Microsoft PowerPoint _トポロジー理工学_海住2-upload用.pptx

Size: px
Start display at page:

Download "Microsoft PowerPoint _トポロジー理工学_海住2-upload用.pptx"

Transcription

1 平成 5 年度大学院共通授業 トポロジー理工学特別講義 Ⅱ 44 スピントロニクスの基礎とその応用 本日の講義内容 スピントロニクスとは? スピンの発見 ( 世紀前半 磁性の歴史 ( 世紀前半 世紀後半 電荷 S -ee N スピン 北海道大学電子科学研究所海住英生 4 スピントロニクスの誕生とその基礎と応用 巨大磁気抵抗 (GM 効果 トンネル磁気抵抗 (TM 効果 スピン注入磁化反転 磁壁の電流駆動 スピン流 スピンホール効果 スピンゼーベック効果 5 スピントロニクスの将来 スピントロニクス 電子の電荷電荷とスピンを利用した新しい研究分野 Sn Hall 効果 TM 効果 GM 効果 電荷 電子工学 ( 半導体工学 S -e N 年以降 年以前 スピン MAM 磁気ヘッド 磁気センサ 磁気工学 LSI トランジスタ磁気記録磁石 スピンの発見 ナトリウムのスペクトル Na つの光ナトリウムの 線スピンに起因 : = n : = 589. n h h E ev 軌道 l= S 軌道 The new ter shee of hydrogen l= S. Goudst and G.E. Uhlenbek, hysa 6 7(96

2 スピンの発見 N ナトリウムのスペクトル つの光 Na ( h h h E ( h ナトリウムの 線 軌道スピンに起因 ( h : = n : = 589. n l= 軌道 ] ( [ h ev h h E S 軌道 ev ev h S. Goudst and G.E. Uhlenbek, hysa 6 7(96 The new ter shee of hydrogen l= S 軌道 スピンの正体アインシュタインの相対性理論 ( 4 ( ディラックアインシュタイン スピンの正体 スピンの正体 t t ディラック方程式 ディラック方程式 t

3 スピンの正体 t 電子 H H 4 陽電子 スピン角運動量 s z u sn スピンの正体 down sn スピンの固有値 s z, 電子陽電子コマのようなもの 歳差運動 磁性に関する理論的解釈 ( 世紀前半 磁性体の内部構造 ~ 磁壁 ~( 世紀後半 9 Solvay Conferene J : 磁気モーメント 分域 磁区 (Magnet doan 境界領域 磁壁 (oan wall ~ n ( 原子に局在している ra Ensten Hesenberg J : 電子スピンの交換エネルギー 磁性に関して 認知されるとともに 理論的な解釈についても大きな発展を遂げた!! 磁気モーメント (Magnet oent 磁壁幅 (W wdth Well defned shae leads to well ontrolled doan strutures! MFM ages Courtesy of rof. Y. Otan K. Shgeto AL 8 ( 49 Courtesy of rof. Y. Otan

4 巨大磁気抵抗 (GM 効果 トンネル磁気抵抗 (TM 効果 7 年ノーベル物理学賞 hys. ev. Lett. 6, 47 (988 Fe Cr フェールグリュンベルク 電気抵抗 : 大電気抵抗 : 小 抵抗 M 比 ガウス 東北大宮崎先生 MIT Moodera M 比 =8%@K T. Myazak et al.: J. Magn. Magn. Mater. 9, L ( ガウス 電子 磁気モーメント 磁場 H 磁場 J. S. Moodera et al.: hys. ev. Lett. 74, 7 (995 トンネル磁気抵抗 (TM 効果 常磁性体と強磁性体 強磁性トンネル接合 (MTJ 常磁性体 (Al Na d 等 強磁性体 (Fe Co N 等 電流 強磁性層 絶縁層 強磁性層 磁場 : 小 磁化 TM 比 = = A : 大 A エネルギー E ( E 状態密度 (E E E e (~ev

5 常磁性体と強磁性体 トンネル磁気抵抗 (TM 効果 常磁性体 (Al Na d 等 強磁性体 (Fe Co N 等 磁化 磁化平行 ~ n 絶電流縁層 磁化反平行 磁場 H エネルギー E 4 Fe TB LMTO ASA 強磁性層エネルギー -4 状態密度 (E ( E E E (ev OS (statesevato 状態密度 抵抗 : 小抵抗 : 大 G T ( MTJ における磁化状態 ハードディスクドライブ (H の仕組み 強磁性体のヒステリシス曲線 B= 残留磁化 B=B 保磁力 B=B B アクチュエータスピンドルモーターアーム磁気ヘッド磁気ディスク B=B 記録容量は TB つまり 兆個のデータが入っている!!

6 ハードディスクドライブ (H の仕組み TM 比を大きくするためには? エネルギー 磁化平行 磁化反平行 状態密度 抵抗 : 小抵抗 : 大 G T ( G ( T G T ( G A ( htt:a.wkeda.org htt: grahs.o.nanoeletronskataharddsk.ht htt:www7a.bglobe.ne.~yauuwhatshdd.htl htt: on.o.twcbasalksoharddsk.ht TM 比を大きくするためには? G T ( T TM A ( ( ( スピン分極率 G A GA G G ( G G G ( エネルギー TM 比 (% A A が大きい程 TMが大きくなる 状態密度 スピン分極率 (% TM ra ato (% TM 比を大きくするためには? 強磁性層絶縁層強磁性層 MgO S. Yuasa, Nat. Mater. S. S.. arkn, Nat. Mater. T. Myazak, JMMM J. S. Moodera, L AlO Year

7 MgO を用いた強磁性トンネル接合 MgO を用いた強磁性トンネル接合 産総研湯浅氏 IBM arkn S. Yuasa, Nat. Mater., 868 (4 S. S.. arkn, Nat. Mater., 86 (4 Courtesy of S. ( 年応用物理学会発表資料 スピン注入磁化反転 スピンを注入すると 磁化が反転する 磁気ランダムアクセスメモリ (MAM =98% 究極の不揮発性メモリ J =.85 6 A TM 効果 スピン注入磁化反転 (TM 比 =98% J. Hayakawa et al.: IEEE Trans. Magn (8 64Mビット品 Eversn Tehnologes ( J =.5 6 A J. Hayakawa et al.: IEEE Trans. Magn (8

8 磁壁の電流駆動 MFM 像で磁壁の移動を直接観察 スピントルクオシレータ スピントランスファートルクとダンピングの効果により 歳差運動が開始する 高周波オシレータに応用可能タに応用可能 A. Yaaguh et al.: hys. ev. Lett. 9 (4 775 H A. M. ea, et al.: Nature hyss 4, 8 (8 スピン流 スピンホール効果 Sn olarzed urrent Sn urrent I : U sn urrent I : own sn urrent :harge :sn Flow of both harge and sn = = I e ( = I + I I S ( = I -I Flow of only sn I e ( = I + I = I S ( = I -I ホール効果 ローレンツ力 z y B E f q( v B e v y z スピンホール効果 v s スピン軌道相互作用が強い材料 s e 上向きスピン 下向きスピン Y. K. Kato, et al. : Sene 6 9 (4

9 Sn Seebek effet スピンゼーベック効果 トポロジカル絶縁体 Sn u es S T es T S Sn down Quantu well (HgTe M. Köng et al.: Sene 8, 766 (7 e A SHE EISHE JS σ tysahre K. Uhda et al., Nature 455, 778 (8 C. L. Kane and E. J. Mele: Sene 4, 69 (6 連絡先と謝辞 北海道大学電子科学研究所光電子ナノ材料研究分野海住英生 居室 : 創成棟 F 4 E al kau@es.hokuda.a. a 今回の講義に関しまして 下記の先生方から大変貴重な御助言 並びに ご協力を頂きました ここに感謝の意を表します 東京大学物性研究所大谷義近先生北海道大学電子科学研究所西井準治先生 近藤憲治先生北海道大学大学院工学研究院長浜太郎先生

Microsoft PowerPoint - summer_school_for_web_ver2.pptx

Microsoft PowerPoint - summer_school_for_web_ver2.pptx スピン流で観る物理現象 大阪大学大学院理学研究科物理学専攻 新見康洋 スピントロニクスとは スピン エレクトロニクス メモリ産業と深くつなが ている メモリ産業と深くつながっている スピン ハードディスクドライブの読み取りヘッド N 電荷 -e スピンの流れ ピ の流れ スピン流 S 巨大磁気抵抗効果 ((GMR)) from http://en.wikipedia.org/wiki/disk_readand-write_head

More information

PRESS RELEASE (2015/10/23) 北海道大学総務企画部広報課 札幌市北区北 8 条西 5 丁目 TEL FAX URL:

PRESS RELEASE (2015/10/23) 北海道大学総務企画部広報課 札幌市北区北 8 条西 5 丁目 TEL FAX URL: PRESS RELEASE (2015/10/23) 北海道大学総務企画部広報課 060-0808 札幌市北区北 8 条西 5 丁目 TEL 011-706-2610 FAX 011-706-2092 E-mail: kouhou@jimu.hokudai.ac.jp URL: http://www.hokudai.ac.jp 室温巨大磁気キャパシタンス効果の観測にはじめて成功 研究成果のポイント

More information

互作用によって強磁性が誘起されるとともに 半導体中の上向きスピンをもつ電子と下向きスピンをもつ電子のエネルギー帯が大きく分裂することが期待されます しかし 実際にはこれまで電子のエネルギー帯のスピン分裂が実測された強磁性半導体は非常に稀で II-VI 族である (Cd,Mn)Te において極低温 (

互作用によって強磁性が誘起されるとともに 半導体中の上向きスピンをもつ電子と下向きスピンをもつ電子のエネルギー帯が大きく分裂することが期待されます しかし 実際にはこれまで電子のエネルギー帯のスピン分裂が実測された強磁性半導体は非常に稀で II-VI 族である (Cd,Mn)Te において極低温 ( スピン自由度を用いた次世代半導体デバイス実現へ大きな進展 ~ 強磁性半導体において大きなスピン分裂をもつ電子のエネルギー状態を初めて観測 ~ 1. 発表者 : レデゥックアイン ( 東京大学大学院工学系研究科電気系工学専攻 附属総合研究機構助教 ) ファムナムハイ ( 東京工業大学工学院電気電子系准教授 ) 田中雅明 ( 東京大学大学院工学系研究科電気系工学専攻教授 スピントロニクス学術連携研究教育センターセンター長

More information

報道発表資料 2007 年 4 月 12 日 独立行政法人理化学研究所 電流の中の電子スピンの方向を選り分けるスピンホール効果の電気的検出に成功 - 次世代を担うスピントロニクス素子の物質探索が前進 - ポイント 室温でスピン流と電流の間の可逆的な相互変換( スピンホール効果 ) の実現に成功 電流

