“‡Łª”qŠn›tflMŠÍ−w

Size: px
Start display at page:

Download "“‡Łª”qŠn›tflMŠÍ−w"

Transcription

1 21 7 2

2

3 i Flory-Huggins van t Hoff ( )

4 ii

5 iii ( ) A Flory-Huggins Flory-Huggins A B C ( )

6 iv 3.A Gibbs B C A B C D

7 1 1 2 Einstein 1 A theory is the more impressive the greater the simplicity of its premises, the more varied the kinds of things that it relates and the more extended the area of its applicability. Therefore classical thermodynamics has made a deep impression on me. It is the only physical theory of universal content which I am convinced, within the areas of the applicability of its basic concepts, will never be overthrown. - A. Einstein (1949) - 2, 3, 4, 5, ( ) 2 1 (system) (surroundings)

8 Albert Einstein (1879/3/ /4/18) 3 (closed system) (open system) (isolated system) 1 2 component) (state propery) 2 1 (intensive property) 1 ( ) (extensive property) 2

9 1.1 3 ( ) (single phase system) 2 (multiphase system) (homogeneous system) (heterogeneous system) (phase) 2 1 (equilibrium state) (state variable) Gibbs (Gibbs phase rule) Φ = C + 2 P (1.1) Φ C P Gibbs Φ Φ + 1 (external constraints)

10 James Prescott Joule (1818/12/ /10/11) 1.2 (internal energy) U (heat) Q W du = dq + dw (1.2) (thermal energy) ( ) ( ) E = mc 2 (E: m: c: ) c 2 (1.2) U du d (exact differential total diferential)

11 Julius Robert von Mayer (1814/11/ /3/20) Q W dq dw d (inexact differential) (1.2) W p V dv dw = p dv (1.3) p (1.3) (1.2) du = dq p dv (1.4) p p p (isobaric process) (1.4) p = p du = dq pdv (1.5)

12 Rudolf Julius Emanuel Clausius (1822/1/2 1888/8/24) Clausius Kelvin(Thomson) ( )( ) 2 1 (spontaneous process) (irreversible process) 1 (reversible process) 2 S

13 William Thomson (Lord Kelvin) (1824/6/ /12/17) ds > dq T (1.6) ds = dq T (1.7) T dq T T = T (1.6) Clausius (1.7) Clausius 2 clausius Kelvin S (Carnot ) Q/T Clausius (1.7) S ( T ) (1.6) (1.4) du < T ds p dv (1.8)

14 8 1 (1.7) (1.5) du = T ds pdv (1.9) du = 0 dv = 0 (1.8) ds > 0 (1.10) 1.4 δ δ Clausius (1.6) δs δq T (1.11) δu = δq p δv (1.12) T δs δu + p δv (1.13) δu = 0 δv = 0 (1.13) δs 0 (1.14)

15 Hermann Ludwig Ferdinand von Helmholtz (1821/8/ /9/8) T = T δv = 0 (1.13) T δs δu (1.15) A U T S (1.16) Helmholtz (Helmholtz free energy) δa 0 (1.17) T V Helmholtz Helmholtz A T = T p = p (1.13) δ(u + pv T S) 0 (1.18)

16 Josiah Willard Gibbs (1839/2/ /4/28) (enthalpy)h Gibbs (Gibbs free energy)g H U + pv (1.19) G U + pv T S = H T S (1.20) Gibbs G (1.18) δg 0 (1.21) T p Gibbs H Gibbs G [ ] T p 1 T = p = (1.21) n l Gibbs G l Gibbs Ḡl n g Gibbs G g Gibbs

17 1.5 ( ) 11 Ḡg G l = n l Ḡ l (T, p), G g = n g Ḡ g (T, p) (1.22) δn l G l δn l Ḡ l (T, p) G g δn l Ḡ g (T, p) Gibbs G δg = [Ḡg(T, p) Ḡl(T, p)]δn l (1.23) (1.21) [Ḡg(T, p) Ḡl(T, p)]δn l 0 (1.24) δn l Ḡ g (T, p) = Ḡl(T, p) (1.25) 1 Gibbs 1.5 ( ) T V T p Helmholtz A Gibbs G A G (T, V ) A (T, p) G T V A(T, V ) T p G(T, p) T V T p (T, V ) A (T, p) G (characteristic function)

18 12 1 (generating function) (S, V ) U(S, V ) (S, p) H(S, p) 1. (T, p) G(T, p) (T, V ) A(T, V ) (S, p) H(S, p) (S, V ) U(S, V ) Gibbs G (1.20) dg = du + pdv + V dp T ds SdT (1.26) d 2 (1.9) dg = V dp SdT (1.27) ( ) G V = p T ( ) G S = T p (1.28) (1.29) (1.29) G (1.20) H H = G T ( ) G = T p [ ] (G/T ) (1/T ) p (1.30) Gibbs - Helmholtz

19 1.5 ( ) James Clerk Maxwell (1831/6/ /11/5) H H U + pv (1.9) dh = T ds + V dp (1.31) ( ) H p p T = V + T ( ) S p T (1.28) (1.29) ( ) ( ) V = 2 G S T p T = p Maxwell (1.32) (1.33) ( ) ( ) H V = V T p T T p T (1.32) (1.33) (1.34) ( ) H = V (1 αt ) (1.35) p T α α 1 ( ) V V T p (1.36)

20 14 1 (1.9) ( ) U V T = p + T ( ) p T V (1.37) ( U/ V ) T p i (internal pressure) ( p/ T ) V β (thermal pressure coefficient) p i = p + T β (1.38) (1.34) (1.37) (thermal equation of state) r r + 1 r (principal solvent) i (i = 0, 1,, r) n i n n = r n i (1.39) i= T p (T, p) Y Y T p n 0 n 1 n r

21 n i (i = 0, 1,, n r λ Y λ Y Y (T, p, λn 0, λn 1,, λn r ) = λy (T, p, n 0, n 1,, n r ) (1.40) (partial molar quantity)y i ( ) Y Y i n i T,p,n j(j i) (1.41) Y = r n i Y i (1.42) i=0 Y i Y dy = (1.42 ( ) ( ) Y Y dt + dp + T p,n i p T,n i dy = 2 r Y i dn i (1.43) i=0 r (n i dy i + Y i dn i ) (1.44) i=0 ( ) ( ) Y Y dt + dp T p,n i p T,n i T p n r n i dy i = 0 (1.45) i=0 r n i (dy i ) T,p = 0 (1.46) i=0 r x i (dy i ) T,p = 0 (1.47) i=0 x i ( n i /n) ( )

22 16 1 Y i (Y i ) T,p x i x 2 x r ( r i=0 x i = 1 x i r ) (dy i ) T,p = r ( ) Yi dx j (1.48) x j T,p,x k (k j) j=i (1.47) r [ r ( ) ] Yi x i dx j = 0 (1.49) x j T,p,x k (k j) j=1 i=0 dx j r i=0 ( ) Yi x i = 0 (j = 1, 2,, r) (1.50) x j T,p,x k (k j) i Y i (S, V ) U du = T ds pdv + r µ i dn i (1.51) µ i i (chemical potential) ( ) U µ i n i i=0 S,V,n j (j i) (1.52) du dn i (i = 0, 1, 2,, r) Gibbs (1.51) µ i ( ) U T = (1.53) S V,n i

23 (1.51) ( ) U p = (1.54) V S,n i ds = 1 T du + p T dv r = ( ) S du + U V,n i i=0 U µ i ( S V T dn i ) U,n i dv + r ( ) S dn i n i U,V,n j (j i) i=0 (1.55) ( ) S µ i = T (1.56) n i U,V,n j (j i) ( ) 1 S T = (1.57) U V,n i ( ) S p = T (1.58) V U,n i U = T S pv + du = T ds + SdT V dp pdv + (1.51) SdT V dp + r µ i n i (1.59) i=0 r (µ i dn i + n i dµ i ) (1.60) i=0 r n i dµ i = 0 (1.61) i=0

24 Pierre Maurice Marie Duhem (1861/6/ /9/14) T p r [ r ( ) ] µi n i dn i = 0 (1.62) n j T,p i=0 j=0 dn i r i=0 ( ) µi n i = 0 (1.63) n j T,p (1.45) (1.50) (1.61) (1.63) Gibbs - Duhem (S, p) H dh = T ds + V dp + ( ) H µ i = n i V = ( H p r µ i dn i (1.64) i=0 S,p,n j(j i) ) (1.65) S,n i (1.66)

25 T = ( ) H (1.67) S p,n i (T, V ) A da = SdT pdv + r µ i dn i (1.68) i=0 ( ) A µ i = (1.69) n i T,V,n j (j i) ( ) A S = (1.70) T V,n i ( ) A p = (1.71) V T,n i (T, p) G dg = SdT + V dp + r µ i dn i (1.72) i=0 ( ) G µ i = (1.73) n i T,p,n j (j i) ( ) G S = (1.74) T p,n i ( ) G V = (1.75) p T,n i Gibbs G G G = U + pv T S U (1.59) G = r µ i n i (1.76) i=0

26 20 1 G = µn Gibbs G m ( G/n) µ r G m = µ i x i (1.77) i=0 µ i T p x i (i = 1, 2,, r) µ i = µ i (T, p, x 1, x 2,, x r ) (mole fraction)x i n i n x i n i (1.78) n r i=0 x i = 1 r 2. (weight fraction)w i i q i q w i q i q = q i r j=0 q j (1.79) r i=0 w i = 1 r x i i (molar mass) M i q i = n i M i w i = x i M i w i /M r j=0 x, x i = i r jm j j=0 (w j/m j ) (1.80) 3. (volume fraction)ϕ i i (molar volume) Vi (specific volume)v i (v i V i /M i) x i w i ϕ i x i Vi w i vi r j=0 x jvj = r j=0 w jvj, r ϕ i = 1 (1.81) i=0

