( ) (Appendix) *

Size: px
Start display at page:

Download "( ) (Appendix) *"

Transcription

1 Frisch Slutzky 1930 = ( ) 4 1

2 ( ) (Appendix) * A 42 *1 ( )

3 B 45 3

4 (2 binomial distribution) 2 n n S n S n S n 0, 1, 2,..., n S n p ( ) n P (S n = k) = p k (1 p) n k, k = 1, 2,..., n. k ( ) n f(x) = p x (1 p) n x, x = 1, 2,..., n (1) x n p 2.2 ( Poisson distribution ) λ λ f(x) = { λ x e λ x!, x = 0, 1, 2,..., 0, e λ = x=0 λ x x!, f(x) = 1 x=0 n p 2 λ = np p n λ 2.3 (2 ) X n p 2 f(x) = p) n x, x = 0, 1, 2,..., n ( ) n p x (1 x n = 1 1 (X = 1 ) p (X = 0 ) 1 p EX = 0 f(x = 0) + 1 f(x = 1) = p, 4

5 1 n > 1 X {0, 1, 2,..., n} n ( ) n EX = j p j (1 p) n j. j j=0 EX = np, (2) *2. 2 X 1, X 2,, X n ( 1 ) p S n = X 1 + X X n S n 2 EX i = p, (i = 1, 2,..., n) ES n = E(X 1 + X X n ) = 2.4 ( ) n EX i = np. i=1 λ f(x) = λ x e λ /x! EX = j=1 j λj j! e λ = 2.5 (2 ) j=1 λ j (j 1)! e λ = λe λ j=0 λ j j! = λe λ e λ = λ, ES n = np VarS n = Var(X 1 + X X n ) = VarX 1 + VarX VarX n = nvarx 1. X 1 = 0, 1 X 2 1 = X 1 EX 2 1 = EX 1 = p VarX 1 = EX 2 1 (EX 1 ) 2 = p p 2 = p(1 p) 2 VarS n = np(1 p) X λ EX = λ, VarX = λ 2.6 ( normal distribution ) µ σ 2 f(x) = 1 (x µ)2 exp{ 2πσ 2σ 2 }, *2 Hoel, Port and Stone,An Introduction to Probability Theory 5

6 V V (lognormal distribution) X µ σ 2 V = e X V f(v) = 1 (ln v µ)2 exp{ 2πσv 2σ 2 }, v 0 EV = exp{µ + σ2 σ2 }, VarV = exp{2(µ )}[exp{σ2 } 1] 2.7 ( exponential distribution) f(x) = λe λx, x 0; f(x) = 0, x < 0 x λ (exponential distribution) F (x) = 1 e λx, x 0 EX = 1 λ, VarX = 1 λ ( gamma distribution) α > 0 λ > 0 Γ(x; α, λ) Γ(x; α, λ) = λα Γ(α) xα 1 e λx, x > 0, Γ(α) = 0 x α 1 e x dx α {Y 1, Y 2,.., Y α } λ X = Y 1 + Y Y α Γ(x; α, λ) 2.2 X t X t X(t) t T T t X t {X t, t T } X t *3 *3 A S t T {X t (ω) A} Ω (σ ) F T P F T X t (Ω, F T, P ). X t : Ω S (X t S, t T ) 6

7 {X t, t T } T (, ) T T = {0, 1, 2...} P Pr X S S {0, 1, 2,...} {0, ±1, ±2,,...} S = (, ) S k k t T X t t {X t, t T } (sample function) n X n X n, n = 1, 2,..., {1, 2, 3, 4, 5, 6} 2.9 ( Wiener process) (i). 0 < t 0 < t 1 < < t n {t k } X t1 X t0, X t2 X t1,..., X tn X tn 1 (ii). Pr(X t X s < x) = (iii). X x 2πB(t s) u 2 exp{ }du, (t > s, B > 0). 2B(t s) R. N. B ( ) EX t = 0, VarX t = Bt, 2.10 ( Poisson process) (i). 0 < t 0 < t 1 < < t n {t k } X t1 X t0, X t2 X t1,..., X tn X tn 1 λ(t s) {λ(t s)}k (ii). Pr(X t X s = k) = e, k = 0, 1, 2,..., (t > s, λ > 0) k! 7

8 (iii). X 0 0. EX t = λt, VarX t = λt, (3) (0, t] N(t) α N(t) (Markov processes) t 1 < t 2 < < t n < t x 1, x 2,, x n, x Pr{X t < x X t1 = x 1, X t2 = x 2,..., X tn = x n } = Pr{X t < x X tn = x n } {X t, t T } P (x, t n ; y, t n+1 ) = Pr{X(t n+1 ) = y X(t n ) = x} P (x, t n ; y, t n+1 ) t n+1 t n 2. (Processes with independent increments) t 1 < t 2 < < t n X t2 X t1, X t3 X t2,, X tn X tn 1 {X t } ( ) 3. (Martingales) {X t } E{ X t } < t 1 < t 2 < < t n < t a 1, a 2,, a n E(X t X t1 = a 1,, X tn = a n ) = a n 8

9 X t T = {0, 1, 2, } (discrete-time Markov chains) S = {0, 1, 2, } n x n n + 1 x n+1 P (n, x n ; n + 1, x n+1 ) Pr{X n+1 = x n+1 X n = x n } (transition probability) P (n, x n ; n + 1, x n+1 ) n P x,y P (n, x; n + 1, y) = P (0, x; 1, y) P x,y x y P x,y 0, x, y S, P x,y = 1, x S y=0 (4) (5) (4)(5) P x,y ( ) π 0 (x) = Pr(X 0 = x), x S, π 0 π 0 (x) 0, x S π 0 (x) = 1 x {X 0, X 1, X n } X 0, X 1 Pr(X 0 = x 0, X 1 = x 1 ) = Pr(X 0 = x 0 ) Pr(X 1 = x 1 X 0 = x 0 ) = π 0 (x 0 )P x0,x 1 Pr(X 0 = x 0, X 1 = x 1, X 2 = x 2 ) = Pr(X 0 = x 0, X 1 = x 1 ) Pr(X 2 = x 2 X 1 = x 1, X 0 = x 0 ) = π 0 (x 0 )P x0,x 1 Pr(X 2 = x 2 X 1 = x 1 ) = π 0 (x 0 )P x0,x 1 P x1,x 2 9