報道発表資料 2007 年 4 月 12 日 独立行政法人理化学研究所 電流の中の電子スピンの方向を選り分けるスピンホール効果の電気的検出に成功 - 次世代を担うスピントロニクス素子の物質探索が前進 - ポイント 室温でスピン流と電流の間の可逆的な相互変換( スピンホール効果 ) の実現に成功 電流 60 秒でわかるプレスリリース 2007 年 4 月 12 日 独立行政法人理化学研究所 電流の中の電子スピンの方向を選り分けるスピンホール効果の電気的検出に成功 - 次世代を担うスピントロニクス素子の物質探索が前進 - 携帯電話やインターネットが普及した情報化社会は さらに 大容量で高速に情報を処理する素子開発を求めています そのため エレクトロニクス分野では さらに便利な技術革新の必要性が日増しに高まっています

More information

スピン流を用いて磁気の揺らぎを高感度に検出することに成功 スピン流を用いた高感度磁気センサへ道 1. 発表者 : 新見康洋 ( 大阪大学大学院理学研究科准教授 研究当時 : 東京大学物性研究所助教 ) 木俣基 ( 東京大学物性研究所助教 ) 大森康智 ( 東京大学新領域創成科学研究科物理学専攻博士課

スピン流を用いて磁気の揺らぎを高感度に検出することに成功 スピン流を用いた高感度磁気センサへ道 1. 発表者 : 新見康洋 ( 大阪大学大学院理学研究科准教授 研究当時 : 東京大学物性研究所助教 ) 木俣基 ( 東京大学物性研究所助教 ) 大森康智 ( 東京大学新領域創成科学研究科物理学専攻博士課 スピン流を用いて磁気の揺らぎを高感度に検出することに成功 スピン流を用いた高感度磁気センサへ道 1. 発表者 : 新見康洋 ( 大阪大学大学院理学研究科准教授 研究当時 : 東京大学物性研究所助教 ) 木俣基 ( 東京大学物性研究所助教 ) 大森康智 ( 東京大学新領域創成科学研究科物理学専攻博士課程 1 年 ) 顧波 ( 日本原子力研究開発機構先端基礎研究センター研究員 ) Timothy Ziman

More information

<4D F736F F F696E74202D2088E B691CC8C7691AA F C82512E B8CDD8AB B83685D>

<4D F736F F F696E74202D2088E B691CC8C7691AA F C82512E B8CDD8AB B83685D> 前回の復習 医用生体計測磁気共鳴イメージング :2 回目 数理物質科学研究科電子 物理工学専攻巨瀬勝美 203-7-8 NMRとMRI:( 強い ) 静磁場と高周波 ( 磁場 ) を必要とする NMRとMRIの歴史 :952 年と2003 年にノーベル賞 ( 他に2 回 ) 数学的準備 : フーリエ変換 ( 信号の中に, どのような周波数成分が, どれだけ含まれているか ( スペクトル ) を求める方法

More information

スライド 1

スライド 1 研究期間 : 平成 22 年度 絶縁体中のスピン流を用いた 超低電力量子情報伝送 演算機能デバイスの研究開発 安藤和也 東北大学金属材料研究所 総務省戦略的情報通信研究開発推進制度 (SCOPE) 若手 ICT 研究者育成型研究開発 Outline 1. 研究背景と研究開発のターゲット スピントロニクスとスピン流 2. 研究期間内 ( 平成 22 年度 ) の主要研究成果 1. あらゆる物質へ応用可能なスピン注入手法の確立

More information

スライド 1

スライド 1 STRJ WS: March5, 2010, 特別講演 1 電子情報技術産業協会 (JEITA) 半導体技術ロードマップ専門委員会 (STRJ) ワークショップ 2010 年 3 月 5 日コクヨホール スピン流とスピントロニクス 高梨弘毅 東北大学 金属材料研究所 Research 発表構成 1. イントロダクションスピン流とは何かスピントロニクスとスピン流の関係 2. 歴史的経緯 GMR/TMR

More information

令和元年 6 月 1 3 日 科学技術振興機構 (JST) 日本原子力研究開発機構東北大学金属材料研究所東北大学材料科学高等研究所 (AIMR) 理化学研究所東京大学大学院工学系研究科 スピン流が機械的な動力を運ぶことを実証 ミクロな量子力学からマクロな機械運動を生み出す新手法 ポイント スピン流が

令和元年 6 月 1 3 日 科学技術振興機構 (JST) 日本原子力研究開発機構東北大学金属材料研究所東北大学材料科学高等研究所 (AIMR) 理化学研究所東京大学大学院工学系研究科 スピン流が機械的な動力を運ぶことを実証 ミクロな量子力学からマクロな機械運動を生み出す新手法 ポイント スピン流が 令和元年 6 月 1 3 日 科学技術振興機構 (JST) 日本原子力研究開発機構東北大学金属材料研究所東北大学材料科学高等研究所 (AIMR) 理化学研究所東京大学大学院工学系研究科 スピン流が機械的な動力を運ぶことを実証 ミクロな量子力学からマクロな機械運動を生み出す新手法 ポイント スピン流が運ぶミクロな回転がマクロな動力となることを実証した 磁性体で作製したマイクロデバイスにスピン流を注入した結果

More information

Microsoft PowerPoint - 物質の磁性090918配布

Microsoft PowerPoint - 物質の磁性090918配布 物質の磁性 - 計算しないでわかることと計算でわかること - 大阪大学名誉教授山田科学振興財団理事長金森順次郎 1. 元素と磁性 2. 単体 合金 化合物の電子構造 3. 世界最強のネオジム磁石 4.CMDの意義 5. ナノ物質設計の今後 2009 9 18 CMD 1 2 1. 元素と磁性 なぜ 遷移元素でもとくに 3d 元素が磁性の主役を演じるか? なぜ 希土類元素でもとくに 4f 電子は局在しているか?

More information

背景と経緯 現代の電子機器は電流により動作しています しかし電子の電気的性質 ( 電荷 ) の流れである電流を利用した場合 ジュール熱 ( 注 3) による巨大なエネルギー損失を避けることが原理的に不可能です このため近年は素子の発熱 高電力化が深刻な問題となり この状況を打開する新しい電子技術の開

背景と経緯 現代の電子機器は電流により動作しています しかし電子の電気的性質 ( 電荷 ) の流れである電流を利用した場合 ジュール熱 ( 注 3) による巨大なエネルギー損失を避けることが原理的に不可能です このため近年は素子の発熱 高電力化が深刻な問題となり この状況を打開する新しい電子技術の開 平成 25 年 5 月 2 日 東北大学金属材料研究所東北大学原子分子材料科学高等研究機構 塗るだけで出来上がる磁気 - 電気変換素子 - プラスチックを使った次世代省エネルギーデバイス開発に向けて大きな進展 - 発表のポイント 電気を流すプラスチックの中で 磁気 ( スピン ) の流れが電気信号に変換されることを発見 この発見により 溶液を塗るだけで磁気 ( スピン )- 電気変換素子が作製可能に

More information

配信先 : 東北大学 宮城県政記者会 東北電力記者クラブ科学技術振興機構 文部科学記者会 科学記者会配付日時 : 平成 30 年 5 月 25 日午後 2 時 ( 日本時間 ) 解禁日時 : 平成 30 年 5 月 29 日午前 0 時 ( 日本時間 ) 報道機関各位 平成 30 年 5 月 25

配信先 : 東北大学 宮城県政記者会 東北電力記者クラブ科学技術振興機構 文部科学記者会 科学記者会配付日時 : 平成 30 年 5 月 25 日午後 2 時 ( 日本時間 ) 解禁日時 : 平成 30 年 5 月 29 日午前 0 時 ( 日本時間 ) 報道機関各位 平成 30 年 5 月 25 配信先 : 東北大学 宮城県政記者会 東北電力記者クラブ科学技術振興機構 文部科学記者会 科学記者会配付日時 : 平成 30 年 5 月 25 日午後 2 時 ( 日本時間 ) 解禁日時 : 平成 30 年 5 月 29 日午前 0 時 ( 日本時間 ) 報道機関各位 平成 30 年 5 月 25 日 東北大学材料科学高等研究所 (AIMR) 東北大学金属材料研究所科学技術振興機構 (JST) スピン流スイッチの動作原理を発見

More information

講 座 熱電研究のための第一原理計算入門 第2回 バンド計算から得られる情報 桂 1 はじめに ゆかり 東京大学 が独立にふるまうようになる 結晶構造を定義する際に 前回は 第一原理バンド計算の計算原理に続いて 波 アップスピンの原子 ダウンスピンの原子をそれぞれ指 のように自由な電子が 元素の個性

講 座 熱電研究のための第一原理計算入門 第2回 バンド計算から得られる情報 桂 1 はじめに ゆかり 東京大学 が独立にふるまうようになる 結晶構造を定義する際に 前回は 第一原理バンド計算の計算原理に続いて 波 アップスピンの原子 ダウンスピンの原子をそれぞれ指 のように自由な電子が 元素の個性 講 座 熱電研究のための第一原理計算入門 第2回 バンド計算から得られる情報 桂 1 はじめに ゆかり 東京大学 が独立にふるまうようになる 結晶構造を定義する際に 前回は 第一原理バンド計算の計算原理に続いて 波 アップスピンの原子 ダウンスピンの原子をそれぞれ指 のように自由な電子が 元素の個性のない一様な周期的 定することで 強磁性体や反強磁性体など さまざまな ポテンシャルに置かれたときに

More information

非磁性体を用いた強磁性体細線中の磁壁移動の検出 Detection of magnetic domain wall motion by using non-magnetic material 1. 序論近年の情報入力端末の市場は情報転送技術の向上により i-phone, i-pad に代表されるよう

非磁性体を用いた強磁性体細線中の磁壁移動の検出 Detection of magnetic domain wall motion by using non-magnetic material 1. 序論近年の情報入力端末の市場は情報転送技術の向上により i-phone, i-pad に代表されるよう 1. 序論近年の情報入力端末の市場は情報転送技術の向上により i-phone, i-pad に代表されるような軽量かつ安価なポータブルデバイスへとその主力が移行してきている このようなポータブルデバイスにおいては大型 低速なハードディスク (HDD) より小型 軽量で高速 守谷頼 (Rai MORIYA, Ph. D.) 東京大学生産技術研究所助教 (Assistant professor, Institute