27 r V i v I (partial molar volume)v i (partial specific volume)v i (v i V i /M i ) V i v i Vi = V i 4. (molarity)m i ( ) m i m 0 M 1 0 n i = x i (1.82) n 0 M 0 x 0 M 0 x i = m i M r j=1 m j = m i r j=0 m j (1.83) 5. (volume molarity)c i i ( ) C i n i V = x i V m = m i v M (1.84) V m ( V/n) v M v M V n 0 M 0 (1.85) V V i V = r n i V i, i=0 ( ) V V i n i n 0 M 0 v M = v 0 + T,p,n j(j i) (1.86) r m i V i (1.87) i=1

28 22 1 C i r C i V i = 1 (1.88) i=0 6. (mass concentration)c i i ρ c i n im i V ρ = r ρ i = i=0 = x im i V m = m im i v M = C i M i (1.89) r r i=0 c i = n im i V i=0 (1.90) r i=0 c i V i M i = r c i v i = 1 (1.91) i=0 Gibbs-Duhem (1.50) r ( ) w i Yi = 0 (j = 1, 2,, r) (1.92) M i w j i=0 r i=0 r i=0 ( ϕ i Yi Vi ϕ j m i ( Yi m j ) T,p,w k (k j) ) T,p,ϕ k (k j) T,p,m k (k j) = 0 (j = 1, 2,, r) (1.93) = 0 (j = 1, 2,, r) (1.94)

29 r ( ) Yi C i = 0 (j = 1, 2,, r) (1.95) C j T,p,C k (k j) r ( ) c i Yi = 0 (j = 1, 2,, r) (1.96) M i c j i=0 i=0 T,p,c k (k j) Gibbs-Duhem 1.7 r (α β ) T α = T β = T (1.97) p α = p β = p (1.98) α β i δn i (i = 0, 1,, r) δg 0 α G G α β G G β δg α = δg β = r µ α i δn i (1.99) i=0 r µ β i δn i (1.100) i=0 µ α i µβ i α β i δg = δg α +δgβ δg = r i=0 (µα i µβ i )δn i r (µ α i µ β i )δn i 0 (1.101) i=0 δn i µ α i = µ β i (i = 0, 1,, r) (1.102)

30 24 1 T p {x} ({x} x 1, x 2,, x r ) (1.97) (1.98) (1.102) µ α i (T, p, {x α }) = µ β i (T, p, {xβ }) (1.103) P µ α 0 (T, p, {x α }) = µ β 0 (T, p, {xβ }) = = µ P 0 (T, p, {x P }) µ α 1 (T, p, {x α }) = µ β 1 (T, p, {xβ }) = = µ P 1 (T, p, {x P }) µ α 2 (T, p, {x α }) = µ β 2 (T, p, {xβ }) = = µ P 2 (T, p, {x P }) µ α r (T, p, {x α }) = µ β r (T, p, {x β }) = = µ P r (T, p, {x P }) (1.104) ( ) ( ) ( ) Gibbs-Duhem

31 1.A Nicolas Léonard Sadi Carnot (1796/6/1 1832/8/24) 1.A 7 Joule Mayer Helmholtz abcd cd A B A B 1. A abcd A cd

32 26 1 g e h f A c i a d k b B 1.11 ( ) 2. ef A A 3. A ef gh B gh 4. B gh cd B B 5. B

33 1.A James Watt (1736/1/ /8/25) A cd ik 6. A ik ef 7. (3) (4) (5) (6) (3) (4) (5) (6) (3) (4) (5)

34 28 1 ef A ik A A A ik cd B A B B A A B B A A B B A B A

35 1.A Benoit Paul Emile Clapeyron (1799/2/ /1/28) 1.14 Count von Rumford (Benjamin Thompson)(1753/3/ /8/21) V p Clapeyron Clapeyron Rumford Joule

36 ( ) 2 ( ) Kelvin(William Thomson) Joule ( ) 1 ( 1 ) 1 1 Clausius ( 1 ) ( ) Clausius Clausius 2 8 8

37 1.A Walther Hermann Nernst (1864/6/ /11/18) Kelvin(William Thomson) Clausius (0) 0

38 32 3 Nernst ( 2 ) ( ) 1. A. Einstein, Autobiographical Notes in Albert Einstein: Philosopher - Scientist, P. A. Schilpp, Ed., Cambridge University Press, London, M. Planck, Treatise on Thermodynamics, Dover, New York, Kenneth Denbigh ( ), III

39 , 2, 3 T p 1 Gibbs G 2 1 x 1 Gibbs G m G m x T 1 (1.77) x 1 = 0 0 µ 0 x 1 = 1 1 µ 1 2 G m 2 P P P P x 1 x 1 x 1 = 0 x 1 = 1 µ 0 (x 1) = µ 0 (x 1) (2.1) µ 1 (x 1) = µ 1 (x 1) (2.2) 2 (1.102) P P 2 G m x 1 x 1 = 0 µ 0 x 1 = 1 µ 1 x 1 2 (1.77) G m (x 1 ) = (1 x 1 )µ 0 (x 1 ) + x 1 µ 1 (x 1 ) (2.3)

40 34 2 T c T 2 G m µ 1 o µ 0 o T 1 µ 0 (x 1 ) µ 0 (x 1 ") P N N" P" µ 1 (x 1 ) µ 1 (x 1 ") 0 x 1 x 1 " x Gibbs G m ( ) x 1 Y i µ i (1.50) ( ) Gm x 1 T,p = µ 1 (x 1 ) µ 0 (x 1 ) (2.4) µ 0 (x 1 ) = G m (x 1 ) x 1 ( Gm x 1 ) T,p ( ) Gm µ 1 (x 1 ) = G m (x 1 ) + (1 x 1 ) x 1 T,p (2.5) (2.6) ( G m / x 1 ) T,p x 1 G m (2.5) x 1 = 0 µ 0 (x 1 ) (2.6) x 1 = 1 µ 1 (x 1 ) 2.1 T 1 G m x 1 N N (spinodal point)

41 35 Q G m G m * G m 0 Q Q" (a) x 1 G m 0 Q G m G m * Q Q" (b) x 1 G m G m 0 Q (c) Q" G m * Q x G m ( 2 ) ( ) G m µ1 = = 0 (2.7) x 1 x 2 1 T,p T 1 x 1 = 0 P P x 1 = 1 P N N P N N 2.2 Q Q Q 2 Q Q Q n n n T,p

42 x 0 1 x 1 x 1 1 n = n + n (2.8) nx 0 1 = n x 1 + n x 1 (2.9) n n = x 1 x 0 1 x 1 x 1 (2.10) n n = x0 1 x 1 x 1 x 1 (2.11) Q Gibbs G m Q Gibbs G m 2 Gibbs G m (2.10) (2.11) ng m = n G m + n G m (2.12) G m = G m + x0 1 x 1 x 1 x 1 (G m G m) (2.13) 2.2(a) G m x 1 G m (2.13) Q Q Q G m Q Gibbs G0 m 1 (1.21) Q 1 2.2(b) G m x 1 G m Q Q Q (2.13) G m Q G0 m (1.21)

43 Q T 1 P N P N (metastable) 2.2 Q Q 2.2(a) Q 1 2.2(c) Q Q Q Q 2 G m Q 1 G0 m 2.1 T 1 G m x 1 (critical solution point) (2.7) ( 3 ) G m x 3 1 T,p ( 2 ) µ 1 = x 2 1 T,p 37 = 0 (2.14) 2.1 P P N N T 1 x (phase diagram) T P P ( 2.3 ) (coexistence curve) (binodal) T 1 P 1 P P 2 P P n /n (2.10) (2.11) PP P P (lever rule) 2 P P (tie line) 1 (cloud point) (precipitation point) (cloud point curve) 2 (

44 38 2 T c C T T 1 P P P" N N" 0 x 1 x 1 0 x 1 x 1 " ) T N N ( 2.3 ) (spinodal) T c (upper critical solution point) 2 (lower critical solution point) (2.7) (2.14)

45 Gibbs G m Gibbs G G m ( G) 2 1 G m ( G) 1 G m G G m (2.7) (2.14) G m Flory-Huggins Flory-Huggins 4, 5 Huggins Flory (Flory Huggins Huggins ) V 0 V 1 P 1 P 1 V 1 V0 (2.15) V 0

46 V 0 N N 0 N 1 V N = N 0 + P 1 N 1 (2.16) V = (N 0 + P 1 N 1 )V 0 (2.17) V 0 V 1 T ϕ 1 ϕ 0 ϕ 1 = ϕ 0 = 1 ϕ 1 = P 1 N 1 N 0 + P 1 N 1 (2.18) N 0 N 0 + P 1 N 1 (2.19) Ω 1 2 N N 1

47 P N z 2 z 3 z 1 z 1 1 P 1 ν 1 ν 1 = Nz(z 1) P1 2 (2.20) i 1 N P 1 (i 1) i ν i [ ] P1 1 N P1 (i 1) ν i = [N P 1 (i 1)] z(z 1) P 1 2 N (2.21) [N P 1 (i 1)]/N i 2 N 1 N 0 N 0 N 0! N 0!N 1! 2 N1 1 N 1 Ω = ν i (2.22) N 1!σ N1 σ 1 2 (2.22) (2.21) Ω = i=1 ( ) (P1 1)N N! P1 N 1 1 ω N 1 (2.23) N 0!(P 1 N 1 )! N ω P 1z(z 1) P 1 2 σe P 1 1 (2.24)

48 42 2 (2.23) Stirling ( ) x x x! = (2.25) e S Boltzmann S = k B ln Ω (2.26) S S = k B (N 0 ln ϕ 0 + N 1 ln ϕ 1 ) + k B N 1 ln ω (2.27) S S = S(N 1 = 0) + S(N 0 = 0) = k B N 1 ln ω (2.28) (mixing entropy) S S = S S = k B (N 0 ln ϕ 0 + N 1 ln ϕ 1 ) = R(n 0 ln ϕ 0 + n 1 ln ϕ 1 ) (2.29) n 0 n 1 ( ) 2 2 u (a a)+(b b) (a b)+(b a) u 00 u 11 u 01 u u (u 00 + u 11 ) (2.30)

