Stoch. Integral & SDE (S. Hiraba) 1 1 (Definition of Stochastic Processes),, t, X t = X t (ω)., 1, 2,, n = 1, 2,..., X n = X n (ω).,., ω Ω,,.,,

Size: px
Start display at page:

Download "Stoch. Integral & SDE (S. Hiraba) 1 1 (Definition of Stochastic Processes),, t, X t = X t (ω)., 1, 2,, n = 1, 2,..., X n = X n (ω).,., ω Ω,,.,,"

Transcription

1 Stochastic Integrals and Stochastic Differential Equations (Seiji HIRABA) (Definition of Stochastic Processes) Brown (Wiener ) Poisson , C D (C Spaces and D Spaces) C D Skorohod Poisson (Stochastic Integrals) Wiener ( ) Poisson ( ) ( ) (Stochastic Differential Equations) (Transition Probabilities and Generators) ,,,,,,. (.)

2 Stoch. Integral & SDE (S. Hiraba) 1 1 (Definition of Stochastic Processes),, t, X t = X t (ω)., 1, 2,, n = 1, 2,..., X n = X n (ω).,., ω Ω,,.,, I R + = [, ),, (, Z +, N, N ), S (, d R d,.) (Ω, F, P ) {X t } t I, t I S X t = X t (ω). ( ω Ω,,.) I, (continuous time),, (discrete time)., X n, n =, 1, 2,...., S (state space).,,,, I = [, T ] or [, ), S = R 1. (filtration) (F t ) t, F σ-field. def {X t } (F t )- (adapted) t, X t F t,, X t F t. {X t }, (t, ω), i.e.,. (t, ω) ([, ) Ω, B 1 [, ) F) X t (ω) (R 1, B 1 ) {X t }, Ft, (Ft )-. = σ(x s ; s t) = s t X 1 s (B 1 ) = σ( s t X 1 s (B 1 )),, N = {N F; P (N) = }, i.e., F t = F t N = σ(f t N )., t, X t = Y t a.s., {Y t } (F t )-., {X t } (canonical filtration). 2 X = {X t }, Y = {Y t }, X Y def t, P (X t = Y t ) = 1 def X Y P ( t, X t = Y t ) = 1 X Y def t 1,, t n I, (X t1,..., X tn ) (d) = (Y t1,..., Y tn ) ( ),,., [ ],.,,, 1,,,.

3 Stoch. Integral & SDE (S. Hiraba) Brown (Wiener ) (B t ) t Brown (Brownian motion), (1) B = a.s. (2) (B t ), i.e., a.a.ω, B (ω). (3) = t < t 1 < < t n, {B tk B tk 1 } n,, N(, t k t k 1 ). 1, d Brown, B t = (B 1 t,..., B d t ) d Brown. (d Brown,.),, (3), B tk B tk 1 d N(, (t k t k 1 )I d ),. W = C([, ) R 1 ), σ- W. def, w = w(t) W w W ; w() =., t n = (t 1,..., t n ); t 1 < t 2 < < t n <, A n B n, C(t n, A n ) = {w W ; (w(t 1 ),..., w(t n )) A n } or (cylinder set). σ-, W. (, W σ-.) 1.1 (Wiener ) (Ω, F) = (W, W ),, B t (w) = w(t) Brown P B. P B Wiener.., Brown, Wiener, Brown Wiener (Wiener process)., d Brown B t = (B 1 t,..., B d t ), W d w; w C([, ) R d ), w() =, d Wiener.. p t (x) := 1 2πt d e x (x = (x 1,..., x d ) R d, x = x x2 d ), P (B t dx) = p t (x)dx. g t (x) d N d (, t)., (characteristic ft),. φ(z) = φ Bt (z) := E[e iz Bt ] = e t z 2 /2 (z R d )., z B t = z 1 B 1 t + + z d B d t., 1, p t (x, y) := p t (y x) = 1 2πt e (y x)2 /(2t), Brown < t 1 < t 2 < < t n A k B 1, P (B tk A k ) = dy 1 p t1 (, y 1 ) A 1 dy 2 p t2 t 1 (y 1, y 2 ) A 2 dy n p tn t n 1 (y n 1, y n ) A n

4 Stoch. Integral & SDE (S. Hiraba) 3.,, t =, P (B tk B tk 1 A k, k = 1, 2,..., n) = n A k p tk t k 1 (x k )dx k, x k = y k y k 1 (y = )., {B t1 A 1, B t2 A 2 } == {B t1 A 1, B t2 B t1 A 2 A 1 }. A 2 A 1,., (F t ) Brown (B t ). [Brown ] (1) EB 2n t = (2n 1)!!t n, EB 2n 1 t = (n 1). (2) s < t, B t B s F s.,.,, (B t ). i.e., s < t E[B t B s F s ] = (3) E[B t B s ] = t s (s, t > ). (4) (X t ) Brown def s < t, E[e iz(xt Xs) F s ] = e (t s)z2 /2., (F t ) (X t ). (5) Brown. (a > 1.), S a (B) t. B a t = B a+t B a, B t = B t, S a (B) t = ab t/a. (6) [T 1, T 2 ] Brown a.s., i.e., = {t k }; T 1 = t < t 1 < < t n = T 2, V = sup B tk B tk 1 = a.s. (7) ε >, (1/2 ε)-hödler,, γ >, lim sup h s t; t s h B t B s t s γ = or a.s. if γ < 1/2 or γ 1/2. (8) a.s. Brown. (9) (B t ) d Brown. T d, (T B t ) Brown., τ S := inf{t > ; B t S = Sr d 1 } S = B d (, r), B τs = B τs (ω)(ω) S.. (.) X t = tb 1/t Brown., X =. lim sup t B t 2t log log(1/t) = 1, lim inf t 1,, a.s. lim sup t B t 2t log log t = 1 a.s.

5 Stoch. Integral & SDE (S. Hiraba) 4 ε >, (1/2 ε)-hödler,. lim sup h s t; t s h B t B s 2 t s log(1/ t s ) = 1. [Brown ] (1), E[e izbt ] = e tz2 /2. (2) s 1 < < s n s < t Borel f(x, y), g(x 1,..., x n ), E[f(B t B s )g(b s1,..., B sn )] = E[f(B t B s )]E[g(B s1,..., B sn )]., n = 2, E[f(B t B s )g(b s1, B sn )] = f(x 4 x 3 )g(x 1, x 4 )p s1 (x 1 )p s2 s 1 (x 1, x 2 ) p s s2 (x 2, x 3 )p t s (x 3, x 4 )dx 1 dx 4 R 4 = f(y 2 )g(x 1, x 2 )p s1 (x 1 )p s2 s 1 (x 1, x 2 )p s s2 (y 1 )p t s (y 2 )dx 1 dx 2 dy 1 dy 2 R 4 = f(y 2 )p t s (y 2 )dy 2 g(x 1, x 2 )p s1 (x 1 )p s2 s 1 (x 1, x 2 )dx 1 dx 2 R 2 R = E[f(B t B s )]E[g(B s1, B s2 )], x 4 x 3 = y 2, x 3 x 2 = y 1, p s s2 (y 1 )dy 1 = 1., B t B s (B s1,..., B sn ),, Fs, N.,, E[B t B s F s ] = E[B t B s ] = (3) s < t, E[B t B s ] = E[(B t B s )B s + B 2 s] = EB 2 s = s. (4) ( ). ( ), E[e iz(xt Xs) F s ] = e (t s)z2 /2., s 1 < < s n < s < t Borel f(x 1,..., x n ), E[e iz(xt Xs) f(x s1,..., X sn )] = E[E[e iz(xt Xs) F s ]f(x s1,..., X sn )], X t X s F s, N(, t). = e (t s)z2 /2 E[f(X s1,..., X sn )]. (5) X t, E[e iz(xt Xs) F s ] = e (t s)z2 /2,,. (6) [T 1, T 2 ] = [, 1]. B t t [, 1] a.s.,, δ n = max 1 k n B k/n B (k 1)/n (n ) a.s., X n = n (B k/n B (k 1)/n ) 2, Z k = (B k/n B (k 1)/n ) 2 1/n, EZ 2 k = 3/n 2 2/n 2 + 1/n 2 = 2/n 2, E(X n 1) 2 =, {n k }; X nk 1 a.s., V = sup n EZk 2 = 2 n. B tk B tk 1 X n k δ nk a.s. (7) E B t B s 2n = c n t s n (c n = (2n 1)!!), Kolmogorov, γ < (n 1)/(2n) 1/2, γ-hölder.

