untitled

Size: px
Start display at page:

Download "untitled"

Transcription

1 (eddy ) Navier-Stokes Navier-Stokes du dt u t +uru = 1 ; rp+r u (10.1) u p (kinematic viscosity) (convection term) 1 (viscous diusion term) d=dt =t+ur (substantial derivative) xt (interior derivative) (10.1) Bernoulli t Z t+t ; 1 u(x+x t+t) =u(x t)+ ; t rp+r u t (10.) x = R t+t ut (10.) t (uid particle) t x R t+t f;(1=)rp+r ugt t r u u r u u u (10.) u 1 (Reynolds number) Re = UL= 1 1

2 (10.1) [ ]/[ ] U L (hypersonic) Navier-Stokes r ru =0 (vorticity transport equation) d dt t +(ur) =(r)u + r (10.3) 1 (generation term ) (10.3) ( r)u 10.1: x (x) x 0 (x 0 ) a x 0 +a Taylor (x 0 +a) =(x 0 )+(ar)(x 0 )+ (1=!)(ar) (x 0 ) A u A B u+(r)u A u C +=t+(r) = +d=dt (10.3) d=dt =(r)u u+( r)u +d=dt D (frozen in) AB CD A B ( r)u AB (vortex laments) 3 AB (isotropic turburence) (anisotropy) [ ] U =L [ ] U=L LU 3 (constancy of circulation)

3 3 (r)u r u (boundary layer ow) TS (Tollmien-Schlichting wave) (hairpin vortex) (head) (leg) (bursting vortex) (ejection) (sweep) (horseshoe vorex) (kinetic theory) (eddy) (mixing length) (turbulence structure) Rosenhead(1931) Townsend(1949) 4 5 (DNS, direct numerical simulation) DNS (turbulent ow database) (helicity) 6 Stanford Illiac IV Navier-Stokes 198 NASA Ames Moin-Kim Illiac IV (turbulent shear ow) 4 interferogram( ), Schlieren method( ), shadowgraph( ) H = ju j=jujjj H =0 H 6= 0

4 4 (coherent) DNS (1984{ ) DNS DNS Re = Re =410 5 Gortler (free turbulent shear layer) (turbulent mixing layer) (roller) (rib) (shock waves) Benard (sophisticated model)

5 5 10. (DNS) NS NS NS (Reynolds stress) NS 7 (turbulence model) (modeling) NS u i t + u j u i = ; p + F i + n u i j +u o j i ; x j x i x j 3 iju k k (10.4) u i j = u i =x j Boussinesq F i u i u i +u 0 i (10.5) (10.4) (Reynolds equation) t u i + u j u i = ; p + F i + x j x i x j ; ui j +u j i ;u 0 i u 0 j (10.6) ;u 0u0 i j (Reynolds stress) u 0 i = u ju 0 i =0 u k k =0 (ensemble average) 8 (10.5) (Reynolds decomposition) (Reynolds average) (10.6) NS NS NS 7 close second-moment closure 8

6 6 ( ) (eddy viscosity model) (rate of strain tensor) S 9 (isotropic) (anisotropic) 3 u 1 1 u 1 +u 1 u 3 1 +u 1 3 S = 6 4u 1 +u 1 u u 3 +u u 1 3 +u 3 1 u 3 +u 3 u = u 1 1 ;(=3)u k k u 1 +u 1 u 3 1 +u u 6 k k u 1 +u 1 u ;(=3)u k k u 3 +u u 1 3 +u 3 1 u 3 +u 3 u 3 3 ;(=3)u k k (10.4) r r u =0 r u R ;u 0 1 ;u 0 u0 1 ;u 0 u R = 6 4;u 0 u0 1 ;u 0 ;u 0 u ;u 0 3 u0 1 ;u 0 3 u0 ;u 0 3 = ;u 0 ; 3 k (=3)k ;u0 1 u0 ;u 0 1 u0 3 ;u 0 u0 1 ;u 0 +(=3)k ;u0 u0 3 ;u 0 3 u0 1 ;u 0 3 u0 ;u 0 3 +(=3)k k =(1=)u 0 u0 k k (turbulent kinetic energy) Boussinesq ;u i u j = t (u j i +u i j ); 3 ijk (10.7) t (eddy viscosity) u k k =0 (10.6) r =(+ t ) ; (=3)kI I identity ij =(+ t ) u j i +u i j ; 3 ijk (i j =1 3) (10.8) ( ) t 9 U S u 1 1 u 1 u 1 3 u 1 u u 35 1 = 4 u 1 1 u 1 +u 1 u 1 3+u u u 1+u 1 u u 3+u ;u 1 u 1 3 ;u u 1 ;u 1 0 u 3 ;u 3 5 u 3 1 u 3 u 3 3 u 3 1+u 1 3 u 3 +u 3 u 3 3 u 3 1 ;u 1 3 u 3 ;u 3 0

7 7 Franke-Rodi-Schonung(1989) t ( ) q ij =(+ t ) u j i +u i j ; 3 iju k k ; 3 ijk (i j =1 3) (10.9) q i = 1 ; ;1 Pr + t c (i =1 3) (10.10) Pr t x i c Prandtl Pr =0:7 Prandtl Pr t =0:9 (eddy kinematic viscosity) t (= =) [ ][ ] Prandtl (Prandtl's mixing length theory) ( ) t = l u (10.11) y u y l van Driest(1956) n o l = y 1;exp ; y+ A (10.1) =0:41 Karman y + = yu = (wall coordinate) u = p w = w A =6 Prandtle-van Driest f g (viscous sublayer) ( buer layer) van Driest ( inertial sublayer, logarithmic region) l y t q = p k l t = C pkl (10.13) k ; " l (dissipation rate) " = u 0 i k u0 i k t = C k =" (10.14) k " k " t (two-equation turbulence model) 1 (one-equation turbulence model) (algebraic model) k ; " (law of the wall) ( 10.) u + = 1 ln y+ +5:15 (10.15)

8 8 u + = u=u k ; " k ; " (low Reynolds number k ; " model) k " (by-pass transition) 1 (10.14) Karman (10.1) (10.15) 10.:

9 NS (10.4) (10.4) i u 0 j u 0 j (10.4) i u 0 j t u i + u 0 j x k u k u i = ;u 0 j p i + u 0 j F i + u 0 j (ui k +u k i ) x k u 0 j =0 u k k = u 0 k k =0 u 0 j t u0 i + u 0 j u0 k u i k + u k u 0 j u0 i k + u0 j u0 k u0 i k = ; x i p0 u 0 j + p0 u 0 j i + u 0 j f0 i + x k u 0 j u0 i k ; u0 i k u0 j k (10.4) j u 0 i u0 i (10.4) j (transport equation for Reynolds stress) u0u0 i j t + u k u 0u0 i j x = ;u0 u0 j k u i k ;u 0u0 i k u j k + u 0 f0+u0f0 j i i j + p 0 (u 0 j i +u 0 i j ) k [ ] c ij [ ] P ij F ij [ - ] ij ; u 0u0 u0 i j k x +p 0 (kj u 0 i + kiu 0 j ); u 0u0 i j k x k [ ] d ij ; u 0 i k u0 j k (10.16) [ ] ;" ij (10.16) (production, ) - (pressure-strain correlation) (diusion) (viscous dissipation) P ij (10.3) R n [ ]= nr = Rn ( r)u nr (nrr)u n u 0u0 i j u0 u0 j k u i k u 0u0 i k u j k - ij p 0 Poisson r p = ;r(uru) Green p = Z dv ;^um^u l m 4 x l r