49 a b zx (mixing energy) U U = zx u (2.31) zn/2 ϕ 0 ϕ 1 zx 2 zx = znϕ 0 ϕ 1 (2.32) U = Nz uϕ 0 ϕ 1 (2.33) U (mixing enthalpy) H (2.33)( U = H ) (2.29) 1 (1.20) Gibbs (mixing Gibbs free energy) G G = RT [n 0 ln ϕ 0 + n 1 ln ϕ 1 + (n 0 + P 1 n 1 )χ H ϕ 0 ϕ 1 ] (2.34) χ H z u k B T (2.35) χ H chi χ χ S χ χ χ H + χ S (2.36) χ T χ χ H χ S ( ) χ χ H = T (2.37) T p,ϕ 1

50 44 2 χ S = χ + T ( ) χ (2.38) T p,ϕ 1 2 Gibbs G G = n 0 µ 0 + n 1 µ 1 + RT [n 0 ln ϕ 0 + n 1 ln ϕ 1 + (n 0 + P 1 n 1 )χϕ 0 ϕ 1 ] (2.39) µ i i Gibbs G m G m = ϕ 0 µ 0 + ϕ ( 1 µ 1 + RT ϕ 0 ln ϕ 0 + ϕ ) 1 ln ϕ 1 + χϕ 0 ϕ 1 (2.40) P 1 P 1 (2.39) (1.73) µ 0 µ 1 [ ) ] µ 0 = µ 0 + RT ln(1 ϕ 1 ) + (1 1P1 ϕ 1 + χϕ 2 1 (2.41) µ 1 = µ 1 + RT [ln ϕ 1 (P 1 1)(1 ϕ 1 ) + P 1 χ(1 ϕ 1 ) 2 ] (2.42) (1.102) µ 0 (ϕ 1) = µ 0 (ϕ 1), µ 1 (ϕ 1) = µ 1 (ϕ 1) (2.43) (2.41) (2.42) (2.7) ( ϕ P ) 1 1 ϕ P 1 χ 2P 1 χ = 0 (2.44) T ϕ 1 χ T (2.44) (1.81) x 1 ϕ 1 ϕ 1c χ c (2.7) (2.14) 1 1 ϕ 1c + (1 1P1 ) + 2χ c ϕ 1c = 0 (2.45)

51 (1 ϕ 1c ) 2 + 2χ c = 0 (2.46) (1.81) 1 ϕ 1c = (2.47) 1 + P 1/2 1 χ c = 1 ( ) 2 (2.48) 2 P 1/2 1 P 1 ϕ 1c = 0 χ c = 1/2 (theta temperature) Θ χ T χ = 1 2 ψ + Θ T ψ (2.49) T = Θ χ = 1/2 Flory-Huggins

52 , 7 Θ = 307.2K ψ = M v ( ) ( ) ϕ Flory-Huggins Flory-Huggins S H χ Flory-Huggins S Gibbs G S G χ χ T ( )

53 χ Flory-Huggins 8, 9 χ ( ) χ χ ( ϕ 1 ) Gibbs G 0 1 µ 0 µ 1 µ 0 (2.41) χ µ 0 χ [ ) ] µ 0 = µ 0 + RT ln(1 ϕ 1 ) + (1 1P1 ϕ 1 + χϕ 2 1 (2.50) χ T p ϕ 1 P 1 1 (2.42) µ 1 = µ 1 + RT [ln ϕ 1 (P 1 1)(1 ϕ 1 ) + P 1 χ P (1 ϕ 1 ) 2 ] (2.51) Y i µ i Gibbs-Duhem (1.93) χ χ P χ P (1 ϕ 1 ) 2 = χϕ 1 (1 ϕ 1 ) + 1 χdϕ 1 ϕ 1 (2.52) (1.76) 2 Gibbs G [ G = n 0 µ 0 + n 1 µ 1 + nrt ϕ 0 ln ϕ 0 + ϕ ] 1 ln ϕ 1 + gϕ 0 ϕ 1 (2.53) P 1 n n 0 + P 1 n 1 (2.54) g 1 ϕ 0 1 ϕ 1 χdϕ 1 (2.55)

54 48 2 χ g ( ) g χ = g ϕ 0 ϕ 1 T,p (2.56) χ g 1 ϕ 1 = 0 χ = χ 0 + χ 1 ϕ 1 + χ 2 ϕ (2.57) g = g 0 + g 1 ϕ 1 + g 2 ϕ (2.58) g i = j=i χ j j + 1 (2.59) χ i = (i + 1)(g i g i+1 ) (2.60) χ g T ϕ g χ Koningsveld 10 (2.58) g ϕ 2 1 χ g = g 00 + g 01 T + g 1ϕ 1 + g 2 ϕ 2 1 (2.61) χ = g 00 + g 01 T g 1 + 2(g 1 g 2 )ϕ 1 + 3g 2 ϕ 2 1 (2.62) g 00 g 01 g 1 g 2 T P 1 g χ ϕ 2 1

55 (2.7) (2.14) Y c X c = 2χ c + 1 ϕ 1c P 1 ϕ 1c 1 (1 ϕ 1c ) 2 1 ( ) χ P 1 ϕ 2 = 3 + 1c ϕ 1 c ( χ ϕ 1 ) ( 2 χ ϕ 2 1 ϕ 1c (2.63) c ) (2.64) c (2.62) ( X c = 2 g 00 + g ) 01 2g 1 (1 3ϕ 1c ) 6g 2 ϕ 1c (1 2ϕ 1c ) (2.65) T c Y c = 6(g 1 g 2 ) + 24g 2 ϕ 1c (2.66) X c Y c T c ϕ 1c P 1 Y c χ 1c ϕ 1c = 0 (2.66) g 1 g 2 (2.65) X c T c g 00 g 01 Konigsveld 10 + g g = T χ χ = T ϕ ϕ 2 1 (2.67) ϕ ϕ 2 1 (2.68) Koningsveld kleintjens 11 g = α + β 0 + β 1 /T 1 γϕ 1 (2.69) + α = β 0 = β 1 = K γ = (2.68) (2.69 Flory-Huggins 2

56 50 2 g χ ϕ 1 g χ ϕ 1 T ϕ 1 g χ B 0 µ 0 ( )( ) K ϕ 1 µ0 = R 0 RT ϕ ϕ K K ϕ 4π2 ñ 2 V 0 N A λ 4 0 ( ) ñ ϕ T,p T,p (2.70) (2.71) R 0 θ = 0 Rayleigh µ 0 0 ( µ 0 µ 0 µ 0) ñ λ 0 1 ϕ 1 ϕ ϕ = 1 ( ) (2.72) 1 + v 0 1 vp w 1 w v 0 v p ϕ (2.50) (2.70) Z χ + 1 χ 2 ϕ ϕ

57 = 1 2 [ 1 1 ϕ + 1 P ϕ K ] ϕ R 0 (2.73) Z P M P v p V 0 M (2.74) ϕ (1/RT )( µ 0 / ϕ) T,p + ( M w = 43600)

58 Z ϕ = 0 P (1/RT )( µ/ ϕ) T,p ϕ (1/RT )( µ 0 / ϕ) T,p = 0 ( ) 2 ϕ sp ϕ (1/RT )( µ 0 / ϕ) T,p (1/RT )( µ 0 / ϕ) T,p = 0 ϕ T sp 2.6 (2.73) Z 2.7 T C Z 1. (ϕ > 0.1) Z 1/2

59 Z Z 2 χ 2 χ(t, ϕ; P ) = χ conc (T, ϕ; P ) + [χ dil (T, ϕ; P ) χ conc (T, ϕ; P )]Q(T, ϕ; P ) (2.75) [] χ dil χ conc χ dil (T ; P ) χ conc(t ; P ) Q (overlap concentration) ϕ ϕ/ϕ ϕ ϕ = D P 1/2 (2.76) D Q ϕ 0 1 ϕ (2.75) Z (2.73) Z(T, ϕ; P ) = Z conc (T, ϕ; P ) + [χ dil(t ; P ) χ conc(t ; P )]R(ϕ/ϕ ) (2.77) Z conc = χ conc ( χconc ϕ ) ϕ (2.78) T,p R(ϕ/ϕ ) = Q(ϕ/ϕ ) + 1 ϕ dq(ϕ/ϕ ) 2 ϕ d(ϕ/ϕ ) (2.79) (2.78) lim Z conc = χ conc(t ; P ) (2.80) ϕ 0 ϕ 0 R(ϕ/ϕ ) 1 (2.77) lim Z = ϕ 0 χ dil(t ; P ) (2.81) χ dil Z ϕ 0

60 Y Z ( P 4 ) 1 Z conc Z conc (T, ϕ; P ) = χ conc(t ; P ) + 1 ϕ + f(t, ϕ; P ) (2.82) 2 Y Y = Z 1 2 ϕ (2.83) (2.82) (2.88) Y (T, ϕ; P ) = Y dil (T, ϕ; P ) + Y conc (T, ϕ; P ) (2.84) Y dil Y conc Y dil (T, ϕ; P ) = [χ dil(t ; P ) χ conc(t ; P )]R(ϕ/ϕ ) (2.85) Y conc (T, ϕ; P ) = χ conc(t ; P ) + f(t, ϕ; P ) (2.86) 2.7 (2.83) Y 2.8 T C Y T (ϕ = 0.1)

61 χ conc Y ϕ 2 Y dil Y conc Y dil ϕ 0 Y Y conc Y conc Y conc (T, ϕ; P 4 ) = χ conc(t ; P 4 ) + 10ϕ b(t ; P 4 )ϕ 2 (2.87) χ conc(t ; P 4 ) b(t ; P 4 ) χ conc ( :M w = :M w = ) 2.9 χ conc(t ; P 4 ) b(t ; P 4 ) ( ) [ ( )] Θ Θ χ conc(t ; P 4 ) = T exp 30 T 1 (2.88)