6 Stoch. Integral & SDE (S. Hiraba) 5, γ = 1/2,, L 1, A n = { B k/n B (k 1)/n L/ n, k = 1, 2,..., n},, P ( B k/n B (k 1)/n L/ n) = P ( B k B k 1 L) = P ( B 1 L) =: p L (, 1),, P (A n ) = p n L., n 1 P (A n) <. Borel-Cantelli, P (lim sup A n ) =., 1, N = N(ω) 1; n N, k n, B k/n B (k 1)/n > L/ n. L 1,. (8) [, 1].. P ( s [, 1]; B s) P m 1, A m,n =, s [, 1]; B s, n+1 i+3 n N i=1 j=i+1 N 1 A m,n =. { B j/n B (j 1)/n 8m n }. m 1, t > s ; B t B s m(t s ), t [s, t ]., s k = ([ns] + k)/n, 1 k 4, s < s 1 s 4, s 4 s 4/n,, N 1; n N, s k [s, t ],, k = 2, 3, 4, B sk B sk 1 B sk B s + B s B sk 1 2m(s 4 s ) 8m n., m, N 1; n N, i = [ns ] + 1, 1 i n + 1, j = i + 1, i + 2, i + 3, B j/n B (j 1)/n 8m/n.,. m, N 1, P (A m,n ) =., ( ) Bj/n P B (j 1)/n 8m 2 8m/n = n 2π/n P (A m,n ) inf n N P n+1 n+1 lim inf n j+3 i=1 j=i+1 i+3 i=1 j=i+1 P e x2 /(2/n) dx = 2 8m/ n 2π { B j/n B (j 1)/n 8m n ( B j/n B (j 1)/n 8m n }. ) e x2 /2 dx C n. ( ) 3 C lim (n + 1) =. n n

7 Stoch. Integral & SDE (S. Hiraba) 6 (9),., z, x R d, z, T x = t T z, x, t < t 1 < < t n, z k R d (k = 1, 2,..., n), [ { }] n E exp i z k, T (B tk B tk 1 ) = e n (t k t k 1 ) t T z k 2 = e n (t k t k 1 ) z k 2, z k j, (T B t ) j Brown,,,., T, τ T S T B t S, τ T S = τ S, Brown, A B(S), P (B τs A) = P (T (B τ T S ) A) = P (T (B τs ) A) = P (B τs T 1 A). µ S (dξ) := P (B τs dξ) S., t, P (B t B(, r)) = p t (x)dx, P (τ S < ) = 1, µ S (S) = 1 B(,r). (, P (τ S = ) >, < P ( t >, B t B(, r)) lim sup t P (B t B(, r)) =.) [Brown ] 3,,. t [, 1]. [, T ],, [, ). D = n 1 {k/2n ; k =, 1,..., 2 n } [, 1] 2., R Kolmogorov, R D ( w = w(t) : D] R ), X t (w) = w(t) Brown P. (D, n,, Kolmogorov, D,.), Kolmogorov, (X t ) D a.s., X t = lim r t;r D X r, B t = X t. 1.2 (Kolmogorov ) (1) Banach (B, ) {X t } t D, C, α, β > ; E X t X s } α C t s 1+β, X t D a.s.,. (2) {X t } t [,1] s, t [, 1],, { X t } t [,T ], γ < β/α, γ-hölder. lim sup h s t; t s h X t X s γ t s = a.s. [ ] < γ < δ < β/α, δ n = 1/2 n. β αδ >. (1), E 2 n ( ) α Xkδn X (k 1)δn δ δ n 1 n n 1 2 n Cδ 1+(β αδ) n = C n 1 δ β αδ n <.

8 Stoch. Integral & SDE (S. Hiraba) 7, a.s., lim 2 n n ( ) α Xkδn X (k 1)δn = a.s. δ δ n, P ( n ; n n, k = 1, 2,..., 2 n, X kδn X (k 1)δn < δ δ n) = 1. 1 Ω, (1.1) n ; r, r D; < r r < δ n, X r X r C r r δ C = 2/(1 2 δ ), D., n n ; δ n+1 < r r δ n, r, r, [kδ n, (k + 1)δ n ], ((k 1)δ n, kδ n ), (kδ n, (k + 1)δ n ). r, r [kδ n, (k + 1)δ n ], X r X r X r X kδn + X kδn X r,, r kδ n = ε 1 δ n ε p δ n+p 2 ( p 1, ε i = or 1). r = kδ n, r j = kδ n + ε 1 δ n ε j δ n+j (j = 1, 2,..., p). r j r j 1 = ε j δ n+j δ n+j, Ω, p X r X kδn X rj X rj 1 < δn+j δ = δn+1/(1 δ 2 δ ). j=1 j=1 X kδn X r,,. (r r > δ n+1.) X r X r 2δn+1/(1 δ 2 δ ) 2(1 2 δ ) 1 r r δ. r ((k 1)δ n, kδ n ), r (kδ n, (k + 1)δ n ), kδ n, kδ n r, r kδ n < δ n, 2,., (1.1). (2) (1), X t D, X t t D X t, t / D, X t = lim r D;r t,, n ; s, t [, 1]; < t s < 1 2 n, X t X s C t s δ. γ < δ < β/α, γ-hölder., t / D, r n D; r n t, E X t X t } α lim inf n E X rn X t α C lim inf n r n t 1+β =, t [, 1], P (X t = X t ) = 1., (X t ) ( X t ).,. 1.3 Poisson α >, τ = τ(ω) α P (τ > t) = t αe αs ds = e αt

9 Stoch. Integral & SDE (S. Hiraba) 8. τ f(s) = αe αs. τ α- or (exponential time).,. E[τ] = αse αs ds = 1 α, V (τ) = E[τ 2 ] (E[τ]) 2 = 1 α τ, (memoryless property). t, s, P (τ > t + s τ > s) = P (τ > t). P (τ > t + s τ > s) = P (τ > t + s) P (τ > s) = e (t+s) e s = e t = P (τ > t). 1.2 τ 1, τ 2,... τ n, α 1, α 2,..., α n, min{τ 1, τ 2,... τ n } α 1 + α α n -. P (min{τ 1, τ 2,... τ n } = τ k ) = n = 2, k = 1. α k α 1 + α α n. P (τ 1 τ 2 } > t) = P (τ 1 > t, τ 2 > t) = P (τ 1 > t)p (τ 2 > t) = e (α1+α2)t. τ 1, τ 2,,. P (min{τ 1, τ 2 } = τ 1 ) = P (τ 1 < τ 2 ) = = = dsα 1 e α1s P (s < τ 2 ) dsα 1 e α1s e α2s α 1 α 1 + α A B, A 1-, B 2-.,,.. 3-, 1/3. λ >, (X t ) t λ Poisson ( ) ( λ-poisson ).

10 Stoch. Integral & SDE (S. Hiraba) 9 (1) X =, (2) s < t X t X s λ(t s) Poisson., (3) X t. P (X t X s = k) = e λ(t s) λk (t s) k k! (k =, 1, 2,... )., < t 1 < t 2 < < t n, X t1, X t2 X t1,..., X tn X tn (Poisson ) σ 1, σ 2,..., λ-. τ n = n σ k, τ =, X t = n τ n t < τ n+1, X t := n1 [τn,τ n+1)(t) = max{n; τ n t}, λ-poisson.., (X t ) t λ-poisson, τ 1, τ 2,.... τ 1, τ 2 τ 1, τ 3 τ 2,..., λ-. i.e.,. 1.3 n λ- σ k τ = n σ k Γ(n, λ), P (τ < t) = (σ n ), P (σ σ n < t) = n= 1 (n 1)! λn s n 1 e λs ds. s 1+ s n<t λ n e λ(s1+ sn) ds 1 ds n u k = s 1 + s k (k = 1,..., n), s = u n, un λ n e λ(s1+ sn) ds 1 ds n = du n du n 1 s 1+ s n<t = = = un du n du n 1 u2 u3 1 du n (n 1)! un 1 n λ n e λun 1 ds (n 1)! λn s n 1 e λs du 1 λ n e λun du 2 u 2 λ n e λun 1.3 τ n σ n+1 Γ(n, λ) P (X t = n) = P (τ n t < τ n+1 = τ n + σ n+1 ) = = ds ds = e λt λ n (n 1)! 1 (n 1)! λn s n 1 e λs P (t < s + σ n+1 ) 1 (n 1)! λn s n 1 e λs e (t s)λ s n 1 ds = e λt λn t n. n!