10 10 r p dv \^" dv ij = p0 (u 0 j i +u 0 i j )= ij1 + ij 4 Z ^u 0 l^u0 m x l x m (u 0 j i+u 0 i j) dv r + Z ^ul m^u 0 (u0 +u0 m l j i i j 4 ) dv r (10.17) - (mathematical model) (energy cascade) Rotta(1951) ij1 (return-to-isotropy) ij1 = ;c 1 " k u 0u0 i j ; 3 ijk (10.18) c 1 "=k u 0u0 i j ;(=3) ijk (u 0u0 i i i =1 3) (=3)k = u 0 u0 k k =3 (u0u0 i j i 6= j) 0 (contraction) (10.18) U 3 L ij Naot (1970) (isotropizaton of production, IP) ij = ;c P ij ; 3 ijp (10.19) P = P kk = (10.18) ij P ij 1 - ij (redistribution term) Launder ij1 ij 0:3c 1 +c =1 ij1 return ij rapid distortion theory rapid term ij1 slow trem DNS LES d ij r a

11 11 du=dt = r a V Z Z Z d du udv = dt V V dt ZV dv = a r adv = S n ds S V n ds V a u r a a = ru >0 d ij 3 Daly-Harlow(1970) (10.0) d ij = c s x k k " u0 k u0 l (u0 i u0 j ) l c s ; r (k=")r rr k=" R " ij 0 " ij = u 0 i k u0 j k = (=3) u 0 i k u 0 i k (i = j) 0 (i 6= j) = 3 ij" (10.1) " = u 0 u0 i k i k k = u0 i " ; c P ij ; 3 ijp u0u0 i j t + u k u 0u0 i j x = P ij + F ij ; c 1 " k k u 0 i u0 j ; 3 ijk + c s x k k " u0 k u0 l (u0 i u0 j ) l " NS u 0 i l (10.4) i l t " + u j " = ;(u 0 u0 i l j l x + u0 u0 l i l j )u i j ; p 0 u0 l i l j x + i ; 3 ij" (10.) " t " + u i " = " x i k (c "1P + c "3 F )+c " k u0 u0 i l x i " " l ; c " " k (10.3)

12 1 k DNS " " LRR(Launder, Reece and Rodi) 10 (10.) " (10.3) (coecient) c 1 c c "1 c " c " c s c "1 c " c 1 =:0 c =0:6 c s =0: c "1 =1:44 c " =0:18 c " =1:9 k ; " k " k (10.16) k t k + x i u i k = P ; x i 1 u0 i u0 j + p 0 u 0 i ;k i ; " (10.4) [ ] c k [ ] [ ] d k [ ] P = ; u 0 i u0 j u i j - (10.4) t k + x i u i k = P + x i t k k i ; " (10.5) " k t " + " u i " = C "1 x i k P + t " i ; C " " x i " k (10.6) k ; " Launder-Spalding(1974) C =0:09 C "1 =1:44 C " = 1:9 k =1:0 " =1:3 Navier-Stokes LLR k ; " NS Launder, B.E., Reece, G.J. and Rodi, W., Progress in the development of a Reynolds-stress turbulence closure, J. Fluid Mdch., Vol.68(1975), 537{66.

13 " LES 6 4 (LES) (DNS) LES DNS Reynolds (algebraic model) Cebeci-Smith 11 Baldwin-Lomax 1 t = min ; ( t ) in ( t ) out = (t ) in (y y cross ) ( t ) out (y>y cross ) (10.7) y y cross ( t ) in =( t ) out y Prandtl-van Driest (10.11) (10.1) Z ( t ) out = C Cl (u e ;u)dyf Kleb (y) (10.8) 0 C Cl =0:0168 Clauser u e u u(y) 0 u e =(1=u e ) R 0 (u e ;u)dy F Kleb (y) Klebano F Kleb (y) =[1+5:5(y=) 6 ] ;1 (10.9) u =0:995u e y F Kleb 1;F Kleb 11 Cebeci, T. and Smith, A.M.O., "Analysis of Turbulent Boundary Layers.\ 1974, Academic Press. 1 Baldwin,B.S. and Lomax, H., Thin layer approximation and algebraic model for separated trubulent ows. AIAA Paper, 78{75(1978).

14 14 CS Michel R > 1:174 (1+ 400=R x )R 0:46 x (10.30) R = u e = =(1=ue ) R 0 u(u e;u)dy R x = u e x= x (local equilibrium) CS van Driest A =6 (adverse pressure gradient) l (favourable pressure gradient) l t F tr (x) Clauser C Cl =0:0168 [ CS ] Baldwin-Lomax Prandtl-van Driest ( t ) in = l jj (10.31) l = yf1;exp(;y + =A + )g = ru =0:4 Karman y + A + =6 Clauser ( t ) out =1:6C Cl F wake F Kleb (y) (10.3) C Cl =0:0168 Clauser F wake = min ; y max F max 0:5y max u dif =F max F Kleb (y) =[1+5:5(0:3y=y max ) 6 ] ;1 (10.33a) (10.33b) y max F (y) =yjjf1;exp(;y + =A + )g F max y exp(;y + =A + )=0 u dif = juj max ;juj min juj min =0 F Kleb Klebano t ( t ) max < 14 1 (10.34) t =0 BL u=y jj Clauser u e y max F max u dif 0:5y max u dif =F max Johnson-King(1985) Johnson, D.A. and King, L.S., A mathematically simple turbulence closure model for attached and separated turbulent boundary layers. AIAA J., Vol.3(1985), 1684{9.

15 15 l k t uv Spalart-Allmaras(199) 14 FEM k ; " k ; " k =(1=)u 0 i u0 i " = u0 i k u0 i k k ; " Launder-Spalding(1974) 15 k " k " k " q = p k l k q " q 3 l ;1 k " 3 k " q m l n T l=q! q=l (specic dissipation rate) Wilcox(1988) k ;! 16 Hutton-Smith-Hickmott(1987) q ; f Mohammadi(1990) ; f q=l! l=q 1=l q k ; " k " (10.4) (10.6) k ; " k ; " t = C f k =" t k + t " + " = ";( x i u i k = P + " u i " = C "1 f 1 x i k P + p k=y) (10.35) n + o t k i ; " ; D (10.36) x i k n + o t " i ; C " f " + E (10.37) x i " k (10.38) t t =0 f " 14 Spalart, P.R. and Allmaras, S.R., A one-equation turbulence model for aerodynamic ows. AIAA Paper, (199). 15 Launder, B.E. and Spalding, D.B., The numerical computation of turbulent ow. Comp. Meth. Appl. Mech. Engng., Vol.3(1974), 69{ Wilcox, D.C., Multiscale model for turbulent ows. AIAA J., Vol.6(1988), 1311{0.

