j+1 fν = jg A j = A j+1 > Z j = M j E[Z j+1 jf j ]=M j A j+1 <Z j : Z j = maxfx j ;E[Z j+1 jf j ]g = X j fν = jg Z ν = X ν ν fi ν P (fi >ν) > E[Z fi ]=E[Mfi] E[A fi ]=E[Z ] E[A fi ] <E[Z ] Z fi 5.5 fi ν X fi = Z fi ν X ν = Z ν X t = ν ( ν ) f t discount process f Z : Z T = f T ; f t = fi t f t 1 =maxff t 1 ;E[ jf t 1 ]g t 1 t 1 f t 1 Z fi Λ =minft ; = f t g 5.2 Z = sup E[f fi ]=E[f fi Λ] fi ( ) = Z + M t A t 47

48 Z + M T = Z T + A T V t ( ) =Z + M t Z fi Λ t» fi Λ = Z + M t Z fi Λ = Z + M fi Λ = V fi Λ( ) V ( ) =E[V fi Λ( )] = E[Z fi Λ]=E[f fi Λ]=supE[f fi ]: fi V ( ) =Z = sup E[f fi ]: fi 3 sup E[f fi ] fi hedge 5.7. C t (X t ) t c t h = X T C t c t c t X t t (5.1) c t = C t ; t =; 1;:::;T C t C t C t E Λ [C T jf t ]=E Λ [c T jf t ]=c t : C t c t c t X t c t X t c t c t = C t c t X t (X t ) c t X t X t E Λ [X T jf t ]=E Λ [c T jf t ]=c t 48

49 (S ;S 1 ) call option X t =(St 1 K) + ST 1 St 1 t c t = E[(S T ) 1 (S 1 T K) + jf t ] E[((S T ) 1 S 1 T (S T ) 1 K)jF t ] = E[S 1 T (S T ) 1 KjF t ] = S 1 t (S t ) 1 E[(S t )(S T ) 1 KjF t ] S 1 t (S t ) 1 E[KjF t ] =(S t ) 1 (S 1 t K) c t c t (St ) 1 (St 1 K) + = X t 5.7 (X t ) S 1 E[(S t+1) 1 (S 1 t+1 K) + jf t ] E[(S t+1) 1 (S 1 t+1 K)jF t ] E[S 1 t+1 (S t+1) 1 KjF t ] = S 1 t E[(S t ) 1 (S t )(S t+1) 1 KjF t ] = S 1 t (S t ) 1 E[(S t )(S t+1) 1 KjF t ] S 1 t (S t ) 1 E[KjF t ] =(S t ) 1 (S 1 t K): E[(S t+1) 1 (S 1 t+1 K) + jf t ] (S t ) 1 (S 1 t K) + = X t : (X t ) 6. [;T] [; 1), [; 1] T (Ω; F ;P) P 49

50 6.1. F ff-fields ff t g t 2 T ( F t F s» t F s F t.) 'usual condition' 1. P F F 2. : F t = s>t F s ; 8t 2 T. usual condition usual condition (6.1) F t+ := s>t F s F t+ = F t t 6.2. T fi ff t g- (6.2) ffi» tg 2F t ; 8t 2 T: 6.3. fi ff t+ g- (6.3) ffi <tg2f t ; 8t 2 T: ffi <tg2f t t 2 T ffi» tg = 1 n=1 ffi» t + 1 n g2f t+ fi ff t+ g- ffi <tg = 1[ n=1 ffi» t 1 n g: ffi <tg2f t ffi» t 1 n g2f (t 1=n)+ F t 5

51 ff t g- ff t+ g- ff t+ g- ff t g ffi <tg2f t ; 8t 2 T: 6.4. fi, ff ff t g- fi _ ff, fi ^ ff ff g- fi n, n =1; 2;::: ff t g- sup n fi n ff t g-inf n fi n ff t+ g- fi, ff ff t g- ffi _ ff» tg = ffi» tg fff» tg 2F t ; ffi ^ ff» tg = ffi» tg[fff» tg 2F t fi _ ff, fi ^ ff ff t g- fi n, n =1; 2;::: ff t g- fsup fi n» tg = n ffi n» tg 2F t n sup n fi n ff t g- finf n inf n fi n ff t+ g- fi n <tg = [ n ffi n <tg2f t (X t ) E ff t g- ff ff t g-e A (6.4) fi e (A; ff) = infft ff; X t 2 Ag ff A F X (s;t) fx u ; s» u» tg (6.5) fi c (A; ff) = infft ff; F X (ff;t) A 6= ;g ff A 6.1. A (X t ) ff ff t+ g- fi e (A; ff) ff t+ g- [ ffi e (A; ff) <tg = fx r 2 Ag fff<rg2f t r2q; r<t! 2 ffi e (A; ff) < tg X s (!) 2 A ff» s < t s < r < t r X r (!) 2 A! 2 S r2q; r<t fx r 2 Ag fff < rg.! 2 S r2q; r<t fx r 2 Ag fff < rg ff<r<t X r (!) 2 A fi e (A; ff) <t 51

52 6.2. A (X t ) ff ff t g-fi c (A; ff) ff t g- n 2 N A n = fx : d(x; A) < 1=ng fi e (A n ;ff) " fi c (A; ff) ffi c (A; ff)» tg =(fff» tg fx t 2 Ag) [ fi c (A; ff) ff t g- 1 n=1 ffi e (A n ;ff) <tg2f t ff t g ff t+ g fi F fi A ffi» tg 2F t 8t F fi ff-field fi ff t g (M t ) ff t g-(m t ) : s» t (6.6) E[M t jf s ]=M s : E[M t jf t ] M s E[M t jf t ]» M s () Doob 6.5. (Doob ) (X t ) ff, fi ff» fi (6.7) E[X fi jf ff ]» X ff X (6.7) 6.6. (X t ) > (6.8) P (sup s»t X s )» E[X t ;supx s ]» E[X t + ]: s»t 52