10 Pr(X 0 = x 0,, X n = x n ) = π 0 (x 0 )P x0,x 1 P xn 1,x n (6) 3.1 ( random walk) {ξ 1, ξ 2,...} f(ξ i ) X 0 ξ i X n = X 0 + ξ 1 + ξ ξ n {X n n 0} P x,y = Pr(X n+1 = y X n = x) = Pr(ξ n+1 = y x) = f(y x) ξ i { 1, 0, 1} f(1) = p, f( 1) = q, f(0) = r p + q + r = 1, p > 0, q > 0, r > 0 p, y = x + 1, q, y = x 1, P x,y = r, y = x, 0, 3.2 ( birth and death chains) p x, y = x + 1, q P x,y = x, y = x 1, r x, y = x, 0, p x + q x + r x = 1, p x > 0, q x > 0, r x > 0 x x + 1 x x 1 p x, q x, r x x p 0 = 1(q 0 = 0, r 0 = 0) r 0 = 1(p 0 = 0, q 0 = 0) ( branching chains) 0 n n + 1 X n n 10

11 ξ ξ f X n 0 P x,y = Pr(ξ 1 + ξ ξ x = y) P 1,y = f(y) 3.2 {X n, n 0} P x,y S n (n ) (n-step transition function) Pr(X n+1 = x n+1,, X n+m = x n+m X 0 = x 0, X 1 = x 1,, X n = x n ) = Pr(X 0 = x 0,, X n+m = x n+m ) Pr(X 0 = x 0,, X n = x n ) = π 0(x 0 )P x0,x 1 P xn+m 1,x n+m π 0 (x 0 )P x0,x 1 P xn 1,x n = P xn,x n+1 P xn+m 1,x n+m S A 0,, A n 1 Pr(X n+1 = x n+1,, X n+m = x n+m X 0 A 0,, X n 1 A n 1, X n = x n ) = P xn,x n+1 P xn+m 1,x n+m B 1,, B m S Pr(X n+1 B 1,, X n+m B m X 0 A 0,, X n 1 A n 1, X n = x) = P x,y1 P y1,y 2 P ym 1,y m. y 1 B 1 y m B m B 1 = = B m 1 = S B m = {y} x m y Pr(X n+m = y X 0 A 0,, X n 1 A n 1, X n = x) = P x,y1 P y1,y 2 P ym 1,y y 1 S y m 1 S x m y P x,y (m) P x,y (m) = Pr(X n+m = y X n = x) = Pr(X m = y X 0 = x) = P x,y1 P y1,y 2 P ym 1,y, m 2. (7) y 1 S y m 1 S P x,y (1) = P x,y P x,y (0) = { 1, x = y, 0, x y, 11

12 n P x,y (n + m) = Pr(X n+m = y X 0 = x) = Pr(X n = z X 0 = x) Pr(X n+m = y X n = z) z S = P x,z (n) Pr(X n+m = y X n = z) z S P x,y (n + m) = z S P x,z (n)p z,y (m). (8) - (Chapman-Kolmogorov equation) n Pr(X n = y) = Pr(X 0 = x, X n = y) = Pr(X 0 = x) Pr(X n = y X 0 = x) x S x S Pr(X n = y) = x S π 0 (x)p x,y (n) (9) ( inventory model) ξ n n n = 0, 1,..., ξ n Pr(ξ n = k) = p k, k = 0, 1, 2,..., p k >0 k=0 = 1 s S S n () X n X n X n = S, S 1,..., +1, 0, 1, 2,..., X n { Xn ξ X n+1 = n+1, s < X n < S, S ξ n+1, X n < s, ξ n X n { Pr(ξn+1 = x y), s < x < S, P x,y = Pr(X n+1 = y X n = x) = Pr(ξ n+1 = S y), x < s, 12

13 0, 1, 2 Pr(ξ = 0) = 0.5, Pr(ξ n = 1) = 0.4, Pr(ξ n = 2) = 0.1 s = 0, S = 2 2, 1 X n 2, 1, 0, 1 P 1,0 P 1,0 = Pr(X n+1 = 0 X n = 1) = Pr(ξ n+1 = 1) = 0.4 P 1,1 = Pr(X n+1 = 1 X n = 1) = Pr(ξ n+1 = 0) = 0.5 P = ( Markov chains in genetics) S. Wright 2 a, A 1 a A 2N a A 2N 2N a x a p x = x 2N A q x = 1 x 2N n a X n X n S = {0, 1, 2,..., 2N} 2 ( 2N Pr(X n+1 = y X n = x) = P x,y = y ) p y xq 2N y x, q; x, y = 0, 1,..., 2N (10) X n = 0 X n = 2N A X n = 0 13

14 a X n = 2N a A α A a β a p x = x (1 α) + (1 x 2N 2N )β A q x = x 2N α + (1 x )(1 β) 2N (10) αβ > 0 n X n 3.4 S = {0, 1,..., N} P = P i,j k P k (regular) π(x) 0, x S x π(x) = 1 lim P x,y(n) = π(y) > 0, y = 0, 1,..., N n y π(y) 3.1 P S = {0, 1,..., N} π = (π 0, π 1,..., π N ) π(x)p x,y = π(y), x S y S X n n π π *4 3.6 (11) *4 Taylor and Karlin(1998),pp

15 S = {0, 1, 2} P = π 0.4π(0) π(1) π(2) = π(0) 0.50π(0) π(1) π(2) = π(1) 0.10π(0) π(1) π(2) = π(2) π(0) + π(1) + π(2) = 1 π(0) = , π(1) = , π(2) = P 4 = (13) P 8 = (14) π π(x) {X n } x ( ) m x m 1 1 m k=0 δ Xk,x δ x,y { 1, y = x, δ x,y = 0, y x x E[ 1 m m 1 k=0 δ Xk,x X 0 = i] = 1 m m 1 k=0 lim n P i,x (n) = π(x) lim n m 1 1 m k=0 P i,x (k) = π(x) E[δ Xk,x X 0 = i] = 1 m 15 m 1 k=0 Pr(X k = x X 0 = i) = 1 m m 1 k=0 P i,x (k) (12)

16 P x,y (n) > 0 n y x (accessible) x y (communicate) (equivalence relation) (irreducible) x P x,x (n) > 0 n x (period) d(x) n f x,x (n) f x,x (n) = Pr(X n = x, X k x, k = 1, 2,..., n 1 X 0 = x) x n x f x,x (1) = P x,x n x k x n k x P x,x (n) = n f x,x (k)p x,x (n k), n 1 k=0 fx, x(0) = 0 x x f x,x f x,x (n) = lim n=0 N n=0 N f x,x (n) f x,x = 1 x (recurrent) (transient) 3.2 P x,x (n) = n=1 x P x,x (n) < n=1 x 3.3 lim P x,x(n) = n 1 n=0 nf x,x(n) 16