11 Stoch. Integral & SDE (S. Hiraba) 1 P (τ n+1 > t + s, X t = n) = P (τ n+1 > t + s, τ n t < τ n+1 ) = P (τ n + σ n+1 > t + s, τ n t) = = du du 1 (n 1)! λn u n 1 e λu P (u + σ n+1 > t + s) 1 (n 1)! λn u n 1 e λu e λ(t+s u) = e λ(t+s) λn t n n! (1.2) P (τ n+1 > t + s X t = n) = e λs = P (τ 1 > s). m 1,. P (τ n+m > t + s X t = n) = P (τ m > s). m m + 1 m, P (τ n+m t + s < τ n+m+1 X t = n) = P (τ m s < τ m+1 ) = P (X s = m)., n, m 1, P (X t = n, X t+s X t = m) = P (X t = n, X t+s = n + m) n, = P (X t = n)p (X t+s = n + m X t = n) = P (X t = n)p (τ n+m t + s < τ n+m+1 X t = n) = P (X t = n)p (X s = m) P (X t+s X t = m) = P (X s = m) = e λ λm s m. m! m = P (X t+s X t = m) = e λs,.,, (1.2),, P (τ n > t + s X t = n) = P (τ n > t + s τ n t < τ n+1 ) = P (X t+s = n X t = n) = P (τ n t + s < τ n+1 X t = n) = e λs. P (X t = n, X t+s X t = ) = P (X t = n, X t+s = n) = P (X t = n)p (X t+s = n X t = n) = P (X t = n)e λs. n P (X t+s X t = ) = e λs., t 1 < < t k, P (X t = n, X t1 X t = n 1,..., X tk X tk 1 = n k ) = P (X t = n, X t1 = N + n 1,..., X tk = n + + n k ) = P (X t = n )P (X t1 t = n 1,..., X tk t = n n k )

12 Stoch. Integral & SDE (S. Hiraba) 11,. P (X t = n, X t1 X t = n 1,..., X tk X tk 1 = n k ) = P (X t = n )P (X t1 t = n 1 ) P (X tk t k 1 = n k ) = P (X t = n )P (X t1 X t = n 1 ) P (X tk X tk 1 = n k ) 1.4, (X t ): Markov (Markov process) def s < t Borel f, E[f(X t ) F s ] = E[f(X t ) X s ] a.s., ( )= E[f(X t s X = x] x=xs a.s., Markov (time-homogeneous MP). [Brown Markov ] Brown (B t ), (x + B t ) x Brown. (W = W d, W) P x, x + B t B t. B t (w) = w(t), w W., P x (B = x) = 1.,, N = {N W; x R d, P x (N) = }, F t = F t N, Ft = σ(b s ; s t)., Ft F t+ := ε> F t+ε. Ft = F t. s, W (shift operator) θ s θ s w(t) := w(t + s). 1.4 ((F t ) Markov ) Y W. x R d, s,. E x [Y θ s F s ] = E Bs [Y ] a.s. Borel f, s < t, Y = f(b t s ), Y θ s = f(b t ),, E x [f(b t ) F s ] = E Bs [f(b t s )] = E[f(B t s ) B = x] x=bs, Markov. [ ] f, F j R 1 Borel, Y = f(b t ), = j n f j(b tj ) t 1 < < t n, W- Y, 2,. Y = f(b t ), f(x) = e izx ( z R)., Y = e izbt, Y θ s = e izbt+s, E x [e izbt+s F s ] = E x [e iz(bt+s Bs) e izbs F s ] = E x [e izbt ]e izbs = E Bs [e izbt ] Y = j n f j(b tj ) t 1 < < t n,. n, n + 1

13 Stoch. Integral & SDE (S. Hiraba) 12. E x [Y θ s F s ] = E x E x f j (B tj+s) j n+1 F t 1+s F s n+1 = E x f 1 (B t1+s)e Bt1 +s f j (B tj t 1 ) j=2 F s n+1 = E Bs f 1 (B t1 )E Bt1 f j (B tj t 1 ) = E Bs f 1 (B t1 ) n+1 j=2 j=2 f j (B tj ) = E Bs [Y ]. 2, 3,,, Borel. n+1 n+1 f(x) = E x f j (B tj t 1 ) = E f j (x + B tj t 1 ). j=2 4, F t1. Markov, (F t ). 1.5 ((F t ) Markov ) W Y x R d, s, j=2 E x [Y θ s F s ] = E Bs [Y ] a.s., F t = F t. [ ] Markov Ft = F t. A, B Fs. Y = 1 B, Ỹ = E B s [1 B ], E x [1 B ; A] = E x [Ỹ ; A], i.e., E x[(1 B Ỹ ); A] =. Ỹ F s -, A Fs, 1 B = Ỹ a.s.,, B Fs ; 1 B 1 B a.s.,, B F s., Fs a st F s. Markov. Y = f(b t ); f Borel. ε >, A F s+ε, E x [f(b t+s+ε ) F s+ε ] = E Bs+ε [f(b t )] a.s., E x [f(b t+s+ε )1 A ] = E x [E Bs+ε [f(b t )1 A ]. ε, BM f,, E x [f(b t+s )1 A ] = E x [E Bs [f(b t )1 A ].,, Borel Y (Blumenthal -1 (zero-one law)) A F = F, P (A) = or [ ] A F, P x (A) = E x [1 A ] = E x [E x [1 A θ ]; A] = E x [E B [1 A ]; A] = E x [P x (A); A] = P x (A) 2. P x (A) = or 1., 1 Brown (B t ),,., τ (, ) := inf{t > ; B t > }, P (τ (, ) = ) = 1.

14 Stoch. Integral & SDE (S. Hiraba) 13,,. S (X t ) t (Continuous-time Markov Chain),. s, t, i, j, k ul S, u l < s (l l ), P (X t+s = j X s = i, X ul = k ul (l l )) = P (X t+s = j X s = i).,. P (X t+s = j X s = i) = P (X t = j X = i). q t (i, j) = P (X t = j X = i). 1.7 Poisson.,. 1.2 S,,. X t. t 1 < t 2 < < t n < t n+1, X t1, X t2 X t1,..., X tn+1 X tn,, X tn+1 X tn (X t1,..., X tn ), X tn+1 X tn X tn.. P (X tn+1 = j n+1 X tk = j k, k n) = P (X tn+1 X tn = j n+1 j n X tk = j k, k n) = P (X tn+1 X tn = j n+1 j n ) = P (X tn+1 X tn = j n+1 j n X tn = j n ) = P (X tn+1 = j n+1 X tn = j n ). (X t ): (martingale) E[X t F s ] = X s a.s. def s t, X t L 1,, martingale, (M t ), M t L 1, E[M t F s ] = M s a.s.., EM t = EM., E[X t F s ] X s a.s., (sub-martingale),,. EX EX s EX t.,, (super-martingale). 1.8 (Doob-Meyer ) (X t ): conti. sub-mart., (D), i.e., a >, {X τ a } τ (, τ.) X t = A t + M t ; (M t ): conti. mart., (A t ): conti., A =.,.

15 Stoch. Integral & SDE (S. Hiraba) 14 2 C D (C Spaces and D Spaces) (Polish sp.):,,,., R d, (, 1) R 1,. I, R I f : I R., C, D,. C = C(I) = I, D = D(I) = I 1., f : I R 1 1, I,. 2.1 C I C C = C(I), I, i.e., I = [a, b] ( < a < b < ),.. d u (f, g) = sup f(t) g(t). t I I, I n = [a n, b n ]; I = I n,.. d u (f, g) = 2 n (1 sup f(t) g(t) ). t I n 1. Weierstrass, n, n ), D Skorohod I 1 D D = D(I),,,. (f α = 1 [,α] I (α > ).), Billingsley ; Skorohod,. I, i.e., I = [a, b] ( < a < b < ), D D = D(I), Billingsley d B., Φ I,. φ Φ, λ(φ) = sup φ(t) φ(s) log s t t s, φ Ψ def λ(φ) <. d b (f, g) = inf φ Ψ { f φ g + λ(φ)}

16 Stoch. Integral & SDE (S. Hiraba) 15.,, d S ( Skorohod ), d S,,. d S (f, g) = inf φ Φ { f φ g + φ i }.,, 2 D,, (2 ),,. I, C. 2.3 (X t ) X a.s.,,,.,,,, (rcll=right-conti. has left-limit, or cádlág ( ) )., 1. T >, t [, T ),,,,,,.,,. (, t, t,, s < t. X t = X t = lim s t X s.,, t, t X t := X t X t,.),,. Brown, Markov,,,., Poisson, 1,, Poisson (Poisson random measure). 2.4 Poisson (Z, Z), λ(dz) σ. N(dz) = N(ω; dz) Z λ ( ) Poisson (Poisson random measure)1 def (1) a.a. ω Ω, N(ω; dz) (Z, Z). (2) A Z, λ(a) < N(A) λ(a) Poisson, i.e., λ(a) Poisson, λ(a) = N(A) = a.s. (3) A n Z:, N(A n ).