53 t!1 (6.9) P (sup s X s )» sup E[X s + ] s ff = infft; X t ffg 6.5 E[X ff^t ]» E[X t ]: P (sup s»t X s g + E[X t ; sup X s < ]» E[X t ]: s»t P (sup s»t X s )» E[X t ] E[X t ; sup s»t (6.8) (6.9) t!1 Doob 6.7. (X t ) (6.1) P (sup t X s < ]=E[X t ; sup X s ]» E[X t + ]: s»t jx t j )» sup E[jX t j]: t (jx t j) (X t ) (6.11) X Λ (!) = sup jx t (!)j t 1 <p<1 X Λ 2 L p (6.12) sup kx t k p < 1 t (6.13) kx Λ k p» q sup kx t k p t 1 p + 1 q =1 53

54 Y =sup s»t jx s j (jx t j) 6.6 > (6.14) P (Y )» EjX t j; Y ] E[Y p ]=pe[ = pe[ = p = p = p = p Z Y Z 1 Z 1 Z 1 Z 1 Z 1 = pe[jx t j = pe[jx t j p 1 d ] 1 [;Y ] ( ) p 1 d ] E[1 [;Y ] ( )] p 1 d (* Fubini theorem) P [Y ] p 1 d 1 E[jX t j; Y ] p 1 d 1 E[jX t j1 fy g ] p 1 d Z 1 Z Y 1 fy g p 2 d ] (* Fubini theorem) p 2 d ] = p p 1 E[jX tjy p 1 ]» qkx t k p ky p 1 k q (* Hölder ) = qkx t k p E[Y q(p 1) ] 1=q = qkx t k p E[Y p ] 1=q : ky k p < 1 ky k p» qkx t k p ky k p < 1 Y Y ^ k, k 2 N ( fy g if k fy ^ k g = fy g fk g = ; if k< (6.14) Y Y ^ k ky ^ kk p» qkx t k p k!1 ky k p» qkx t k p t!1 (6.13) p =2 Doob 6.9. (M t ) (6.15) E[ sup Mt 2 ]» 4E[MT 2 ]»t»t 54

55 R + = [; 1) t 2 [; 1) X t F - t! 2 (t;!) 7! X t (!) ff-fields ff t g t X t F t ff t g (W t ) (Wiener ) 1. W = 2. n» t <t 1 <t n n W t1 W t ;W t2 W t1 ;:::;W tn W tn 1 3.» s<t W t W s N(;t s) 4. 1 t 7! W t Brown Wiener Wiener F t = fffw u ; u» tg (W t ) ff t g- F s W t W s F s+ W t W s+1=n A 2 F s+ f E[1 A f(w t W s+n=1 )] = E[1 A ]E[f(W t W s+n=1 )] n!1 (W t ) E[1 A f(w t W s )] = E[1 A ]E[f(W t W s )]: f W t W s F s+ E[W t jf s+ ]=E[W t W s + W s jf s+ ]=E[W t W s ]+W s = W s (W t ) F s

56 (1) (W 2 t t) F t+ - (2) expfffw t ff2 tg 2 F t+- t>s E[W 2 t jf s+ ]=E[(W t W s + W s ) 2 jf s+ ] t = E[(W t W s ) 2 +2(W t W s )W s + W 2 s jf s+ ] (* ) = E[(W t W s ) 2 ]+2W s E[(W t W s )jf s+ ]+W 2 s = t s + W 2 s : E[W 2 t tjf s+ ]=W 2 s s: (1) (2) E[expfffW t gjf s+ ]=E[expfff(W t W s + W s )jf s+ ] expf ff 2 t=2g (2) = expfffw s ge[expfff(w t W s )gjf s+ ] = expfffw s ge[expfff(w t W s )g] (* ) = expfffw s g expfff 2 (t s)=2g: E[expfffW t ff 2 t=2gjf s+ ] = expfffw s g expf ff 2 s=2g: Brown F t+ F t+ F t R t Wiener (W t ) H sdw s (W t ) Stieltjes (H t ) : (6.16) H t = X i=1 ffi i 1 (ti 1 ;t i ](t): =t <t 1 <t n ffi i F ti 1 - R t H H s dw s (6.17) H s dw s = 1X i=1 56 ffi i (W t^ti W t^ti 1 )

57 6.13. H E» 3. E H s dw s» sup t»t» H s dw s 2 = E Hs 2 ds»z T H s dw s 2» 4E Hs 2 ds 1. s <t, t j 1 <s» t j E» fi fififi» 1X H u dw u F s = E i=1 j 1 X = = = i=1 + j 1 X i=1 + ffi i (W t^ti W t^ti 1 ). fi fi fi fi F s ffi i (W t^ti W t^ti 1 )+E[ffi j (W t^tj W t^tj 1 )jf s ] 1X i=j+1 E[E[ffi i (W t^ti W t^ti 1 )jf ti 1 ]jf s ] ffi i (W s^ti W s^ti 1 )+ffi j (W s^tj W s^tj 1 ) 1X i=j+1 Z s E[ffi i E[(W t^ti W t^ti 1 )jf ti 1 ]jf s ] H u dw u : 2. t n 1 <t» t n X i =(W t^ti W t^ti 1 ) X 1 ;:::;X n, t ^ t i t ^ t i 1 E» H u dw u 2 = = = = = E nx nx i=1 nx nx j=1 E[ffi i ffi j X i X j ] i=1 E[ffi 2 i X 2 i ]+2 X i<j nx i=1 E[ffi 2 i ]E[X 2 i ]+2 X i<j i=1 E[ffi 2 i ](t ^ t i t ^ t i 1 )» H 2 u du 57 E[E[ffi i ffi j X i X j jf tj 1 ]] E[ffi i ffi j X i E[X j jf tj 1 ]]

58 3. Doob 6.13 H»Z T (6.18) H = fh =(H t ); ff t g- M E Ht 2 dt < 1g T T =[;T] T [; 1) R t H H H s dw s 2 t = M;c 2 2 (M t ) M =M, N 2 M;c 2 (M;N) (6.19) (M;N) =E[M T N T ] (X t ),(Y t ) P (X t = Y t for all t ) = indistinguishable M 2 M;c 2 (M;M) = M T =P-a.s. t M t =P-a.s. P (X t = for all t ) = indistinguishabe M 2 ;c (6.19) Hilbert indistinguishabe (M (n) ) Cauchy M (n) T L 2 (P ) Cauchy M T fn j g Doob E[(M (n j ) T M (n j 1) ) 2 T ]» 2 j E[ sup jm (n j ) M (n j 1) j > 1=j 2 ]» j 4 E[ sup jm (n j ) M (n j 1) j 2 ]»t»t»t»t» j 4 E[jM (n j ) T M (n j 1) T j 2 ]» 4j4 2 j P 1 4j 4 < Borel-Cantelli M (n j ) j=1 2 j t t M t M t t a.s. M (n) T L 2 (P ) 58