17 y lim P y,x(n) = lim P x,x(n) n n Karlin and Taylor(1975) Taylor and Karlin(1998) 3.7 (1 ) {0, ±1, ±2, } P x,x+1 = p, P x,x 1 = q, 0 < p < 1, p + q = P 0,0 (2n + 1) = 0, n = 0, 1,..., ( ) 2n P 0,0 (2n) = p n q n = (2n)! n n!n! pn q n Stirling n! n n+1/2 e n 2π P 0,0 (2n) (pq)n 2 2n πn = (4pq)n πn pq = p(1 p) < 1/4 p = q = 1/2 p = 1/2 P 0,0 (2n) = n=0 p = q = 1/ S t T = [0, ) X 0 x 0 τ 1 > 0 17

18 X(τ 1 ) = x 1 ( x 0 ) τ 2 (> τ 1 ) X(τ 2 ) = x 2 ( x 1 ) τ 1, τ 2, (jump times) S 1 = τ 1 0, S 2 = τ 2 τ 1, S 3 = τ 3 τ 2, (holding times) X(t) X(t) x 0, 0 < t < τ 1, x 1, τ 1 < t < τ 2, X(t) = x 2, τ 2 < t < τ 3,. X(t) (right-continuous) (jump process) x n ( n ) τ n+1 = x n ( (absorbing state) (non-absorbing state) lim τ n < n X(t) (explosion) X(t) lim τ n = n S n x t Pr(τ < t) F x (t) t < 0 F x (t) = 0 x y (transition probability) p xy p xy = 1; p xx = 0. y S x τ 1 x X(τ 1 ) = y τ 1 F x y p xy τ 1 X(τ 1 ) P x (τ 1 < t, X(τ 1 ) = y) Pr(τ 1 < t, X(τ 1 ) = y X(0) = x) = F x (t)p xy, P x ( ) x Pr( X(0) = x) y y y x y P x (τ 1 < s, X(τ 1 ) = y, τ 2 τ 1 <t, X(τ 2 ) = z) = F x (s)p xy F y (t)p yz 18

19 x p xy = δ xy δ xy δ xy = { 1, y = x, 0, y x x t y P x,y (t) P x,y (t) = P x (X(t) = y) = Pr(X(t) = y X(0) = x) P x,y (t) = 1 y S P x,y (0) = δ xy π 0 (x) 0, x S P (X(t) = y) = x S π 0 (x)p x,y (t), π 0 (x) = 1. x S {Y n = X(τ n )} (jump chains) Y n Y n Y n (holding times) P x (τ 2 > t + s τ 1 > s) = P x (τ 2 τ 1 > t), s, t 0, (15) 1 F x (t + s) 1 F x (s) = 1 F x (t) ( ) *5 τ : Ω [0, ] w x (0 < w x < ) Eτ = 1/w x f x (t) = { wx e wxt, t 0, 0, t < 0 *5 Norris(1996)

20 P x (τ t) = 1 F x (t) = e w xt. t w x e w xs ds = e w xt. x w x = 0 ξ 1, ξ 2,..., ξ n α 1, α 2,..., α n min(ξ 1,, ξ n ) α α n Pr(ξ k = min(ξ 1,..., ξ n )) = α k α α n, k = 1, 2,..., n Pr(min(ξ 1,..., ξ n ) > t) η k = min(ξ j : j k) Pr(ξ k = min(ξ 1,..., ξ n )) = Pr(ξ k < η k ) ( ) 0 < t 1 < t 2 < t n x 1, x 2,, x n S Pr(X(t n ) = x n X(t 1 ) = x 1,..., X(t n 1 ) = x n 1 ) = P xn 1,x n (t n t n 1 ) P x,y (t) Pr(X(t) = y X(0) = x) P x (X(t) = y) Pr(X(t 2 ) = x 2,..., X(t n ) = x n X(t 1 ) = x 1 ) = P x1,x 2 (t 2 t 1 ) P xn 1,x n (t n t n 1 ) P x (X(t) = z, X(t + s) = y) = P x,z (t)p z,y (s), t 0, s 0, P x,y (t + s) = P x (X(t) = z, X(t + s) = y), z S P x,y (t + s) = z S P x,z (t)p z,y (s), s 0, t 0, (16) (Chapman-Kolmogorov) 4.2 ( )P x,y (t) P x,y (t) = δ xy e w xt + t 0 w x e w xs { z x p xz P z,y (t s)}ds, t 0. (17) 20

21 x P x,y (t) = δ xy, t 0. x x t y P x,y (t) = P x (X(t) = y) = P x (τ > t, X(t) = y) + P x (τ<t, X(t) = y) 1 t P x (τ > t, X(t) = y) = (1 F x (t))δ xy = δ xy e w xt 2 t τ x t τ y s x z t s y P x (X(s) = z, X(t) = y) = w x e wxs p xz P z,y (t s) t z t y P x (X(τ) = z, τ<t, X(t) = y) = P x (τ<t, X(t) = y) = t 0 t 0 w x e w xs p xz P z,y (t s)ds. w x e w xs { z x p xz P z,y (t s)}ds (17) (17) s t r P x,y (t) = δ xy e w xt + w x e w xt (18) t t 0 w x e w xr { z x p xz P z,y (r)}dr, t 0 (18) dp x,y (t) = w x P x,y (t) + w x p xz P z,y (t), t 0 (19) z x t 0 dp x,y (0) = w x P x,y (0) + w x p xz P z,y (0) z x = w x δ xy + w x p xz δ zy z x = w x δ xy + w x p xy w xy w xy dp x,y(0), x, y S 21

22 { wx p w xy = xy, y x, w x, x = y. w xy = w x = w xx y x (20) w xy, x, y S (infinitesimal parameters) ( ) (19) dp x,y (t) = z w xz P z,y (t), t 0, (21) (backward equation) (16) s dp x,y (t + s) = z P x,z (t) dp z,y(s) ds dp x,y (t) dp x,y (t) = z = z P x,z (t) dp z,y(0) ds P x,z (t)w zy, t 0 (22) (forward equation) (master equation) t X(t) = y Pr(X(t) = y) = π 0 (z)p z,y (t) z S X(0) = x(0) Pr(X(t) = y) = z S δ x(0),z P z,y (t) Pr(X(t) = y) = P x(0),y (t) P 0,y x (t) = P x,y (t) P x (t) P 0,x (t) t w x,y (t) Pr(X(t + h) = y X(t) = x) Pr(X(t) = y X(t) = x) = w x,y (t) h + o(h) (23) w x,y (t) dp x,y(t) 22

23 y (23) P x,y (h) P x,y (0) = w x,y (t) h + o(h) y S y S y S w x,y (t) = 0 y S w x,x (t) = y x w x,y (t). (24) Pr(X(s) = y) = x S Pr(X(t) = x) Pr(X(s) = y X(t) = x) Pr(X(t + h) = y) = x S Pr(X(t) = x) Pr(X(t + h) = y X(t) = x) = x S Pr(X(t) = x)[pr(x(t) = y X(t) = x) + w x,y (t) h + o(h)] = Pr(X(t) = y) + x S Pr(X(t) = x)[w x,y (t) h + o(h)]. h 0 dp y (t) = x S P x (t)w x,y (t). x S P x (t)w x,y (t) = x y 2 (24) w y,y (t) = x y w y,x (t) P x (t)w x,y (t) + P y (t)w y,y (t) dp y (t) = x y P x (t)w x,y (t) x y P y (t)w y,x (t) (25) (25) 1 y 2 y w x,y (t) = w xy, t 0 23