17 Stoch. Integral & SDE (S. Hiraba) 16, (2), N(dz) := E[N(dz)] = λ(dz)., Z,, Z = [, ) R m (t, z), Z = B 1 ([, ) R m ), ν(dz) R m, ν({}) =,, n 1, ν( z 1/n) <. (ν σ-.) ν Lévy., N(dtdz) dtν(dz)-poisson (τ k, ξ k ) N(dt, dz), i.e., N(dt, dz) = δ (τk,ξ k )(dt, dz)., k, j 1, P (τ k τ j ) = 1.,, 2., 1. P ( t, N({t} R m ) = or 1) = 1.,. ( [1].), R m = R 1., dtν(dz)-poisson T >, t [, T ]. Z = { z 1}, Z n = {1/(n + 1) z < 1/n} (n 1). n, ν n = ν Zn, [, T ] Z n λ n (dt, dz) λ(dt, dz) λ([, T ] Z n ) := dtν n(dz) T ν(z n ),, {Y n k (λ(dt, dz) := dtν(dz)) = (τ n k, ξn k )} k 1, i.e., P (Y n k dtdz) = λ n (dt, dz)., K n T ν(z n )-Poisson, {Y n k, K m; n, k 1, m }., K n K n N n (dt, dz) = δ Y n k (dt, dz) = 1 dtdz (Yk n ), N = N n n, N N n (A) = k K n = m k, m k Yk n A, m k ([, T ] Z n ) \ A N n (A) λ(a)-poisson, Poisson Poisson,. ( ) N (τ i, ξ i ), n, k 1; (τk n, ξn k ), n, m, k, j 1; (n, k) (m, j), P (τk n τ j m) = 1,i.e., P (τ k n = τ j m) =. M 1 1, [, T ] M, 1 l M, Z n,l = [(l 1)T/M, lt/m) Z n,, Z n,m = [(M 1)T/M, T ] Z n., λ n (Z n,l ) = 1/M., τ n k = τ m j, l; [(l 1)T/M, lt/m), Yk n, Yk n, Y j m, P (τ n k = τ m j ) P ( M l=1 { Y n k Z n,l, Y m j Z m,l } ) = (τ n k, ξn k ) Z n,l, Y m j = (τ m j, ξm j ) Z m,l M λ n (Z n,l )λ m (Z m,l ) = 1 M. l=1

18 Stoch. Integral & SDE (S. Hiraba) 17 3 (Stochastic Integrals) 3.1 Wiener ( ), (Ω, F, P ), (F t ) t,. (B t ) t (F t )-Brown (, BM.); B = a.s., t [, ),, t [, T ]., f(t) = f(t, ω) [, T ] Ω, (F t )-, dtp (dω) L 2 -, (Stochastic integrals, Ito integrals) f(r)db r =., f. f(r, ω)db r (ω) f(t) = f(t, ω) L 2 loc def f : [, ) Ω R 1 ;, (f(t)) t (F t )-, f(r) 2 dr < a.s. for t >.,, T >, f., f(t) L 2 T def f : [, T ] Ω R 1 ;, (f(t)) (F t )-, Ef(r) 2 dr < for t T. f(r, ω)db r (ω), BM, (, ω ), Riemann.,, dtp (dω),, L 2 -, f L 2 T., f(t, ω) = f a (ω)1 (a,b] (t); a < b; a, b [, T ], f a F a. f S, i.e. n f(t, ω) = f (ω)1 {} (t) + f tk 1 (ω)1 (tk 1,t k ](t)., = t t 1 < < t n = T, f tk 1, F tk 1 -., T. f 2 T := T Ef(t) 2 dt. 3.1 S: dense in L 2 T under T, i.e., f L 2 T, f n S; f f n T., (F t )-,., (progressively m ble) t >, (s, ω) ([, t] Ω, B[, t] F t ) f(s, ω) (R, B 1 )., L 2 T, (F t)-,. [ ], f L 2 T, f1 ( f m), f., ε >, f(t, ω) = 1 ε (t ε) f(r, ω)dr

19 Stoch. Integral & SDE (S. Hiraba) 18, f. (,, f (F t )-.), f L 2 T, f n (t, ω) = f(, ω)1 {} (t) + n f(t k 1, ω)1 (tk 1,t k ](t),, f n S,, f f n T. t k = k n T ( ) ( ) (F t )-adapted,., t >, f n (r, ω) = f(, ω)1 {} (r) + n f(t k, ω)1 (tk 1,t k ](r) (t k = k n t), B1 ([, t]) F t -,,. f(t) = f (ω)1 {} (t) + n f t k 1 1 (tk 1,t k ](t),. M t (f) f(r)db r := n f tk 1 (B tk t B tk 1 t) 3.1 [2], ; f(t) = n ft 1 k 1 [t k 1,t k )(t),., BM ( ), Poisson,. (F t)-, (F t)-adapted,(f t)-,,., lim sup ε,. t ε f(r, ω)dr. 3.2 {M t (f)}, EM t (f) =, EM t (f) 2 = E[M t (f) F s ] = M s (f) a.s., i.e., E ( ) 2 f(r)db r =, E f(r)db r = [ ] Ef(r) 2 dr, E f(r)db r F s = Ef(r) 2 dr., s < t, s f(r)db r a.s., M 2 c, M = a.s. L 2 -( )martingale, ; {M t (f)} M 2 c,,, M ( f), M(g) t = f(r)g(r)dr., M(f), M(g) t, L 2 -mart. (M t ), (N t ), Mt 2, (D), Doob-Meyer, A t ; A =, M 2 t A t. A t = M t, (M t ) 2 (quadratic variation)., M, N t := 1 4 ( M + N t M N t ) = 1 2 ( M + N t M t N t ),,, M t N t M, N t mart.. (M t ) (N t ) 2., ; t < t 1 < < t n = t,. M t = lim n (M tk M tk 1 ) 2 (in prob.)

20 Stoch. Integral & SDE (S. Hiraba) 19 Brown, B t = t. [ ] f f(t) = f a (ω)1 [a,b) (t), M(f) t = f a (B t b B t a ),, M(f) =. ; s < t, E[M(f) t F s ] = M(f) s a.s.. E[M(f) t M(f) s F s ] = E[f a (B t b B t a B s b + B s a ) F s ], s a, E[E[f a (B t b B t a ) F a ] F s ] = E[f a E[(B t b B t a ) F a ] F s ] =. s > a, E[f a (B t b B s b ) F s ] = f a E[B t b B s b F s ] =., E[M(f) t M(f) s F s ] = a.s. 2, [ E M(f) t M(g) t M(f) s M(g) s., M(f) t = s ] f(r)g(r)dr F s = f(r) 2 dr, M(f + g) t = (f + g) 2 (r)dr,. g(t) = g c 1 [c,d) (t), a c. s c, s > c., f L 2 T, f n, T, (M(f n ) t ) Cauchy, (L 2 T, T ), (M(f) t ),., f S., 3.1 f, g L 2 T, ( M(f) t = f(r)db r ) t M 2,c, M ( f), M(g) t = f(r)g(r)dr., f L 2 loc, { σ n = inf t > ; } f(r) 2 dr n, f n (t) := f(t σ n ) L 2 T, M(f) t = lim M(f( σ n )) t. ( ω, N = N(ω) 1; n N, σ n (ω) = T.), M(f) t σn = M(f( σ n )) t., (M(f) t ) M 2,loc,c ; L2 -martingale. 3.2 Poisson ν(dz) R m Lévy,,. ν({}) =, n 1, ν( z 1/n) < N(dt, dz) dtdν-poisson,, N(dt, dz) := E[N(dt, dz)] = dtν(dz) [, ) R m Poisson. (F t ), s < t, U B m, N((s, t] U) F s. Ñ := N N Poisson (compensated Poisson random measure)., (τ k, ξ k ) N(dt, dz) N(dt, dz) = δ (τk,ξ k )(dt, dz).

21 Stoch. Integral & SDE (S. Hiraba) 2, τ k a.s.,., ξ k 1/n k a.s.. f(t, z) = f(t, z, ω), g(t, z) = g(t, z, ω) R d, (t, z, ω) [, ) R m Ω, (F t )-., P (1) (2) h(t, z, ω) σ-filed, f, g P-. f, g (F t )- (predictable). (1) (z, ω), t h(t, z, ω). (2) t >, (z, ω) h(t, z, ω) B m F t -, ( ) Poisson, N((s, t] U) F s,.,,,.,. t >, σ n : ST ; a.s., t >, n 1, dr f(r, z) ν(dz) < R m a.s., dr E g(r σ n, z) 2 ν(dz) <. R m,, + t+, (, t]., = + + = (,t].,, X t = f(r, z)n(dr, dz) := f(τ k, ξ k ).. s < t,, g,,, Y t = ( z 1) E[X t F s ] = X s + E X t t >, s ( z 1) k;τ k t E[f(r, z) F s ]drν(dz). dr E f(r, z) ν(dz) <. R 1 dr E g(r, z) 2 ν(dz) <. R m R m g(r, z)ñ(dr, dz) := L2 - lim n ( z 1/n) g(r, z)ñ(dr, dz).., Y t L 2 -martingale i.e., [ ] s E g(r, z)ñ(dr, dz) F s = g(r, z)ñ(dr, dz). R m R m, [ ( ) 2 ] E g(r, z)ñ(dr, dz) = R m dr Eg(r, z) 2 ν(dz). R m g, Y t = g(r, z)ñ(dr, dz) = lim R 1 n g(r σ n, z)ñ(dr, dz). R 1. L 2 -martingale,, Y t σn L 2 -martingale,.