59 Cauchy M T M (n) t M t L 2 M (n) t>s E[M (n) t jf s ]=M s (n) n!1m =(M t ) R t t 7! H sdw s H W H 7! H W simple function M;c 2 Hilbert H H 2 H 1. E» 2. E R t»» H s dw s 2 = E sup t»t 3. fi H 2 s ds»z T H s dw s 2» 4E Hs 2 ds H sdw s M 2 ;c. (6.2) Z fi H s dw s = Z T 1 fs»fig H s dw s : simple 3. fi fi = nx j=1 t j 1 Aj : A j A j 2 F tj Z T 1 fs>fig H s dw s = Z T nx j=1 1 Aj 1 fs>tj gh s dw s : 1 Aj 1 fs>tj gh s adapted H Z T nx 1 Aj 1 fs>tj gh s dw s = nx 1 Aj Z T j=1 j=1 fi Z T 1 fs»fig H s dw s = Z T t j 1 fs>tj gh s dw s = f1 1 fs<fig gh s dw s Z T 1 fs>tj gh s dw s : 59

60 Z T = = = Z T Z fi H s dw s H s dw s H s dw s : Z T Z T fi 1 fs<fig H s dw s H s dw s fi fi n = 2 n X j=1 jt 2 n 1 A j ; A j = f j 1 2 n» fi < j 2 n g fi n fi n # fi lim n!1 Z fin H s dw s = Z fi H s dw s a.s.»ρz T Z T ff 2»Z T E 1 fs»fingh s dw s 1 fs»fig H s dw s = E 1 ffi<s»finghs 2 ds! : fn j g (6.2) Z T lim j!1 1 fs»finj gh s dw s = Z T 1 fs»fig H s dw s a.s. H predictable ff t g- predictable ( predictable version predictable R t H 2 H H s dw s 2 2 M t H 2 H M t = M + H s dw s 6

61 (6.2) H ~ (6.21) H ~ = fh =(H t ); ff t g- Z T H 2 t dt < 1 P -a.e.g fi n fi n! 1 E[ R fi n H 2 s ds] < 1 t<fi n H s dw s = 1 fs»fingh s dw s R t H s dw s H ~ fi n fi n (X t ) (6.22) X t = X + ffl X F - ffl K =(K t ), H =(H t ) ff t g- K s ds + ffl M R M jk s j ds< 1 P -a.s. ffl M R M jh s j 2 ds< 1 P -a.s. H s dw s : X X t = X + K s ds + 61 H s dw s :

62 f(t; x) x 2 t f(t; X t ) (6.23) f(t; X t )=f(;x )+ f x (s;x s )dx s = hx; Xi t = f t (s;x s )ds + f x (s;x s )K s ds + H 2 s ds M 2 t = M t = f x (s;x s )dx s H s dw s 2M s H s dw s + hm;mi t f x (s;x s )H s dw s f xx (s;x s )dhx; Xi s : M 2 t hm;mi t hm;mi t 2 (quadratic variation) Wiener hw;wi t = t W t Wiener Lévy (6.24) S t = x expf(μ ff 2 =2)t + ffw t g Black-Scholes f(t; x) =x expf(μ ff 2 =2)t+ffxg S t = f(t; W t ) f t =(μ ff 2 =2)f, f x = fff, f xx = ff 2 f f(t; W t )=f(;x )+ = x + (μ ff 2 =2)f(s;W s )ds + ffs s dw s + μs s ds 62 fff(s;w s ) dw s ff 2 f(s;w s )ds

63 S t = S + ffs s dw s + (6.25) ds t = ffs t dw t + μs t dt μs s ds (Girsanov) ( t ) R T (6.26) L t = exp 2 sds< 1 P -a.s. ff t g- ρ s dw s s ds Q = L T P Q P Q B t = W t + R t s ds Wiener (L t ) ρ 1 Z T ff exp s 2 ds 2 L 1 (P ) 2 (Novikov ) ff 7. Black-Scholes 2 Black-Scholes [;T] T St = e rt () S t (7.1) ds t = ffs t dw t + μs t dt: 63

64 S Black-Scholes (S t ) 6 (6.24) (7.2) S t = S expf(μ ff 2 =2)t + ffw t g S S t = e rt S t ds t = re rt S t dt + e rt ds t = rs t dt + e rt (ffs t dw t + μs t dt) =S t ((μ r)dt + ffdw t ) B t = μ r t + W ff t (7.3) ds t = ffs t db t t =(μ r)=ff (7.4) L T = exp ρ Z T s dw s 1 2 ff s 2 ds Girsanov 6.18 P Λ = L T P (B t ) S P Λ S (7.5) S t = S expfffb t ff 2 t=2g: P Λ P Λ E P Λ [ ] Black-Scholes 2 H =(S T K) + ß(H) e rt (S T K) + =(S T e rt K) + ß(H) =E P Λ [(S T e rt K) + ]=E P Λ [(S expfffb T ff 2 T=2g e rt K) + ] = E P Λ [(S e Z e rt K) + ]: Z = ffb T ff 2 T=2 P Λ Z ff 2 T=2, ff 2 T (7.2) 64

65 ffi =( ; ) (7.6) V t (ffi) = t S t + t S t self-financing strategy V t (ffi) =ffi t S t (7.7) dv t (ffi) = t ds t + t ds t (7.8) Z T j t j dt < 1; Z T j t j 2 dt < 1 P -a.s. (F t )- ffi (7.7), (7.8) self-financing strategy self-financing strategy SF S t = e rt S t 7.1. ffi (7.8) V t (ffi) (7.7) V t (ffi) =e rt V t (ffi) ffi self-financing (7.9) V t (ffi) =V (ffi)+ t 2 [;T] t ds t V (ffi) dv t (ffi) = rv t (ffi) dt + e rt dv t (ffi) dv t (ffi) = re rt ( Φ Φ t e rt + t S t ) dt + ο e rt ο οοοο t d(e rt )+e rt t ds t = t (( re rt S t ) dt + e rt ds t ) = t ds t (7.9) 7.2. self-financing strategy ffi (admissible) V t (ffi) = t + t S t P Λ 7.3. H ( F T ) :::::::::: ffi V T (ffi) =H 65