24 4.3 S = {0, 1, 2,...} (X(t)) t 0 λ Y n = X(τ n ) = n λ τ 0 = 0, τ n = S 1 + S S n τ n n () (X(t)) t < λ < 3 (i). (X(t)) t 0 S 1, S 2, λ Y n = n, n = 1, 2, ; (ii). (X(t)) t 0 h 0 Pr(X(t + h) X(t) = 0) = 1 λh + o(h), Pr(X(t + h) X(t) = 1) = λh + o(h); (iii). (X(t)) t 0 t X(t) λt (X(t)) t 0 λ (i) (ii) (iii) *6 () P j (t) = Pr(X(t) = j) P j (t + h) = (1 λh)p j (t) + λp j 1 (t)h + o(h), j 1, P 0 (t + h) = (1 λh)p 0 (t) + o(h). h 0 dp j (t) = λp j (t) + λp j 1 (t), j 1, (26) dp 0 (t) = λp 0 (t), (27) P j (0) = δ 0,j λt (λt)j P j (t) = e j! (28) *6 Norris(1997) 24

25 *7 (X t ) t 0 (Y t ) t 0 λ µ (X t + Y t ) t 0 (λ + µ) 4.1 h Pr(B(t + h) B(t) = 1) βh + o(h) Pr(R(t + h) R(t) = 1) ρh + o(h) t n k k Pr(B(t) = k) = e βt (βt) k /k!, n k Pr(R(t) = n k) = e ρt (ρt) n k /(n k)! t n (β + ρ)t Pr(B(t) + R(t) = n) = e (β+ρ)t (βt + ρt) n /n! n k Pr(B(t) = k B(t) + R(t) = n) = Pr(B(t) = k, R(t) = n k)/ Pr(B(t) + R(t) = n) ( ) n β ρ Pr(B(t) = k B(t) + R(t) = n) = ( k β + ρ )k ( β + ρ )n k. n β/(β + ρ) w x = λ { 1, y = x + 1, p x,y = 0, y x + 1 λ, y = x + 1 w x,y = λ, y = x 0, *7 Karlin and Taylor(1975),pp

26 (21) (22) dp x,y (t) = λp x,y (t) + λp x+1,y (t), dp x,y (t) = λp x,y 1 (t) λp x,y (t), (29) P x,y (0) = δ x,y *8 (29) P x,y (t) = e λt P x,y (0) + λ t P x,y (0) = δ xy y > x y P x,y (t) = λ t 0 0 e λ(t s) P x,y 1 (s)ds, t 0. P x,x (t) = Pr(τ 1 > t) = e λt, t 0, y = x + 1 P x,x+1 (t) = λ y = x + 2 P x,x+2 (t) = λ t 0 t 0 e λ(t s) P x,y 1 (s)ds, t 0. e λ(t s) e λs ds = λte λt, t 0. e λ(t s) λse λs ds = (λt)2 2 e λt, t 0. P x,y (t) = (λt)y x e λt, y x, t 0, (y x)! W = (w ij : i, j S) S W (i). i S 0 < w ii < ; (ii). i j w ij 0 ; (iii). i, w ij = 1. j S W λ λ 0 W = 0 λ λ λ *8 Appendix 26

27 W S W P (t) = e tw (P (t) : t 0) *9 (i). s, t P (s + t) = P (s)p (t); (ii). (P (t) : t 0) d P (t) = P (t)w, P (0) = I; (iii). (P (t) : t 0) d P (t) = W P (t), P (0) = I; (iv). k = 0, 1, 2,..., ( d kp (t) = W ) t=0 k λ (pure birth processes) x λ x, x 0 h Pr(X(t + h) = x X(t) = x) = 1 λ x h + o(h) Pr(X(t + h) = x + 1 X(t) = x) = λ x h + o(h). X(0) = x S 1, S 2,... λ x, λ x+1,... Y n = x + n (26) (27) dp y (t) = λ y P y (t) + λ y 1 P y 1 (t), y 1, dp 0 (t) = λ 0 P 0 (t), P y (0) = δ xy. (29) dp x,y (t) = λ y 1 P x,y 1 (t) λ y P x,y (t), (30) λ x (e λxt e λx+1t ), λ P x,x+1 (t) = x+1 λ x, λ x+1 λ x λ x e λxt, λ x+1 = λ x. *9 Norris(1997) 27

28 4.2 ( ) λ x = xλ, x 0, (26,27) dp y (t) = λyp y (t) + λ(y 1)P y 1 (t), y 1. x = 1 P y (t) = e λt (1 e λt ) y 1, y 1, (4.6) dp x,y (t) = λ(y 1)P x,y 1 (t) λyp x,y (t), ( ) y 1 P x,y (t) = e xλt (1 e λt ) y k, y x, t 0. y x 4.4 S = {0, 1, 2,..., d} S = {0, 1, 2,..., } ( ) (birth and death processes) y x > 1 w xy = 0. x x 1 x + 1 w x,x+1 w x,x 1 λ x = w x,x+1, µ x = w x,x 1 w x p xy (20) w x,x+1 + w x,x 1 = w x = w xx w xx = (λ x + µ x ), w x = λ x + µ x. 28

29 p xy p xy = w xy /w x, x y µ x λ x +µ x, y = x 1, λ p xy = x λ x +µ x, y = x + 1,. 0, µ 0 = 0 λ d = 0 A, B λ x <A + Bx, (i). h Pr(X(t + h) = x + 1 X(t) = x) = λ x h + o(h); (ii). h Pr(X(t + h) = x 1 X(t) = x) = µ x h + o(h); x 0. (iii). h Pr(X(t + h) = x X(t) = x) = 1 (λ x + µ x )h + o(h); (iv). µ 0 = 0, λ 0 > 0, µ x, λ x > 0, x 1. W (infinitesimal generator ) λ 0 λ µ 1 (λ 1 + µ 1 ) λ 1 0 W = 0 µ 2 (λ 2 + µ 2 ) λ µ 3 (λ 3 + µ 3 )..... * 10 (21)(22) dp x,y (t) = µ x P x 1,y (t) (λ x + µ x )P x,y (t) + λ x P x+1,y (t), (31) dp x,y (t) = λ y 1 P x,y 1 (t) (λ y + µ y )P x,y (t) + µ y+1 P x,y+1 (t). (32) λ 1 = 0 P x,y (t) y = x + 1, x + 2, * 11 (25) dp y (t) = P y 1 (t)w y 1,y (t) + P y+1 (t)w y+1,y P y (t)w y,y+1 (t) P y (t)w y,y 1 (t) λ µ dp y (t) = λ y 1 P y 1 (t) + µ y+1 P y+1 (t) (λ y + µ y )P y (t), y = 1, 2,, (33) dp 0 (t) = µ 1 P 1 (t) λ y P 0 (t), (34) *10 Taylor and Karlin(1998) *11 (2003) 29