22 Stoch. Integral & SDE (S. Hiraba) 21,, m = 1, T >, [, T ],, f(r, z),. f(r, z) = 2 n f(r n k 1)1 (r n k 1,r n k ] (r)1 U (z) (r n k = kt/2n, f(t) = f(ω; t) (F t )-, U B 1 ; ν(u) <.) 3.3 F, f(t, z, ω), 2,. (1) F f(t, z, ω) ; f in t, B m F t - in (z, ω). (2) f n F; f = f F (.) g(r, z),. [ ] E g(r, z)ñ(dr, dz) F s = a.s. s R. (s, t] 2 n {r n k },., Z n = { z 1/n}, U Z n = B m Z n.. s r n k 1 < rn k t. [ ] E g(rk 1)1 n (r n k 1,rk n] (r)1 U (z)ñ(dr, dz) F s s R [ [ ] ] = E E g(r k 1)Ñ((rn n k 1, rk n ] U) Fr n Fs k 1 [ ] ] = E g(rk 1)E [Ñ((r n n k 1, rk n ] U) Fs = a.s. 2, N. ] ] n E [Ñ((rk 1, rk n ] U) Fr n n k 1 = E [Ñ((rk 1, rk n ] U) =, g n (r, z) = g(r, z)1 ( z 1/n) L 2 -,., [ ] E g n (r, z)ñ(dr, dz) F s = a.s. s, g, A F s, [ ] E g(r, z)ñ(dr, dz); A =, 2. ( E [ = s R s R s R ] [ g(r, z)ñ(dr, dz); A E dr R E[(g n (r, z) g(r, z)) 2 1 A ]ν(dz). s R g n (r, z)ñ(dr, dz); A ]) 2 2,,, j k, g(r n k 1)Ñ((rn k 1, r n k ] U)g(r n j 1)Ñ((rn j 1, r n j ] U)

23 Stoch. Integral & SDE (S. Hiraba) 22, j < k, i.e., j k 1 g(rj 1 n )Ñ((rn j 1, rn j ] U)g(rn k 1 ) Ñ((rn k 1, rn k ] U),. j = k,, E[g(r n k 1) 2 Ñ((r n k 1, r n k ] U) 2 ] = E[g(r n k 1) 2 ]E[Ñ((rn k 1, r n k ] U) 2 ], E[Ñ((rn k 1, r n k ] U) 2 ] = EN((r n k 1, r n k ] U) = (r n k r n k 1)ν(U),, L 2 -. [ 3.3 ], z R m. (, F, B m F t F t.), D 2 [, ) Ω Dynkin (d-system) (i) [, ) Ω D. (ii) A, B D; A B B \ A D. (iii) A n D A n D. def, C 2 [, ) Ω d-system, d(c) C 2 [, ) Ω,, d(c) = σ(c).. (.) 3.3.,, A P, 1 A F., A P def 1 A F, Dynkin., k n, (Yt k ) (F t )-adapted, B k B 1, B k } C, C P, d(c) P, k n {Y k t, d(c) = σ(c) = P, P P. C P, n = 1, i.e., A t = {Y t B} P, φ n : on R 1, φ n 1 B, 1 At = 1 B (Y t ) = lim φ n (Y t ), F (.) σ- Dynkin, d(c) σ(c)., d(c), σ-. A, B d(c) A B d(c). A d(c), D A = {B [, ) Ω; A B d(c)}.., A d(c), D A Dynkin, d(c) D A,., B 1, B 2 D; B 1 B 2, A (B 2 \B 1) = (A B 2)\(A B 1) d(c). B n D A;, A ( B n) = (A B n) d(c).,, A C D A d(c),, B d(c), B D A, A B d(c), A B, A d(c) D A d(c) ( ) (X t ) R d, x,. X t (ω) = x + a(r, ω)dr + b(r, ω)db r (ω).

24 Stoch. Integral & SDE (S. Hiraba) 23, X t = (X i t) = (X 1 t,..., X d t ); X i t = x i +, B t = (B k t ) k N : N Brown, a i (r)dr + a(t) = a(t, ω) = (a i (t, ω)) i d : (F t )-adapted; T >, b i k(r)dbr k. j N T b(t) = b(t, ω) = (b i k (t, ω)) i d,k N : (F t )-adapted; T >, {b(t)} t L 2,loc., a(t) dt < a.s. T b(t) 2 dt < a.s.,, b(t)db t = k N b i k(t)db k t, b(t) 2 = i,k (b i k) 2 (t).,. (,.) dx t = a(t)dt + b(t)db t., (Ito s formula), : φ(x) C 2 (R d ), dφ(x t ) = a(t) Dφ(X t )dt + b(t) Dφ(X t )db t b2 (t) D 2 φ(x t )dt., a(t) D = a i (t) i, b 2 (t) D 2 = k m bi k (t)bj k 2 ij ). i = / x i, ij 2 = 2 / x i x j. d = 1, N = 1, (, dφ(x t ) = φ (X t )a(t)dt + φ (X t )b(t)db t φ (X t )b(t) 2 dt., f Taylor,, (db t ) 2 = dt, (dt) 2 = dtdb t =,., n 3, (dx t ) n =,. dφ(x t ) = φ (X t )dx t + φ (X t )dx t φ (X t )(dx t ) 2 = φ (X t )dx t + φ (X t )dx t φ (X t )(dx t ) 2 = φ (X t )(a(t)dt + b(t)db t ) φ (X t )(b(t)db t ) 2. [ ] a(r), b(r),, [s, t],, r [s, t], a.s. a(s), b(s) F s., [s, t] n,, s =, a, b F, a.s., [, t] n, t k = t n k = tk/n, k =, 1,..., n. Taylor, φ(x tk ) φ(x tk 1 ) = φ (X tk 1 )(X tk X tk 1 ) φ (Y k )(X tk X tk 1 ) 2

25 Stoch. Integral & SDE (S. Hiraba) 24, θ = θ(ω) (, 1); Y k = X tk 1 + θ(x tk X tk 1 ). X tk X tk 1 = a (t k t k 1 ) + b (B tk B tk 1 )., n, a.s. in L 2,., X tk X tk 1 a(t)dt + b(t)db t (X tk X tk 1 ) 2 (a(t)dt + b(t)db t ) 2 = b(t) 2 dt φ(x t ) φ(x ) = n (φ(x tk ) φ(x tk 1 )) =, φ Cb 2 (φ ), n,. n In 1 = φ (X tk 1 )a (t k t k 1 ) φ (X r )a(r)dr a.s., I 2 n = I 3 n = I 4 n = I 5 n = n φ (X tk 1 )b (B tk B tk 1 ) n n n 1 2 φ (Y k )b 2 (B tk B tk 1 ) j=1 I j n φ (X r )b(r)db r in L 2, φ (X r )b 2 (r)dr in L 2, 1 2 φ (Y k )a b (t k t k 1 )(B tk B tk 1 ) a.s., 1 2 φ (Y k )a 2 (t k t k 1 ) 2 a.s., a.s.,. I 4 n, B r max B tk B tk 1 a.s., I 5 n, t k t k 1 = 1/n. I 1 n, I 2 n, I 3 n. I1 n, φ (X r ) r, In 1 a φ (X r )dr = φ (X r )a(r)dr In 2 f n(r) = n φ (X tk 1 )1 (tk 1,t k ](r), In 2 = b f n (r)db r, φ, φ (X r ), f n (r) φ (X r )1 (,t] (r) T., In 2 = b f n (r)db r b φ (X r )db r = In 3, ψ = φ C b (R), n ψ(y k )(B tk B tk 1 ) 2 p.w. φ (X r )b(r)db r in L 2. ψ(x r )dr in L 2, X r ψ, max 1 k n E ψ(y k ) ψ(x tk 1 ) 2, ψ ( n 2 n E {(B tk B tk 1 ) 2 (t k t k 1 )}) = E{(B tk B tk 1 ) 2 (t k t k 1 )} 2 = t2 n,., φ C 2, σ n = inf{t > ; X t n}, X t σn, { x n} φ, φ, Ito, n.