66 7.4. H P Λ H t ffi (7.1) V t (ffi) =E P Λ [e rt HjF t ] H ffi V T (ffi) =H V t (ffi) P Λ V t (ffi) =E P Λ [V T (ffi)jf t ]=E P Λ [e rt V T (ffi)jf t ]=E P Λ [e rt HjF t ] H P Λ M t = E P Λ [e rt HjF t ] P ( R T K 2 t dt < 1) =1 (F t )- (K t ) M t (7.11) M t = M + K s db s t = K t =ffs t, t = M t t S t ffi =( ; ) V t (ffi) = t + t S t = M t = M + = M + = M + ff s S s db s s ds s : (* (7.3)) K s db s 7.1 ffi =( ; ) self-financing V t (ffi) =e rt M t = E P Λ [e r(t t) HjF t ] V t (ffi) 2 V T (ffi) =H Black-Scholes self-financing 66

67 7.5. F T H (Europian contingent claim) H = f(s T ) f(x) =(x K) + (f(x) =(K x) + ) ο E P Λ [ο] < 1 ffi 2 SF SF(ο) (7.12) V t (ffi) E P Λ [οjf t ] 8t 2 [;T] 7.6. ffi SF E P Λ [ο] < 1 ο ffi 2 SF(ο) ffi (tame strategy) SF t ο ffi 7.7. P Λ (1) ffi 2 SF V (ffi) (2) ffi 2 SF(ο) V (ffi) (3) ffi 2 SF() V (ffi) (1) V t (ffi) (7.9) (2) V t (ffi) fi n "1V fin^t(ffi) ffi 2 SF(ο) V fin^t(ffi)+e[οjf fin^t] s<t E P Λ [V fin^t(ffi)+e[οjf fin^t]jf s ]=V fin^s(ffi)+e[οjf fin^s] n!1 Fatou E P Λ [V t (ffi)+e[οjf t ]jf s ]=E P Λ [ lim (V fin^t(ffi)+e[οjf fin^t])jf s ] n!1» lim E P Λ [V fin^t(ffi)+e[οjf fin^t]jf s ] n!1 = lim V fin^s(ffi)+e[οjf fin^s] n!1 = V s (ffi)+e[οjf s ]: E[E[οjF t ]jf s ]=E[οjF s ] V t (ffi) (3) V (ffi) (7.12) 67

68 7.8. ffi 2 SF V (ffi) =x» V T (ffi) P (V T (ffi) > ) > 7.9. ο E P Λ [ο] < 1 ffi 2 SF(ο) ffi V T (ffi) 7.7 V (ffi) V (ffi)» V (ffi) E[V T (ffi)jf ]=E[V T (ffi)] > : 7.1. H F T ffi 2 SF t H x V (ffi) =x; V T (ffi) H ffi (x; H)- H 2 (seller's price) (7.13) ß s =inffy ; 9 2 SF t s.t. V T ( ) =y + G T ( ) Hg H (buyer's price) (7.14) ß b =supfz ; 9 2 SF t s.t. V T ( ) = z + G T ( ) Hg H H P Λ 7.4 ffi (7.15) ß s = ß b = e rt E P Λ [H] x = ß s = ß b 7.4 H ffi ffi (x; H)- 68

69 P Λ ffi H V t (ffi) V T (ffi) =e rt H x = V (ffi) y ß s (H) ψ 2 SF t (y; H)- 7.7 (2) V t (ψ) V t (ψ) V t (ffi) V (ψ) =y, V (ffi) =x ψ 2 SF t (y; H)- y x = V (ψ) V (ffi) E P Λ [V T (ψ) V T (ffi)jf ] = E P Λ [e rt V T (ψ) e rt HjF ] = e rt E P Λ [V T (ψ) HjF ] : ß s x ψ (x; H) ß s» x ß s = x V t (ffi) x = E P Λ [V T (ffi)] = E P Λ [e rt H] z» ß b (H) ψ 2 SF t ( z; H)- 7.7 (2) V t (ψ) ffi ffi V t ( ψ) = V t (ψ) V t (ψ) V t ( ffi) V (ψ) = z V ( ffi) =x ψ 2 SF t (y; H)- z + x = V (ψ) V ( ffi) E[V T (ψ) V T ( ffi)jf ] = E[e rt V T (ψ)+e rt HjF ] = e rt E[V T (ψ) HjF ] : ß b» x ffi ( x; H) ß b x ß s = x H f(s T ) f : (; 1)! [; 1 c >;k 1 > ;k 2 > jf(x)j»c(1 + x) k 1 x k 2 : 69

70 7.12. H = f(s T ) ffi =( ; ) : (7.16) (7.17) F (T t; x) = 1 p 2ß Z t = e r(t t) F x (T t; S t ) t = e rt (F (T t; S t ) F x (T t; S t )S t ): R f(x expfffy p T t +(r ff 2 =2)(T t)g)e y2 =2 dy: (7.18) V t (ffi) =e r(t t) F (T t; S t ) ffi H S t = S expf(r ff 2 =2)t + B t g (S t ) : t>s S t = S s expf(r ff 2 =2)(t s)+ff(b t B s )g V t (ffi) =E P Λ [e r(t t) f(s T )jf t ] = E P Λ [e r(t t) f(s t expf(r ff 2 =2)(T t)+ff(b T B t ))jf t ] = e r(t t) F (T t; S t ): F (T t; x) =E P Λ [f(x expf(r ff 2 =2)(T t)+ff(b T B t ))] Z = p 1 f(x expfffy p T t +(r ff 2 =2)(T t)g)e y2 =2 dy 2ß = 1 x Z R R f(y)g(t t; y=x; r ff 2 =2;ff) dy: g(t; z; ff; fi) = ρ ff 1 fiz p 2ß exp (log z fft)2 : 2fit f F (T t; x) (t; x) G(t; x) =F (T t; e rt x) V t (ffi) =V t (ffi)e rt = e rt G(t; e rt S t )=e rt G(t; S t ): 7