30 4.3 ( : ) x λ x = λx, µ x = µx (λ, µ > 0) E Ef(n) = f(n + 1), E 1 f(n) = f(n 1). P n (t) = (E 1)µ n P n (t) + (E 1 1)λ n P n (t), (35) 4.5 π(x) = 1, π(x) 0, (36) x π(x)p x,y (t) = π(y), y S, t 0, (37) x S π (stationary probability distribution) lim P x,y(t) = π(y), t y S * 12 X(t) t π (37) x π(x) dp x,y(t) t = 0 π(x)w xy = 0, x = 0. y S π lim t P x,y (t) = π(y) dp x,y (t)/ = 0 (21) (22) w xz P z,y = 0, P x,z w z,y = 0 z z (38) *12 30

31 4.4 ( ) X(t), t 0 {0, 1, 2,...} (irreducible) x λ x µ x (38) X π(x) π(1)µ 1 π(0)λ 0 = 0, π(y + 1)µ y+1 π(y)(λ y + µ y ) + π(y 1)λ y 1 = 0, y 1. π(y + 1)µ y+1 π(y)λ y = π(y)µ y π(y 1)λ y 1, y 1, π(y + 1)µ y+1 π(y)λ y = 0 π(y + 1) = λ y µ y+1 π(y), y 0. x S π(x) = λ 0 λ x 1 µ 1 µ x π(0), x 1. π x = { 1, x = 0, λ 0 λ x 1 /µ 1 µ x, x 1, π(x) = π x π(0), x 0, π x = x x=1 λ 0 λ x 1 µ 1 µ x <, π(x) = π x y=0 π, x 0. y (39) S = {0, 1, d} π(x) = π x d y=0 π, 0 < x < d, y 31

32 (25) P x w x,y = P y w y,x x y x y y y P x w x,y = P y w y,x, x, y S * (linear birth-death process with immigration) λ n = λn + α; µ n = µn, α > 0 λ 0 = α P k (t) P 0 (t) = (α + λ(k 1))P k 1 (t) (α + (λ + µ)k)p k (t) + µ(k + 1)P k+1 (t), k 1, = µp 1 (t) αp 0 (t). ( ) (α + λ(k 1))π k 1 (α + (λ + µ)k)π k + µ(k + 1)π k+1 = 0. (α + λ(k 1))π k 1 µkπ k = (α + λk)π k µ(k + 1)π k+1 k 1 k k k + 1 π k α + λ(k 1) = π k 1 µk ( ) θ + k 1 π k = γ k (1 γ) θ, k θ = α/λ, γ = λ/µ * 14. *13 van Kampen(1992),chapter 5 *14 (2003) 6 32

33 (H ) * 15 H (i). H(t) 0 P n (t) = π n H = 0. (ii). P n (t) π n dh(t)/ < 0. (iii). P n (t) = π n dh(t)/ = 0. 3 H(t) = n S P n (t) ln P n(t) π n 4.6 = ( ) = dp j (t) = λjp j (t) + λ(j 1)P j 1 (t), j 1. (40) P j (0) = δ 1,j P j (t) G(z, t) = P j (t)z j j=0 (40) G t = λz(z 1) G z 1 = dz λz(z 1) z 1 e λt = c z c ϕ G(z, t) = ϕ(c) G(z, t) = ϕ( z 1 e λt ) z *15 van Kampne(1992), chapter 5 Weidlich(2000), chapter 10 33

34 * 16 ϕ G(z, 0) = z z = ϕ( z 1 ). z ϕ(x) = 1 1 x. G(z, t) = ze λt 1 (1 e λt )z z G(z, t) = e λt z z j (1 e λt ) j z j, (1 e λt )z < 1. j=0 P j (t) = e λt (1 e λt ) j 1, j 1, * 17 ( P j (t) G t = α(z 1)G + (λz µ)(z 1) G z P j (t) * S P (x, t n ; y, t n+1 ) P (x, t n ; y, t n+1 ) = Pr(X(t n+1 ) = y X(t n ) = x), n = 0, 1, 2,.. *16 Appendix *17 (1968) 4 *18 (2003) 6 34

35 t n+1 t n Pr(y, t n+2 x, t n ; z, t n+1 ) = P (x, t n ; z, t n+1 )P (z, t n+1 ; y, t n+2 ) P (x, t n ; y, t n+2 ) = P (x, t n ; y, t n+2 ) = Pr(y, t n+2 x, t n ; z, t n+1 )dz P (x, t n ; z, t n+1 )P (z, t n+1 ; y, t n+2 )dz (41) P (z, t; y, t + τ ) = (1 a 0 τ )δ y,z + τ W (y z) + o(τ ) (42) W (y z) z y ( w z,y ) P (x, t; y, t + τ + τ ) = P (z, t + τ; y, t + τ + τ )P (x, t; z, t + τ)dz P (x, t; y, t + τ + τ ) = (1 a 0 τ )P (x, t + τ; y, t + τ + τ ) + τ W (y z)p (x, t; z, t + τ)dz τ 0 P (x, t; y, t + τ) = {W (y z)p (x, t; z, t + τ) W (z y)p (x, t; y, t + τ)}dz τ a 0 (x) = W (z x)dz X(t 0 ) = x 0 Pr(X(t) = y) = P (y, t) = Pr(X(t) = y) δ x0,zp (z, t 0 ; y, t)dz P (y, t) = {W (y z)p (z, t) W (z y)p (y, t)}dz (43) t 35

36 X(t) ( 1 t (diffusion process) ϵ > 0 1 lim Pr( X(t + h) X(t) > ϵ X(t) = x) = 0, x S. (44) h 0 h ϵ (44) Dynkin lim h 0 lim h 0 1 E[X(t + h) X(t) X(t) = x] = µ(x, t), h (45) 1 h E[(X(t + h) X(t))2 X(t) = x] = σ 2 (x, t) (46) µ σ (45) µ(x, t) (drift coefficients) (infinitesimal mean), (46) σ 2 (x, t) (diffusion coefficients) (infinitesimal variance) X(t) (44) (45) (46) µ(x, t) σ 2 (x, t) X(t) * ( Brownian process) ()X(t) E[X(t + h) X(t)] 0 V ar[x(t + h) X(t)] Bh Bh = σ 2 h E[X(t + h) X(t) X(t) = x] = 0, E[(X(t + h) X(t)) 2 X(t) = x] = σ 2 h Dynkin (, + ) µ(x) = 0 σ 2 (x) = σ 2 µ(x) = µ 0 µ = ( Ornstein-Uhlenbeck process) µ(x) = αx σ 2 (x) = σ 2 * 20 *19 Karlin and Taylor(1981) 15 *20 Karlin and Taylor(1981) pp