More information

磁性工学特論 第6回 磁気と電気伝導

磁性工学特論 第6回 磁気と電気伝導 磁性工学特論 050526 第 6 回磁気と電気伝導 佐藤勝昭 復習コーナー ( 第 5 回の問題 ) 反磁性体は磁界の変化を妨げるように逆向きの磁化を生じる それではなぜ強い静磁界のもとで反磁性体を浮かせることができるのか 単位質量あたりの反磁性磁化率を χ=-χ d とする 磁化 M が磁界 B の中にある時のポテンシャルエネルギーは E=-M B であるから 力は E の距離微分 F=-MdB/dz

More information

共同研究グループ 理化学研究所創発物性科学研究センター 量子情報エレクトロニクス部門 量子ナノ磁性研究チーム 研究員 近藤浩太 ( こんどうこうた ) 客員研究員 福間康裕 ( ふくまやすひろ ) ( 九州工業大学大学院情報工学研究院電子情報工学研究系准教授 ) チームリーダー 大谷義近 ( おおた

共同研究グループ 理化学研究所創発物性科学研究センター 量子情報エレクトロニクス部門 量子ナノ磁性研究チーム 研究員 近藤浩太 ( こんどうこうた ) 客員研究員 福間康裕 ( ふくまやすひろ ) ( 九州工業大学大学院情報工学研究院電子情報工学研究系准教授 ) チームリーダー 大谷義近 ( おおた PRESS RELEASE 2016 年 7 月 25 日理化学研究所東京大学東北大学金属材料研究所九州工業大学 トポロジカル絶縁体表面で高効率スピン流を生成 - 省電力スピントロニクスデバイス応用に期待 - 要旨理化学研究所 ( 理研 ) 創発物性科学研究センター量子ナノ磁性チームの近藤浩太研究員 福間康裕客員研究員 ( 九州工業大学准教授 ) 大谷義近チームリーダー ( 東京大学物性研究所教授

More information

スピンの世界へようこそ!

スピンの世界へようこそ! スピンの世界へようこそ! ~ スピントロニクスのための磁性の基礎からスピントロニクスの今後まで ~ 第 2 部 第 3 部 工博佐藤勝昭国立大学法人東京農工大学名誉教授 独立行政法人科学技術振興機構 (JST) さきがけ 次世代デバイス 研究総括 CONTENTS 1. 10:00-12:00 知っていると得をする磁性の基礎 2. 13:00-13:45 コイルなしに磁気を電気に変える 3. 13:50-14:20

More information

Microsoft PowerPoint - qchem3-9

Microsoft PowerPoint - qchem3-9 008 年度冬学期 量子化学 Ⅲ 章量子化学の応用 4.4. 相対論的効果 009 年 月 8 日 担当 : 常田貴夫准教授 相対性理論 A. Einstein 特殊相対論 (905 年 ) 相対性原理: ローレンツ変換に対して物理法則の形は不変 光速度不変 : 互いに等速運動する座標系で光速度は常に一定 ミンコフスキーの4 次元空間座標系 ( 等速系のみ ) 一般相対論 (96 年 ) 等価原理

More information

トポロジカル絶縁体ヘテロ接合による量子技術の基盤創成 ( 研究代表者 : 川﨑雅司 ) の事業の一環として行われました 共同研究グループ理化学研究所創発物性科学研究センター強相関物理部門強相関物性研究グループ研修生安田憲司 ( やすだけんじ ) ( 東京大学大学院工学系研究科博士課程 2 年 ) 研

トポロジカル絶縁体ヘテロ接合による量子技術の基盤創成 ( 研究代表者 : 川﨑雅司 ) の事業の一環として行われました 共同研究グループ理化学研究所創発物性科学研究センター強相関物理部門強相関物性研究グループ研修生安田憲司 ( やすだけんじ ) ( 東京大学大学院工学系研究科博士課程 2 年 ) 研 PRESS RELEASE 2017 年 12 月 6 日理化学研究所東京大学東北大学金属材料研究所科学技術振興機構 磁壁におけるトポロジカル電流を観測 - 省エネルギースピントロニクスデバイスの基礎原理を実証 - 要旨理化学研究所 ( 理研 ) 創発物性科学研究センター強相関物性研究グループの安田憲司研修生 ( 東京大学大学院工学系研究科博士課程 2 年 ) 十倉好紀グループディレクター ( 同教授

More information

報道機関各位 平成 30 年 5 月 14 日 東北大学国際集積エレクトロニクス研究開発センター 株式会社アドバンテスト アドバンテスト社製メモリテスターを用いて 磁気ランダムアクセスメモリ (STT-MRAM) の歩留まり率の向上と高性能化を実証 300mm ウェハ全面における平均値で歩留まり率の

報道機関各位 平成 30 年 5 月 14 日 東北大学国際集積エレクトロニクス研究開発センター 株式会社アドバンテスト アドバンテスト社製メモリテスターを用いて 磁気ランダムアクセスメモリ (STT-MRAM) の歩留まり率の向上と高性能化を実証 300mm ウェハ全面における平均値で歩留まり率の 報道機関各位 平成 30 年 5 月 1 日 東北大学国際集積エレクトロニクス研究開発センター 株式会社アドバンテスト アドバンテスト社製メモリテスターを用いて 磁気ランダムアクセスメモリ (STT-MRAM) の歩留まり率の向上と高性能化を実証 300mm ウェハ全面における平均値で歩留まり率の向上 (91% から 97%) と 高速動作特性の向上を実証する実験に成功 標記について 別添のとおりプレスリリースいたしますので

More information

Microsoft PowerPoint - 物構研シンポ

Microsoft PowerPoint - 物構研シンポ 結晶 MgO トンネル障壁の 巨大トンネル磁気抵抗効果 湯浅新治 片山利一 共同研究者およびスポンサー 産総研 福島章雄長浜太郎久保田均 A. A. Tulapurkar 片山利一薬師寺啓安藤功兒 キヤノンアネルバ D. Djayaprawira 恒川孝二前原大樹長嶺佳紀長井基将山形伸二渡辺直樹 大阪大基礎工 鈴木義茂松本利映 A. Deac 東芝 與田グループの方々 新エネルギー 産業技術総合開発機構

More information

2

2 2 6 7 9 4 6 7 2 3 4 5 6 7 8-0 - G G G G G G f f 9 e f - e f 0 5 e fe e c c cc B FD F 5 2 5 D F C e e e b 3 f f 5 ff ff f f f f b b bb b b b c c c ee ee e ee ee e f f 4 e e 7 5 5 e bb 6 7 f GE 8 f 9 5 F

More information

IntroTIOhtsuki

IntroTIOhtsuki はじめに 講義資料 : 大槻東巳のホームページ, 講義資料からダウンロードする 今日の授業と資料を基に 1 月 29 日までに A4 用紙 1 枚でレポートを作成 課題はトポロジカル絶縁体とは何か? 提出先 :4-389A トポロジカル絶縁体入門 物理学序論 上智大学物理領域 大槻東巳 2016 年のノーベル物理学賞 サウレス ハルデイン コスタリッツ ½ ¼ ¼ for theoretical discoveries

More information

コバルトとパラジウムから成る薄膜界面にて磁化を膜垂直方向に揃える界面電子軌道の形が明らかに -スピン軌道工学に道 1. 発表者 : 岡林潤 ( 東京大学大学院理学系研究科附属スペクトル化学研究センター准教授 ) 三浦良雄 ( 物質材料研究機構磁性 スピントロニクス材料研究拠点独立研究者 ) 宗片比呂

コバルトとパラジウムから成る薄膜界面にて磁化を膜垂直方向に揃える界面電子軌道の形が明らかに -スピン軌道工学に道 1. 発表者 : 岡林潤 ( 東京大学大学院理学系研究科附属スペクトル化学研究センター准教授 ) 三浦良雄 ( 物質材料研究機構磁性 スピントロニクス材料研究拠点独立研究者 ) 宗片比呂 コバルトとパラジウムから成る薄膜界面にて磁化を膜垂直方向に揃える界面電子軌道の形が明らかに -スピン軌道工学に道 1. 発表者 : 岡林潤 ( 東京大学大学院理学系研究科附属スペクトル化学研究センター准教授 ) 三浦良雄 ( 物質材料研究機構磁性 スピントロニクス材料研究拠点独立研究者 ) 宗片比呂夫 ( 東京工業大学科学技術創成研究院未来産業技術研究所教授 ) 2. 発表のポイント : 薄膜のコバルト層とパラジウム層の界面にて

More information

共同研究グループ理化学研究所創発物性科学研究センター強相関量子伝導研究チームチームリーダー十倉好紀 ( とくらよしのり ) 基礎科学特別研究員吉見龍太郎 ( よしみりゅうたろう ) 強相関物性研究グループ客員研究員安田憲司 ( やすだけんじ ) ( 米国マサチューセッツ工科大学ポストドクトラルアソシ

共同研究グループ理化学研究所創発物性科学研究センター強相関量子伝導研究チームチームリーダー十倉好紀 ( とくらよしのり ) 基礎科学特別研究員吉見龍太郎 ( よしみりゅうたろう ) 強相関物性研究グループ客員研究員安田憲司 ( やすだけんじ ) ( 米国マサチューセッツ工科大学ポストドクトラルアソシ PRESS RELEASE 2018 年 12 月 4 日理化学研究所東京大学東北大学科学技術振興機構 マルチフェロイクス材料における電流誘起磁化反転を実現 - 低消費電力エレクトロニクスへの新原理を構築 - 理化学研究所 ( 理研 ) 創発物性科学研究センター強相関量子伝導研究チームの吉見龍太郎基礎科学特別研究員 十倉好紀チームリーダー 安田憲司客員研究員( マサチューセッツ工科大学ポストドクトラルアソシエイト

More information

スピントロニクス

スピントロニクス 早稲田大学リーディング理工学博士プログラム エネルギー ネクスト概論 スピントロニクスがもたらすエネルギー革新 佐藤勝昭東京農工大学名誉教授国立研究開発法人科学技術振興機構研究広報主監 CRDS フェロー CONTENTS はじめに 1. 磁性学超入門 1. こんなところにも磁性体が 2. 磁性体をどんどん小さくすると 3. 鉄はなぜ強磁性になるのか 4. 磁気ヒステリシスのなぞ 2. スピントロニクス

More information

Microsoft Word - Web掲載用_171002_非散逸電流スイッチ_確定r - コピー.docx

Microsoft Word - Web掲載用_171002_非散逸電流スイッチ_確定r - コピー.docx PRESS RELEASE 2017 年 10 月 5 日理化学研究所東京大学東北大学金属材料研究所科学技術振興機構 トポロジーの変化に伴う巨大磁気抵抗効果を発見 - 非散逸電流のスイッチング原理を確立 - 要旨理化学研究所 ( 理研 ) 創発物性科学研究センター強相関物性研究グループの茂木将孝研修生 ( 東京大学大学院工学系研究科博士課程 1 年 ) 十倉好紀グループディレクター ( 同教授 )