62 χ dil [ ( )] Θ b(t ; P 4 ) = 50.5 exp 18 T 1 (2.89) Y conc (T, ϕ; P 4 ) Y (2.84) Y dil (T, ϕ; P 4 ) [χ dil (T ; P 4) χ conc(t ; P 4 )] R(ϕ/ϕ ) P 4 R = exp( 20ϕ 2150ϕ 3 ) (2.90) χ dil (T ; P ) 2.10 P T P ( ) Θ χ dil(t ) = T 1 ( ) 2 Θ T 1 (2.91) P Z ( ) Θ χ conc(t ; P ) = T 1

63 ( 0.075P 1/2 45P ) [ ( )] Θ exp (40 520P 2/3 ) T 1 (2.92) R(ϕ/ϕ ) = exp( P 1/2 ϕ 0.3P 3/2 ϕ 3 ) (2.93) Z Z(T, ϕ; P ) = χ conc(t ; P ) ϕ + A(P )ϕ B(T ; P )ϕ 2 +[χ dil(t ) χ conc(t ; P )]R(P 1/2 ϕ) (2.94) χ dil (T ) χ conc(t ; P ) R(P 1/2 ϕ) (2.91) (2.92) (2.93) A(P ) B(T ; P ) Z (2.73) χ A(P ) = 1.4P 1/3 (2.95) [ ( )] Θ B(T ; P ) = 7P 1/3 exp 18 T 1 (2.96) (2.94) χ = 2 ϕ ϕ 2 Zϕdϕ (2.97) χ(t, ϕ; P ) = χ conc(t ; P ) ϕ + A(P ) B(T ; P ) { ϕ B(T ; P ) + ln[1 + B(T ; P } )ϕ2 ] B(T ; P ) 2 ϕ 2 0 +[χ dil(t ) χ conc(t ; P )]Q(P 1/2 ϕ) (2.98) Q(x) x 2 [1 ( x x x 3 ) exp( 1.875x 0.432x x 3 )] (2.99)

64 ϕ c (2/x 2 ) x R(x)xdx 0 Z = 2Z c 1 ϕ c P ϕ c (2.100) ( ) 1 (1 ϕ c ) 2 1 Z (P ϕ c ) 2 = 2 ϕ (2.101) c (2.94) ϕ 2 c 2(1 ϕ c ) + 1 2P ϕ c = χ conc(t c ; P ) 1 2 A(P )ϕ 4 c B(T c ; P )ϕ 2 c +[χ dil(t c ) χ conc(t c ; P )]R(P 1/2 ϕ c )(2.102) c ϕ c (2 ϕ c ) 2(1 ϕ c ) 2 1 2P ϕ 2 c = 2A(P )[2 + B(T c; P )ϕ 2 c]ϕ 3 c [1 + B(T c ; P )ϕ 2 c] 2 P 1/2 [χ dil(t c ) χ conc(t c ; P )] ( P ϕ 2 c)r(p 1/2 ϕ c ) (2.103)

65 T c P Flory-Huggins (2.47) (2.48) (2.49) (2.97) χ 2.13 ( ) M w (2.97) χ µ M w

66

67 (1/RT )( µ 0 / ϕ) T,p ϕ 13 P-5 M w C P-13 M w C P-5 P-13 T (1/RT )( µ 0 / ϕ) T,p ϕ P-13 T = 26.0 C Z ϕ Z Z(T, ϕ; P ) = χ conc(t ; P ) ϕ + A(P )ϕ B(T ; P )ϕ 2 +[χ rmdil(t ) χ conc(t ; P )]R(ϕ; P ) (2.104)

68 Z χ χ(t, ϕ; P ) = χ conc(t ; P ) ϕ + A(P ) { } ϕ 2 B(T ; P ) 2 1 B(T ; P ) ln[1 + B(T ; P )ϕ2 ] +[χ dil(t ) χ conc(t ; P )]Q(ϕ; P ) (2.105) χ dil ( ) ( ) 2 Θ Θ χ dil(t ) = T T 1 (2.106) χ conc A(P ) conc(t ; P ) = ( ) Θ P 1/2 T 1 χ (2.107) A(P ) = 2P 1/3 (2.108) B(T ; P ) ( ) Θ B(T ; P ) = 8.73P 1/3 600 T 1 (2.109)

69 R R = exp( 3.3P 1/3 ϕ) (2.110) Q Q(ϕ; P ) = 2 (3.3P 1/3 ϕ) 2 [1 ( P 1/3 ϕ) exp( 3.3P 1/3 ϕ)] (2.111) Z χ (1) ϕ χ 2 ϕ (2) χ

70 µ 0 ( + ) (2.98) χ µ 0 (= µ 0 µ 0) 2.18 M = Flory-Huggins µ 0 Flory-Huggins µ 0 Θ ( ) µ 0 χϕ 2 χ van t Hoff µ 0 = µ 0 µ 0 = RT ϕ P (2.112) µ 0 µ 0 van t Hoff van t Hoff

71 µ 0 [ ] ϕ µ 0 = µ 0 RT + Γ(T, ϕ; P )ϕ2 P (2.113) 2 Γ Gamma Flory- Huggins χ Γ = χ ln(1 ϕ) + ϕ ϕ 2 (2.114) 2.18 Γ χ 2 Flory-Huggins χ Flory-Huggins (2.113) Gibbs-Duhem (1.93) 1 µ 1 µ 1 = µ 1 + RT [ln ϕ ϕ + ΓP ϕ(1 ϕ) + P ϕ 0 Γdϕ] (2.115) µ 1 lim ϕ 0 (µ 1 RT ln ϕ) (2.116) (2.113) (2.115) Gibbs G { G = (n 0 + P n 1 ) (1 ϕ)µ 0 + ϕ P µ 1 [ +RT ϕ P + ϕ ln ϕ ϕ ]} P + ϕ Γdϕ 0 (2.117) J J Γ ( ) Γ ϕ (2.118) ϕ

72 J J Z J = Z + 1 2(1 ϕ) (2.119) 2.7 Z J 2.19 Z J 2 J = J conc + (Jdil Jconc)Q (2.120) 3 Jdil J conc Q Jdil (2.91) χ dil Jdil = 1 2 χ dil (2.121) ( ) ( ) 2 Θ Θ Jdil = 0.26 T T 1 (2.122) J conc Q J conc = J c0 + J c1 ϕ 2 (2.123)

73 Q = exp( P 1/2 ϕ) (2.124) Jconc = J c0 J c0 = ( ) Θ 0.23 P 1/3 T 1 ( ) Θ J c1 = T 1 (2.125) (2.126) 2.19 (2.123) J conc (2.120) (2.120) Γ = J c J c1ϕ 2 Γ = 1 ϕ ϕ 2 Jϕ d ϕ (2.127) 0

74 (J dil J c0 ) 1 (1 + P 1/2 ϕ) exp ( P 1/2 ϕ) pϕ 2 (2.128) µ 0 (2.113) µ 1 (2.115) 2.20

75 2.A 69 2.A Maxwell H 1 c D t = 4π c j E + 1 c B t = 0 D = 4π ρ B = 0 (2.A.1) (2.A.2) (2.A.3) (2.A.4) H E D B j ρ c D, B, j D = ϵe (2.A.5) B = µh j = σe (2.A.6) (2.A.7) ϵ µ σ µ = 1 σ = 0 q r P P = qr (2.A.8) R A ϵ R r R r (r r A Vector) j = P (2.A.9) t ρ = P (2.A.10) (2.A.5) (2.A.10) (2.A.1) (2.A.4) H = Ṗ ϵ cė 4π c (2.A.11)

76 70 2 E + 1 c Ḣ = 0 E = 4π ϵ P H = 0 (2.A.12) (2.A.13) (2.A.14) = / t A H = A (2.A.15) (2.A.14) (2.A.12) (E + Ȧ) = 0 1 c (2.A.16) ϕ E = Ȧ ϕ 1 c (2.A.17) (2.A.12) (2.A.11) (2.A.13) 2 A ϵ c 2 Ä ( A + ϵ c ϕ) = 4π c Ṗ (2.A.18) 2 ϕ ϵ c ϕ c t ( A + ϵ c ϕ) = 4π ϵ P (2.A.19) (2.A.11) (2.A.14) H, E Lorentz A + ϵ c ϕ = 0 (2.A.20) A ϕ 2 A = Ṗ ϵ cä 4π c (2.A.21) 2 ϕ ϵ c ϕ = 4π ϵ P (2.A.22) A Π (2.A.23) 1 c

77 2.A 71 ϕ 1 ϵ Π (2.A.24) Hertz Π Lorentz (2.A.20) (2.A.21) (2.A.22) 2 Π ϵ c Π 2 = 4πP Π = P (t r/ c ) e r e P (2.A.25) (2.A.26) Hertz (2.A.26 P P P (t)δ(r)e (2.A.27) Π e x ψ(r, t) (2.A.25) 2 ψ(r, t) ϵ c 2 2 Fourier (2.A.28) ψ(r, ω) = P (ω) = ψ(r, t) = 4πP (t)δ(r) t2 (2.A.28) + + ψ(r, t)exp( iωt)dt P (t)exp( iωt)dt 2 ψ(r, ω) + k 2 ψ(r, ω) = 4πP (ω)δ(r) (2.A.29) (2.A.30) (2.A.31) k 2 ϵω 2 / c 2 (2.A.32) ψ (2.A.31) 1 r d 2 dr 2 (rψ) + k2 ψ = 4πP (ω)δ(r) (2.A.33)