16 16 f 1 f C C "1 C " k " D E " (non-slip) f = f 1 = f =1 D = E =0 " = " k ; " k ; " Jones-Launder(197) 17 f = exp :5 ; f 1 =1:0 f = ;0:3 exp(;rt ) 1+R t =50 C =0:09 C "1 =1:45 C " =:0 k =1:0 " =1:3 D =( p k=y) E = t ( u=y ) R t (= ql=) =k =" (turbulent Reynolds number) k =" =0 Myong-Kasagi(1990) 18 " D = E =0 f = ; 1;exp(;y + =70) 1+ 3:45 p Rt f 1 =1:0 f = ; 1;exp(;y + =5) n 1; 9 exp ; R o t 6 C =0:09 C "1 =1:4 C " =1:8 k =1:4 " =1:3 " = k=y Chien ^q t t + ^Fti i + ^Dt +^g t =0 (10.39)!! 0 1 ^q t = J k k ^Fti = Ju i ^Dt = ; Jg ij (+ t)k= j " " i + A t "= j 0 1 P ;";D ^g t = ;J " A (10.40) k (C 1P ;C f";f 3 D) i J x g ij = i k j k P = ;u 0 i u0 j u i=x j D =k=d d C =0:09 C 1 =1:35 C =1:8 =1:3 f =1;e ;C3y+ f 0:4 =1; 1:8 e;(ret=6) f3 = e ;C4y+ C 3 =0:0115 C 4 =0:5 y + =1 4 k " ( k = " =0 ) k " k =" =0 k " Navier-Stokes k " 17 Jones, W.P. and Launder, B.E., The prediction of laminarization with a two-equation model of turbulence. Int. J. Heat Mass Transfer, Vol.15(197), 301{ Myoung, H.K. and Kasagi, N., A new approach to the improvement ofk ; " turbulence model for wall bounded shear ow, JSME Int. J. Fluids Eng., Vol.109(1990), 156{60.

17 17 k ; " t 1 ;u0 v 0 6 u 0 i u0 j " (algebraic stress model) 19 k ; " k ; " u 0 i u0 j k c ij = P ij + ij + d ij ; " ij (10.41) c k = P + d k ; " (10.4) (10.41) u 0 i u0 j =k r ij 0 [r ij ] c ij = D Dt u0 i u0 j = r ij D Dt k = r ijc k d ij = c s x k k " u0 k u0 l (u0 i u0 j ) l = r ij c s x k k " u0 k u0 l k l = r ij d k D=Dt =t+u i =x i c ij ;d ij = r ij (c k ;d k )=r ij (P ;") (10.41) u 0 i u0 j ; 3 ijk =(1;c ) k P ij ;(=3) ij P P ;"(1;c 1 ) (10.43) k " k ; " Navier-Stokes (ensemble average) (turbulent heat ux) 3 q ti = h0 u 0 i h 0 (= c p 0 ) ( ) 1 (thermal eddy diusivity model) 0 u 0 i = ;a t =x i (10.44) 19 ASM algebraic second-moment approach 0 Rodi, W., A new algebraic relation for calculating the Reynolds stresses. ZAMM, Bd.56(1976), T19{T1. 1 ( ) (Favre mean)

18 18 a t ( ) (thermal eddy diusivity) (algebraic heat transfer model) a t = t =P r t Pr t Pr t (two-equation heat transfer model) a t = C f k (k=") n (0 =" ) m (10.45) n+m =1 0 " n =1 m =0 Nagano-Kim(1988) n = m =1= (turbulent heat ux transport equation model) 3 q ti = h0 u 0 i ;" i 0 " 1 Baldwin-Lomax ANUT(J),J=1,JE FORTRAN (y =0) u = v=y =0 k y " y t y 3 k ; "

19 LES LES(large eddy simulation) LES DNS( ) DNS (unresolvable) Fourier (energy spectrum)e() Kolmogorov(1941) Kolmogorov (Kolmogorov local equilibrium) " E() =" m n F (= d ) m n Kolmogorov 1 E() =" =3 ;5=3 F (= d ) (10.46) d =("= 3 ) 1=4 Kolmogorov l d == d Kolmogorov (Kolmogorov microscale) (10.46) [ p.14, 199, ] 10.3: Kolmogorov

20 (10.46) (10.46) E " Kolmogorov ;5=3 (Kolmogorov ) E() =" =3 ;5=3 (10.47) =1:6 Kolmogorov ;5=3 ( ) Kolmogorov (inertial subrange) (Kolmogorov ) 1 Fourier Z f i (r i )= 1 u i (x i )u i (x i +r i )= 1 F i ( i ) cos( i r i )d i ui ui 0 f (x t) Z 1 f(x t) = G(r)f (x+r t) dr (10.48) 0 Fourier f( t) =G()f( t) (10.49) G(r) G() (spatial lter function) (Gaussian lter), (spectrum cuto lter, sharp cuto lter), (top hat lter ) r 6 Gaussian lter: G(r i )= ; 6r i G( i ) = exp ; ( i i ) 1 i exp i spectrum cuto lter: G(r i )= sin(r i= i ) r i G( i )= top hat lter: G(r i )= ( 1= i (jr i j i =) 0 (jr i j > i =) ( 4 1 (j i j= i ) 0 (j i j >= i ) (10.50) (10.51) G( i )= sin( i i =) i i (10.5) i f (x t) = f (x t)+f 0 (r t) f (x t) f (x t) f 0 =0 f = f fg 0 6=0 f=x = f=x Navier-Stokes (10.1) u i x i =0 (10.53) u i t +u u i j = ; 1 p x j x i + u i x j ; x j (u i u j ; u i u j ) (10.54)

21 1 10.4: SGS(subgrid-scale) ( ) u i u j ; u i u j =(u i u j ; u i u j )+(u i u 0 j +u0 i u j)+(u 0 i u0 j )=L ij + C ij + R ij L ij C ij R ij Leonard cross Reynolds Leonard L ij =0 Cross L ij +C ij Reynolds SGS Reynolds SGS SGS (10.7) u 0 i u0 j = ; t D ij iju 0 k u0 k D ij = u i j +u j i (10.55) t SGS t > 0 LES SGS Smagorinsky L ij +C ij Smagorinsky, J., General circulation experiments with the primeitive equations. I. The basic experiment. Mon. Weather Rev., Vol.91(1963), 99{164.

22 t t =(C S ) p D D =( D ij D ij ) 1= (10.56) C S Smagorinsky 0:1 0: =( 1 3 ) 1=3 t van Driest Smagorinsky Germano(1991) Dynamic SGS SGS GS(grid-scale) Smagorinsky Bardina(1983) ( )SGS GS SGS Kolmogorov LES 1 (10.46) (10.47) Kolmogorov Smagorinsky SGS (REY(I,J),I=1,3),J=1,3 FORTRAN

C:/大宮司先生関連/大宮司先生原稿作業用1/圧縮性流れの解法3.dvi

C:/大宮司先生関連/大宮司先生原稿作業用1/圧縮性流れの解法3.dvi 8 aldwn-lomax hen 8. +ru = t (8.a) u+r(uu+) =r +f t (8.b) e +rhu = r ( u);r q+f u t (8.c) u e = (+u 2 =2) H = h+u 2 =2=(e+)= q f (8.) (comressble Naver-Stokes equatons) T h = += = RT d = c v dt dh = c

More information

NUMERICAL CALCULATION OF TURBULENT OPEN-CHANNEL FLOWS BY USING A MODIFIED /g-e TURBULENCE MODEL By Iehisa NEZU and Hiroji NAKAGA WA Numerical calculat

NUMERICAL CALCULATION OF TURBULENT OPEN-CHANNEL FLOWS BY USING A MODIFIED /g-e TURBULENCE MODEL By Iehisa NEZU and Hiroji NAKAGA WA Numerical calculat NUMERICAL CALCULATION OF TURBULENT OPEN-CHANNEL FLOWS BY USING A MODIFIED /g-e TURBULENCE MODEL By Iehisa NEZU and Hiroji NAKAGA WA Numerical calculation techniques of turbulent shear flows are classified

More information

KENZOU Karman) x

KENZOU Karman) x KENZO 8 8 31 8 1 3 4 5 6 Karman) 7 3 8 x 8 1 1.1.............................. 3 1............................................. 5 1.3................................... 5 1.4 /.........................