37 5.1 X(t) µ(x) σ 2 (x) g(x) x 2 g (x) Y (t) = g[x(t)] Y (t) µ Y (y) = 1 2 σ2 (x)g (x) + µ(x)g (x), σy 2 (y) = σ 2 (x)[g (x)] 2 µ Y σy ( geometric Brawnian motion) X(t) µ σ 2 Y (t) = exp{x(t)} (0, ) t 0 < t 1 < < t n Y (t 1 )/Y (t 0 ), Y (t 2 )/Y (t 1 ),..., Y (t n )/Y (t n 1 ) y = g(x) = exp{x} g (x) = g (x) = y Y (t) µ Y (y) = ( 1 2 σ2 + µ)y, σy 2 (y) = σ 2 y (41) F (x, τ; y, t) F (x, τ; y, t) Pr(X(t)<y X(τ) = x) F (x, τ; y, t) = y P (x, τ; z, t)dz 5.2 F (x, τ; y, τ + t) = Pr(X(t)<y X(0) = x) = F (x, y, t) F (x, y, t) (44)(45)(46) F (x, y, t), 2 F (x, y, t) x x 2 37

38 (x, t) F (x, y, t) t F (x, y, t) = 1 2 σ2 (x) 2 F (x, y, t) + µ(x) F (x, y, t) (47) x2 x * 21 F (x, y, t) P (y, t) van Kampen(1992) W (y x) r = y x W (x; r) W (x + r x) P (y, t) = P (y r, t)w (y r; r)dr P (y, t)w (y; r)dr t W (x; r) r r > δ, W (x; r) 0, x < δ, W (x + x; r) W (x; r), δ > 0 1 P (y, t) = t P (y, t)w (y; r)dr r y {W (y; r)p (y, t)}dr P (y, t)w (y; r)dr + o(r 2 ), r 2 2 {W (y; r)p (y, t)}dr y2 r a ν (y) = r ν W (y; r)dr P (y, t) t = y {a 1(y)P (y, t)} y 2 {a 2(y)P (y, t)}. (48) *21 6 Karlin and Taylor(1981) 15 38

39 W (x y) a 1, a 2 a 1 (x), a 2 (x) a 1 (x) = µ(x), a 2 (x) = σ 2 (x). 5.4 ( ) µ(x) = 0 σ 2 (x) = σ 2 P (y, t) t = σ2 2 2 P (y, t) y2 D a 2 /2 D = σ 2 /2 P (y, t) = 1 4πDt exp[ y2 4Dt ] ( ) X 2 (t) = 2Dt t t + t t X(t + t) X(t) µ(x, t) t + σ(x, t) B(t) (49) X(t) = x t B(t) B(t) = B(t + t) B(t) t E[ B(t)] = 0, Var[ B(t)] = t µ(x, t) σ(x, t) 2 µ(x, t) σ(x, t) B(t) 1 X(t). (49) X(t) µ(x, t) σ 2 (x, t). E[ X] 1 lim = lim E[µ(x, t) t + σ(x, t) B(t)] = µ(x, t) t 0 t t 0 t 39

40 . E[ X 2 ] 1 lim = lim t 0 t t 0 t Var[σ(x, t) B(t)] = σ2 (x, t). lim t 0 X/ t. (49) dx(t) = µ(x(t), t) + σ(x(t), t)db(t) (50) ( ) ds = S[µ + σdb(t)] S(t) t B(t) 1 ds = µ + σdb(t) S ln S(t) = µt + σb(t) S(0) S(t) = S(0) exp[µt + σb(t)] Y (t) (50) X(t) Y (t) = f(x(t), t) f(x(t), t) db(t) 2 f dy (t) = df(x(t), t) = f(x(t), t) dx(t) + x f(x(t), t) f(x(t), t) t f(x(t), t) dx(t) + 1 x t 2 dx(t) 2 = µ(x(t), t) µ(X(t), t)σ(x(t), t)db + σ 2 (X(t), t)db(t) 2 x 2 dx(t) 2 2 f(x(t), t) t (51) µ(x(t), t) µ(X(t), t)σ(x(t), t)db + σ 2 (X(t), t) (52) (50) (51) dy (t) = [ f(x(t), t) f(x(t), t) µ(x(t), t) + x t + 2 f(x(t), t) x 2 σ 2 (X(t), t)] f(x(t), t) σ(x(t), t)db(t) x + (53) 40

41 [+ ] 2 0 (53) Y (τ) Y (0) = τ 0 f(x(t), t) f(x(t), t) [ µ(x(t), t) f(x(t), t) x t 2 x 2 σ 2 (X(t), t)] τ f(x(t), t) + σ(x(t), t)db(t) 0 x 2 ( ) (53) Appendix A x t t x, dx, d 2 x 2, t x, dx ϕ(t, x, dx ) = 0 1 dx = f(t, x) (54) 1 (54) t dx = f(t) t x = f(t) + C dx = f(x) t = dx f(x) + C 41

42 dx = φ(t) ψ(x) ψ(x)dx = φ(t) + C A.1 dx = 2x 1 dx = 2 x ln x = 2t + ln C x = Ce 2t C f(t) g(t) dx + f(t)x = g(t) (55) 1 0 dx + f(t)x = 0 (55) ( ) ( ) dx = f(t)x x = C exp{ t t 0 f(r)dr} C (55) C t x = C(t) exp{ t t 0 f(r)dr} (55) C(t) x = exp{ t t 0 f(r)dr}[ t t 0 exp{ r t 0 f(u)du}g(r)dr + x 0 ] (56) 42

43 x 0 t = t 0 x (56) t t t r x = x 0 exp{ f(r)dr} + exp{ f(r)dr} exp{ f(u)du}g(r)dr t 0 t 0 t 0 t 0 A.2 dx = λx + g(t) t = 0 x(0) = x 0 (56) t x(t) = x 0 e λt + e λt e λr g(r)dr A.3 dx = λx, dy = x + λy. 0 t = 0 x = x 0, y = y 0 1 x x(t) = x 0 e λt 2 t y(t) = y 0 e λt + e λt e λr x(r)dr 0 t t e λt e λr x(r)dr = e λt x 0 dr = x 0 te λt 0 y(t) = y 0 e λt + x 0 te λt 0 43