71 d(v t (ffi)) = e rt d(g(t; S t )) = e rt G x (t; S t ) ds t + e rt G t (t; S t ) dt e rt G xx (t; S t ) dhs;si t = e rt G x (t; S t )ffs t db t + e rt G t (t; S t ) dt e rt G xx (t; S t )ff 2 S 2 t dt: E P Λ [e rt f(s T )jf t ]=V t (ffi) = E P Λ [e rt f(s T )] + e rt G x (s; S s )ffs s db s + e rt fg t (s; S s )+ 1 2 G xx(s; S s )ff 2 S 2 sgds: G t G xxff 2 x 2 V t (ffi) =E P Λ [e rt f(s T )] + e rt G x (s; S s ) ds s = E P Λ [e rt f(s T )] + e rt e rs F x (T t; S s ) ds s : G x (t; x) =e rt F x (T t; e rt x) (7.9) t = e r(t t) F x (T t; S t ) V t (ffi) = t e rt + t S t t = e rt V t (ffi) e rt t S t = e rt e r(t t) F (T t; S t ) e rt e r(t t) F x (T t; S t )S t = e rt (F (T t; S t ) F x (T t; S t )S t ): 71

72 f(s T )=(S T K) (7.19) C(T;(S T K) + )=S Φ(d +) Ke rt Φ(d ): (7.2) (7.21) (7.22) Φ(x) = 1 p 2ß Z x 1 e y2 =2 dy; d + = log( S ff2 )+T(r + K ff p T d = log( S ff2 )+T(r K ff p T 2 ) 2 ) ; : (d = d + ff p T ) ffi =( ; ) log( S t ff2 )+(T t)(r + K (7.23) t =Φ ff p T t log( S t t = e rt K (7.24) KΦ ff p T t 2 ) ; )+(T t)(r ff2 f(x) =(x K) Z F (s;x)= p 1 f(x expfffy p s +(r ff 2 =2)sg)e y2 =2 dy 2ß R = 1 p 2ß Z 1 y(s;x) y(s;x) 2 ) : (x expfffy p s +(r ff 2 =2)sg K)e y2 =2 dy; x expfffy p s +(r ff 2 =2)sg = K: y(s;x)= 1 K ff p log s x (r ff 2 =2)s : F (s;x)= ers p 2ß Z 1 y(s;x) x expfffy p s y2 2 s ff2 )g dy Kf1 Φ(y(s;x))g 2 72

73 7.12 = ers p 2ß Z 1 y(s;x) = ers p 2ß Z 1 y(s;x) ff p s x expf (y ffp s) 2 g dy Kf1 Φ(y(s;x))g 2 x expf y2 g dy Kf1 Φ(y(s;x))g 2 = xe rs f1 Φ(y(s;x) ff p s)g Kf1 Φ(y(s;x))g = xe rs Φ( y(s;x)+ff p s) KΦ( y(s;x)):(* ) C(T;(S T K) + )=e rt F (T;S )=S Φ(ff p T y(t;s )) e rt KΦ( y(t;s )): y(t;s )= 1 ff p T = 1 ff p T K log log S K S (r ff 2 =2)T +(r ff 2 =2)T = d ff p T y(t;s )=ff p T + d = d + C(T;(S T K) + )=S Φ(ff p T y(t;s )) e rt KΦ( y(t;s )) = S Φ(d +) Ke rt Φ(d ): (T = e (T t; t) (s;x)=ers Φ( y(s;x)+ff p Φ( y(s;x)+ffp Φ( y(s;x)) Φ( y(s;x)+ffp s) = xe rs Φ ( y(s;x)+ff ( y(s;x)) = xe rs 1 p expf 1 2ß 2 ( y(s;x)+ffp s) 2 g 1 ff log( x K ) = xe rs 1 p expf 1 2ß 2 y(s;x)2 g expfy(s;x)ff p sg expf 1 2 ff2 sg 1 ff p s 1 x 73

74 = e rs 1 p 2ß expf 1 2 y(s;x)2 g expf 1 = e rs 1 p 2ß expf 1 2 y(s;x)2 g expflog = 1 p 2ß expf 1 2 y(s;x)2 g expflog = K ff p s p 2ßx expf 1 2 y(s;x)2 g: ff p s K x K x log K x g 1 ff p s (r ff 2 =2)s ff p sg expf 1 2 ff2 sg 1 ff p s (r ff 2 =2)sg expf 1 2 ff2 sg 1 ff p Φ( y(s;x)) = KΦ ( y(s;x)) = K p 1 expf 1 2ß 2 ( y(s;x))2 g 1 ff p s K = ff p s p 2ßx expf 1 2 ( log( x K ) 2 3 y(t t; S t )= log( K S t ) (r ff2 )(T t) 2 ff p T t r(t t = (T t; S t) = e r(t t) e r(t t) Φ( y(t t; S t )+ff p T t) 1 =Φ log( ff p KSt ) (r ff2 )(T t) + ff p T t T t 2 1 ff2 =Φ )+(r )(T t)+(t t)ff2 ff p log( S t T t K log( S t ff2 )+(T t)(r + K =Φ ff p T t (7.18) y(t t; S t )= log( K S t ) (r ff2 )(T t) 2 ff p T t V t (ffi) =e r(t t) F (T t; S t ) 2 ) 2 : = e r(t t) S t e r(t t) Φ( y(t t; S t )+ff p T t) e r(t t) KΦ( y(t t; S t )) log( S t ff2 )+(r + )(T t) K 2 = S t Φ p log( S t e r(t )+(r t) K KΦ p ff2 )(T t) 2 : ff (T t) ff (T t) log( S t ff2 t = e rt V t (ffi)+e rt t S t = e rt )+(r K 2 KΦ ff p T t 74 )(T t) :