78 72 2 r 0 0 rψ = Af(r) f(r) f(r) = exp( ikr) ψ = A exp( ikr) r (2.A.34) A ψ (2.A.33) A = P (ω) ψ(r, ω) = P (ω) exp( ikr) r (2.A.35) Fourier ψ(r, t) = 1 2π = 1 2π + + P (ω) exp( ikr) exp(iωt)dω r P (ω) exp[iω(t r/ c )] dω r ψ(r, t) = P (t r/ c )/r (2.A.36) (2.A.37) e y, e z e x 3 (2.A.26) (2.A.26) Π = {P } {P} e or Π = r r (2.A.38) c ϵ ñ c = c/ñ, ϵ = ñ 2 (2.A.39) (2.A.15) (2.A.17) (2.A.23) (2.A.24) H = Π (2.A.40) 1 c

79 2.A 73 E = 1 ϵ Π 4π ϵ P (2.A.41) (r 0) P = 0 E = 1 ( Π) Π (2.A.42) ϵ 1 c 2 (2.A.26) (2.A.40) (2.A.42) r λ E = 1 [ r (r { P}) r (r {Ṗ} + 2r(r {Ṗ}) ϵ c 2 r 3 + c r ] 4 r (r {P}) + 2r(r {P}) + r 5 H = 1 c (λ: ) ( r { P} E = 1 ϵ c r 2 + r {Ṗ} ) r 3 r (r { P}) c 2 r 3 (2.A.43) (2.A.44) (2.A.45) H = r { P} c c r 2 (2.A.46) Rayleigh R θ P x r e r x r θ x r = re r (2.A.47) e = cosθ x e r sinθ x e θx (2.A.48) (2.A.45) E = { P }sinθ x ϵ c 2 e θx E θx e θx (2.A.49) r E θx = { P }sinθ x c 2 r (2.A.50)

80 74 2 (2.A.46) H = { P }sinθ x c c e ϕ H ϕ e ϕ r (2.A.51) H ϕ = { P }sinθ x c c r = ñe θx (2.A.52) r Poynting S S c 4π E H (2.A.53) S = ñ c 4π E 2 θ x e r = ñ{ P } 2 sin 2 θ x 4π c 3 r 2 e r (2.A.54) S = ñ c 4π E θ 2 x ñ c 8π I (2.A.55) I I = 2Eθ 2 x E θx = E 0θx exp(iωt) I = E 2 0θ x (2.A.56) x E 0 = E 0 0 exp(iωt) (z ) P = αe 0 0 exp(iωt) (2.A.57) α (2.A.50) E θx = sinθ x c 2 r ω2 αe 0 0 exp[iω(t r/ c )] (2.A.58) (2.A.56) I = α 2 (E0 0 ) 2 16π4 sin 2 θ x λ 4 r 2 (2.A.59)

81 2.A 75 I 0 = (E 0 0 ) 2 I = 16π4 I 0 λ 4 α2 sin2 θ x r 2 (2.A.60) ( ) z E 0 P x y S = ñ c 4π (E 2 θ x + E 2 θ y )e r S = ñ c 4π (E 2 θ x + E 2 θ y ) ñ c 8π I I = 2(E 2 θ x + E 2 θ y ) = (E 2 0θ x + E 2 0θ y ) (2.A.61) (2.A.62) (2.A.63) I 0 = 2(E 0 0 ) 2 I = 8π4 α 2 I 0 λ 4 r 2 (sin2 θ x + sin 2 θ y ) = 8π4 α 2 λ 4 r 2 (1 + cos2 θ) (2.A.64) θ r z ( ) V N I I 0 = 8π4 α 2 λ 4 r 2 N(1 + cos2 θ) (2.A.65) Rayleigh R θ R θ I r 2 V I cos 2 θ (2.A.66) R θ = 8π4 α 2 λ 4 ρ N/V N V = 8π4 α 2 λ 4 ρ (2.A.67)

82 B V V ϵ ϵ = ϵ ϵ (2.B.1) V ϵ 2.A α = α α α = V 4π ϵ = V 2π ñ ñ (2.B.2) (2.A.67) α 2 ( α) 2 ( ) ρ V 1 =Ensemble Rayleigh R θ = 2π2 ñ 2 V λ 4 ( ñ) 2 (2.B.3) Rθ R θ ñ Rθ T p (Species 0) E V r (N 1, N 2,, N r ) E, V, N 1,, N r T p N 0 µ 1, µ 2,, µ r Hybrid Ensemble N = N 0, N 1,, N r N = N 1, N 2,, N r µ = µ 1, µ 2,, µ r (2.B.4) Hybrid Ensemble Γ(T, p, N 0, µ ) Γ(T, p, N 0, µ ) = e pv/kt e N µ /kt Q(T, V, N) V N 0 (2.B.5)

83 2.B 77 Q N (Canonical Ensemble) Q Helmholtz A A = kt ln Q (2.B.6) T p N 0 µ V N P (V, N ; T, p, N 0, µ ) r P (V, N ) = Γ 1 exp[( pv + N i µ i A)/kT ] (2.B.7) A A(T, V, N) (2.B.8) ( pv + N i µ i A) V N i V = V V N i = N i N i V N i (most probable value) Gauss i=1 P (V, N ) = Cexp( φ/kt ) (2.B.9) φ 1 2 ( 2 ) A r ( V 2 ( V ) 2 2 ) A + V N i T,N V N i=1 i T,V,N k + 1 r r ( 2 ) A N i N j 2 N i N j T,V,N k i=1 j=1 (2.B.10) C ( ) ( ) A A = p, = µ i V T,N N i T,V,N k (2.B.11) ( 2 ) ( ) A p V 2 = = 1 V κ V (2.B.12) T,N T,N ( 2 A V N i ) T,V,N k ( ) p = N i T,V,N k = ( V/ N i) T,p,Nk ( V/ p) T,N = V i κ V (2.B.13)

84 78 2 V i i κ κ 1 ( ) V (2.B.14) V p T,N ( 2 ) A ( 2 A N i N j N i N j ) T,V,N k = ( ) µi N j ( ) µi = N j ( ) µi + p T,V,N k = T,p,N k T,N ( p N j ( ) µj N i ) ( ) µi = V i, m i = M in i p T,N M 0 N 0 T,V,N k = V iv j κ V + M j M 0 N 0 ( ) µi m j T,V,N k T,p,m k T,V,N k (2.B.15) (2.B.16) (2.B.17) M 0 M j 0 j ξ V V + r x i N i N i = m i m i i=1 V i N i V (2.B.18) (i = 1, 2,, r) (2.B.19) (2.B.13) (2.B.14) (2.B.17) (2.B.10) φ = V 2κ ξ2 + M 0N 0 2 r r i=1 j=1 ( ) m i m j µi x i x j M i m j T,p,m k (2.B.20) V = V m j = m j P (V, N ) V N i ξ x i ( P (ξ, x 1,, x r ) = Cexp V 2κkT ξ2 M 0N 0 2 r i=1 j=1 r ) ψ ij x i x j (2.B.21)

85 2.B 79 ψ ij = m ( ) im j µi = m ( ) im j µj = ψ ji (2.B.22) M i kt m j T,p,m k M j kt m i T,p,m k ξ 2 x i x j ξ 2 x i x j C ψ ij ψ Q Q 1 = Q T (2.B.23) Q 1 ψq = Λ (2.B.24) Λ λ i ψ = Λ Q x ξ x = Qξ ξ = ξ 1, ξ 2,, ξ r (ξ = Q 1 x) (2.B.25) x T ψx = (Qξ) T ψ(qξ) = ξ T (Q T ψq)ξ = ξ T Λξ (2.B.26) P ( P = Cexp V 2κkT ξ2 M 0N 0 2 r ) λ i ξi 2 i=1 (2.B.27) P dξdξ 1dξ 2 dξ r = 1 [ V (M0 N 0 /2) r C = 2π r+1 κkt ψ ] 1/2 (2.B.28) (2.B.27) (2.B.28) ξ 2 = κkt V (2.B.29) ξi 2 1 =, ξ i ξ j = 0 (2.B.30) M 0 N 0 λ i

86 80 2 x i x j = k l Q ikq jl ξ k ξ l (2.B.30) x i x j = k k Q ik Q jk ξ 2 k = 1 M 0 N 0 Q ik Q jk λ k k Q ik Q jk λ k = (QΛ 1 Q T ) ij = (ψ 1 ) ij = ψij ψ (2.B.31) (2.B.32) x i x j = ψ ij M 0 N 0 ψ (2.B.33) ψ ij ψ ij x i x j x i ( ) ξ 2 ( N i = 0 ) (2.B.18) ρ = N V = r i=0 N i = N V V ξ = V V V V (2.B.34) ln ρ = ln N ln V (2.B.35) = ρ ρ ξ 2 = ( ρ)2 ρ 2 (2.B.36) (2.B.37) ξ 2 Hybrid Ensemble ñ ( ) ñ r ( ) ñ ñ = V + N i V T,N N i T,V,N k i=1 (2.B.38)

87 2.B 81 T p N ( ) ( ) ñ ñ r ( ) ñ dñ = dp + dt + dn i p T,m T p,m N i T,p,N k i=0 (2.B.39) ( ) ( ) ñ ñ = V p ( ñ N i T,N ) T,V,N k = T,m ( ) ñ ( ) p V T,N N i = M ( ) i ñ M 0 N 0 m i T,p,N k + = 1 κv ( ) ñ p T,m ( ) ( ñ p p T,m N i T,p,m k + V i κv ( ñ p ) ) T,V,N k T,m (2.B.38) (2.B.40) (2.B.41) ñ = V ( ) ñ + 1 ( ) ñ r V i N i κv p T,m κv p T,m i=1 + 1 r ( ) ñ M i N i M 0 N 0 m i=1 i T,p,m k = 1 ( ) ñ r ( ) ñ ξ + m i x i κ p T,m m i T,p,m k i=1 (2.B.29) (2.B.33) ( ñ) 2 = 1 ( ñ κ 2 p r r + = kt κv ) 2 i=1 j=1 ) 2 ( ñ p + 1 M 0 N 0 ξ 2 T,m m i m j ( ñ m i T,m r r i=1 j=1 ) T,p,m k ( ñ m j ) m i m j ( ñ m i ) T,p,m k T,p,m k x i x j (2.B.40) (2.B.41) (2.B.42)