44 B z x y z x = p, z y = q x y p, q f(x, y, z, p, q) = 0 z = F (x, y) z = F (x, y) p + q = 0 z = F (x y) F y = 0 xz = a z = a x y OG D OG az cx = 0, bz cy = 0 az cx = C 1, bz cy = C 2 C 1, C 2 D C 1 C 2 F (C 1, C 2 ) = 0 F (az cx, bz cy) = 0 44

45 F x + p F z = 0, F y + q F z = 0 (ap c)f 1 + bpf 2 = 0, aqf 1 + (bq c)f 2 = 0 F 1 1 F F 2 2 F 1, F 2 ap + bq = c F f(x, y, z) z z + g(x, y, z) x y = h(x, y, z) (57) P (x, y, z) P PQ PQ (f(x, y, z), g(x, y, z), h(x.y, z)) P S z = F (x, y) P S PN (p, q, 1) (57) fp + gq h = 0 PQ PN PQ S dx f(x, y, z) = dy g(x, y, z) = y = ϕ(x, C 1, C 2 ), z = ψ(x, C 1, C 2 ) dz (58) h(x, y, z) u(x, y, z) = C 1, v(x, y, z) = C 2 F (u, v) = 0 (59) F (57) (58) F (u, v) = 0 (58) (59) u = ϕ(v) ϕ 45

46 B.1 w k,k+1 = α + λk G(z, t) G t λz(z 1) G z = α(z 1)G (t, z) G (t, z) (57) f = 1, g = λz(z 1), h = α(z 1)G (58) 1 = dz λz(z 1) = 2 dg α(z 1) ln G(z, t) = α λ ln z + ln C 1 ln[g(z, t)z α/λ ] = ln C 1 1 z z 1 = C 2e λt C 1, C 2 ϕ C 1 = ϕ(c 2 ) G(z, t)z α/λ z = ϕ( z 1 e λt ) ( ) G(z, t) = z α/λ z ϕ( z 1 e λt ) (1),(5),(6) (6) (1). Paul G. Hoel, Sidney C. Port, and Charles J. Stone(1972), Introduction to Stochastic Processes, Houghton Mifflin. (2). Samuel Karlin and Howard M. Taylor(1975), A First Course in Stochastic Processes, Academic Press. 46

47 (3). Samuel Karlin and Howard M. Taylor(1981), A Seccond Course in Stochastic Processes, Academic Press. (4). J.R.Norris(1997), Markov Chains, Cambridge University Press. (5). Howard M. Taylor and Samuel Karlin(1998), An Introduction to Stochastic Modeling, Academic Press. (6). (1968), (7). N. G. Van Kampen(1992), Stochastic Processes in Physics and Chemistry, North-Holland. (3) (1). Masanao Aoki(1996), New Approaches to Macroeconomic Modeling,Cambridge University Press. (2). Masanao Aoki(202), Modeling Aggregate Behavior and Fluctuations in Economics, Cambridge University Press. (3). (2003) (4). Wolfgang Weidlich and Gunter Haag(1983), Concepts and Models of a Quantitative Sociology,Springer- Verlag. (5). Wolfgang Weidlich(2000), Sociodynamics:A Systematic Approach to Mathematical Modelling in the Social Sciences, Dover Publication. 47

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

untitled

untitled 3 3. (stochastic differential equations) { dx(t) =f(t, X)dt + G(t, X)dW (t), t [,T], (3.) X( )=X X(t) : [,T] R d (d ) f(t, X) : [,T] R d R d (drift term) G(t, X) : [,T] R d R d m (diffusion term) W (t)

More information

( ) Loewner SLE 13 February

( ) Loewner SLE 13 February ( ) Loewner SLE 3 February 00 G. F. Lawler, Conformally Invariant Processes in the Plane, (American Mathematical Society, 005)., Summer School 009 (009 8 7-9 ) . d- (BES d ) d B t = (Bt, B t,, Bd t ) (d

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W 003 7 14 Black-Scholes [1] Nelson [] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-Wu Nelson e-mail: takatoshi-tasaki@nifty.com kabutaro@mocha.freemail.ne.jp

More information

43433 8 3 . Stochastic exponentials...................................... 3. Girsanov s theorem......................................... 4 On the martingale property of stochastic exponentials 5. Gronwall

More information

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 14 5 1 ,,,17,,,194 1 4 ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 1 4 1.1........................................ 4 5.1........................................ 5.........................................

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0, .1.1 Y K L Y = K 1 3 L 3 L K K (K + ) 1 1 3 L 3 K 3 L 3 K 0 (K + K) 1 3 L 3 K 1 3 L 3 lim K 0 K = L (K + K) 1 3 K 1 3 3 lim K 0 K = 1 3 K 3 L 3 z = f(x, y) x y z x-y-z.1 z = e x +xy y 3 x-y ( ) z 0 f(x,

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

( )/2   hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1 ( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

2011 8 26 3 I 5 1 7 1.1 Markov................................ 7 2 Gau 13 2.1.................................. 13 2.2............................... 18 2.3............................ 23 3 Gau (Le vy

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

2011 ( ) ( ) ( ),,.,,.,, ,.. (. ), 1. ( ). ( ) ( ). : obata/,.,. ( )

2011 ( ) ( ) ( ),,.,,.,, ,.. (. ), 1. ( ). ( ) ( ). :   obata/,.,. ( ) 2011 () () (),,.,,.,,. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.,.. (. ), 1. ( ). ()(). : www.math.is.tohoku.ac.jp/ obata/,.,. () obata@math.is.tohoku.ac.jp http://www.dais.is.tohoku.ac.jp/ amf/, (! 22 10.6; 23 10.20;

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/085221 このサンプルページの内容は, 初版 1 刷発行時のものです. i +α 3 1 2 4 5 1 2 ii 3 4 5 6 7 8 9 9.3 2014 6 iii 1 1 2 5 2.1 5 2.2 7

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, 変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +

More information

Grushin 2MA16039T

Grushin 2MA16039T Grushin 2MA1639T 3 2 2 R d Borel α i k (x, bi (x, 1 i d, 1 k N d N α R d b α = α(x := (αk(x i 1 i d, 1 k N b = b(x := (b i (x 1 i d X = (X t t x R d dx t = α(x t db t + b(x t dt ( 3 u t = Au + V u, u(,

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

tokei01.dvi

tokei01.dvi 2. :,,,. :.... Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 3. (probability),, 1. : : n, α A, A a/n. :, p, p Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

確率論と統計学の資料

確率論と統計学の資料 5 June 015 ii........................ 1 1 1.1...................... 1 1........................... 3 1.3... 4 6.1........................... 6................... 7 ii ii.3.................. 8.4..........................

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou (Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fourier) (Fourier Bessel).. V ρ(x, y, z) V = 4πGρ G :.