75 [1] A. Bain and D. Crisan, Fundamentals of stochastic filtering," Stochastic Modelling and Applied Probability, 6, Springer, New York, 29. [2] R. J. Elliott and P. E. Kopp, Mathematics of financial markets," Springer-Verlag, New York, [3] S. N. Ethier and T. G. Kurtz, Markov processes, Characterization and convergence, John Wiley & Sons, Inc., New York, [4] I. Karatzas and S. E. Shreve, Brownian motion and stochastic calculus," Second edition, Springer-Verlag, New York, [5] I. Karatzas and S. E. Shreve, Methods of mathematical finance," Applications of Mathematics, 39, Springer-Verlag, New York, [6] D. Lamberton and B. Lapeyre, Introduction to stochastic calculus applied to finance," Second edition, Chapman & Hall/CRC, Boca Raton, FL, 28. [7] D. Revuz and M. Yor, Continuous martingales and Brownian motion," Third edition, Berlin- Heidelberg-New York, Springer-Verlag, [8] R. J. Williams, Introduction to the mathematics of finance," Graduate Studies in Mathematics, 72, American Mathematical Society, Providence, RI,

76 : CRR ; 1; 2;:::;T S t = (1 + ρ) t, ρ> 1 (S t ) ( 1 <a<b) (1 + b)s t p S t (1 + a)s t 1 p (1) (S t =St ) p (2) viable ρ 2 (a; b) (3) ρ» a 3. (Ω; F ;P) G ff-field X 2 L 2 (P ) E[(X E[XjG ]) 2 ] = inffe[(x Y ) 2 ]; Y 2 L 2 (P ) G - g: 4. (M t ) t=;1;:::;t ( ) fi M fi fi Doob M fi ( ) 5. S t S t S t =1; ds t = S t dw t : (W t ) hii t = I t = 1 T s 1 p T s dw s T ds = log( T t )

77 t! T hii t!1 lim t!t ji t j = 1 a> fi a fi a = infft 2 [;T]; I t = ag^t N = ffi a T g P (N) = ffi t =( t ; t ) ( Ifia^t t S t ; on N c t = t = 8 < : ; on N 1 p 1 ft»fiag; S t T t on N c ; on N ffi self-financing F t null-sets 6. (W t ) (S t ;S t ) S t = e rt ds t = ffs t dw t + μs t dt Black-Scholes (S T K) + (d = d + ff p T ) C(T;(S T K) + )=S Φ(d +) Ke rt Φ(d ): Φ(x) = 1 p 2ß Z x 1 e y2 =2 dy; d + = log( S ff2 )+T(r + K ff p T d = log( S ff2 )+T(r K ff p T ffi =( ; ) log( S t ff2 )+(T t)(r + K 2 t =Φ ) ff p ; T t log( S t ff2 t = e rt )+(T t)(r K KΦ ff p T t 2 ) 2 ) ; : 2 ) :

mf.dvi

mf.dvi 21 9 29 1 2 3....................................... 3 :......................... 3....................................... 4................................ 4..................................... 5................................

More information

43433 8 3 . Stochastic exponentials...................................... 3. Girsanov s theorem......................................... 4 On the martingale property of stochastic exponentials 5. Gronwall

More information

II Brown Brown

II Brown Brown II 16 12 5 1 Brown 3 1.1..................................... 3 1.2 Brown............................... 5 1.3................................... 8 1.4 Markov.................................... 1 1.5

More information

untitled

untitled 1 25/5/3-6/3 1 1 1.1.................................. 1 1.2.................................. 4 2 5 2.1.............................. 5 2.2.............................. 6 3 Black Scholes 7 3.1 BS............................

More information

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 14 5 1 ,,,17,,,194 1 4 ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 1 4 1.1........................................ 4 5.1........................................ 5.........................................

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

Grushin 2MA16039T

Grushin 2MA16039T Grushin 2MA1639T 3 2 2 R d Borel α i k (x, bi (x, 1 i d, 1 k N d N α R d b α = α(x := (αk(x i 1 i d, 1 k N b = b(x := (b i (x 1 i d X = (X t t x R d dx t = α(x t db t + b(x t dt ( 3 u t = Au + V u, u(,

More information

untitled

untitled II(c) 1 October. 21, 2009 1 CS53 yamamoto@cs.kobe-u.ac.jp 3 1 7 1.1 : : : : : : : : : : : : : : : : : : : : : : 7 1.2 : : : : : : : : : : : : : : : : 8 1.2.1 : : : : : : : : : : : : : : : : : : : 8 1.2.2

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

16 7 5

16 7 5 16 7 5 1 2 1.1.......................................... 2 1.2....................................... 5 1.2.1.................................... 5 1.2.2............................... 6 1.2.3...............................

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b 1 Introduction 2 2.1 2.2 2.3 3 3.1 3.2 σ- 4 4.1 4.2 5 5.1 5.2 5.3 6 7 8. Fubini,,. 1 1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)?

More information

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V I (..2) (0 < d < + r < u) X 0, X X = 0 S + ( + r)(x 0 0 S 0 ) () X 0 = 0, P (X 0) =, P (X > 0) > 0 0 H, T () X 0 = 0, X (H) = 0 us 0 ( + r) 0 S 0 = 0 S 0 (u r) X (T ) = 0 ds 0 ( + r) 0 S 0 = 0 S 0 (d r)

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

Lebesgue Fubini L p Banach, Hilbert Höld

Lebesgue Fubini L p Banach, Hilbert Höld II (Analysis II) Lebesgue (Applications of Lebesgue Integral Theory) 1 (Seiji HIABA) 1 ( ),,, ( ) 1 1 1.1 1 Lebesgue........................ 1 1.2 2 Fubini...................... 2 2 L p 5 2.1 Banach, Hilbert..............................