More information

$arrow$ $\yen$ T (Yasutala Nagano) $arrow$ $\yen$ ?,,?,., (1),, (, ).,, $\langle$2),, (3),.., (4),,,., CFD ( ),,., CFD,.,,,

$arrow$ $\yen$ T (Yasutala Nagano) $arrow$ $\yen$ ?,,?,., (1),, (, ).,, $\langle$2),, (3),.., (4),,,., CFD ( ),,., CFD,.,,, 892 1995 105-116 105 $arrow$ $\yen$ T (Yasutala Nagano) $arrow$ $\yen$ - 1 7?,,?,, (1),, (, ),, $\langle$2),, (3),, (4),,,, CFD ( ),,, CFD,,,,,,,,, (3), $\overline{uv}$ 106 (a) (b) $=$ 1 - (5), 2,,,,,

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

チャネル乱流における流体線の伸長

チャネル乱流における流体線の伸長 69 d(l/l )/dt y + = 15 Re τ = 18 395 Kolmogorov τ η.1.18 Kolmogorov.65τ η,min 1 Stretching Rate of Material Lines in Turbulent Channel Flow Takahiro TSUKAHARA, Faculty of Science and Technology, Tokyo

More information

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco post glacial rebound 3.1 Viscosity and Newtonian fluid f i = kx i σ ij e kl ideal fluid (1.9) irreversible process e ij u k strain rate tensor (3.1) v i u i / t e ij v F 23 D v D F v/d F v D F η v D (3.2)

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

,, Mellor 1973),, Mellor and Yamada 1974) Mellor 1973), Mellor and Yamada 1974) 4 2 3, 2 4,

,, Mellor 1973),, Mellor and Yamada 1974) Mellor 1973), Mellor and Yamada 1974) 4 2 3, 2 4, Mellor and Yamada1974) The Turbulence Closure Model of Mellor and Yamada 1974) Kitamori Taichi 2004/01/30 ,, Mellor 1973),, Mellor and Yamada 1974) Mellor 1973), 4 1 4 Mellor and Yamada 1974) 4 2 3, 2

More information

mains.dvi

mains.dvi 8 Λ MRI.COM 8.1 Mellor and Yamada (198) level.5 8. Noh and Kim (1999) 8.3 Large et al. (1994) K-profile parameterization 8.1 8.1: (MRI.COM ) Mellor and Yamada Noh and Kim KPP (avdsl) K H K B K x (avm)

More information

14 6 18 3 1 1.1. 1,,,,,,., uid, (uid dynamics) Newton. (geophysical uid).,.,. 2,,,. 1 2, II,. 4 1 1.2 60% 40 %. 1.3..,. 1., ( ) ( ),.,. 30.,,...,,", ". ( ) 2., (, 21),.,,.,. 3 ", (, " 3. G. K. Batchelor,

More information

Sample function Re random process Flutter, Galloping, etc. ensemble (mean value) N 1 µ = lim xk( t1) N k = 1 N autocorrelation function N 1 R( t1, t1

Sample function Re random process Flutter, Galloping, etc. ensemble (mean value) N 1 µ = lim xk( t1) N k = 1 N autocorrelation function N 1 R( t1, t1 Sample function Re random process Flutter, Galloping, etc. ensemble (mean value) µ = lim xk( k = autocorrelation function R( t, t + τ) = lim ( ) ( + τ) xk t xk t k = V p o o R p o, o V S M R realization

More information

2 日本航 空 字宙 学 会 誌 第41巻 第470号(1993年3月) 特 集 乱 流 モ デ ル と 圧 縮 性*1 吉 Key Words 1.ま え が : Turbulence, Modeling, 澤 徴*2 Compressibility の 特 性 を推 測 す る 際 様 々 な

2 日本航 空 字宙 学 会 誌 第41巻 第470号(1993年3月) 特 集 乱 流 モ デ ル と 圧 縮 性*1 吉 Key Words 1.ま え が : Turbulence, Modeling, 澤 徴*2 Compressibility の 特 性 を推 測 す る 際 様 々 な 2 日本航 空 字宙 学 会 誌 第41巻 第470号(1993年3月) 特 集 乱 流 モ デ ル と 圧 縮 性*1 吉 Key Words 1.ま え が : Turbulence, Modeling, 澤 徴*2 Compressibility の 特 性 を推 測 す る 際 様 々 な 注 意 が 必 要 とな る. き 上 述 の 典 型 的 な 例 と し て,圧 縮 性 乱 流 の

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 基礎からの冷凍空調 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/067311 このサンプルページの内容は, 初版 1 刷発行当時のものです. http://www.morikita.co.jp/support. 03-3817-5670FAX 03-3815-8199 i () () Q&A

More information

Venkatram and Wyngaard, Lectures on Air Pollution Modeling, m km 6.2 Stull, An Introduction to Boundary Layer Meteorology,

Venkatram and Wyngaard, Lectures on Air Pollution Modeling, m km 6.2 Stull, An Introduction to Boundary Layer Meteorology, 65 6 6.1 No.4 1982 1 1981 J. C. Kaimal 1993 1994 Turbulence and Diffusion in the Atmosphere : Lectures in Environmental Sciences, by A. K. Blackadar, Springer, 1998 An Introduction to Boundary Layer Meteorology,

More information

TM

TM NALTR-1390 TR-1390 ISSN 0452-2982 UDC 533.6.013.1 533.6.013.4 533.6.69.048 NAL TECHNICAL REPORT OF NATIONAL AEROSPACE LABORATORY TR-1390 e N 1999 11 NATIONAL AEROSPACE LABORATORY ... 1 e N... 2 Orr-Sommerfeld...

More information

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P 9 (Finite Element Method; FEM) 9. 9. P(0) P(x) u(x) (a) P(L) f P(0) P(x) (b) 9. P(L) 9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L)

More information

OHP.dvi

OHP.dvi t 0, X X t x t 0 t u u = x X (1) t t 0 u X x O 1 1 t 0 =0 X X +dx t x(x,t) x(x +dx,t). dx dx = x(x +dx,t) x(x,t) (2) dx, dx = F dx (3). F (deformation gradient tensor) t F t 0 dx dx X x O 2 2 F. (det F

More information

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b) (5) 74 Re, bondar laer (Prandtl) Re z ω z = x (5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b) (5) 76 l V x ) 1/ 1 ( 1 1 1 δ δ = x Re x p V x t V l l (1-1) 1/ 1 δ δ δ δ = x Re p V x t V

More information

20 $P_{S}=v_{0}\tau_{0}/r_{0}$ (3) $v_{0}$ $r_{0}$ $l(r)$ $l(r)=p_{s}r$ $[3 $ $1+P_{s}$ $P_{s}\ll 1$ $P_{s}\gg 1$ ( ) $P_{s}$ ( ) 2 (2) (2) $t=0$ $P(t

20 $P_{S}=v_{0}\tau_{0}/r_{0}$ (3) $v_{0}$ $r_{0}$ $l(r)$ $l(r)=p_{s}r$ $[3 $ $1+P_{s}$ $P_{s}\ll 1$ $P_{s}\gg 1$ ( ) $P_{s}$ ( ) 2 (2) (2) $t=0$ $P(t 1601 2008 19-27 19 (Kentaro Kanatani) (Takeshi Ogasawara) (Sadayoshi Toh) Graduate School of Science, Kyoto University 1 ( ) $2 $ [1, ( ) 2 2 [3, 4] 1 $dt$ $dp$ $dp= \frac{dt}{\tau(r)}=(\frac{r_{0}}{r})^{\beta}\frac{dt}{\tau_{0}}$

More information

名称未設定

名称未設定 ! = ( u v w = u i u = u 1 u u 3 u = ( u 1 u = ( u v = u i! 11! 1! 13 % T = $! 1!! 3 ' =! ij #! 31! 3! 33 & 1 0 0%! ij = $ 0 1 0 ' # 0 0 1& # % 1! ijm = $ 1 & % 0 (i, j,m = (1,,3, (, 3,1, (3,1, (i, j,m

More information

2007 5 iii 1 1 1.1.................... 1 2 5 2.1 (shear stress) (shear strain)...... 5 2.1.1...................... 6 2.1.2.................... 6 2.2....................... 7 2.2.1........................