88 82 2 ( ñ )T,p,mk ψ ij m j ψ (2.B.43) (2.B.3) R θ = 2π2 ñ 2 ( ) 2 kt ñ λ 4 κ p T,m + 2π2 ñ 2 V r r ( ) ñ λ 4 m i m j M 0 N 0 m i=1 j=1 i ( ñ ψ m j )T,p,mk ij ψ T,p,m k (2.B.44) 1 R θ,0 2 R θ R θ = R θ,0 + R θ (2.B.45) 0 c 0 = M 0 N 0 /N A V (g/ml) R θ R θ = 2π2 ñ 2 N A λ 4 c 0 r r i=1 j=1 ( ) ( ñ ñ ψ m i m j m i T,p,m k m j )T,p,mk ij ψ (2.B.46) i (i=1, 2,, r) µ i µ i = µ 0 i (T, p) + kt ln γ i m i (2.B.47) γ i γ i ln γ i = M i ( r B ij m j + j=1 r j=1 k=1 r B ijk m j m k + ) (2.B.48) m 1, m 2,, m r 0 γ i 1 (2.B.47) (2.B.22) ψ ij (2.B.46) R θ

89 2.B 83 [ ] (2.B.46) ψ ij / ψ R θ ψ ij ψ = M ( ) 1 1kT µ1 m1 2 m 1 T,p (2.B.49) R θ = 2π2 ñ 2 M 1 kt N A λ 4 c 0 ( ñ m 1 ) 2 T,p ( µ1 m 1 Gibbs-Duhem (1.94) ( ) µ1 = N ( ) 0 µ0 m 1 N 1 m 1 T,p ) 1 T,p T,p (2.B.50) (2.B.51) c ( c 1 ) c = M 1N 1 N A V = M 0N 0 N A V m 1 (2.B.52) m 1 = M 1N 1 M 0 N 0, V = N 0 V 0 + N 1 V 1 (2.B.53) ( m 1 ) T,p = c ( ) 0N 0 V 0 V c T,p (2.B.50) R θ = 2π2 ñ 2 ( ) 2 /( ) RT V 0 c ñ µ0 N A λ 4 c T,p c Kc = 1 R θ V 0 RT K 2π2 ñ 2 N A λ 4 ( ) µ0 c T,p ( ) 2 ñ c T,p T,p (2.B.54) (2.B.55) (2.B.56) (2.B.57)

90 84 2 K µ 0 π ( ) c µ 0 µ 0 = V0 π = V0 RT M + A 2c 2 + A 3 c 3 + (2.B.58) A 2 2 A 3 3 ( ) µ0 c T,p = V 0 ( ) ( π 1 = V0 RT c T,p (2.B.56) ) M + 2A 2c + 3A 3 c 2 + (2.B.59) Kc R θ = 1 M + 2A 2c + 3A 3 c 2 + (2.B.60) V 0 V 0 [Flory-Huggins ] Flory-Huggins 0 mu 0 1 µ 1 (2.50) (2.51) 1 ϕ 1 (2.B.56) c ϕ 1 K ϕ K ϕ V 0 ϕ 1 R θ = 1 RT ( ) µ0 ϕ 1 T,p (2.B.61) K ϕ = 2π2 ñ 2 ( ) 2 ñ N A λ 4 (2.B.62) ϕ 1 (2.B.61) (2.50) χ ϕ χ 1 = 1 ( K ) ϕv 0 ϕ ϕ 1 P 1 ϕ 1 R θ (2.B.63)

91 2.C ( ) Maurice Loyal Huggins (1897/9/ /12/17) 2.22 Paul John Flory (1910/6/ /9/8) ( µ 0 / ϕ 1 ) T,p ( ( µ 1 / ϕ 1 ) T,p ) χ ( 2 G/ ϕ 2 1) T,p = µ 1 / ϕ 1 ) T,p 0 (Spinodal) T sp T = T sp 1/R θ = 0 ϕ 1 T R θ (K ϕ V 0 ϕ 1 /R θ ) 0 T sp 2.C ( )

92 Joseph Edward Mayer (1904/2/5 1983/10/15) 2.24 John Gamble Kirkwood (1907/5/ /8/9)

93 2.C ( ) Walter Hugo Stockmayer (1914/4/7 2004/5/9) 2.26 Bruno Hasbrouck Zimm (1920/10/ /11/26)

94 88 1. III R. Koningsveld, W. H. Stockmayer, and E. Nies, Polymer Phase Diagrams, Oxford University Press, Oxford, M. L. Huggins, J. Chem. Phys., 9, 440 (1941); Ann. New York Acad. Sci., 43, 1 (1942). 5. P. J. Flory, J. Chem. Phys., 9, 660 (1941); ibid., 10, 51 (1942). 6. A. R. Shultz and P. J. Flory, J. Am. Chem. Soc., 74, 4760 (1952). 7. H. Fujita and Y. Einaga, Makromol. Chem., Macromol. Symp., 12, 75 (1987). 8. H. Tompa, Polymer Solutions, Butterworths Scientific Publications, London, R. Koningsveld, J. Polym. Sci., Part A-2, 6, 325 (1968). 10. R. Koningsveld, L. A. Kleintjens, and A. R. Shlutz, J. Polym. Sci., Part A-2, 8, 1261 (1970). 11. R. Koningsveld and L. A. Kleintjens, Macromolecules, 4, 637 (1971). 12. Y. Einaga, S. Ohashi, Z. Tong, and H. Fujita, Macromolecules, 17, 527 (1984). 13. N. Takano, Y. Einaga, and H. Fujita, Polym. J., 17, 1123 (1985). 14. Y. Einaga, Z. Tong, and H. Fujita, Macromolecules, 18, 2258 (1985).

95 (quasibinary system) q ( 1 2 q) i P i V i V i /V 0 V 0 V i V 0 T ( ) V q V = V 0 (n 0 + P i n i ) (3.1) n 0 n i 0 i ( ) i ϕ i i=1 ϕ i V in i V (3.2) q ϕ i (i = 1, 2,, q) ϕ i ϕ i = n i P i n 0 + q j=1 P jn j (3.3)

96 90 3 ϕ q ϕ = ϕ i (3.4) i ξ i i=1 ξ i = ϕ i ϕ (3.5) q i=1 ξ i = 1 q ϕ i ϕ q 1 ξ i [ϕ i ] [ξ i ] 2 1 (1.104) µ i (T, p, [ϕ i]) = µ i (T, p, [ϕ i ]) (i = 0, 1, 2,, q) (3.6) µ i (T, p, ϕ, [ξ j]) = µ i (T, p, ϕ, [ξ j ]) (i = 0, 1, 2,, q) (3.7) Gibbs G µ i (i 0, 1, 2,, q) G 11 G 12 G 1q J sp G 21 G 22 G 2q G q1 G q2 G qq µ 11 µ 12 µ 1q = µ 21 µ 22 µ 2q µ q1 µ q2 µ qq = 0 (3.8)

97 ( 2 ) G G ij ϕ i ϕ j ( ) µi µ ij ϕ j T,p,ϕ k (k i,k j) T,p,ϕ k (k j) (3.9) (3.10) (3.8) 1 3.B (3.8) J sp ϕ 1 J sp ϕ 2 J sp ϕ q G 21 G 22 G 2q G q1 G q2 G qq = 0 (3.11) gibbs G G G 2 ( B D ) 2 (ϕ 1, ϕ 2) (ϕ 1, ϕ 2) 2 µ i (i = 0, 1, 2) 2 µ i (ϕ 1, ϕ 2) = µ i (ϕ 1, ϕ 2) (i = 0, 1, 2) (3.12) (3.6) ( A B C D E )

98 Gibbs

99 G ( K C L ) C 2 1 T CC 5 C (critical line) 1 2 X 0X T

100 ( AA 2 C 5 B) A 2 ( ) B 2 A K ( ) 0X T 2 Q Q Q 2 Q Q 0X 0X T 2 Q Q 0X w 2

101 (mother solution) 2 (shadow curve) 2 1 T c 3.2 Flory-Huggns 0 j(j = 1, 2,, q) Gibbs G G = n 0 µ 0 + q n j µ j j=1 { +RT (1 ϕ) ln(1 ϕ) + q j=1 } +g(t, p, ϕ, [ξ j ]; [P j ])ϕ(1 ϕ) ϕξ j P j ln(ϕξ j ) (3.13) [P j ] P 1, P 2,, P q µ 0 µ 0 = µ 0 + RT [ ln(1 ϕ) + ( 1 1 ] )ϕ + χ(t, p, ϕ; f(p ))ϕ 2 P n (3.14) f(p ) [ξ j ] [P j ] P n 1 P n q j=1 ξ j P j (3.15)

102 96 3 i µ i ( µ i = µ i + RT [ln(ξ i ϕ) (P i 1) + P i 1 1 P n { [ ( ) ] g +P i (1 ϕ) (1 ϕ) g + ϕ ϕ [ ( ) g q 1 ( )]}] g +ϕ m i ξ j ξ i ξ j j=1 ) ϕ (3.16) i q m i = 1 i = q m i = 0 χ ( ) g χ = g (1 ϕ) ϕ T,p (3.17) χ f(p ) (3.8) (3.13) 1 1 ϕ + 1 P w ϕ 2χ ( ) χ ϕ = 0 (3.18) ϕ T,p P w q P w ξ j P j (3.19) j=1 (3.18) 1 (1 ϕ) 2 P ( ) ( z χ 2 ) (P w ϕ) 2 3 χ ϕ T,p ϕ 2 ϕ = 0 (3.20) T,p P z P z q j=1 ξ2 j P j P w (3.21) g χ ϕ f(p ) ϕ c χ(t c ) ϕ c = Pw P 1/2 z (3.22)