26 Stoch. Integral & SDE (S. Hiraba) ( ) ν(dz) R m Lévy,,. ν({}) =, n 1, ν( z 1/n) < N(dt, dz) dtdν-poisson,, N(dt, dz) := E[N(dt, dz)] = dtν(dz) [, ) R m Poisson. Ñ := N N Poisson. f(t, z) = f(t, z, ω), g(t, z) = g(t, z, ω) R d (F t )-,,. t >, dr f(r, z) ν(dz) <, a.s., ( z 1) σ n : ST; a.s., t >, n 1, dr E g(r σ n, z) 2 ν(dz) <. ( z <1) (X t ) x,. a, b, dx t (ω) = a(t, ω)dt + b(t, ω)db t (ω) + f(t, z, ω)n(ω; dt, dz) + g(t, z, ω)ñ(ω; dt, dz), ( z 1) ( z <1) : φ(x) C 2 (R d ), dφ(x t ) = a(t) Dφ(X t )dt + b(t) Dφ(X t )db t b2 (t) D 2 φ(x t )dt + [φ(x t + f(t, z)) φ(x t )]N(dt, dz) + + ( z 1) ( z <1) ( z <1) [φ(x t + g(t, z)) φ(x t )]Ñ(dt, dz) [φ(x t + g(t, z)) φ(x t ) g(t, z) Dφ(X t )]ν(dz)dt : Ikeda-Watanabe [4], z 1, z < 1, fg =, f, g z R.,, i.e., a =, b =,. dx t = f(t, z)n(dt, dz) + g(t, z)ñ(dt, dz), dφ(x t ) = ( z 1) ( z 1) + + ( z <1) ( z <1) ( z <1) [φ(x t + f(t, z)) φ(x t )]N(dt, dz) [φ(x t + g(t, z)) φ(x t )]Ñ(dt, dz) [φ(x t + g(t, z)) φ(x t ) g(t, z) Dφ (X t )]ν(dz)dt., d = m = 1, a =, b =.,,.,. dr E f(r, z) ν(dz) <, ( z 1) dr E g(r, z) 2 ν(dz) <. ( z <1)

27 Stoch. Integral & SDE (S. Hiraba) 26, g =, X t pure jump, φ(x t ) f(r, z) jump, φ(x t ) φ(x ) = = r t; X r ( x 1) (φ(x r ) φ(x r )) = r t; X r (φ(x r + f(r, z)) φ(x r ))N(dr, dz). (φ(x r + f(r, z)) φ(x r )) g, f =,,. dxt n := g(t, z)ñ(dt, dz), dxt n := (1/n z <1) (1/n z <1) g(t, z)n(dt, dz) g(t, z)dtν(dz) (1/n z <1)., dxt n = d(xt n ) d + d(xt n ) c = Xt n + d(xt n ) c. Xt n = Xt n Xt, n i.e, Xt n = Xt + X n t n.,, N({(t, z)}) = 1, Xt n = g(t, z), φ(x n t ) = φ(x n t ) φ(x n t ) = φ(x n t + g(t, z)) φ(x n t )., Z n = {1/n z < 1}. φ(xt n ) φ(xs n ) = φ (Xr n )d(xr n ) c + φ(xr n ) s r; Xr n t = φ (Xr n )g(r, z)drν(dz) + [φ(xr n + g(r, z)) φ(xr )]N(dt, n dz) s Z n s Z n = φ (Xr n )g(r, z)drν(dz) + [φ(x n n r + g(r, z)) φ(xr )]Ñ(dr, dz) s Z n s Z n + [φ(xr n + g(r, z)) φ(xr )]drν(dz) n s Z n = [φ(x n n r + g(r, z)) φ(xr )]Ñ(dr, dz) s Z n + [φ(xr n + g(r, z)) φ(xr ) n φ (Xr n )g(r, z)]drν(dz) s Z n, n, L 2 -,.

28 Stoch. Integral & SDE (S. Hiraba) 27 4 (Stochastic Differential Equations), 1 (d = m = 1). a(t, x), b(t, x), f(t, x, z), g(t, x, z); g(t, x, ) = R 1,,, (t, x.z) [.T ] R 1 R 1. (, ω.), R 1 X t. X = x, dx t = a(t, X t )dt + b(t, X t )db t + ( z 1) f(t, X t, z)n(dt, dz) + g(t, X t, z)ñ(dt, dz). ( z <1), X = x, a, b, f, g. (Lévy ν, a, b, f, g, ν.),, ( ), a, b Brown, f, g. (,, a.s..) f, g, i.e, f = g =, (continuous type),, = (jump type)., a = b =, (pure jump type).,,,,,,,,,. X t = x + a(s, X s )ds + b(s, X s )db s + + ( z 1) ( z <1) f(s, X s, z)n(ds, dz) g(s, X s, z)ñ(ds, dz). 4.1 d 1, N 1. B t = (Bt) i i N : N Brown ; B =. (t, x) [, T ] R d Borel a, b, a = a(t, x) = (a i (t, x)) i d : d, b = b(t, x) = (b i k (t, x)) i d,k N: d N. X = x R d. dx t = a(t, X t )dt + b(t, X t )db t. N dxt i = a i (t, X t )dt + b i k(t, X t )dbt k, 1 i d. a ( ), b. (,,,.), X i t = x i + X t = x + a(r, X r )dr + a i (r, X r )dr + N b(r, X r )db r. b i k(r, X r )db k r, 1 i d.

29 Stoch. Integral & SDE (S. Hiraba) 28 a 2 = (a 1 ) (a d ) 2, b 2 = i d,,k N (bi k )2. 4.1,, x, 1,, Lipschitz, i.e., T >, K = K T > ; t [, T ], x R d, a(t, x) + b(t, x) K(1 + x ), a(t, x) a(t, y) + b(t, x) b(t, y) K x y, (X t ) t,,, (X t ) L 2., T >, T E X t 2 dt <., ( X t ),, i.e., P (X t = X t, t ) = 1. [ ] Picard. X n = (X n t ). X 1 t = x, X n, dx n+1 t = a(t, X n t )dt + b(t, X n t )db t, X n+1 = x.,. X n = (Xt n ) (F t )-adapted, [ ] E sup Xt n 2 <. t T X n+1 well-defined,. T >, n 1, [ ] E sup Xt n+1 Xt n 2 (C 1 t) n 1 C 2 t T (n 1)!, {X n } a.s., X = (X t ), T, SDE., X, X 2, τ L = inf{t ; X t X t L},, E X t τl X t τl 2 C 1 E X r τl X r τl 2 dr. Gronwall ( ), E X t τl X t τl 2 =, t T., X, X, P ( t T, X t τl = X t τl ) = 1 τ L a.s.,,. 4.1 (Gronwall ) [, T ] g(t), C 1, C 2 ; g(t) C 1 + C 2 g(r)dr g(t) C 1 e C2t [ ] h(t) = e C2t C 2g(r)dr,, h (t) C 1 C 2 e C2t. h() =, [, t], h(t) C 1 (1 e C2t ).,. 4.2,, (t, x, z) [, ) R d R m Borel, f = f(t, x, z) = (f i (t, x, z)) i d ; f = on z < 1, g = g(t, x, z) = (g i (t, x, z)) i d ; g(t, x, ) = g = on z 1. dx t = a(t, X t )dt + b(t, X t )db t + f(t, X t, z)n(dt, dz). + ( z 1) ( z <1) g(t, X t, z)ñ(dt, dz).

30 Stoch. Integral & SDE (S. Hiraba) 29 ν(dz) R m, n 1, ν( z 1/n) <. N(dt, dz) dtν(dz)-poisson r.m., N(dt, dz) = dtν(dz), Ñ = N N. f. t >, x R d, dr f(r, x, z) ν(dz) <. ( z 1) 4.2,, T >, K = K T > ; t [, T ], x R d, g(t, x, z) 2 ν(dz) K(1 + x 2 ), ( z <1) g(t, x, z) g(t, y, z) 2 ν(dz) K x y 2 ( z <1), (X t ) t, 1., f =, (X t ) L 2. [ ],, T >, N([, T ] { z 1}) < a.s., T =, (τ k, ξ k ); < τ k., f = Yt 1,., Xt 1 = Yt 1 for t [, τ 1 ), Xt 1 = Yτ f(τ 1, Y (τ 1 ), ξ 1 ) if t = τ 1 ),. Yt 2 t [, τ 2 τ 1 ], Y 2 = Xτ 1 1 Bt τ1 := B t+τ1 B τ1, N τ1 (dt, dz) := N(dt + τ 1, dz) Xt 1. (, r r + τ 1.) Xt 2 = Xt 1 if t [.τ 1 ], Xt 2 = Yt τ 2 1 if t [τ 1, τ 2 ], [, τ 2 ]., Yt 2,, τ 1, s, x R d, Yt 2 = Yt 2 (ω; x, s), s = τ 1 (ω), x = Xτ 1 (ω).,, X 1(ω) t, X t = Xt k for t [, τ k ],. [ ] [Xt 2 t [, τ 2], t (τ 1, τ 2 ] ] s = τ 1, t [, τ 2 s), Y 2 t X 1 s = = +s s a(r + s, Y 2 r )dr + a(r, Y 2 r s)dr + +s s b(r + s, Y 2 r )db s r + b(r, Y 2 r s)db r + ( z <1) +s s ( z <1), s, (B s r = B r+s B s ) (d) = (B r )., b(r + s, Y 2 r )db s r = b(r + s, Y 2 r )d(b r+s B s ) = +s s g(r + s, Y 2 r, z)ñ s (dr, dz) g(r, Y(r s) 2, z)ñ(dr, dz) b(r, Y 2 r s)db r. t [s, τ 2 ), Xt 2 = Yt s 2 Y t 2,.,. X 2 τ 2 = Y 2 τ 2 s + f(τ 2, Y (τ2 s), ξ 2 )