More information

2 q effective mean dynamic pressure [Pa] q cr critical value of dynamic pressure [Pa] q CW heat flux for cold wall [J/m 2 ] r th throat radius [m] x a

2 q effective mean dynamic pressure [Pa] q cr critical value of dynamic pressure [Pa] q CW heat flux for cold wall [J/m 2 ] r th throat radius [m] x a 1 1 2 3 4 5 6 Estimation of Recession Amount of Nozzle Wall using Coupled Fluid/Thermochemical Approach by Yu DAIMON* 1, Toru SHIMADA* 2, Nobuyuki TSUBOI* 3, Ryoji TAKAKI* 4, Kazuhisa FUJITA* 5 and Kuniyuki

More information

工学的な設計のための流れと熱の数値シミュレーション

工学的な設計のための流れと熱の数値シミュレーション 247 Introduction of Computational Simulation Methods of Flow and Heat Transfer for Engineering Design Minoru SHIRAZAKI Masako IWATA Ryutaro HIMENO PC CAD CAD 248 Voxel CAD Navier-Stokes v 1 + ( v ) v =

More information

315 * An Experimental Study on the Characteristic of Mean Flow in Supersonic Boundary Layer Transition Shoji SAKAUE, Department of Aerospace Engineeri

315 * An Experimental Study on the Characteristic of Mean Flow in Supersonic Boundary Layer Transition Shoji SAKAUE, Department of Aerospace Engineeri 35 * An Experimental Study on the Characteristic of ean Flow in Supersonic Boundary Layer Transition Shoji SAKAUE, Department of Aerospace Engineering, Osaka Prefecture University ichio NISHIOKA, Department

More information

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m A f i x i B e e e e 0 e* e e (2.1) e (b) A e = 0 B = 0 (c) (2.1) (d) e

More information

(Mamoru Tanahashi) Department of Mechanical and Aerospaoe Engineering Tokyo Institute of Technology ,,., ,, $\sim$,,

(Mamoru Tanahashi) Department of Mechanical and Aerospaoe Engineering Tokyo Institute of Technology ,,., ,, $\sim$,, 1601 2008 69-79 69 (Mamoru Tanahashi) Department of Mechanical and Aerospaoe Engineering Tokyo Institute of Technology 1 100 1950 1960 $\sim$ 1990 1) 2) 3) (DNS) 1 290 DNS DNS 8 8 $(\eta)$ 8 (ud 12 Fig

More information

note1.dvi

note1.dvi (1) 1996 11 7 1 (1) 1. 1 dx dy d x τ xx x x, stress x + dx x τ xx x+dx dyd x x τ xx x dyd y τ xx x τ xx x+dx d dx y x dy 1. dx dy d x τ xy x τ x ρdxdyd x dx dy d ρdxdyd u x t = τ xx x+dx dyd τ xx x dyd

More information

60 1: (a) Navier-Stokes (21) kl) Fourier 2 $\tilde{u}(k_{1})$ $\tilde{u}(k_{4})$ $\tilde{u}(-k_{1}-k_{4})$ 2 (b) (a) 2 $C_{ijk}$ 2 $\tilde{u}(k_{1})$

60 1: (a) Navier-Stokes (21) kl) Fourier 2 $\tilde{u}(k_{1})$ $\tilde{u}(k_{4})$ $\tilde{u}(-k_{1}-k_{4})$ 2 (b) (a) 2 $C_{ijk}$ 2 $\tilde{u}(k_{1})$ 1051 1998 59-69 59 Reynolds (SUSUMU GOTO) (SHIGEO KIDA) Navier-Stokes $\langle$ Reynolds 2 1 (direct-interaction approximation DIA) Kraichnan [1] (\S 31 ) Navier-Stokes Navier-Stokes [2] 2 Navier-Stokes

More information

4 2016 3 8 2.,. 2. Arakawa Jacobin., 2 Adams-Bashforth. Re = 80, 90, 100.. h l, h/l, Kármán, h/l 0.28,, h/l.., (2010), 46.2., t = 100 t = 2000 46.2 < Re 46.5. 1 1 4 2 6 2.1............................

More information

untitled

untitled - 37 - - 3 - (a) (b) 1) 15-1 1) LIQCAOka 199Oka 1999 ),3) ) -1-39 - 1) a) b) i) 1) 1 FEM Zhang ) 1 1) - 35 - FEM 9 1 3 ii) () 1 Dr=9% Dr=35% Tatsuoka 19Fukushima and Tatsuoka19 5),) Dr=35% Dr=35% Dr=3%1kPa

More information

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( )

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( ) 81 4 2 4.1, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. 82 4.2. ζ t + V (ζ + βy) = 0 (4.2.1), V = 0 (4.2.2). (4.2.1), (3.3.66) R 1 Φ / Z, Γ., F 1 ( 3.2 ). 7,., ( )., (4.2.1) 500 hpa., 500 hpa (4.2.1) 1949,.,

More information

7 OpenFOAM 6) OpenFOAM (Fujitsu PRIMERGY BX9, TFLOPS) Fluent 8) ( ) 9, 1) 11 13) OpenFOAM - realizable k-ε 1) Launder-Gibson 15) OpenFOAM 1.6 CFD ( )

7 OpenFOAM 6) OpenFOAM (Fujitsu PRIMERGY BX9, TFLOPS) Fluent 8) ( ) 9, 1) 11 13) OpenFOAM - realizable k-ε 1) Launder-Gibson 15) OpenFOAM 1.6 CFD ( ) 71 特集 オープンソースの大きな流れ Nonlinear Sloshing Analysis in a Three-dimensional Rectangular Pool Ken UZAWA, The Center for Computational Sciences and E-systems, Japan Atomic Energy Agency 1 1.1 ( ) (RIST) (ORNL/RSICC)

More information

untitled

untitled II(c) 1 October. 21, 2009 1 CS53 yamamoto@cs.kobe-u.ac.jp 3 1 7 1.1 : : : : : : : : : : : : : : : : : : : : : : 7 1.2 : : : : : : : : : : : : : : : : 8 1.2.1 : : : : : : : : : : : : : : : : : : : 8 1.2.2

More information

Fig. 1 Experimental apparatus.