103 χ(t c ) = 1 2 (1 + P z 1/2 )( ) P w Pz 1/2 (3.23) (3.18) χ f(p ) T sp ϕ P w ( M w ) M w PS166 M w = PSM5 M w = z M z M w M z /M w M w χ (separation factor)σ i ϕ i ϕ i σ i ln(ϕ i /ϕ i ) P i (i = 1, 2,, q) (3.24) i

104 Breitenbach-Wolf ( ) (3.24) ( ) W ln i = ln r σ i M i (3.25) W i W i W i i M i i r ϕ i W i P i M i ln(w i /W i ) M i Breitenbach-Wolf 5 g f(p ) µ i = µ i (i = 1, 2,, q) [ ( )] g σ i = ln(1 ϕ) + 2(ϕ 1)g ϕ(1 ϕ) ϕ (3.26) X X X X g [ξ i ] σ i i Breitenbach-Wolf 3.5

105 M n = M w = M z = g f(p ) g f(p ) (3.26) [ ( ) g σ i = ln(1 ϕ) + (2ϕ 1)g ϕ(1 ϕ) ϕ { ( ) g q 1 ( )}] g (1 ϕ) m i ξ j ξ i ξ j j=1 (3.27) i q m i = 1 i = q m i = 0 f(p ) g/ ξ i 2 i σ i P i Breienbach-Wolf 7, i P i (= V i /V 0 ) ϕ i (i = 1, 2) V i V 0 i 0 ϕ ϕ 1 + ϕ van t Hoff 0 µ 0 ( ) ϕ µ 0 = µ 0 RT + Γ(T, p, ϕ 1, ϕ 2 ; P 1, P 2 )ϕ 2 P n P n (3.28) P 1 n = ϕ 1P1 1 + ϕ 2 P2 1 ϕ (3.29)

106 100 3 Gibbs-Duhem ( ) 1 ϕ µ0 + ϕ ( ) 1 µ1 + ϕ ( ) 2 µ2 = 0 V 0 ϕ 1 V 1 ϕ 1 V 2 ϕ 1 (3.30) ( ) 1 ϕ µ0 + ϕ ( ) 1 µ1 + ϕ ( ) 2 µ2 = 0 V 0 ϕ 2 V 1 ϕ 2 V 2 ϕ 2 (3.31) ϕ 1 ϕ 2 ϕ 1 ξ ( ϕ 1 /ϕ) ( ) µ0 (1 ϕ) + ϕξ ( ) ( ) µ1 ϕ(1 ξ) µ2 + = 0 ϕ P 1 ϕ P 2 ϕ (3.32) ( ) µ0 (1 ϕ) + ϕξ ( ) ( ) µ1 ϕ(1 ξ) µ2 + = 0 ξ P 1 ξ P 2 ξ (3.33) 3.A 1 2 µ 1 µ 2 [ µ 1 = µ 1 + RT ln(ϕξ) ϕ + 0 ( 1 P 1 P 2 ϕ { ( )} ] Γ +P 1 Γ + (1 ξ) dϕ ξ ) (1 ξ)ϕ + ΓP 1 ϕ(1 ϕ) (3.34) [ ( ) µ 2 = µ P2 2 + RT ln[ϕ(1 ξ)] ϕ + 1 ξϕ + ΓP 2 ϕ(1 ϕ) P 1 ϕ { ( )} ] Γ +P 2 Γ ξ dϕ (3.35) ξ 0 µ i lim ϕ 0 (µ i RT ln ϕ i ) (3.36) µ i (i = 1, 2) µ 0 Gibbs G [ G = (n 0 + n 1 P 1 + n 2 P 2 ) (1 ϕ)µ 0 + ϕ 1 µ 1 + ϕ 2 µ 2 P 1 P 2 + ϕ 1 P 1 ln ϕ 1 + ϕ 2 P 2 ln ϕ 2 + ϕ ϕ 0 Γ(T, p, ϕ 1, ϕ 2 ; P 1, P 2 )dϕ { + RT ϕ P n }] (3.37)

107 Γ J J Γ + 1 ( ) γ ϕ (3.38) 2 ϕ 3 J J = J c0 + J c1 ϕ 2 + (J dil J c0 ) exp( ϕ/b) (3.39) ( ) + ( ) Θ J c0 = 0.036P 1/ T 1 (3.40) J c1 = ( Θ T 1) (3.41)

108 102 3 P P ( ) ( ) 2 Θ Θ Jdil = 0.26 T T 1 (3.42) b = P 1/2 (3.43) P [ξp 1/3 1 + (1 ξ)p 1/3 2 ] 3 (3.44) P [ξp 1/2 1 + (1 ξ)p 1/2 2 ] 2 (3.45) (3.44) (3.45) 3 J c0 b (1 M w = 43600(f 4 ) M w = (f 40 )) C f 40 2 f 4 2 ϕ C f 40 2 f 4 2 f 40 f 4 ϕ 40 ϕ ξ 4 f 4 f G G 11 G 22 (G 12 ) 2 = 0 (3.46) G ϕ 1 G ϕ 2 G 21 G 22 = 0 (3.47)

109 ( )

110 ( ) f 4 M w = (f 10 ) T c ϕ c ϕ c T c

111 T c ξ ϕ c ξ 4

112 ( ) ( )

113 Gibbs 3 T ϕ 3 Flory-Huggins J Γ M = 43600(f4) M = (f128) 3.12 T ϕ 3.13 T f128 ξ T u (= C) T l (= C) T S d S m S c 3 ϕ = ξ 2 = KL LM MN T u L N 2 L L N ϕ ξ 2 N M T l ( ) T = 13.8 C 3

114 ( )

115 ( )

116 ξ 2 = van t Hoff q 0 Gibbs G G = (n 0 + +RT +ϕ q i=1 [ n i P i ) (1 ϕ)µ 0 + { ϕ P n + ϕ P n 0 q i=1 ϕ i P i ln ϕ i q i=1 ϕ i P i µ i }] Γ(T, p, ϕ 1,, ϕ q ; P 1,, P q )dϕ P n [ (3.48) q ξ i P i ] 1 (3.49) i=1 2 Γ Γ = Γ c Γ c1ϕ 2 +2(Γ d0 Γ c0 ) [1 e (1 ϕ/ϕ + ϕϕ )]( ) ϕ 2 (3.50) ϕ Γ c0 ϕ i Γ c0i ϕ i q Γ c0 = ξ i Γ c0i (3.51) i=1

117 ϕ = q ξ i ϕ i (3.52) i=1 ( ) ( ) 2 Θ Θ Γ d0 = 0.26 T T 1 (3.53) Γ c0i = 0.03 ( ) Θ 0.23 P 1/3 T 1 i ( ) Θ Γ c1 = T 1 ϕ i = 1 P 1/2 i 0 µ 0 (3.54) (3.55) (3.56) µ 0 µ 0 RT = ϕ P n Γϕ 2 (3.57) i µ i µ i µ i RT 0 ϕ = ln(ξ i ϕ) P i ϕ + P i ϕ(1 ϕ)γ + P i P n 0 ϕ [ +P i (1 ξ i ) Γ q 1 ] Γ ξ j dϕ ξ i ξ j j i Γdϕ (i = 1, 2,, q 1) (3.58) µ q µ q RT q 1 = ln(1 ξ i )ϕ P q ϕ + P q ϕ(1 ϕ)γ P n 0 i=1 ϕ ϕ q 1 Γ +P q Γdϕ P q ξ j dϕ (3.59) ξ j 0 j=1

118 112 3 σ i [ ϕ σ i = Γϕ + Γdϕ + ϕ 0 0 { (1 ξ i ) Γ q 1 } ] Γ ξ j dϕ ξ i ξ j j i (i = 1, 2,, q 1) (3.60) [ σ q = Γϕ + ϕ 0 Γdϕ ϕ q 1 0 j=1 ] Γ ξ j dϕ ξ j (3.61) [X] X X X σ i Γ

119 3.A Gibbs A Gibbs 0 µ 0 2 Γ ( µ 0 = µ ϕ1 0 RT + ϕ ) 2 + Γϕ 2 P 1 P 2 (3.A.1) ϕ i P i i ϕ Gibbs-Duhem 1 ϕ V 0 µ 0 ϕ 1 + ϕ 1 V 1 µ 1 ϕ 1 + ϕ 2 V 2 µ 2 ϕ 1 = 0 1 ϕ V 0 µ 0 ϕ 2 + ϕ 1 V 1 µ 1 ϕ 2 + ϕ 2 V 2 µ 2 ϕ 2 = 0 (3.A.2) (3.A.3) V i i 1 ξ( ϕ 1 /ϕ) = ϕ 1 ϕ + 1 ξ ϕ ξ, = ϕ 2 ϕ ξ ϕ (3.A.2) ξ (3.A.4) 1 ϕ ϕ µ 0 V 0 ϕ + ξ ϕ 2 µ 1 V 1 ϕ + 1 ξ ϕ 2 µ 2 V 2 ϕ = 1 ϕ (1 ξ) µ o V 0 ξ ϕ ξ(1 ξ) µ 1 V 1 ξ ϕ V 2 (1 ξ) 2 µ 2 ξ (3.A.5) (3.A.3) 1 ϕ ϕ µ 0 V 0 ϕ + ξ ϕ 2 µ 1 V 1 ϕ + 1 ξ ϕ 2 µ 2 V 2 ϕ = 1 ϕ ξ µ o V 0 ξ + ϕ ξ 2 µ 1 V 1 ξ + ϕ ξ(1 ξ) µ 2 V 2 ξ (3.A.6) 2 1 ϕ V 0 µ 0 ξ + ϕ V 1 ξ µ 1 ξ + ϕ V 1 (1 ξ) µ 2 ξ = 0 (3.A.7)