More information

6.1 (P (P (P (P (P (P (, P (, P.

6.1 (P (P (P (P (P (P (, P (, P. (011 30 7 0 ( ( 3 ( 010 1 (P.3 1 1.1 (P.4.................. 1 1. (P.4............... 1 (P.15.1 (P.16................. (P.0............3 (P.18 3.4 (P.3............... 4 3 (P.9 4 3.1 (P.30........... 4 3.

More information

73

73 73 74 ( u w + bw) d = Ɣ t tw dɣ u = N u + N u + N 3 u 3 + N 4 u 4 + [K ] {u = {F 75 u δu L σ (L) σ dx σ + dσ x δu b δu + d(δu) ALW W = L b δu dv + Aσ (L)δu(L) δu = (= ) W = A L b δu dx + Aσ (L)δu(L) Aσ

More information

23 7 28 i i 1 1 1.1................................... 2 1.2............................... 3 1.2.1.................................... 3 1.2.2............................... 4 1.2.3 SI..............................

More information

統計学のポイント整理

統計学のポイント整理 .. September 17, 2012 1 / 55 n! = n (n 1) (n 2) 1 0! = 1 10! = 10 9 8 1 = 3628800 n k np k np k = n! (n k)! (1) 5 3 5 P 3 = 5! = 5 4 3 = 60 (5 3)! n k n C k nc k = npk k! = n! k!(n k)! (2) 5 3 5C 3 = 5!

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

Green

Green 28 6/-3 2 ax, bx R, L = d2 ax 2 dx 2 + bx d dx 2 L X = {Xt, t }. σ y = inf{t > ; Xt = y} t Xt L y = sup{t > ; Xt = y} 2. Gauss Gamma 3. tree 4. t Black-Scholes Madan-Roynette-Yor [6] σ y E x [exp λσ y

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x n= n 2 = π2 6 3 2 28 + 4 + 9 + = π2 6 2 f(z) f(z) 2 f(z) = u(z) + iv(z) * f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x f x = i f y * u, v 3 3. 3 f(t) = u(t) + v(t) [, b] f(t)dt = u(t)dt

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R =

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R = 1 1 1.1 1827 *1 195 *2 x 2 t x 2 = 2Dt D RT D = RT N A 1 6πaη (1.1) D N A a η 198 *3 ( a =.212µ) *1 Robert Brown (1773-1858. *2 Albert Einstein (1879-1955 *3 Jean Baptiste Perrin (187-1942 2 1 x 2 x 2

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

6.1 (P (P (P (P (P (P (, P (, P.101

6.1 (P (P (P (P (P (P (, P (, P.101 (008 0 3 7 ( ( ( 00 1 (P.3 1 1.1 (P.3.................. 1 1. (P.4............... 1 (P.15.1 (P.15................. (P.18............3 (P.17......... 3.4 (P................ 4 3 (P.7 4 3.1 ( P.7...........

More information

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m A f i x i B e e e e 0 e* e e (2.1) e (b) A e = 0 B = 0 (c) (2.1) (d) e

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

Chap11.dvi

Chap11.dvi . () x 3 + dx () (x )(x ) dx + sin x sin x( + cos x) dx () x 3 3 x + + 3 x + 3 x x + x 3 + dx 3 x + dx 6 x x x + dx + 3 log x + 6 log x x + + 3 rctn ( ) dx x + 3 4 ( x 3 ) + C x () t x t tn x dx x. t x

More information

waseda2010a-jukaiki1-main.dvi

waseda2010a-jukaiki1-main.dvi November, 2 Contents 6 2 8 3 3 3 32 32 33 5 34 34 6 35 35 7 4 R 2 7 4 4 9 42 42 2 43 44 2 5 : 2 5 5 23 52 52 23 53 53 23 54 24 6 24 6 6 26 62 62 26 63 t 27 7 27 7 7 28 72 72 28 73 36) 29 8 29 8 29 82 3

More information

(1) (2) (3) (4) 1

(1) (2) (3) (4) 1 8 3 4 3.................................... 3........................ 6.3 B [, ].......................... 8.4........................... 9........................................... 9.................................

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

Fubini

Fubini 3............................... 3................................ 5.3 Fubini........................... 7.4.............................5..........................6.............................. 3.7..............................

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

Dynkin Serre Weyl

Dynkin Serre Weyl Dynkin Naoya Enomoto 2003.3. paper Dynkin Introduction Dynkin Lie Lie paper 1 0 Introduction 3 I ( ) Lie Dynkin 4 1 ( ) Lie 4 1.1 Lie ( )................................ 4 1.2 Killing form...........................................

More information

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x 2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3 II (Percolation) 12 9 27 ( 3-4 ) 1 [ ] 2 [ ] 3 [ ] 4 [ ] 1992 5 [ ] G Grimmett Percolation Springer-Verlag New-York 1989 6 [ ] 3 1 3 p H 2 3 2 FKG BK Russo 2 p H = p T (=: p c ) 3 2 Kesten p c =1/2 ( )

More information

Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math))

Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math)) Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math)) 2001 1 e-mail:s00x0427@ip.media.kyoto-u.ac.jp 1 1 Van der Pol 1 1 2 2 Bergers 2 KdV 2 1 5 1.1........................................

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 - M3............................................................................................ 3.3................................................... 3 6........................................... 6..........................................

More information

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,. (1 C205) 4 10 (2 C206) 4 11 (2 B202) 4 12 25(2013) http://www.math.is.tohoku.ac.jp/~obata,.,,,..,,. 1. 2. 3. 4. 5. 6. 7. 8. 1., 2007 ( ).,. 2. P. G., 1995. 3. J. C., 1988. 1... 2.,,. ii 3.,. 4. F. ( ),..

More information

II Brown Brown

II Brown Brown II 16 12 5 1 Brown 3 1.1..................................... 3 1.2 Brown............................... 5 1.3................................... 8 1.4 Markov.................................... 1 1.5

More information

untitled

untitled 18 1 2,000,000 2,000,000 2007 2 2 2008 3 31 (1) 6 JCOSSAR 2007pp.57-642007.6. LCC (1) (2) 2 10mm 1020 14 12 10 8 6 4 40,50,60 2 0 1998 27.5 1995 1960 40 1) 2) 3) LCC LCC LCC 1 1) Vol.42No.5pp.29-322004.5.

More information

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) ( 6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n 1, R f : R R,.,, b R < b, f(x) [, b] f(x)dx,, [, b] f(x) x ( ) ( 1 ). y y f(x) f(x)dx b x 1: f(x)dx, [, b] f(x) x ( ).,,,,,., f(x)dx,,,, f(x)dx. 1.1 Riemnn,, [, b] f(x) x., x 0 < x 1 < x 2 < < x n 1

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information