Fig. 1 Experimental apparatus. Effects of Concentration of Surfactant Solutions on Drag-Reducing Turbulent Boundary Layer In this study, the influence of a drag-reducing surfactant on the turbulent boundary layer was extensively investigated

More information

: u i = (2) x i Smagorinsky τ ij τ [3] ij u i u j u i u j = 2ν SGS S ij, (3) ν SGS = (C s ) 2 S (4) x i a u i ρ p P T u ν τ ij S c ν SGS S csgs

: u i = (2) x i Smagorinsky τ ij τ [3] ij u i u j u i u j = 2ν SGS S ij, (3) ν SGS = (C s ) 2 S (4) x i a u i ρ p P T u ν τ ij S c ν SGS S csgs 15 C11-4 Numerical analysis of flame propagation in a combustor of an aircraft gas turbine, 4-6-1 E-mail: tominaga@icebeer.iis.u-tokyo.ac.jp, 2-11-16 E-mail: ntani@iis.u-tokyo.ac.jp, 4-6-1 E-mail: itoh@icebeer.iis.u-tokyo.ac.jp,

More information

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat / Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiation and the Continuing Failure of the Bilinear Formalism,

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

untitled

untitled CFD JAXA CFD CFD Navier-Stokes -1- -2-1 CFD CFD Navier-Stokes 1. 2. 2,500,000 CFD Copyright Boeing CFD Boeing B777 HP -3- -4-2 CFD European Transonic Wind tunnel (-163 ) JAXA 2mx2m CFD (Computational Fluid

More information

2012専門分科会_new_4.pptx

2012専門分科会_new_4.pptx d dt L L = 0 q i q i d dt L L = 0 r i i r i r r + Δr Δr δl = 0 dl dt = d dt i L L q i q i + q i i q i = q d L L i + q i i dt q i i q i = i L L q i L = 0, H = q q i L = E i q i i d dt L q q i i L = L(q

More information

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2 7 1995, 2017 7 21 1 2 2 3 3 4 4 6 (1).................................... 6 (2)..................................... 6 (3) t................. 9 5 11 (1)......................................... 11 (2)

More information

1.3 (heat transfer with phase change) (phase change) (evaporation) (boiling) (condensation) (melting) (solidification) 1.4 (thermal radiation) 4 2. 1

1.3 (heat transfer with phase change) (phase change) (evaporation) (boiling) (condensation) (melting) (solidification) 1.4 (thermal radiation) 4 2. 1 CAE ( 6 ) 1 1. (heat transfer) 4 1.1 (heat conduction) 1.2 (convective heat transfer) (convection) (natural convection) (free convection) (forced convection) 1 1.3 (heat transfer with phase change) (phase

More information

1 ( ) Einstein, Robertson-Walker metric, R µν R 2 g µν + Λg µν = 8πG c 4 T µν, (1) ( ds 2 = c 2 dt 2 + a(t) 2 dr 2 ) + 1 Kr 2 r2 dω 2, (2) (ȧ ) 2 H 2

1 ( ) Einstein, Robertson-Walker metric, R µν R 2 g µν + Λg µν = 8πG c 4 T µν, (1) ( ds 2 = c 2 dt 2 + a(t) 2 dr 2 ) + 1 Kr 2 r2 dω 2, (2) (ȧ ) 2 H 2 1 ( ) Einstein, Robertson-Walker metric, R µν R 2 g µν + Λg µν = 8πG c 4 T µν, (1) ( ds 2 = c 2 dt 2 + a(t) 2 dr 2 ) + 1 Kr 2 r2 dω 2, (2) (ȧ ) 2 H 2 = 8πG a 3c 2 ρ Kc2 a 2 + Λc2 3 (3), ä a = 4πG Λc2 (ρ

More information

2 (Preface) (potential flow) viscosty ( 0 (vorticity) (boundary layer) (shearing stress) (frictional stress) (frictional drag)) (laminar flow) (turbul

2 (Preface) (potential flow) viscosty ( 0 (vorticity) (boundary layer) (shearing stress) (frictional stress) (frictional drag)) (laminar flow) (turbul Viscous Fluid Dynamics Yoshiaki NAKAMURA Professor of Chubu University Emeritus Professor of Nagoya University 2014 9 September 1, 2014 2 (Preface) (potential flow) viscosty ( 0 (vorticity) (boundary layer)

More information

untitled

untitled 9 9. 9. 9. (FEM, nite element method) 4 9.. (element) (mesh discretization) DT LOK DT M([ ],[ ] )=[ ] DIMENSION M(,NF) DT M/,4,5,,5,,,5,6,,6,,,6,7, 4,8,9, 4,9,5,.../ DIMENSION M(4,NF) DO I=,IF- DO J=,JF

More information

Auerbach and Kotlikoff(1987) (1987) (1988) 4 (2004) 5 Diamond(1965) Auerbach and Kotlikoff(1987) 1 ( ) ,

Auerbach and Kotlikoff(1987) (1987) (1988) 4 (2004) 5 Diamond(1965) Auerbach and Kotlikoff(1987) 1 ( ) , ,, 2010 8 24 2010 9 14 A B C A (B Negishi(1960) (C) ( 22 3 27 ) E-mail:fujii@econ.kobe-u.ac.jp E-mail:082e527e@stu.kobe-u.ac.jp E-mail:iritani@econ.kobe-u.ac.jp 1 1 1 2 3 Auerbach and Kotlikoff(1987) (1987)

More information

Natural Convection Heat Transfer in a Horizontal Porous Enclosure with High Porosity Yasuaki SHIINA*4, Kota ISHIKAWA and Makoto HISHIDA Nuclear Applie

Natural Convection Heat Transfer in a Horizontal Porous Enclosure with High Porosity Yasuaki SHIINA*4, Kota ISHIKAWA and Makoto HISHIDA Nuclear Applie Natural Convection Heat Transfer in a Horizontal Porous Enclosure with High Porosity Yasuaki SHIINA*4, Kota ISHIKAWA and Makoto HISHIDA Nuclear Applied Heat Technology Division, Japan Atomic Energy Agency,

More information

133 1.,,, [1] [2],,,,, $[3],[4]$,,,,,,,,, [5] [6],,,,,, [7], interface,,,, Navier-Stokes, $Petr\dot{o}$v-Galerkin [8], $(,)$ $()$,,

133 1.,,, [1] [2],,,,, $[3],[4]$,,,,,,,,, [5] [6],,,,,, [7], interface,,,, Navier-Stokes, $Petr\dot{o}$v-Galerkin [8], $(,)$ $()$,, 836 1993 132-146 132 Navier-Stokes Numerical Simulations for the Navier-Stokes Equations in Incompressible Viscous Fluid Flows (Nobuyoshi Tosaka) (Kazuhiko Kakuda) SUMMARY A coupling approach of the boundary

More information

1-22_tsubokura.indd

1-22_tsubokura.indd Earth Simulator Proposed Research Project *1 *1 *2 *1, 3 * 1 * 2 * 3 LES Large Eddy Simulation 1 2Hz 10,,,, Dielectric Barrier Discharge Plasma Actuator DBDPA DBDPA 2 DBDPA DBDPA FFR-HPC LES LES Navier-Stokes

More information

Fig. Division of unbounded domain into closed interior domain and its eterior domain. Zienkiewicz [5, 6] Burnett [7, 8] [3] The conjugated Ast

Fig. Division of unbounded domain into closed interior domain and its eterior domain. Zienkiewicz [5, 6] Burnett [7, 8] [3] The conjugated Ast 7 6 pp. 635 643 635 43..Rz; 43.4.Rj * 3 3 Unbounded problems, Finite element method, Infinite element, Hybrid variational principle, Fourier series. Boundary Element Method: BEM BEM Finite Element Method:

More information

Title 混合体モデルに基づく圧縮性流体と移動する固体の熱連成計算手法 Author(s) 鳥生, 大祐 ; 牛島, 省 Citation 土木学会論文集 A2( 応用力学 ) = Journal of Japan Civil Engineers, Ser. A2 (2017), 73 Issue

Title 混合体モデルに基づく圧縮性流体と移動する固体の熱連成計算手法 Author(s) 鳥生, 大祐 ; 牛島, 省 Citation 土木学会論文集 A2( 応用力学 ) = Journal of Japan Civil Engineers, Ser. A2 (2017), 73 Issue Title 混合体モデルに基づく圧縮性流体と移動する固体の熱連成計算手法 Author(s) 鳥生, 大祐 ; 牛島, 省 Citation 土木学会論文集 A2( 応用力学 ) = Journal of Japan Civil Engineers, Ser. A2 (2017), 73 Issue Date 2017 URL http://hdl.handle.net/2433/229150 Right