More information

, Brown,, dn(t = a(tn(t, N( = N (1 dt N(t t, a(t t, Malthus {N(t} t, (1 a(t,, a(t = r(t + ( r(t,,,, Brown,,,,, Brown, Itô Calculus,,,,,, Kalman-Bucy,, (1, s t N(s Z(s, N(s, Z(s = N(s + (2 i {Z(s} s t {Z(s}

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2007.11.5 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載

1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載 1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載のない限り 熱容量を考慮した空き容量を記載しております その他の要因 ( 電圧や系統安定度など ) で連系制約が発生する場合があります

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

B2 ( 19 ) Lebesgue ( ) ( ) 0 This note is c 2007 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercia

B2 ( 19 ) Lebesgue ( ) ( ) 0 This note is c 2007 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercia B2 ( 19) Lebesgue ( ) ( 19 7 12 ) 0 This note is c 2007 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purposes. i Riemann f n : [0, 1] R 1, x = k (1 m

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

untitled

untitled 3 3. (stochastic differential equations) { dx(t) =f(t, X)dt + G(t, X)dW (t), t [,T], (3.) X( )=X X(t) : [,T] R d (d ) f(t, X) : [,T] R d R d (drift term) G(t, X) : [,T] R d R d m (diffusion term) W (t)

More information

Green

Green 28 6/-3 2 ax, bx R, L = d2 ax 2 dx 2 + bx d dx 2 L X = {Xt, t }. σ y = inf{t > ; Xt = y} t Xt L y = sup{t > ; Xt = y} 2. Gauss Gamma 3. tree 4. t Black-Scholes Madan-Roynette-Yor [6] σ y E x [exp λσ y

More information

Microsoft Word - 信号処理3.doc

Microsoft Word - 信号処理3.doc Junji OHTSUBO 2012 FFT FFT SN sin cos x v ψ(x,t) = f (x vt) (1.1) t=0 (1.1) ψ(x,t) = A 0 cos{k(x vt) + φ} = A 0 cos(kx ωt + φ) (1.2) A 0 v=ω/k φ ω k 1.3 (1.2) (1.2) (1.2) (1.1) 1.1 c c = a + ib, a = Re[c],

More information

213 March 25, 213, Rev.1.5 4........................ 4........................ 6 1 8 1.1............................... 8 1.2....................... 9 2 14 2.1..................... 14 2.2............................

More information

Stoch. Integral & SDE (S. Hiraba) 1 1 (Definition of Stochastic Processes),, t, X t = X t (ω)., 1, 2,, n = 1, 2,..., X n = X n (ω).,., ω Ω,,.,,

Stoch. Integral & SDE (S. Hiraba) 1 1 (Definition of Stochastic Processes),, t, X t = X t (ω)., 1, 2,, n = 1, 2,..., X n = X n (ω).,., ω Ω,,.,, Stochastic Integrals and Stochastic Differential Equations (Seiji HIRABA) 218 5 1 1 (Definition of Stochastic Processes) 1 1.1.................................. 1 1.2 Brown (Wiener )..............................

More information

I (Analysis I) Lebesgue (Lebesgue Integral Theory) 1 (Seiji HIRABA) 1 ( ),,, ( )

I (Analysis I) Lebesgue (Lebesgue Integral Theory) 1 (Seiji HIRABA) 1 ( ),,, ( ) I (Analysis I) Lebesgue (Lebesgue Integral Theory) 1 (Seiji HIRABA) 1 ( ),,, ( ) 1 (Introduction) 1 1.1... 1 1.2 Riemann Lebesgue... 2 2 (Measurable sets and Measures) 4 2.1 σ-... 4 2.2 Borel... 5 2.3...

More information

Black-Scholes 1 ( )

Black-Scholes 1 ( ) Black-Scholes Takaoka[T] Black- Scholes B S α B t = e rt S α t = S e αrt exp σw t + Ct } 2 σ2 t λdσ λ Λ 2 :=,, B, σ 2 λdσ < } W t } Ω, F, P; F t T > t [, T ], α R, r C, S F - S α dst α = αr+cφtst α dt+φtst

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) 2017 12 9 4 1 30 4 10 3 1 30 3 30 2 1 30 2 50 1 1 30 2 10 (1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) (1) i 23 c 23 0 1 2 3 4 5 6 7 8 9 a b d e f g h i (2) 23 23 (3) 23 ( 23 ) 23 x 1 x 2 23 x

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980 % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2006.11.20 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

214 March 31, 214, Rev.2.1 4........................ 4........................ 5............................. 7............................... 7 1 8 1.1............................... 8 1.2.......................

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). Theorem 1.3 (Lebesgue ) lim n f n = f µ-a.e. g L 1 (µ)

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P 1 1.1 (population) (sample) (event) (trial) Ω () 1 1 Ω 1.2 P 1. A A P (A) 0 1 0 P (A) 1 (1) 2. P 1 P 0 1 6 1 1 6 0 3. A B P (A B) = P (A) + P (B) (2) A B A B A 1 B 2 A B 1 2 1 2 1 1 2 2 3 1.3 A B P (A

More information

chap1.dvi

chap1.dvi 1 1 007 1 e iθ = cos θ + isin θ 1) θ = π e iπ + 1 = 0 1 ) 3 11 f 0 r 1 1 ) k f k = 1 + r) k f 0 f k k = 01) f k+1 = 1 + r)f k ) f k+1 f k = rf k 3) 1 ) ) ) 1+r/)f 0 1 1 + r/) f 0 = 1 + r + r /4)f 0 1 f

More information

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 ( . 28 4 14 [.1 ] x > x 6= 1 f(x) µ 1 1 xn 1 + sin + 2 + sin x 1 x 1 f(x) := lim. 1 + x n (1) lim inf f(x) (2) lim sup f(x) x 1 x 1 (3) lim inf x 1+ f(x) (4) lim sup f(x) x 1+ [.2 ] [, 1] Ω æ x (1) (2) nx(1

More information

6. Euler x

6. Euler x ...............................................................................3......................................... 4.4................................... 5.5......................................

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

difgeo1.dvi

difgeo1.dvi 1 http://matlab0.hwe.oita-u.ac.jp/ matsuo/difgeo.pdf ver.1 8//001 1 1.1 a A. O 1 e 1 ; e ; e e 1 ; e ; e x 1 ;x ;x e 1 ; e ; e X x x x 1 ;x ;x X (x 1 ;x ;x ) 1 1 x x X e e 1 O e x x 1 x x = x 1 e 1 + x

More information

(1) (2) (3) (4) 1

(1) (2) (3) (4) 1 8 3 4 3.................................... 3........................ 6.3 B [, ].......................... 8.4........................... 9........................................... 9.................................