More information

PRESS RELEASE (2017/6/2) 北海道大学総務企画部広報課 札幌市北区北 8 条西 5 丁目 TEL FAX URL:

PRESS RELEASE (2017/6/2) 北海道大学総務企画部広報課 札幌市北区北 8 条西 5 丁目 TEL FAX URL: PRESS RELEASE (2017/6/2) 北海道大学総務企画部広報課 060-0808 札幌市北区北 8 条西 5 丁目 TEL 011-706-2610 FAX 011-706-2092 E-mail: kouhou@jimu.hokudai.ac.jp URL: http://www.hokudai.ac.jp 東北大学多元物質科学研究所広報情報室 980-8577 仙台市青葉区片平二丁目

More information

報告されている (8) (11). このことは,L1 0 FePt のサイズを制御することにより,H c を決定している磁化過程を制御できることを意味している. しかしながら, 薄膜成長形態を利用したこれまでの研究では微粒子の形状やサイズの制御が困難であった. 本研究では, 微細加工法を用いることで

報告されている (8) (11). このことは,L1 0 FePt のサイズを制御することにより,H c を決定している磁化過程を制御できることを意味している. しかしながら, 薄膜成長形態を利用したこれまでの研究では微粒子の形状やサイズの制御が困難であった. 本研究では, 微細加工法を用いることで 高保磁力 FePt 合金の磁化制御 関剛斎. はじめに今日の我々の生活は電子情報機器の高性能化および多機能化の恩恵を大いに受けており, それらの機器は利便性を追求しながら発展してきた. しかしながら, 近年のエネルギー問題や資源枯渇の危惧から, 電子情報産業においても省エネルギー, 環境調和, あるいは低炭素排出といった観点が重要視されるようになってきている. 中でも, 電子情報機器の根幹を成す記憶素子の低消費電力化を進めることが,

More information

Microsoft PowerPoint - B3_magnetized_current_slide.pptx

Microsoft PowerPoint - B3_magnetized_current_slide.pptx v3.0 Nov.2018 磁化と磁化電流 1 s 2011/04/22 L s 2018/11/28 1 ヒト 0 水分子 -9 H 分子 1802 年 O 神経細胞の蛍光顕微鏡写真 ( 銀河団に似ている ) H 1897 年 古代エジプトから伝わることば 素粒子の大きさ 1911 年 宇宙のしくみ新星出版社 p.158 原子核 As above, so below 上に在るがごとく下もかく在り

More information

体状態を保持したまま 電気伝導の獲得という電荷が担う性質の劇的な変化が起こる すなわ ち電荷とスピンが分離して振る舞うことを示しています そして このような状況で実現して いる金属が通常とは異なる特異な金属であることが 電気伝導度の温度依存性から明らかにされました もともと電子が持っていた電荷やスピ

体状態を保持したまま 電気伝導の獲得という電荷が担う性質の劇的な変化が起こる すなわ ち電荷とスピンが分離して振る舞うことを示しています そして このような状況で実現して いる金属が通常とは異なる特異な金属であることが 電気伝導度の温度依存性から明らかにされました もともと電子が持っていた電荷やスピ 4. 発表内容 : 電子は電荷とスピンを持っており 電荷は電気伝導の起源 スピンは磁性の起源になって います 電荷同士の反発力が強い物質中では 結晶の格子点上に二つの電荷が同時に存在する ことができません その結果 結晶の格子点の数と電子の数が等しい場合は 電子が一つずつ各格子点上に止まったモット絶縁体と呼ばれる状態になります ( 図 1) モット絶縁体の多く は 隣接する結晶格子点に存在する電子のスピン同士が逆向きになろうとする相互作用の効果

More information

Microsoft PowerPoint - C1_permanent_magnet_slide.pptx

Microsoft PowerPoint - C1_permanent_magnet_slide.pptx v6.9 ov.8 永久磁石と電磁石 磁石と磁極 永久磁石 電源不要 反磁界による減磁作用 極性は固定されて切替不可 電磁石 電源必要 電流量で磁力を調整可能 極性の切替が自在に可能 st. /4/ L st. 8//8 [T] キュリー温度 Tc で自発磁化消失 ( 高温減磁 ) 磁気ダイポールの向き T [K] T 谷腰,``トコトンやさしいフェライトの本, p.9, 日刊工業新聞社 周波数による電流量の変動

More information

平成18年2月24日

平成18年2月24日 解禁時間 ( テレヒ ラシ オ WEB) : 平成 19 年 9 月 21 日 ( 金 ) 午前 3 時 ( 新聞 ) : 平成 19 年 9 月 21 日 ( 金 ) 付朝刊 平成 1 9 年 9 月 1 9 日 科学技術振興機構 (JST) 電話 (03)5214-8404( 広報 ホ ータル部広報課 ) 国立大学法人 東北大学 電話 (022)217-5422( 電気通信研究所総務課研究協力係

More information

目次080225

目次080225 Newsletter vol. 1 平成 20年 3月 1 3 5 7 9 11 13 17 21 25 29 33 A. Fert P. Grünberg A01 (Laboratory of Nanoscale Electron Devices) ( ) ( ) ( ) 3 1 6 9 19 ( 55% 45%) 2004 4 Division of Electronics for Informatics

More information

イン版 (2 月 22 日付け : 日本時間 2 月 23 日 ) に掲載されます 注 )R. Yoshimi, K. Yasuda, A. Tsukazaki, K.S. Takahashi, N. Nagaosa, M. Kawasaki and Y. Tokura, Quantum Hall

イン版 (2 月 22 日付け : 日本時間 2 月 23 日 ) に掲載されます 注 )R. Yoshimi, K. Yasuda, A. Tsukazaki, K.S. Takahashi, N. Nagaosa, M. Kawasaki and Y. Tokura, Quantum Hall PRESS RELEASE 2016 年 2 月 19 日理化学研究所東京大学東北大学金属材料研究所 スキルミオン生成に表れるトポロジーの融合 - 低消費電力エレクトロニクスに新原理 - 要旨理化学研究所 ( 理研 ) 創発物性科学研究センター強相関物性研究グループの安田憲司研修生 ( 東京大学大学院工学系研究科大学院生 ) 十倉好紀グループディレクター ( 同教授 ) 強相関界面研究グループの川﨑雅司グループディレクター

More information

高集積化が可能な低電流スピントロニクス素子の開発に成功 ~ 固体電解質を用いたイオン移動で実現低電流 大容量メモリの実現へ前進 ~ 配布日時 : 平成 28 年 1 月 12 日 14 時国立研究開発法人物質 材料研究機構東京理科大学概要 1. 国立研究開発法人物質 材料研究機構国際ナノアーキテクト

高集積化が可能な低電流スピントロニクス素子の開発に成功 ~ 固体電解質を用いたイオン移動で実現低電流 大容量メモリの実現へ前進 ~ 配布日時 : 平成 28 年 1 月 12 日 14 時国立研究開発法人物質 材料研究機構東京理科大学概要 1. 国立研究開発法人物質 材料研究機構国際ナノアーキテクト 高集積化が可能な低電流スピントロニクス素子の開発に成功 ~ 固体電解質を用いたイオン移動で実現低電流 大容量メモリの実現へ前進 ~ 配布日時 : 平成 28 年 1 月 12 日 14 時国立研究開発法人物質 材料研究機構東京理科大学概要 1. 国立研究開発法人物質 材料研究機構国際ナノアーキテクトニクス研究拠点の土屋敬志博士研究員 ( 現在 東京理科大学 ) 寺部一弥グループリーダー 青野正和拠点長らの研究チームは

More information

とによって電磁石が発生する磁界を移動させ, 磁界に回転子がついていくことで回転します. 永久磁石としては 日本で開発されたネオジム磁石がつかわれています この磁石は レアアースであるネオジム ( N d ) と鉄 ( F e ) の化合物 N d F e 2 B 14 を主成分とするもので 温度特性

とによって電磁石が発生する磁界を移動させ, 磁界に回転子がついていくことで回転します. 永久磁石としては 日本で開発されたネオジム磁石がつかわれています この磁石は レアアースであるネオジム ( N d ) と鉄 ( F e ) の化合物 N d F e 2 B 14 を主成分とするもので 温度特性 第 1 章こんなところにも磁性体が 第 1 章は, 出口からのアプローチです. すなわち, 私がガイドとなって, 身近にある磁性体を見つけながら, そこに潜んでいる 磁気物性 と まぐね語 を一つひとつ解き明かしていく散策に出かけます. さあスタートです. 1.1 クルマと磁性体エコカーとして電気自動車 EV やハイブリッドカー HV が注目されています.E V, H V では動力源にモーターが使われます.EV

More information

マスコミへの訃報送信における注意事項

マスコミへの訃報送信における注意事項 磁性体が乱れによって量子スピン液体に生まれ変わる 1. 発表者 : 古川哲也 ( 東京理科大学理学部第一部応用物理学科助教 / 東京大学大学院工学系研究科物理工学専攻学術支援専門職員 : 研究当時 ) 宮川和也 ( 東京大学大学院工学系研究科物理工学専攻助教 ) 伊藤哲明 ( 東京理科大学理学部第一部応用物理学科准教授 ) 伊藤美穂 ( 埼玉大学大学院理工学研究科物質科学部門大学院生 : 研究当時

More information

マスコミへの訃報送信における注意事項

マスコミへの訃報送信における注意事項 電子のスピンが量子液体状態にある特異な金属の発見 結晶中で独立に振る舞う電荷とスピン 1. 発表者 : 大池広志 ( 東京大学大学院工学系研究科物理工学専攻学術支援専門職員 : 研究当時 ) 鈴木悠司 ( 東京大学大学院工学系研究科物理工学専攻修士課程 1 年生 : 研究当時 ) 谷口弘三 ( 埼玉大学大学院理工学研究科物質科学部門准教授 ) 宮川和也 ( 東京大学大学院工学系研究科物理工学専攻助教

More information

Microsoft PowerPoint EM2_15.ppt

Microsoft PowerPoint EM2_15.ppt ( 第 5 回 ) 鹿間信介摂南大学理工学部電気電子工学科 後半部 (4~5 章 ) のまとめ 4. 導体 4.3 誘電体 5. 磁性体 5. 電気抵抗 演習 導体表面の電界強度 () 外部電界があっても導体内部の電界は ( ゼロ ) になる () 導体の電位は一定 () 導体表面は等電位面 (3) 導体表面の電界は導体に垂直 導体表面と平行な成分があると, 導体表面の電子が移動 導体表面の電界は不連続