31 Stoch. Integral & SDE (S. Hiraba) 3 5 (Transition Probabilities and Generators) (X t, P x ) R d x. Borel φ, P t (x, dy) := P x (X t dy), P t φ(x) := E x [φ(x t )] = φ(y)p t (x, dy) R d. P t (x, dy),, (P t ) t C b C b (R d ) (transition semi-group)., P = I, P s P t = P s+t (s, t ). (X t ) D D(R d ) Markov, lim t P t φ(x) = φ(x), i.e., lim t P t I on C b., P t + h P t (h ) on C b for t. (P t ) on C b, (X t ), i.e., ε >, P ( X t+h X t < ε) 1 (h ) for t., φ C b φ() =, φ(x) = 1 if x ε, P ( X t+h X t ε) E[φ(X t+h X t )] = E[ φ(y x)p h (x, dy) x=xt ] E[φ()] =. 5.1, (P t ) C b. L on D(L) C b : 1 L := lim h h (P 1 h I), i.e., Lφ(x) := lim h h (P hφ(x) φ(x))., φ D(L) φ C b., P t = e tl. s t, P s,t (x, dy) = P (X t dy X s = x),, P s,s = I, P s,t P t,u = P s,u.,.,, L t = lim h (P t,t+h I)/h on D(L t )., P s,t = exp[ s L rdr].. φ Cb 2 C2 b (Rd def ) ij 2 φ C b (i, j d). ij 2 = 2 / x i x j. φ Cc def φ C, supp φ: compact. 5.1 (X t ) X = x, i.e., (a, b, f, g) 4.2, dx t = a(t, X t )dt + b(t, X t )db t + f(t, X t, z)n(dt, dz). + ( z 1) ( z <1) g(t, X t, z)ñ(dt, dz).

32 Stoch. Integral & SDE (S. Hiraba) 31, φ C 2 b,. L t φ(x) = a i (t, x) i φ(x) + 1 N b i 2 kb j k (t, x) 2 ijφ(x) + [φ(x + f(t, x, z)) φ(x)]ν(dz) + ( z 1) ( z <1) [φ(x + g(t, x, z)) φ(x) i φ(x)g i (t, x, z)]ν(dz).,, e.g. a i x i = i d ai x i. [ ] d = 1,, Ito φ(x t+h ), φ(x t+h ) φ(x t ) = h t +h t +h t ( z 1) ( z <1) ( z <1) +h t φ (X s )d(x s ) c h t φ (X s )d(x 2 s ) c [φ(x s + f(s, X s, z)) φ(x s )] N(ds, dz) [φ(x s + g(s, X s, z)) φ(x s )] Ñ(ds, dz). [φ(x s + g(s, X s, z)) φ(x s ) φ (X s )g(s, X s, z)] dsν(dz)., d(x s ) c = a(s, X s )ds + b(s, X s )db s, d(x 2 s ) c = (db s ) 2 = ds. P t,t+h φ(x) = E[φ(X t+h ) X t = x],, P t,t+h φ(x) φ(x) = E[φ(X t+h ) φ(x t ) X t = x], db s Ñ,., Brown, X t = x + B t,, L t L = x /2.,, Markov, Lévy, f = g = z (m = d), ν. ν({}) =, (1 z 2 )ν(dz) <. R d Lφ = a Dφ b2 D 2 φ + [φ( + z) φ( ) z Dφ( )1 ( z <1) ]ν(dz) R d., a D = a i i, b 2 D 2 = k bi k bj k 2 ij., E[e iξ Xt ] = e tψ(ξ) ; Ψ(ξ) = ia ξ 1 2 b2 ξ 2 + [e iz ξ 1 iz ξ1 ( z <1) ] ν(dz)., ξ R d, b 2 ξ 2 = k bi k bj k ξ iξ j.

33 Stoch. Integral & SDE (S. Hiraba) (string solution).,,,., (a, b, f, g, ν),,, (weak solution)., L t, P s,t, ( D(L t )., L t a, b, f, g Lévy ν(dx), (5.1 )., L t (5.1). D(L t )., t> D(L t).,,,.,,, well-posed ( ). Ω = D([, )), F = σ(c); C cylinder set, i.e., C C def C = {(ω(t 1 ),..., ω(t n )) A t1 A tn, ( t 1 < < t n, A tj B 1, n 1), F t t cylinder sets σ-, F t := ε> F t+ε., x R d, (Ω, F, (F t )), P = P x, X t (ω) = ω(t), {P x } x. D (C c Cb 2 ), (1) P (X ) = x (2) φ D, M(φ) := φ(x t ) φ(x), Markov, L t. L r φ(x r )dr (F t )-martingale.,.,, D D(L t ),, (L t ) (core)., P x. s < t, P s,t φ(y) = E x [φ(x t ) X s = y], P s,t φ(y) φ(y) = E [ φ(x t ) φ(x s ) X s = y] =., L t. s E x [L r φ(x r )] X s = y]dr =, t, t P s,t φ(x) = P s,t L t φ(x) = L t φ(y)p s,t (x, dy). s P s,r L r φ(y)dr d = 1., P t (x, dy) = p t (x, y)dy, y p, 2 yp t p y., L (f = g = ), a, b Cb 2, φ C2 c, ( ) φ(y) t p t (x, y)dy = φ(y)l p t (x, y)dy.

34 Stoch. Integral & SDE (S. Hiraba) 33, t p t (x, y) = L p t (x, y) a.e.., L L,. L ( p(y) = i a i (y)p(y) ) ij b i kb j k (y)p(y). k N, X t X, u(t, y) = E[p t (X, y)],, t u = L u a.e.. (,,.) [1], (1953). [2], (1997, 2 2). [3],,, [4] N. Ikeda, S. Watanabe Stochastic Differential Equations and Diffusion Processes, 2nd Ed., Holland-Kodansha (1988, 2nd.ed. 1991).

II Brown Brown

II Brown Brown II 16 12 5 1 Brown 3 1.1..................................... 3 1.2 Brown............................... 5 1.3................................... 8 1.4 Markov.................................... 1 1.5

More information

Grushin 2MA16039T

Grushin 2MA16039T Grushin 2MA1639T 3 2 2 R d Borel α i k (x, bi (x, 1 i d, 1 k N d N α R d b α = α(x := (αk(x i 1 i d, 1 k N b = b(x := (b i (x 1 i d X = (X t t x R d dx t = α(x t db t + b(x t dt ( 3 u t = Au + V u, u(,

More information

untitled

untitled 3 3. (stochastic differential equations) { dx(t) =f(t, X)dt + G(t, X)dW (t), t [,T], (3.) X( )=X X(t) : [,T] R d (d ) f(t, X) : [,T] R d R d (drift term) G(t, X) : [,T] R d R d m (diffusion term) W (t)

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

43433 8 3 . Stochastic exponentials...................................... 3. Girsanov s theorem......................................... 4 On the martingale property of stochastic exponentials 5. Gronwall

More information

( ) Loewner SLE 13 February

( ) Loewner SLE 13 February ( ) Loewner SLE 3 February 00 G. F. Lawler, Conformally Invariant Processes in the Plane, (American Mathematical Society, 005)., Summer School 009 (009 8 7-9 ) . d- (BES d ) d B t = (Bt, B t,, Bd t ) (d

More information

Lebesgue Fubini L p Banach, Hilbert Höld

Lebesgue Fubini L p Banach, Hilbert Höld II (Analysis II) Lebesgue (Applications of Lebesgue Integral Theory) 1 (Seiji HIABA) 1 ( ),,, ( ) 1 1 1.1 1 Lebesgue........................ 1 1.2 2 Fubini...................... 2 2 L p 5 2.1 Banach, Hilbert..............................

More information

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 14 5 1 ,,,17,,,194 1 4 ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 1 4 1.1........................................ 4 5.1........................................ 5.........................................

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

, Brown,, dn(t = a(tn(t, N( = N (1 dt N(t t, a(t t, Malthus {N(t} t, (1 a(t,, a(t = r(t + ( r(t,,,, Brown,,,,, Brown, Itô Calculus,,,,,, Kalman-Bucy,, (1, s t N(s Z(s, N(s, Z(s = N(s + (2 i {Z(s} s t {Z(s}

More information

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). Theorem 1.3 (Lebesgue ) lim n f n = f µ-a.e. g L 1 (µ)

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

I (Analysis I) Lebesgue (Lebesgue Integral Theory) 1 (Seiji HIRABA) 1 ( ),,, ( )

I (Analysis I) Lebesgue (Lebesgue Integral Theory) 1 (Seiji HIRABA) 1 ( ),,, ( ) I (Analysis I) Lebesgue (Lebesgue Integral Theory) 1 (Seiji HIRABA) 1 ( ),,, ( ) 1 (Introduction) 1 1.1... 1 1.2 Riemann Lebesgue... 2 2 (Measurable sets and Measures) 4 2.1 σ-... 4 2.2 Borel... 5 2.3...