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

13 0 1 1 4 11 4 12 5 13 6 2 10 21 10 22 14 3 20 31 20 32 25 33 28 4 31 41 32 42 34 43 38 5 41 51 41 52 43 53 54 6 57 61 57 62 60 70 0 Gauss a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x) 3 3 22 Z[i] Z[i] π 4, (x) π 4,3 (x) x (x ) 2 log x π m,a (x) x ϕ(m) log x. ( ). π(x) x (a, m) = π m,a (x) x modm a π m,a (x) ϕ(m) π(x) ϕ(m) x log x ϕ(m) m f(x) g(x) (x α) lim f(x)/g(x) = x α mod m (a,

More information

30 (11/04 )

30 (11/04 ) 30 (11/04 ) i, 1,, II I?,,,,,,,,, ( ),,, ϵ δ,,,,, (, ),,,,,, 5 : (1) ( ) () (,, ) (3) ( ) (4) (5) ( ) (1),, (),,, () (3), (),, (4), (1), (3), ( ), (5),,,,,,,, ii,,,,,,,, Richard P. Feynman, The best teaching

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

arma dvi

arma dvi ARMA 007/05/0 Rev.0 007/05/ Rev.0 007/07/7 3. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3.3 : : : :

More information

Nobelman 絵文字一覧

Nobelman 絵文字一覧 Nobelman i-mode EZweb J-SKY 1 88 2 89 3 33 4 32 5 5 F[ 6 6 FZ 7 35 W 8 34 W 9 7 F] W 10 8 F\ W 11 29 FR 12 30 FS 13 64 FU 14 63 FT 15 E697 42 FW 16 E678 70 FV 17 E696 43 FX 18 E6A5 71 FY 19 117 20 E6DA

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

II Time-stamp: <05/09/30 17:14:06 waki> ii

II Time-stamp: <05/09/30 17:14:06 waki> ii II waki@cc.hirosaki-u.ac.jp 18 1 30 II Time-stamp: ii 1 1 1.1.................................................. 1 1.2................................................... 3 1.3..................................................

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

( )/2   hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1 ( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S

More information

I 1

I 1 I 1 1 1.1 1. 3 m = 3 1 7 µm. cm = 1 4 km 3. 1 m = 1 1 5 cm 4. 5 cm 3 = 5 1 15 km 3 5. 1 = 36 6. 1 = 8.64 1 4 7. 1 = 3.15 1 7 1 =3 1 7 1 3 π 1. 1. 1 m + 1 cm = 1.1 m. 1 hr + 64 sec = 1 4 sec 3. 3. 1 5 kg

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

MAIN.dvi

MAIN.dvi 01UM1301 1 3 1.1 : : : : : : : : : : : : : : : : : : : : : : 3 1.2 : : : : : : : : : : : : : : : : : : : : 4 1.3 : : : : : : : : : : : : : : : : : 6 1.4 : : : : : : : : : : : : : : : 10 1.5 : : : : : :

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

IS-LM (interest) 100 (net rate of interest) (rate of interest) ( ) = 100 (2.1) (gross rate of interest) ( ) = 100 (2.2)

IS-LM (interest) 100 (net rate of interest) (rate of interest) ( ) = 100 (2.1) (gross rate of interest) ( ) = 100 (2.2) 1 2 2 2 2.1 IS-LM 1 2.2 1 1 (interest) 100 (net rate of interest) (rate of interest) ( ) = 100 (2.1) (gross rate of interest) ( ) = 100 (2.2) 1 1. 2. 1 1 ( ) 2.3. 3 2.3 1 (yield to maturity) (rate of return)

More information

dynamics-solution2.dvi

dynamics-solution2.dvi 1 1. (1) a + b = i +3i + k () a b =5i 5j +3k (3) a b =1 (4) a b = 7i j +1k. a = 14 l =/ 14, m=1/ 14, n=3/ 14 3. 4. 5. df (t) d [a(t)e(t)] =ti +9t j +4k, = d a(t) d[a(t)e(t)] e(t)+ da(t) d f (t) =i +18tj

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S

Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S Riemnn-Stieltjes Polnd S. Lojsiewicz [1] An introduction to the theory of rel functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,, Riemnn-Stieltjes 1 2 2 5 3 6 4 Jordn 13 5 Riemnn-Stieltjes 15 6 Riemnn-Stieltjes

More information

23 7 28 i i 1 1 1.1................................... 2 1.2............................... 3 1.2.1.................................... 3 1.2.2............................... 4 1.2.3 SI..............................

More information

( ) Loewner SLE 13 February

( ) Loewner SLE 13 February ( ) Loewner SLE 3 February 00 G. F. Lawler, Conformally Invariant Processes in the Plane, (American Mathematical Society, 005)., Summer School 009 (009 8 7-9 ) . d- (BES d ) d B t = (Bt, B t,, Bd t ) (d

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

I ( ) 2019

I ( ) 2019 I ( ) 2019 i 1 I,, III,, 1,,,, III,,,, (1 ) (,,, ), :...,, : NHK... NHK, (YouTube ),!!, manaba http://pen.envr.tsukuba.ac.jp/lec/physics/,, Richard Feynman Lectures on Physics Addison-Wesley,,,, x χ,

More information

untitled

untitled 18 1 2,000,000 2,000,000 2007 2 2 2008 3 31 (1) 6 JCOSSAR 2007pp.57-642007.6. LCC (1) (2) 2 10mm 1020 14 12 10 8 6 4 40,50,60 2 0 1998 27.5 1995 1960 40 1) 2) 3) LCC LCC LCC 1 1) Vol.42No.5pp.29-322004.5.

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

App. of Leb. Integral Theory (S. Hiraba) Lebesgue (X, F, µ) (measure space)., X, 2 X, F 2 X σ (σ-field), i.e., (1) F, (2) A F = A c F, (3)

App. of Leb. Integral Theory (S. Hiraba) Lebesgue (X, F, µ) (measure space)., X, 2 X, F 2 X σ (σ-field), i.e., (1) F, (2) A F = A c F, (3) Lebesgue (Applications of Lebesgue Integral Theory) (Seiji HIABA) 1 1 1.1 1 Lebesgue........................ 1 1.2 2 Fubini...................... 2 2 L p 5 2.1 Banach, Hilbert..............................

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

I II

I II I II I I 8 I I 5 I 5 9 I 6 6 I 7 7 I 8 87 I 9 96 I 7 I 8 I 9 I 7 I 95 I 5 I 6 II 7 6 II 8 II 9 59 II 67 II 76 II II 9 II 8 II 5 8 II 6 58 II 7 6 II 8 8 I.., < b, b, c, k, m. k + m + c + c b + k + m log

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information