More information

図は ( 上 ) ローレンツ像の模式図と ( 下 ) パーマロイ磁性細線の実際のローレンツ像

図は ( 上 ) ローレンツ像の模式図と ( 下 ) パーマロイ磁性細線の実際のローレンツ像 60 秒でわかるプレスリリース 2007 年 12 月 26 日 独立行政法人理化学研究所 電子の流れで磁性体のスピンの向きを反転させる - スピン流を用いたメモリーなどの次世代電子素子が大きく前進 - キロ (10 3 ) メガ (10 6 ) ギガ (10 9 ) と 私たちが気軽に扱うことができる情報量は 巨大化しています これに伴って メモリーカード スティックメモリー 光ディスク ハードディスクなどの情報を記録する媒体は

More information

<4D F736F F D C668DDA97705F8DC58F4994C581798D4C95F189DB8A6D A C A838A815B ED089EF98418C678D758DC049424D816A5F F8D488A D B2E646F63>

<4D F736F F D C668DDA97705F8DC58F4994C581798D4C95F189DB8A6D A C A838A815B ED089EF98418C678D758DC049424D816A5F F8D488A D B2E646F63> スピン波を利用した情報処理チップデバイスの提案と動作原理の実証 -IoT 社会を推し進める高性能端末機器の実現へ - 1. 発表者 : 中根了昌 ( 東京大学大学院工学系研究科国際工学教育推進機構社会連携講座 / 電気系工学専攻特任准教授 ) 田中剛平 ( 東京大学大学院工学系研究科国際工学教育推進機構社会連携講座 / 電気系工学専攻特任准教授 ) 廣瀬明 ( 東京大学大学院工学系研究科国際工学教育推進機構社会連携講座

More information

概要 東北大学金属材料研究所の周偉男博士研究員 関剛斎准教授および高梨弘毅教授のグループは 産業技術総合研究所スピントロニクス研究センターの荒井礼子博士研究員および今村裕志研究チーム長との共同研究により 外部磁場により容易に磁化スイッチングするソフト磁性材料の Ni-Fe( パーマロイ ) 合金と

概要 東北大学金属材料研究所の周偉男博士研究員 関剛斎准教授および高梨弘毅教授のグループは 産業技術総合研究所スピントロニクス研究センターの荒井礼子博士研究員および今村裕志研究チーム長との共同研究により 外部磁場により容易に磁化スイッチングするソフト磁性材料の Ni-Fe( パーマロイ ) 合金と 報道機関各位 平成 28 年 12 月 08 日 東北大学金属材料研究所産業技術総合研究所 磁気モーメントの渦の運動が可能にする省エネルギー情報記録 - ハードディスクの超高密度化と超低消費電力動作の両立に新たな道 - 発表のポイント 磁石の向きが変化しやすい Ni-Fe 合金層と 磁石の向きが変化しにくい FePt 規則合金層を組み合わせたナノ磁石を作製し 磁気記憶デバイスの情報記録のしくみである

More information

H22低炭素助成報告書-関先生-最終_p45

H22低炭素助成報告書-関先生-最終_p45 高保磁力 FePt ナノ構造体における磁気特性の電界制御 磁性材料学研究部門 関剛斎 概要 磁気記憶デバイスの低消費電力化は 低炭素化社会を実現するための重要な課題の一つである 本研究事業では 情報書込み手法の低エネルギー化を目指し 外部磁場や電流を用いるのではなく 電界を磁性体に印加することによる磁化方向制御を試みた 具体的には 磁化の高い熱安定性を示す L1 0 型 FePt 規則合金を材料として選択し

More information

スライド 1

スライド 1 平成 24 年度大学院共通授業科目トポロジー理工学特別講義 Ⅱ 有機導体における密度波状態 応用物理学専攻トポロジー工学研究室 DC1 上遠野一広 目次 低次元導体, 有機導体の特徴について ゆらぎと次元性の関係と朝永 -Luttinger 液体 (g-gology) 私の研究について 目次 低次元導体, 有機導体の特徴について ゆらぎと次元性の関係と朝永 -Luttinger 液体 (g-gology)

More information

スピントランジスタの基本技術を開発   ― 高速・低消費電力、メモリにもなる次世代半導体 ―

スピントランジスタの基本技術を開発   ― 高速・低消費電力、メモリにもなる次世代半導体 ― スピン MOS トランジスタの基本技術を開発 高速 低消費電力 不揮発の次世代半導体 本資料は 本年米国ボルチモアで開催の IEDM(International Electron Devices Meeting 2009) における当社講演 Read/Write Operation of Spin-Based MOSFET Using Highly Spin-Polarized Ferromagnet/MgO

More information

有機4-有機分析03回配布用

有機4-有機分析03回配布用 NMR( 核磁気共鳴 ) の基本原理核スピンと磁気モーメント有機分析化学特論 + 有機化学 4 原子核は正の電荷を持ち その回転 ( スピン ) により磁石としての性質を持つ 外部磁場によって核スピンのエネルギー準位は変わる :Zeeman 分裂 核スピンのエネルギー準位 第 3 回 (2015/04/24) m : 磁気量子数 [+I,, I ] I: スピン量子数 ( 整数 or 半整数 )]

More information

Microsoft PowerPoint EM2_15.ppt

Microsoft PowerPoint EM2_15.ppt ( 第 5 回 ) 鹿間信介摂南大学理工学部電気電子工学科 後半部 (4~5 章 ) のまとめ 4. 導体 4.3 誘電体 5. 磁性体 5. 電気抵抗 演習 静電誘導電界とその重ね合わせ 導体内部の電荷 : 外部電界 誘導電界の重ね合わせ電界を感じる () 内部電荷自身が移動することで作り出した電界にも反応 () さらに移動場所を変える (3) 上記 ()~() の繰り返し 最終的に落ち着く状態

More information

1-x x µ (+) +z µ ( ) Co 2p 3d µ = µ (+) µ ( ) W. Grange et al., PRB 58, 6298 (1998). 1.0 0.5 0.0 2 1 XMCD 0-1 -2-3x10-3 7.1 7.2 7.7 7.8 8.3 8.4 up E down ρ + (E) ρ (E) H, M µ f + f E F f + f f + f X L

More information

磁界の定義(1)

磁界の定義(1) 身近な磁性 磁石 ( 永久磁石 ) は何で出来ている? 鉄? 磁石を販売しているある会社の HP によると ネオジム Nd 2 Fe 14 B サマコバ SmCo5 フェライト (BaFe 2 O 4 ) アルニコ (AlNiCo) というのが書かれている * 黒板用のボタン磁石 : ほとんどがフェライトのボンド磁石 ( 磁性粉と樹脂を混合し成形した磁石 ) 曲げられる磁石 : ラバー磁石 ( 磁性粉をゴムに混合して成形した磁石

More information

Microsoft PowerPoint - 第2回半導体工学

Microsoft PowerPoint - 第2回半導体工学 17 年 1 月 16 日 月 1 限 8:5~1:15 IB15 第 回半導体工学 * バンド構造と遷移確率 天野浩 項目 1 章量子論入門 何故 Si は光らず GN は良く光るのか? *MOSFET ゲート SiO / チャネル Si 界面の量子輸送過程 MOSFET には どのようなゲート材料が必要なのか? http://www.iue.tuwien.c.t/ph/vsicek/noe3.html

More information

スピンの世界へようこそ!

スピンの世界へようこそ! スピンの世界へようこそ! ~ スピントロニクスのための磁性の基礎からスピントロニクスの今後まで ~ 第 4 部 工博佐藤勝昭国立大学法人東京農工大学名誉教授 独立行政法人科学技術振興機構 (JST) さきがけ 次世代デバイス 研究総括 CONTENTS 1. 10:00-12:00 知っていると得をする磁性の基礎 2. 13:00-13:45 コイルなしに磁気を電気に変える 3. 13:50-14:20

More information

スピンの世界へようこそ!

スピンの世界へようこそ! スピンの世界へようこそ! ~ スピントロニクスのための磁性の基礎からスピントロニクスの今後まで ~ 工博佐藤勝昭国立大学法人東京農工大学名誉教授 独立行政法人科学技術振興機構 (JST) さきがけ 次世代デバイス 研究総括 講師自己紹介 1966 年京都大学修士課程修了 1966 年 NHK 入局 [1968 基礎研物性研究部 ] 1984 年農工大工助教授 1989 年同教授 2005 年同理事

More information

Microsoft Word - JIKI03.DOC

Microsoft Word - JIKI03.DOC Ⅰ-5. 磁気工学実験 1. はじめに ビデオテープになぜ映像が映るの? テープに記録されるデータには 色信号, 明るさの輝度信号, 音声信号の3つ がある これらのデータをテープに記録するのは 磁気記録 と呼ばれる方法である. 磁気テープへの記録は 磁気ヘッドのコイルに電流を流して 先端にある狭いギャップに磁界を発生させることで実現されている 発生した磁界によってテープの磁性層は磁化されデータが記録される

More information

スピントロニクスにおける新原理「磁気スピンホール効果」の発見

スピントロニクスにおける新原理「磁気スピンホール効果」の発見 スピントロニクスにおける新原理 磁気スピンホール効果 の発見 - 磁化で制御するスピン流 電流相互変換を確立 - 1. 発表者 : 木俣基 ( 研究当時 : 東京大学物性研究所助教 現 : 東北大学金属材料研究所准教授 ) Hua Chen( 研究当時 : テキサス大学オースティン校博士研究員 現 : コロラド大学 Assistant Professor) 近藤浩太 ( 理化学研究所創発物性科学研究センター研究員

More information

< 研究の背景と経緯 > ここ数十年に渡る半導体素子 回路 ソフトウェア技術の目覚ましい進展により 様々なモノがセンサー 情報処理端末を介してインターネットに接続される IoT(Internet of Things) 社会が到来しています 今後その適用先は一層増加し 私たちの日常生活においてより多く

< 研究の背景と経緯 > ここ数十年に渡る半導体素子 回路 ソフトウェア技術の目覚ましい進展により 様々なモノがセンサー 情報処理端末を介してインターネットに接続される IoT(Internet of Things) 社会が到来しています 今後その適用先は一層増加し 私たちの日常生活においてより多く - 1 - 平成 2 8 年 6 月 1 5 日 東北大学電気通信研究所 Tel: 022-217-5420( 総務係 ) 東北大学省エネルキ ー スヒ ントロニクス集積化システムセンター (CSIS) Tel: 022-217-6116( 支援室 ) 東北大学国際集積エレクトロニクス研究開発センター (CIES) Tel: 022-796-3410( 支援室 ) 東北大学原子分子材料科学高等研究機構