More information

mf.dvi

mf.dvi 21 9 29 1 2 3....................................... 3 :......................... 3....................................... 4................................ 4..................................... 5................................

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

untitled

untitled 1 25/5/3-6/3 1 1 1.1.................................. 1 1.2.................................. 4 2 5 2.1.............................. 5 2.2.............................. 6 3 Black Scholes 7 3.1 BS............................

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2007.11.5 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi I (Basics of Probability Theory ad Radom Walks) 25 4 5 ( 4 ) (Preface),.,,,.,,,...,,.,.,,.,,. (,.) (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios,

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

App. of Leb. Integral Theory (S. Hiraba) Lebesgue (X, F, µ) (measure space)., X, 2 X, F 2 X σ (σ-field), i.e., (1) F, (2) A F = A c F, (3)

App. of Leb. Integral Theory (S. Hiraba) Lebesgue (X, F, µ) (measure space)., X, 2 X, F 2 X σ (σ-field), i.e., (1) F, (2) A F = A c F, (3) Lebesgue (Applications of Lebesgue Integral Theory) (Seiji HIABA) 1 1 1.1 1 Lebesgue........................ 1 1.2 2 Fubini...................... 2 2 L p 5 2.1 Banach, Hilbert..............................

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n . X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b 1 Introduction 2 2.1 2.2 2.3 3 3.1 3.2 σ- 4 4.1 4.2 5 5.1 5.2 5.3 6 7 8. Fubini,,. 1 1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)?

More information

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3 II (Percolation) 12 9 27 ( 3-4 ) 1 [ ] 2 [ ] 3 [ ] 4 [ ] 1992 5 [ ] G Grimmett Percolation Springer-Verlag New-York 1989 6 [ ] 3 1 3 p H 2 3 2 FKG BK Russo 2 p H = p T (=: p c ) 3 2 Kesten p c =1/2 ( )

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou (Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fourier) (Fourier Bessel).. V ρ(x, y, z) V = 4πGρ G :.

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

untitled

untitled 1 kaiseki1.lec(tex) 19951228 19960131;0204 14;16 26;0329; 0410;0506;22;0603-05;08;20;0707;09;11-22;24-28;30;0807;12-24;27;28; 19970104(σ,F = µ);0212( ); 0429(σ- A n ); 1221( ); 20000529;30(L p ); 20050323(

More information

chap9.dvi

chap9.dvi 9 AR (i) (ii) MA (iii) (iv) (v) 9.1 2 1 AR 1 9.1.1 S S y j = (α i + β i j) D ij + η j, η j = ρ S η j S + ε j (j =1,,T) (1) i=1 {ε j } i.i.d(,σ 2 ) η j (j ) D ij j i S 1 S =1 D ij =1 S>1 S =4 (1) y j =

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

III Kepler ( )

III Kepler ( ) III 20 6 24 3....................................... 3.2 Kepler ( ).......................... 2 2 4 2.................................. 4 2.2......................................... 8 3 20 3..........................................

More information

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law I (Radom Walks ad Percolatios) 3 4 7 ( -2 ) (Preface),.,,,...,,.,,,,.,.,,.,,. (,.) (Basic of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V I (..2) (0 < d < + r < u) X 0, X X = 0 S + ( + r)(x 0 0 S 0 ) () X 0 = 0, P (X 0) =, P (X > 0) > 0 0 H, T () X 0 = 0, X (H) = 0 us 0 ( + r) 0 S 0 = 0 S 0 (u r) X (T ) = 0 ds 0 ( + r) 0 S 0 = 0 S 0 (d r)

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

III Kepler ( )

III Kepler ( ) III 9 8 3....................................... 3.2 Kepler ( ).......................... 0 2 3 2.................................. 3 2.2......................................... 7 3 9 3..........................................

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + ( IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

(1) (2) (3) (4) 1

(1) (2) (3) (4) 1 8 3 4 3.................................... 3........................ 6.3 B [, ].......................... 8.4........................... 9........................................... 9.................................

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v 12 -- 1 4 2009 9 4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 4-10 c 2011 1/(13) 4--1 2009 9 3 x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

2

2 III 22 7 4 3....................................... 3.2 Kepler ( ).......................... 2 2 4 2.................................. 4 2.2......................................... 8 3 20 3..........................................

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

C 1 -path x t x 1 (f(x u), dx u ) rough path analyi p-variation (1 < p < 2) rough path 2 Introduction f(x) = (fj i(x)) 1 i n,1 j d (x R d ) (n, d) Cb

C 1 -path x t x 1 (f(x u), dx u ) rough path analyi p-variation (1 < p < 2) rough path 2 Introduction f(x) = (fj i(x)) 1 i n,1 j d (x R d ) (n, d) Cb Rough path analyi 1 x t ( t 1) R d path f(x) = t (f 1 (x),, f d (x)) R d R d - C x t 1 (f(x u), dx u ) Stieltje path x t p-variation norm (1 < p < 2) x p := { up D } 1/p N x ti x ti 1 p (D = { = t <

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

Green

Green 28 6/-3 2 ax, bx R, L = d2 ax 2 dx 2 + bx d dx 2 L X = {Xt, t }. σ y = inf{t > ; Xt = y} t Xt L y = sup{t > ; Xt = y} 2. Gauss Gamma 3. tree 4. t Black-Scholes Madan-Roynette-Yor [6] σ y E x [exp λσ y

More information

³ÎΨÏÀ

³ÎΨÏÀ 2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi II (Basics of Probability Theory ad Radom Walks) (Preface),.,,,.,,,...,,.,.,,.,,. (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

( ) (Appendix) *

( ) (Appendix) * 2006 10 1 Frisch Slutzky 1930 = 1990 3 4 1 2 3 ( ) 4 1 ( ) (Appendix) *1 1 2 2 5 2.1........................................ 5 2.2.......................................... 7 2.3..........................................

More information

(yx4) 1887-1945 741936 50 1995 1 31 http://kenboushoten.web.fc.com/ OCR TeX 50 yx4 e-mail: yx4.aydx5@gmail.com i Jacobi 1751 1 3 Euler Fagnano 187 9 0 Abel iii 1 1...................................

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

23 7 28 i i 1 1 1.1................................... 2 1.2............................... 3 1.2.1.................................... 3 1.2.2............................... 4 1.2.3 SI..............................

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x + (.. C. ( d 5 5 + C ( d d + C + C d ( d + C ( ( + d ( + + + d + + + + C (5 9 + d + d tan + C cos (sin (6 sin d d log sin + C sin + (7 + + d ( + + + + d log( + + + C ( (8 d 7 6 d + 6 + C ( (9 ( d 6 + 8 d

More information

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + 2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j

More information

= π2 6, ( ) = π 4, ( ). 1 ( ( 5) ) ( 9 1 ( ( ) ) (

= π2 6, ( ) = π 4, ( ). 1 ( ( 5) ) ( 9 1 ( ( ) ) ( + + 3 + 4 +... π 6, ( ) 3 + 5 7 +... π 4, ( ). ( 3 + ( 5) + 7 + ) ( 9 ( ( + 3) 5 + ) ( 7 + 9 + + 3 ) +... log( + ), ) +... π. ) ( 3 + 5 e x dx π.......................................................................

More information

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 - M3............................................................................................ 3.3................................................... 3 6........................................... 6..........................................

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

6.1 (P (P (P (P (P (P (, P (, P.

6.1 (P (P (P (P (P (P (, P (, P. (011 30 7 0 ( ( 3 ( 010 1 (P.3 1 1.1 (P.4.................. 1 1. (P.4............... 1 (P.15.1 (P.16................. (P.0............3 (P.18 3.4 (P.3............... 4 3 (P.9 4 3.1 (P.30........... 4 3.

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

Microsoft Word - 11問題表紙(選択).docx

Microsoft Word - 11問題表紙(選択).docx A B A.70g/cm 3 B.74g/cm 3 B C 70at% %A C B at% 80at% %B 350 C γ δ y=00 x-y ρ l S ρ C p k C p ρ C p T ρ l t l S S ξ S t = ( k T ) ξ ( ) S = ( k T) ( ) t y ξ S ξ / t S v T T / t = v T / y 00 x v S dy dx

More information

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0, .1.1 Y K L Y = K 1 3 L 3 L K K (K + ) 1 1 3 L 3 K 3 L 3 K 0 (K + K) 1 3 L 3 K 1 3 L 3 lim K 0 K = L (K + K) 1 3 K 1 3 3 lim K 0 K = 1 3 K 3 L 3 z = f(x, y) x y z x-y-z.1 z = e x +xy y 3 x-y ( ) z 0 f(x,

More information