More information

A03-2.dvi

A03-2.dvi 14 A3-2 Numerical Analyses in the Secondary Combustion Chamber of the Ducted Rocket Engine 184-8588 2-24-16 E-mail: kikumoto@starcadmechtuatacjp Kousuke KIKUMOTO Dept of Mech Systems Eng Tokyo Noko Univ

More information

(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008)

(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008) ,, 23 4 30 (i) (ii) (i) (ii) Negishi (1960) 2010 (2010) ( ) ( ) (2010) E-mail:fujii@econ.kobe-u.ac.jp E-mail:082e527e@stu.kobe-u.ac.jp E-mail:iritani@econ.kobe-u.ac.jp 1 1 16 (2004 ) 2 (A) (B) (C) 3 (1987)

More information

IV (2)

IV (2) COMPUTATIONAL FLUID DYNAMICS (CFD) IV (2) The Analysis of Numerical Schemes (2) 11. Iterative methods for algebraic systems Reima Iwatsu, e-mail : iwatsu@cck.dendai.ac.jp Winter Semester 2007, Graduate

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

数値計算:有限要素法

数値計算:有限要素法 ( ) 1 / 61 1 2 3 4 ( ) 2 / 61 ( ) 3 / 61 P(0) P(x) u(x) P(L) f P(0) P(x) P(L) ( ) 4 / 61 L P(x) E(x) A(x) x P(x) P(x) u(x) P(x) u(x) (0 x L) ( ) 5 / 61 u(x) 0 L x ( ) 6 / 61 P(0) P(L) f d dx ( EA du dx

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

空間多次元 Navier-Stokes 方程式に対する無反射境界条件

空間多次元 Navier-Stokes 方程式に対する無反射境界条件 81 Navier-Stokes Poinsot Lele Poinsot Lele Thompson Euler Navier-Stokes A Characteristic Nonreflecting Boundary Condition for the Multidimensional Navier-Stokes Equations Takaharu YAGUCHI, Kokichi SUGIHARA

More information

b3e2003.dvi

b3e2003.dvi 15 II 5 5.1 (1) p, q p = (x + 2y, xy, 1), q = (x 2 + 3y 2, xyz, ) (i) p rotq (ii) p gradq D (2) a, b rot(a b) div [11, p.75] (3) (i) f f grad f = 1 2 grad( f 2) (ii) f f gradf 1 2 grad ( f 2) rotf 5.2

More information

p *2 DSGEDynamic Stochastic General Equilibrium New Keynesian *2 2

p *2 DSGEDynamic Stochastic General Equilibrium New Keynesian *2 2 2013 1 nabe@ier.hit-u.ac.jp 2013 4 11 Jorgenson Tobin q : Hayashi s Theorem : Jordan : 1 investment 1 2 3 4 5 6 7 8 *1 *1 93SNA 1 p.180 1936 100 1970 *2 DSGEDynamic Stochastic General Equilibrium New Keynesian

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

2003 9

2003 9 2003 9 5 1 7 1.1... 7 1.2... 8 1.3... 9 1.3.1... 9 1.3.2... 9 1.3.3... 10 1.4... 10 2 11 2.1... 11 2.2... 11 2.3... 12 2.4... 14 2.4.1... 14 2.4.2... 15 2.4.3... 17 2.5... 19 2.6... 21 2.6.1... 22 2.6.2...

More information

316 on One Hundred Years of Boundary Layer Research, Proceedings of the IUTAM Symposium held at DLR-Göttingen, Germany, 2004, (eds. G. E. A. Meier and

316 on One Hundred Years of Boundary Layer Research, Proceedings of the IUTAM Symposium held at DLR-Göttingen, Germany, 2004, (eds. G. E. A. Meier and 316 on One Hundred Years of Boundary Layer Research, Proceedings of the IUTAM Symposium held at DLR-Göttingen, Germany, 2004, (eds. G. E. A. Meier and K. R. Sreenivasan), Solid Mech. Appl., 129, Springer,

More information

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 1 1 1.1 ɛ-n 1 ɛ-n lim n a n = α n a n α 2 lim a n = 1 n a k n n k=1 1.1.7 ɛ-n 1.1.1 a n α a n n α lim n a n = α ɛ N(ɛ) n > N(ɛ) a n α < ɛ

More information

nm (T = K, p = kP a (1atm( )), 1bar = 10 5 P a = atm) 1 ( ) m / m

nm (T = K, p = kP a (1atm( )), 1bar = 10 5 P a = atm) 1 ( ) m / m .1 1nm (T = 73.15K, p = 101.35kP a (1atm( )), 1bar = 10 5 P a = 0.9863atm) 1 ( ).413968 10 3 m 3 1 37. 1/3 3.34.414 10 3 m 3 6.0 10 3 = 3.7 (109 ) 3 (nm) 3 10 6 = 3.7 10 1 (nm) 3 = (3.34nm) 3 ( P = nrt,

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v 12 -- 1 4 2009 9 4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 4-10 c 2011 1/(13) 4--1 2009 9 3 x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ II p = mv p x > h/4π λ = h p m v Ψ 2 Ψ Ψ Ψ 2 0 x P'(x) m d 2 x = mω 2 x = kx = F(x) dt 2 x = cos(ωt + φ) mω 2 = k ω = m k v = dx = -ωsin(ωt + φ) dt = d 2 x dt 2 0 y v θ P(x,y) θ = ωt + φ ν = ω [Hz] 2π

More information

A

A A04-164 2008 2 13 1 4 1.1.......................................... 4 1.2..................................... 4 1.3..................................... 4 1.4..................................... 5 2

More information

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds 127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds

More information

A Higher Weissenberg Number Analysis of Die-swell Flow of Viscoelastic Fluids Using a Decoupled Finite Element Method Iwata, Shuichi * 1/Aragaki, Tsut

A Higher Weissenberg Number Analysis of Die-swell Flow of Viscoelastic Fluids Using a Decoupled Finite Element Method Iwata, Shuichi * 1/Aragaki, Tsut A Higher Weissenberg Number Analysis of Die-swell Flow of Viscoelastic Fluids Using a Decoupled Finite Element Method Iwata, Shuichi * 1/Aragaki, Tsutomu * 1/Mori, Hideki * 1 Ishikawa, Satoshi * 1/Shin,

More information

difgeo1.dvi

difgeo1.dvi 1 http://matlab0.hwe.oita-u.ac.jp/ matsuo/difgeo.pdf ver.1 8//001 1 1.1 a A. O 1 e 1 ; e ; e e 1 ; e ; e x 1 ;x ;x e 1 ; e ; e X x x x 1 ;x ;x X (x 1 ;x ;x ) 1 1 x x X e e 1 O e x x 1 x x = x 1 e 1 + x

More information

70の法則

70の法則 70 70 1 / 27 70 1 2 3 4 5 6 2 / 27 70 70 70 X r % = 70 2 r r r 10 72 70 72 70 : 1, 2, 5, 7, 10, 14, 35, 70 72 : 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72 3 / 27 r = 10 70 r = 10 70 1 : X, X 10 = ( X + X

More information

chap03.dvi

chap03.dvi 99 3 (Coriolis) cm m (free surface wave) 3.1 Φ 2.5 (2.25) Φ 100 3 r =(x, y, z) x y z F (x, y, z, t) =0 ( DF ) Dt = t + Φ F =0 onf =0. (3.1) n = F/ F (3.1) F n Φ = Φ n = 1 F F t Vn on F = 0 (3.2) Φ (3.1)