More information

磁気光学の基礎と最近の展開(3)

磁気光学の基礎と最近の展開(3) 千葉大学理学部物理学科特別講義 7.6.4-6.5 磁気光学の基礎と最近の展開 3 佐藤勝昭 東京農工大学特任教授 3. 磁気光学効果の電子論 3. 磁気光学効果の古典電子論 3. 磁気光学効果の量子論 3. 磁気光学効果の古典電子論 電子を古典的な粒子として扱い 磁場中の古典的運動方程式を解いて電子の変位を求め 分極や誘電率を計算します 次回は量子論にもとづく扱いをお話しします 光と磁気第 4 章

More information

<4D F736F F D DC58F498D65817A88D98FED837A815B838B8CF889CA5F835E834F974C2E646F63>

<4D F736F F D DC58F498D65817A88D98FED837A815B838B8CF889CA5F835E834F974C2E646F63> 2014 年 8 月 13 日独立行政法人理化学研究所国立大学法人東京大学国立大学法人東北大学 異常量子ホール効果の量子化則を実験的に検証 -トポロジカル絶縁体を用いた省電力素子の基礎原理確立へ- 本研究成果のポイント 無磁場でエネルギー損失なく電流が流れる 異常量子ホール効果 を観測 異常量子ホール効果 の量子化則が 整数量子ホール効果 と同様であることを発見 磁場を必要としない省電力素子の実現に向け大きく前進理化学研究所

More information

材料系物理工学 第1回磁性の基礎(1)

材料系物理工学 第1回磁性の基礎(1) 磁性工学特論 第 1 回磁気に親しもう 非常勤講師 佐藤勝昭 ( 東京農工大学 ) シラバス この講義では 磁性学の基礎と応用および磁気光学効果の基礎と応用について学ぶ 以下にシラバスを示す 第 1 部磁性 第 1 回 2005.4.14( 木 ) 磁気に親しもう 磁石 HDD MD モーター 磁場 磁束密度 磁化 磁気モーメントとは何か 磁化曲線 反磁界 ヒステリシス 軟質磁性体 硬質磁性体 第

More information

銅酸化物高温超伝導体の フェルミ面を二分する性質と 超伝導に対する上純物効果

銅酸化物高温超伝導体の フェルミ面を二分する性質と 超伝導に対する上純物効果 トポロジー理工学特別講義 Ⅱ 2011 年 2 月 4 日 銅酸化物高温超伝導体の フェルミ面を二分する性質と 超伝導に対する丌純物効果 理学院量子理学専攻博士課程 3 年 黒澤徹 supervisors: 小田先生 伊土先生 アウトライン 走査トンネル顕微鏡 (STM: Scanning Tunneling Microscopy) 角度分解光電子分光 (ARPES: Angle-Resolved

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 光が作る周期構造 : 光格子 λ/2 光格子の中を運動する原子 左図のように レーザー光を鏡で反射させると 光の強度が周期的に変化した 定在波 ができます 原子にとっては これは周期的なポテンシャルと感じます これが 光格子 です 固体 : 結晶格子の中を運動する電子 隣の格子へ 格子の中を運動する粒子集団 Quantum Simulation ( ハバードモデル ) J ( トンネル ) 移動粒子間の

More information

【最終版・HP用】プレスリリース(徳永准教授)

【最終版・HP用】プレスリリース(徳永准教授) 未来の磁気メモリー材料開発につながる新たな電気分極成分を発見 1. 発表者 : 徳永将史 ( 東京大学物性研究所准教授 ) 赤木暢 ( 東京大学物性研究所 PD: 現在大阪大学理学研究科助教 ) 伊藤利充 ( 産業技術総合研究所電子光技術研究部門上級主任研究員 ) 宮原慎 ( 福岡大学理学部准教授 ) 三宅厚志 ( 東京大学物性研究所助教 ) 桑原英樹 ( 上智大学理工学部教授 ) 古川信夫 ( 青山学院大学理工学部教授

More information

C 3 C-1 Ru 2 x Fe x CrSi A A, A, A, A, A Ru 2 x Fe x CrSi 1) 0.3 x 1.8 2) Ru 2 x Fe x CrSi/Pb BTK P Z 3 x = 1.7 Pb BTK P = ) S.Mizutani, S.Ishid

C 3 C-1 Ru 2 x Fe x CrSi A A, A, A, A, A Ru 2 x Fe x CrSi 1) 0.3 x 1.8 2) Ru 2 x Fe x CrSi/Pb BTK P Z 3 x = 1.7 Pb BTK P = ) S.Mizutani, S.Ishid C 3 C-1 Ru 2 x Fe x CrSi A A, A, A, A, A Ru 2 x Fe x CrSi 1).3 x 1.8 2) Ru 2 x Fe x CrSi/Pb BTK P Z 3 x = 1.7 Pb BTK P =.52 1) S.Mizutani, S.Ishida, S.Fujii and S.Asano, Mater. Tran. 47(26)25. 2) M.Hiroi,

More information

スライド 1

スライド 1 分子性物質 ー磁性体ー ( 物性研究所 新物質科学研究部門 ) 森初果 磁化率と磁気モーメント * 磁化率 χ M (emu mol - ) M: mol あたりの磁化 常磁性と反磁性の寄与 : 磁場 * 電子の磁気モーメントスピン電子の自転 スピン角運動量 ħs/ħ (s; スピン量子数 /) スピンの磁気モーメント µ s -µ s (s/ µ s -µ ) 上向き 下向きスピン状態の占有数の差に由来

More information

1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e

1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e No. 1 1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e I X e Cs Ba F Ra Hf Ta W Re Os I Rf Db Sg Bh

More information

<4D F736F F D C668DDA F B5F95F193B98E9197BF5F90F25F8E52967B5F8D488A

<4D F736F F D C668DDA F B5F95F193B98E9197BF5F90F25F8E52967B5F8D488A 電子 1 個のスピン情報の長距離伝送 検出に初めて成功 ~ 単一電子スピントロニクスの実現へ ~ 1. 発表者 : 樽茶清悟 ( 東京大学大学院工学系研究科物理工学専攻教授 / 理化学研究所創発物性科学研究センター部門長 ) 山本倫久 ( 東京大学大学院工学系研究科物理工学専攻講師 ) トリスタン ムニエル ( 仏ニール (NEEL) 研究所研究員 ) 2. 発表のポイント : 単一電子を周囲の電子から隔離したまま

More information

予定 (川口担当分)

予定 (川口担当分) 予定 ( 川口担当分 ) (1)4 月 13 日 量子力学 固体の性質の復習 (2)4 月 20 日 自由電子モデル (3)4 月 27 日 結晶中の電子 (4)5 月 11 日 半導体 (5)5 月 18 日 輸送現象 金属絶縁体転移 (6)5 月 25 日 磁性の基礎 (7)6 月 1 日 物性におけるトポロジー 今日 (5/11) の内容 ブロッホ電子の運動 電磁場中の運動 ランダウ量子化 半導体

More information

C-2 NiS A, NSRRC B, SL C, D, E, F A, B, Yen-Fa Liao B, Ku-Ding Tsuei B, C, C, D, D, E, F, A NiS 260 K V 2 O 3 MIT [1] MIT MIT NiS MIT NiS Ni 3 S 2 Ni

C-2 NiS A, NSRRC B, SL C, D, E, F A, B, Yen-Fa Liao B, Ku-Ding Tsuei B, C, C, D, D, E, F, A NiS 260 K V 2 O 3 MIT [1] MIT MIT NiS MIT NiS Ni 3 S 2 Ni M (emu/g) C 2, 8, 9, 10 C-1 Fe 3 O 4 A, SL B, NSRRC C, D, E, F A, B, B, C, Yen-Fa Liao C, Ku-Ding Tsuei C, D, D, E, F, A Fe 3 O 4 120K MIT V 2 O 3 MIT Cu-doped Fe3O4 NCs MIT [1] Fe 3 O 4 MIT Cu V 2 O 3

More information

う特性に起因する固有の量子論的効果が多数現れるため 基礎学理の観点からも大きく注目されています しかし 特にゼロ質量電子系における電子相関効果については未だ十分な検証がなされておらず 実験的な解明が待たれていました 東北大学金属材料研究所の平田倫啓助教 東京大学大学院工学系研究科の石川恭平大学院生

う特性に起因する固有の量子論的効果が多数現れるため 基礎学理の観点からも大きく注目されています しかし 特にゼロ質量電子系における電子相関効果については未だ十分な検証がなされておらず 実験的な解明が待たれていました 東北大学金属材料研究所の平田倫啓助教 東京大学大学院工学系研究科の石川恭平大学院生 質量がゼロの電子がしめす新規なスピンのゆらぎを発見 ~ 電子が自発的に質量を獲得する新現象の解明に期待 ~ 1. 発表者 : 平田倫啓 ( 東北大学金属材料研究所助教 ) 石川恭平 ( 東京大学大学院工学系研究科物理工学専攻修士課程 ( 研究当時 )) 松野元樹 ( 名古屋大学大学院理学研究科物質理学専攻物理系博士課程 3 年生 ) 小林晃人 ( 名古屋大学大学院理学研究科物質理学専攻物理系准教授

More information

光と磁気から光とスピンへ

光と磁気から光とスピンへ 光と磁気から光とスピンへ 佐藤勝昭 はじめに 拙著 光と磁気 の初版が 1988 年 改訂版が 13 年後の 2001 年である これらの書では 磁性体という物質中において 磁気が光現象に及ぼす効果を基礎的に論じ さらには その応用にまで言及した このコンセプトの延長におけるその後の発展は いくつかの解説に述べた, また 近接場磁気光学および非線形磁気光学については 新しい磁気と光の科学 に述べた

More information

Microsoft Word - note02.doc

Microsoft Word - note02.doc 年度 物理化学 Ⅱ 講義ノート. 二原子分子の振動. 調和振動子近似 モデル 分子 = 理想的なバネでつながった原子 r : 核間距離, r e : 平衡核間距離, : 変位 ( = r r e ), k f : 力の定数ポテンシャルエネルギー ( ) k V = f (.) 古典運動方程式 [ 振動数 ] 3.3 d kf (.) dt μ : 換算質量 (m, m : 原子, の質量 ) mm

More information

平成**年*月**日

平成**年*月**日 平成 22 年 9 月 24 日 報道機関 各位 絶縁体からの熱電発電に成功 - グリーン 省エネデバイス開発に道 - 国立大学法人東北大学独立行政法人日本原子力研究開発機構 発表のポイント 絶縁体においても 温度差をつけることで磁気 ( スピン ) の流れが生じることを発見 これまで不可能と考えられていた 絶縁体からの熱電エネルギーの取り出し に成功 熱電材料の選択の幅が大きく広がり 大規模発電から携帯用小型熱電変換素子までの幅広い応用に期待

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 第 3 章まぐねの国のふしぎに迫る よその国 たとえば半導体の国からまぐねの国に来て戸惑うのは 磁性体は初期状態では磁気を帯びておらず いったん強い磁界を受けると 磁気を帯びた状態になること さらに 逆向きの磁気を帯びさせためには保磁力以上の逆向き磁界を加えなければいけない ことです これらの現象は 第 2 章のようなミクロの街の掟では説明できないのです この章では このようなまぐねの国のふしぎに迫ります

More information

Microsoft PowerPoint - 集積デバイス工学5.ppt

Microsoft PowerPoint - 集積デバイス工学5.ppt MO プロセスフロー ( 復習 集積デバイス工学 ( の構成要素 ( 抵抗と容量 素子分離 -well 形成 ゲート形成 拡散領域形成 絶縁膜とコンタクト形成 l 配線形成 6 7 センター藤野毅 MO 領域 MO 領域 MO プロセスフロー ( 復習 素子分離 -well 形成 ゲート形成 拡散領域形成 絶縁膜とコンタクト形成 l 配線形成 i 膜 ウエルポリシリコン + 拡散 + 拡散コンタクト

More information

Microsoft Word - Web掲載用 CEMS-KentaroUEDA_他機関確認用_工学部【広報課確認】 - コピー.docx

Microsoft Word - Web掲載用 CEMS-KentaroUEDA_他機関確認用_工学部【広報課確認】 - コピー.docx PRESS RELEASE 2017 年 5 月 23 日理化学研究所東京大学 固体中の相対論的電子による新しい相転移現象を発見 - トポロジカル電子状態の理解と発展に道 - 要旨理化学研究所 ( 理研 ) 創発物性科学研究センター強相関物性研究グループの上田健太郎研修生 ( 研究当時 ) 金子竜馬研修生( 東京大学大学院工学系研究科大学院生 ) 十倉好紀グループディレクター( 同教授 ) 強相関界面研究グループの藤岡淳客員研究員

More information

スライド 1

スライド 1 電流と磁場 目次 0. はじめにー物質の磁気的性質と磁場ー 1. 磁石と磁場 2. 電流のつくる磁場 (1) 3. 磁場中の運動する荷電粒子に働く磁気力 ( ローレンツ力 ) 4. 磁場中の電流に働く力 ( アンペアの力 ) 5. 平行または反平行電流の間に働く磁気力 6. 電流のつくる磁場 (2)- ビオ サバールの法則 7. アンペアの法則 ( アンペアの回路定理 ) 8. 磁場 に対するガウスの法則付録

More information

FPWS2018講義千代

FPWS2018講義千代 千代勝実(山形大学) 素粒子物理学入門@FPWS2018 3つの究極の 宗教や神話 哲学や科学が行き着く人間にとって究極の問い 宇宙 世界 はどのように始まり どのように終わるのか 全てをつかさどる究極原理は何か 今日はこれを考えます 人類はどういう存在なのか Wikipediaより 4 /72 千代勝実(山形大学) 素粒子物理学入門@FPWS2018 電子レンジ 可視光では中が透け

More information

14. 磁性材料の特性試験 1. 実験の目的磁性材料のヒステリシス曲線について学び エプスタイン装置を用い けい素鋼板の鉄損を測定する これらの実験を通して磁性材料の特性について さらに実際の電気機器で磁性材料がどのような使い方をされているのかについて理解を深める 2. 予備レポートの提出以下の項目

14. 磁性材料の特性試験 1. 実験の目的磁性材料のヒステリシス曲線について学び エプスタイン装置を用い けい素鋼板の鉄損を測定する これらの実験を通して磁性材料の特性について さらに実際の電気機器で磁性材料がどのような使い方をされているのかについて理解を深める 2. 予備レポートの提出以下の項目 14. 磁性材料の特性試験 1. 実験の目的磁性材料のヒステリシス曲線について学び エプスタイン装置を用い けい素鋼板の鉄損を測定する これらの実験を通して磁性材料の特性について さらに実際の電気機器で磁性材料がどのような使い方をされているのかについて理解を深める. 予備レポートの提出以下の項目を調べ 予備レポートとして 実験開始前までに提出する 1) 強磁性体 常磁性体 反磁性体の違い ) 軟磁性体と硬磁性体の特色と応用先

More information

物性物理学I_2.pptx

物性物理学I_2.pptx The University of Tokyo, Komaba Graduate School of Arts and Sciences I 凝縮系 固体 をデザインする 銅()面上の鉄原子の 量子珊瑚礁 IBM Almaden 許可を得て掲載 www.almaden.ibm.com/vis/stm/imagesstm5.jpg&imgrefurl=http://www.almaden.ibm.com/vis/

More information

氏 名 田 尻 恭 之 学 位 の 種 類 博 学 位 記 番 号 工博甲第240号 学位与の日付 平成18年3月23日 学位与の要件 学位規則第4条第1項該当 学 位 論 文 題 目 La1-x Sr x MnO 3 ナノスケール結晶における新奇な磁気サイズ 士 工学 効果の研究 論 文 審 査

氏 名 田 尻 恭 之 学 位 の 種 類 博 学 位 記 番 号 工博甲第240号 学位与の日付 平成18年3月23日 学位与の要件 学位規則第4条第1項該当 学 位 論 文 題 目 La1-x Sr x MnO 3 ナノスケール結晶における新奇な磁気サイズ 士 工学 効果の研究 論 文 審 査 九州工業大学学術機関リポジトリ Title La1-xSrxMnO3ナノスケール結晶における新奇な磁気サイズ効果の研究 Author(s) 田尻, 恭之 Issue Date 2006-06-30 URL http://hdl.handle.net/10228/815 Rights Kyushu Institute of Technology Academic Re 氏 名 田 尻 恭 之 学 位

More information

と呼ばれる普通の電子とは全く異なる仮説的な粒子が出現することが予言されており その特異な統計性を利用した新機能デバイスへの応用も期待されています 今回研究グループは パラジウム (Pd) とビスマス (Bi) で構成される新規超伝導体 PdBi2 がトポロジカルな性質をもつ物質であることを明らかにし

と呼ばれる普通の電子とは全く異なる仮説的な粒子が出現することが予言されており その特異な統計性を利用した新機能デバイスへの応用も期待されています 今回研究グループは パラジウム (Pd) とビスマス (Bi) で構成される新規超伝導体 PdBi2 がトポロジカルな性質をもつ物質であることを明らかにし 平成 27 年 10 月 9 日 国立大学法人東京大学国立大学法人東京工業大学国立大学法人広島大学トポロジカルな電子構造をもつ新しい超伝導物質の発見 ~トポロジカル新物質の探索に新たな指針 ~ 1. 発表者 : 坂野昌人 ( 東京大学大学院工学系研究科物理工学専攻博士後期課程 3 年 ) 大川顕次郎 ( 東京工業大学応用セラミックス研究所博士後期課程 2 年 ) 奥田太一 ( 広島大学放射光科学研究センター准教授

More information

<4D F736F F F696E74202D2094BC93B191CC82CC D B322E >

<4D F736F F F696E74202D2094BC93B191CC82CC D B322E > 半導体の数理モデル 龍谷大学理工学部数理情報学科 T070059 田中元基 T070117 吉田朱里 指導教授 飯田晋司 目次第 5 章半導体に流れる電流 5-1: ドリフト電流 5-: 拡散電流 5-3: ホール効果第 1 章はじめに第 6 章接合の物理第 章数理モデルとは? 6-1: 接合第 3 章半導体の性質 6-: ショットキー接合とオーミック接触 3-1: 半導体とは第 7 章ダイオードとトランジスタ

More information

2 磁性薄膜を用いたデバイスを動作させるには ( 磁気記録装置 (HDD) を例に ) コイルに電流を流すことで発生する磁界を用いて 薄膜の磁化方向を制御している

2 磁性薄膜を用いたデバイスを動作させるには ( 磁気記録装置 (HDD) を例に ) コイルに電流を流すことで発生する磁界を用いて 薄膜の磁化方向を制御している 1 磁化方向の電圧制御とそのメモリ センサ 光デバイスへの応用 秋田大学大学院工学資源学研究科 附属理工学研究センター 准教授 吉村哲 2 磁性薄膜を用いたデバイスを動作させるには ( 磁気記録装置 (HDD) を例に ) コイルに電流を流すことで発生する磁界を用いて 薄膜の磁化方向を制御している 3 従来技術とその問題点 エネルギーロスの大きい電流磁界により磁化反転を行っており 消費電力が高い 発生可能な磁界に限界があり(

More information

研究成果東京工業大学理学院の那須譲治助教と東京大学大学院工学系研究科の求幸年教授は 英国ケンブリッジ大学の Johannes Knolle 研究員 Dmitry Kovrizhin 研究員 ドイツマックスプランク研究所の Roderich Moessner 教授と共同で 絶対零度で量子スピン液体を示

研究成果東京工業大学理学院の那須譲治助教と東京大学大学院工学系研究科の求幸年教授は 英国ケンブリッジ大学の Johannes Knolle 研究員 Dmitry Kovrizhin 研究員 ドイツマックスプランク研究所の Roderich Moessner 教授と共同で 絶対零度で量子スピン液体を示 平成 28 年 7 月 1 日 報道機関各位 東京工業大学東京大学 幻の マヨラナ粒子 の創発を磁性絶縁体中で捉える - 電子スピンの分数化が室温まで生じていることを国際共同研究で実証 - 要点 量子スピン液体を示す理論模型を大規模数値計算によって解析 磁気ラマン散乱強度の温度変化を調べた結果 広い温度範囲において幻の マヨラナ粒子 の創発を発見 本研究で得られた計算結果が実験結果と非常に良い一致

More information

有機化合物の磁気キラル二色性を初めて観測! - 生命のホモキラリティー起源の候補の一つを有機化合物で初めて実証 - 1 東京大学生産技術研究所第 4 部物質 環境系部門 2 東京大学先端科学技術センター 1 石井和之 1 北川裕一 2 瀬川浩司