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

Microsoft PowerPoint - product_run_report(K_Abe).pptx

Microsoft PowerPoint - product_run_report(K_Abe).pptx スケール相似則モデルの特徴を反映した非等方 SGS モデルの導入による高性能 LES/RANS ハイブリッド乱流モデルの構築 九州大学大学院工学研究院航空宇宙工学部門安倍賢一大学院工学府航空宇宙工学専攻漆間統 214 年 4 月 25 日先駆的科学計算に関するフォーラム 214 1 214 年 4 月 25 日先駆的科学計算に関するフォーラム 214 2 1 研究背景と目的 (1/2) 乱流解析手法として

More information

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論 email: takahash@sci.u-hyogo.ac.jp May 14, 2009 Outline 1. 2. 3. 4. 5. 6. 2 / 262 Today s Lecture: Mode-mode Coupling Theory 100 / 262 Part I Effects of Non-linear Mode-Mode Coupling Effects of Non-linear

More information

13 0 1 1 4 11 4 12 5 13 6 2 10 21 10 22 14 3 20 31 20 32 25 33 28 4 31 41 32 42 34 43 38 5 41 51 41 52 43 53 54 6 57 61 57 62 60 70 0 Gauss a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x

More information

Microsoft PowerPoint - 第3回OpenCAE初歩情報交換会@北東北_若嶋2.pptx

Microsoft PowerPoint - 第3回OpenCAE初歩情報交換会@北東北_若嶋2.pptx 調査報告 乱流モデルの選択および設定について 一関高専 若嶋 OpenFOAM 2.3.x についてのみ調査 2014/12/5 第 3 回 OpenCAE 初歩情報交換会 @ 北東北 1 OpenFOAM で設定できる乱流モデル http://www.openfoam.org/features/turbulence.php Incompressible Compressible RAS(RANS)

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

all.dvi

all.dvi 29 4 Green-Lagrange,,.,,,,,,.,,,,,,,,,, E, σ, ε σ = Eε,,.. 4.1? l, l 1 (l 1 l) ε ε = l 1 l l (4.1) F l l 1 F 30 4 Green-Lagrange Δz Δδ γ = Δδ (4.2) Δz π/2 φ γ = π 2 φ (4.3) γ tan γ γ,sin γ γ ( π ) γ tan

More information

平板翼の後流に形成される定在波とコヒーレント構造

平板翼の後流に形成される定在波とコヒーレント構造 35 Ω Ω r 'w' r 'w' The Standing Wae Formed in the Wake of a Flat Plate Blade and the Coherent Structure Souichi SASAKI and Yoshio KODAMA, Dept. of Mechanical Sstems Engineering, Nagasaki Uniersit Receied

More information

untitled

untitled @=@tur (substantal dervatve) Euler Naver-Stkes d @ dt @t ur t u 2 (streamlne).(a) x ( ) A (prperty ) ' B 'ur' ' t (path lne) ru =0 d dt ' = @ @t ' r(u') (cnservatve frm) (nncnservatve frm) (gradent frm)

More information

A 99% MS-Free Presentation

A 99% MS-Free Presentation A 99% MS-Free Presentation 2 Galactic Dynamics (Binney & Tremaine 1987, 2008) Dynamics of Galaxies (Bertin 2000) Dynamical Evolution of Globular Clusters (Spitzer 1987) The Gravitational Million-Body Problem

More information

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2 9 E B 9.1 9.1.1 Ampère Ampère Ampère s law B S µ 0 B ds = µ 0 j ds (9.1) S rot B = µ 0 j (9.2) S Ampère Biot-Savart oulomb Gauss Ampère rot B 0 Ampère µ 0 9.1 (a) (b) I B ds = µ 0 I. I 1 I 2 B ds = µ 0

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

Relaxation scheme of Besse t t n = n t, u n = u(t n ) (n = 0, 1,,...)., t u(t) = F (u(t)) (1). (1), u n+1 u n t = F (u n ) u n+1 = u n + tf (u n )., t

Relaxation scheme of Besse t t n = n t, u n = u(t n ) (n = 0, 1,,...)., t u(t) = F (u(t)) (1). (1), u n+1 u n t = F (u n ) u n+1 = u n + tf (u n )., t RIMS 011 5 3 7 relaxation sheme of Besse splitting method Scilab Scilab http://www.scilab.org/ Google Scilab Scilab Mathieu Colin Mathieu Colin 1 Relaxation scheme of Besse t t n = n t, u n = u(t n ) (n

More information

空力騒音シミュレータの開発

空力騒音シミュレータの開発 41 COSMOS-V, an Aerodynamic Noise Simulator Nariaki Horinouchi COSMOS-V COSMOS-V COSMOS-V 3 The present and future computational problems of the aerodynamic noise analysis using COSMOS-V, our in-house

More information

Effect of Radiation on a Spray Jet Flame Ryoichi KUROSE and Satoru KOMORI Engineering Research Laboratory, Central Research Institute of Electric Powe

Effect of Radiation on a Spray Jet Flame Ryoichi KUROSE and Satoru KOMORI Engineering Research Laboratory, Central Research Institute of Electric Powe Effect of Radiation on a Spray Jet Flame Ryoichi KUROSE and Satoru KOMORI Engineering Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-6 - 1 Nagasaka, Yokosuka-shi,

More information

x y x-y σ x + τ xy + X σ y B = + τ xy + Y B = S x = σ x l + τ xy m S y = σ y m + τ xy l σ x σ y τ xy X B Y B S x S y l m δu δv [ ( σx δu + τ )

x y x-y σ x + τ xy + X σ y B = + τ xy + Y B = S x = σ x l + τ xy m S y = σ y m + τ xy l σ x σ y τ xy X B Y B S x S y l m δu δv [ ( σx δu + τ ) 1 8 6 No-tension 1. 1 1.1................................ 1 1............................................ 5.1 - [B].................................. 5................................. 6.3..........................................

More information

numb.dvi

numb.dvi 11 Poisson kanenko@mbkniftycom alexeikanenko@docomonejp http://wwwkanenkocom/ , u = f, ( u = u+f u t, u = f t ) 1 D R 2 L 2 (D) := {f(x,y) f(x,y) 2 dxdy < )} D D f,g L 2 (D) (f,g) := f(x,y)g(x,y)dxdy (L

More information

Developement of Plastic Collocation Method Extension of Plastic Node Method by Yukio Ueda, Member Masahiko Fujikubo, Member Masahiro Miura, Member Sum

Developement of Plastic Collocation Method Extension of Plastic Node Method by Yukio Ueda, Member Masahiko Fujikubo, Member Masahiro Miura, Member Sum Developement of Plastic Collocation Method Extension of Plastic Node Method by Yukio Ueda, Member Masahiko Fujikubo, Member Masahiro Miura, Member Summary Previously, the authors developed the plastic

More information

4/15 No.

4/15 No. 4/15 No. 1 4/15 No. 4/15 No. 3 Particle of mass m moving in a potential V(r) V(r) m i ψ t = m ψ(r,t)+v(r)ψ(r,t) ψ(r,t) = ϕ(r)e iωt ψ(r,t) Wave function steady state m ϕ(r)+v(r)ϕ(r) = εϕ(r) Eigenvalue problem

More information

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin. sin. sin + π si

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin. sin. sin + π si I 8 No. : No. : No. : No.4 : No.5 : No.6 : No.7 : No.8 : No.9 : No. : I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin.

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information