有機化合物の磁気キラル二色性を初めて観測! - 生命のホモキラリティー起源の候補の一つを有機化合物で初めて実証 - 1 東京大学生産技術研究所第 4 部物質 環境系部門 2 東京大学先端科学技術センター 1 石井和之 1 北川裕一 2 瀬川浩司 有機化合物の磁気キラル二色性を初めて観測! 生命のホモキラリティー起源の候補の一つを有機化合物で初めて実証 1 東京大学生産技術研究所第 4 部物質 環境系部門 2 東京大学先端科学技術センター 1 石井和之 1 北川裕一 2 瀬川浩司 東京大学生産技術研究所第 4 部物質 環境系部門石井和之研究室機能性色素を専門 東京大学先端科学技術センター瀬川浩司研究室光エネルギー変換を専門 内部に蓄電できる新型太陽電池

More information

03J_sources.key

03J_sources.key Radiation Detection & Measurement (1) (2) (3) (4)1 MeV ( ) 10 9 m 10 7 m 10 10 m < 10 18 m X 10 15 m 10 15 m ......... (isotope)...... (isotone)......... (isobar) 1 1 1 0 1 2 1 2 3 99.985% 0.015% ~0% E

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 東北大学サイクロトロン ラジオアイソトープセンター測定器研究部内山愛子 2 電子の永久電気双極子能率 EDM : Permanent Electric Dipole Moment 電子のスピン方向に沿って生じる電気双極子能率 標準模型 (SM): クォークを介した高次の効果で電子 EDM ( d e ) が発現 d e SM < 10 38 ecm M. Pospelov and A. Ritz,

More information

Microsoft PowerPoint - meta_tomita.ppt

Microsoft PowerPoint - meta_tomita.ppt メタマテリアルの光応答 量子物性科学講座 冨田知志 メタマテリアルとは meta-: higher, beyond Oxford ALD Pendry, Contemporary Phys. (004) メタマテリアル (meta-material): 波長 λ に対して十分小さい要素を組み合わせて 自然界には無い物性を実現した人工物質 ( 材料 ) 通常の物質 :, は構成原子に起因 メタ物質 :

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 2004 3 3 2 3 4 5 6 7 8 9 10 T. Ito, A. Yamamoto, et al., J. Chem. Soc., Chem. Commun., 136 (1974) J. Chem. Soc., Dalton Trans., 1783 (1974) J. Chem. Soc., Dalton Trans., 1398 (1975) 11 T.Ito, A. Yamamoto,

More information

磁性 スピントロニクス材料研究拠点 ゆらぐスピンの舵をとれ 磁力の源 電子スピンを操る磁性材料の挑戦 NIMS NOW 02 ただの金属の塊のようでいて 物にくっついたり反発したりする性質を持つ 磁石 紀元前にさかのぼる磁石の発見は 羅針盤を皮切りとした磁気デバイス開発のはじまりでもあった 20 世

磁性 スピントロニクス材料研究拠点 ゆらぐスピンの舵をとれ 磁力の源 電子スピンを操る磁性材料の挑戦 NIMS NOW 02 ただの金属の塊のようでいて 物にくっついたり反発したりする性質を持つ 磁石 紀元前にさかのぼる磁石の発見は 羅針盤を皮切りとした磁気デバイス開発のはじまりでもあった 20 世 42018 磁性 スピントロニクス材料研究拠点 ゆらぐスピンの舵をとれ 磁力の源 電子スピンを操る磁性材料の挑戦 NIMS NOW 02 ただの金属の塊のようでいて 物にくっついたり反発したりする性質を持つ 磁石 紀元前にさかのぼる磁石の発見は 羅針盤を皮切りとした磁気デバイス開発のはじまりでもあった 20 世紀に入り 日本において世界初の人工磁石が誕生 さらに 磁石の力の正体である電子の スピン

More information

2. 研究実施内容 ( 文中に番号がある場合は (3-1) に対応する ) 研究のねらい本研究では 磁気化学を基盤とした新機能ナノ構造物質のボトムアップ創成に関する研究を推進している 目的としては 金属錯体磁性体の高次構造を制御することで 新規光磁性材料の創製や 優れた磁気特性などの新規機能性を有す

2. 研究実施内容 ( 文中に番号がある場合は (3-1) に対応する ) 研究のねらい本研究では 磁気化学を基盤とした新機能ナノ構造物質のボトムアップ創成に関する研究を推進している 目的としては 金属錯体磁性体の高次構造を制御することで 新規光磁性材料の創製や 優れた磁気特性などの新規機能性を有す プロセスインテグレーションに向けた高機能ナノ構造体の創出 平成 22 年度採択研究代表者 H23 年度 実績報告 大越慎一 東京大学大学院理学系研究科 教授 磁気化学を基盤とした新機能ナノ構造物質のボトムアップ創成 1. 研究実施体制 (1) 大越グループ 1 研究代表者 : 大越慎一 ( 東京大学大学院理学系研究科 教授 ) 2 研究項目 1. 磁性金属錯体に関する研究 (i) 新規光磁性金属錯体のボトムアップ合成

More information

SE法の基礎

SE法の基礎 SE 法の基礎 近畿大学医学部奈良病院阪本貴博 本日の内容 Principle of MRI SE 法の基礎 MRI とは SE 法とは 縦緩和と横緩和 TR と TE コントラスト MRI とは Magnetic Resonance Imaging: 核磁気共鳴画像法 MRI に必要な 3 つの要素 N S + + + 静磁場 ( 磁石 ) 水素原子 電波 (RF) 静磁場と電波 (RF) を使って水素原子の様子を画像化している

More information

電磁気学 A 練習問題 ( 改 ) 計 5 ページ ( 以下の問題およびその類題から 3 題程度を定期試験の問題として出題します ) 以下の設問で特に断らない限り真空中であることが仮定されているものとする 1. 以下の量を 3 次元極座標 r,, ベクトル e, e, e r 用いて表せ (1) g

電磁気学 A 練習問題 ( 改 ) 計 5 ページ ( 以下の問題およびその類題から 3 題程度を定期試験の問題として出題します ) 以下の設問で特に断らない限り真空中であることが仮定されているものとする 1. 以下の量を 3 次元極座標 r,, ベクトル e, e, e r 用いて表せ (1) g 電磁気学 A 練習問題 ( 改 ) 計 5 ページ ( 以下の問題およびその類題から 題程度を定期試験の問題として出題します ) 以下の設問で特に断らない限り真空中であることが仮定されているものとする. 以下の量を 次元極座標,, ベクトル e, e, e 用いて表せ () gad () ot A (). 以下の量を 次元円柱座標,, z 位ベクトル e e, e, z 用いて表せ () gad ()

More information

交番磁気力顕微鏡 : 空間分解能 5nm と高機能性の実現 秋田大学 工学資源学研究科附属理工学研究センター教授齊藤準 機器開発タイプ ( 平成 23 年度 ~26 年度 ) 開発課題名 : ベクトル磁場検出 高分解能 近接場磁気力顕微鏡の開発中核機関 : 秋田大学参画機関 :( 株 ) 日立ハイテ

交番磁気力顕微鏡 : 空間分解能 5nm と高機能性の実現 秋田大学 工学資源学研究科附属理工学研究センター教授齊藤準 機器開発タイプ ( 平成 23 年度 ~26 年度 ) 開発課題名 : ベクトル磁場検出 高分解能 近接場磁気力顕微鏡の開発中核機関 : 秋田大学参画機関 :( 株 ) 日立ハイテ 交番磁気力顕微鏡 : 空間分解能 5nm と高機能性の実現 秋田大学 工学資源学研究科附属理工学研究センター教授齊藤準 機器開発タイプ ( 平成 23 年度 ~26 年度 ) 開発課題名 : ベクトル磁場検出 高分解能 近接場磁気力顕微鏡の開発中核機関 : 秋田大学参画機関 :( 株 ) 日立ハイテクサイエンス 日東光器 ( 株 ) 秋田県産業技術センター 1 従来技術 ( 磁気力顕微鏡 ) とその問題点

More information

PowerPoint Presentation

PowerPoint Presentation 半導体電子工学 II 神戸大学工学部 電気電子工学科 12/08/'10 半導体電子工学 Ⅱ 1 全体の内容 日付内容 ( 予定 ) 備考 1 10 月 6 日半導体電子工学 I の基礎 ( 復習 ) 11/24/'10 2 10 月 13 日 pn 接合ダイオード (1) 3 10 月 20 日 4 10 月 27 日 5 11 月 10 日 pn 接合ダイオード (2) pn 接合ダイオード (3)

More information

磁気ディスク装置

磁気ディスク装置 ご利用にあたっての注意 磁気ディスク装置 は 2006 年 ~2009 年当時の情報です 予告なしに更新 あるいは掲載を終了することがあります あらかじめご了承ください 磁気ディスク装置 磁気ディスク装置とはパソコン ( パーソナルコンピュータの略 ) にとって 覚えておくための手帳と記入用のペンの役割をはたしています 手帳に相当するのが磁気ディスクで ペンに相当するのが磁気ヘッドです 目次どんな所で使われているのでしょうかディスクはどのように記録してあるのかな原理

More information

磁気でイオンを輸送する新原理のトランジスタを開発

磁気でイオンを輸送する新原理のトランジスタを開発 同時発表 : 筑波研究学園都市記者会 ( 資料配布 ) 文部科学記者会 ( 資料配布 ) 科学記者会 ( 資料配布 ) 磁気でイオンを輸送する新原理のトランジスタを開発 ~ 電圧をかけずに動作する電気化学デバイス実現へ前進 ~ 配布日時 : 平成 29 年 9 月 7 日 14 時国立研究開発法人物質 材料研究機構 (NIMS) 概要 1.NIMS は 電圧でなく磁気でイオンを輸送するという 従来と全く異なる原理で動作するトランジスタの開発に成功しました

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 ) 電磁波 ( 光 ) の角運動量. 復習 : 電磁波 ( 光 ) のエネルギー. 運動量 角運動量 ( 実空間 ) 3. 軌道 スピン角運動量 4. 円偏光状態 5. 螺旋状態 付録 8 のアプローチ. 本付録では電磁波 ( 光 ) の軌道 スピン角運動量ついて古典的に扱う. スピン角運動量は直線偏光状態では零 円偏光状態では非零 右 左回りで大きさは同じ

More information

 

  1) 放射光による元素選択的磁気測定とそのナノ物質科学への期待 堀秀信 1) 山本良之 北陸先端科学技術大学院大学 マテリアルサイエンス研究科, 923-1292 石川県能美市旭台 1-1 2) 秋田大学 工学資源学部, 010-8502 秋田市手形学園町 1-1 2) 1. はじめに最近ナノサイズの科学研究が盛んである 我々は ナノ科学の最大の特徴が イオンなど原子の電子構造が中心となって表現される物性とも

More information