120 114 3 (3.A.5) (3.A.6) ξ 0 ξ 1 1 ϕ V 0 µ 0 ϕ + ϕ V 1 ξ µ 1 ϕ + ϕ V 2 (1 ξ) µ 2 ϕ = 0 )(3.A.1) ϕ (3.A.8) 1 µ 0 RT ϕ = 1 P n ξ µ 1 V 1 ϕ + 1 ξ µ 2 V 2 ϕ [ 1 = RT V 0 P n ( 1 ϕ 1 ( 2Γϕ + ϕ 2 Γ ) ϕ ) ( ) ] 1 Γϕ 2 + ϕ 1 ϕ ϕ ξ µ ξ [ µ 2 = RT C+ 1 (ln ϕ ϕ)+ϕ(1 ϕ)γ+ P 1 P n P 2 ϕ 0 ] Γdϕ (3.A.8) (3.A.9) (3.A.10) (3.A.11) C P i = V i /V 0 ξ 1 µ 2 RT P 2 ξ = 1 [ 1 RT P 1 (1 ξ) 2 µ 1 + ξ 1 ξ [ 1 +ϕ(1 ϕ) (1 ξ) 2 Γ ξ ] µ 1 + ξ Γ ξ ] + 1 (ln ϕ ϕ) P 1 (1 ξ) 2 1 (1 ξ) ϕ Γ 1 ξ 0 ξ dϕ + 1 (1 ξ) 2 C + 1 C 1 ξ ξ (3.A.1) ξ ( 1 µ 0 1 RT ξ = 1 ) ϕ ϕ 2 Γ P 1 P 2 ξ (3.A.7) 1 µ 1 = 1 ( 1 (ln ϕ ϕ) 1 RT P 1 P 1 P 1 P 2 ϕ [ + Γ + (1 ξ) Γ ] dϕ + ξ 0 ϕ 0 Γdϕ (3.A.12) (3.A.13) ) (1 ξ)(1 ϕ) + ϕ(1 ϕ)γ [ C + (1 ξ) C ] ξ (3.A.14)

121 3.A Gibbs 115 (3.A.11) 1 µ 2 = 1 ( 1 (ln ϕ ϕ) + 1 RT P 2 P 2 P 1 P 2 ϕ [ + Γ ξ Γ ] dϕ + ξ 0 ) ξ(1 ϕ) + ϕ(1 ϕ)γ [ C ξ C ξ ϕ = ] (3.A.15) µ 1 RT = µ 1 RT + ln(y 1 ϕ 1 ) (3.A.16) µ 2 RT = µ 2 RT + ln(y 2 ϕ 2 ) (3.A.17) y 1 y 2 ϕ 0 y 1 = 1 y2 = 1 (3.A.14) (3.A.15) ϕ 0 µ 1 RT +ln ϕ 1 = lim ϕ 0 (ln ϕ) ( 1 P 1 µ 2 RT + ln ϕ 2 = lim ϕ 0 (ln ϕ) P 2 [ )(1 ξ)+p 1 C+(1 ξ) C ξ ( 1 P 2 P 1 )ξ + P 2 [ C ξ C ξ 2 C ] ] (3.A.18) (3.A.19) C = µ 1 RT P 1 ξ + µ 2 RT P 2 (1 ξ) + ξ P 1 ln ξ + 1 ξ P 2 ln(1 ξ) (3.A.20) (3.A.14) (3.A.15) µ 1 µ 1 = 1 ( 1 (ln ϕ 1 ϕ) + 1 ) (1 ξ)ϕ + ϕ(1 ϕ)γ RT P 1 P 1 P 1 P 2 ϕ [ + Γ + (1 ξ) Γ ] dϕ (3.A.21) ξ 0 µ 2 µ 2 = 1 ( 1 (ln ϕ 2 ϕ) + 1 ) ξϕ + ϕ(1 ϕ)γ RT P 2 P 2 P 1 P 2 ϕ [ + Γ ξ Γ ] dϕ (3.A.22) ξ 0

122 116 3 Gibbs G G RT G G RT (1 ϕ) µ 0 µ 0 RT + ϕ 1 µ 1 µ 1 P 1 RT = ϕ 1 P 1 ln ϕ 1 + ϕ 2 P 2 ln ϕ 2 ϕ P n + ϕ + ϕ 2 µ 2 µ 2 P 2 RT ϕ 0 Γdϕ (3.A.23) Gibbs G m µ 1 µ 2 (3.A.21) ϕ = 1 ξ = 1 µ 1 RT P 1 = µ 1 RT P 1 1 P Γ(ξ = 1)dϕ (3.A.22) ϕ = 1 ξ = 0 µ 2 RT P 2 = µ 2 RT P 2 1 P Γ(ξ = 0)dϕ (3.A.24) (3.A.25) (3.A.21) (3.A.22) (3.A.24) (3.A.25) µ 1 µ 2 µ 1 µ 1 = 1 ( 1 (ln ϕ 1 ϕ) + 1 ) (1 ξ)ϕ + ϕ(1 ϕ)γ RT P 1 P 1 P 1 P 2 ϕ [ + Γ + (1 ξ) Γ ] Γ(ξ = 1)dϕ (3.A.26) ξ P µ 2 µ 2 RT P 2 = 1 ( 1 (ln ϕ 2 ϕ) P 2 + ϕ 0 [ Γ ξ Γ ξ 1 P 1 P 2 ] + 1 P 2 1 ) ξϕ + ϕ(1 ϕ)γ 0 Γ(ξ = 0)dϕ (3.A.27) (3.A.1) Gibbs G m G m RT G G RT

123 3.A Gibbs 117 (1 ϕ) µ 0 µ 0 RT + ϕ 1 µ 1 µ 1 P 1 RT = ϕ 1 P 1 ln ϕ 1 + ϕ 2 P 2 ln ϕ 2 + ϕ ϕ 0 Γdϕ + ϕ 2 µ 2 µ 2 P 2 RT 1 1 ϕ 1 Γ(ξ = 1)dϕ ϕ 2 Γ(ξ = 0))dϕ 0 0 (3.A.28) G Gibbs G G G RT = G RT + ϕ P n ϕ Γ(ξ = 1)dϕ ϕ 2 Γ(ξ = 0)dϕ 0 (3.A.29)

124 B T p q + 1 n 0 n 1 n q ( mol) n q i=0 n i n α β ( ) Gibbs G α G G α β G G β Gibbs α β 0( ) n α 0 nβ 0 n α 0 + n β 0 = n 0 q q n α ( n α i ) n β ( n β i ) i=0 i=0 (3.B.1) q = 1 2 [2 ] 1 2 gibbs G β α 1 δn α 1 ( ) (δ 2 G) T,p,n0,n 1 > 0 (3.B.2) (δ 2 G) T,p,n0,n 1 α δ 2 G α ) T,p,n α 0 β (δ 2 G β ) T,p,n β (3.B.2) 0 (δ 2 G) T,p,n0,n 1 = (δ 2 G α ) T,p,n α 0 + (δ 2 G β ) T,p,n β 0 = 1 2 (µα 11 + µ β 11 )(δnα 1 ) 2 > 0 (3.B.3) ( µ α 2 G α ) 11 n α2 1 T,p,n α 0 ( ) µ α = 1 n α 1 T,p,n α 0

125 3.B 119 [ = n α 1 = 1 x 1 n α ( n α 1 n α 0 + nα 1 ( ) µ1 x 1 )]( ) µ1 T,p x 1 T,p (3.B.4) µ β 11 = 1 x 1 n β ( ) µ1 x 1 T,p (3.B.5) x 1 1 x 1 µ 1 α β (3.B.1) (3.B.4) (3.B.5) (3.B.3) µ α 11 µ β 11 (3.B.6) (δ 2 G) T,p,n0,n 1 = 1 2 µα 11(δn α 1 ) 2 = 1 x 1 2n α ( ) µ1 x 1 (δn α 1 ) 2 > 0 T,p (3.B.7) 2 1 ( ) µ1 > 0 (3.B.8) x 1 T,p ( ) µ1 < 0 (3.B.9) x 1 2 (3.B.8) (3.B.9) x 1 µ 1 x 1 ( ) µ1 = 0 (3.B.10) x 1 T,p T,p

126 (3.B.10) x 1 2 T 2 x 1 2 T c x 1 µ 1 (3.B.10) ( 2 ) µ 1 x 2 = 0 (3.B.11) 1 T,p (3.B.10) (3.B.10) (3.B.11) gibbs G ( 2 ) G = 0 (3.B.12) [ ] x 2 1 ( 3 ) G x 3 1 T,p T,p = 0 (3.B.13) r + 1 (δ 2 G) T,p,n0,,n q = 1 q q µ α 2 ijδn α i δn α j > 0 (3.B.14) µ α ij ( µ α 2 G α ) ij n α i nα j δn α i i=1 j=1 T,p,n α 0 ( ) µ α = i n α j T,p,n α 0 (3.B.15) (3.B.14) µ α ii > 0 (i = 1, 2,, q) (3.B.16) µ 11 µ 12 µ 1q µ 21 µ 22 µ 2q > 0 (3.B.17) µ q1 µ q2 µ qq

127 3.B µ 11 µ 12 µ 1q µ 21 µ 22 µ 2q = 0 (3.B.18) µ q1 µ q2 µ qq µ i G G 11 G 12 G 1q G G 21 G 22 G 2q G q1 G q2 G qq = 0 (3.B.19) ( 2 ) G G ij x i x j T,p,x k (3.B.20) G x 1 G x 2 G x q G 21 G 22 G 2q = 0 (3.B.21) G q1 G q2 G qq G x i = ( ) G x i T,p,x j(j i) (3.B.22) x i ϕ i Gibbs G (ϕ) G (ϕ) G q i=0 n iv i (3.B.23)

128 122 3 V i i G (ϕ) ( ) ( G (ϕ) 2 G (ϕ) ) G (ϕ) i ϕ i T,p,ϕ j, G (ϕ) ij ϕ i ϕ j (3.B.19) (3.B.21) G ij G (ϕ) ij T,p.ϕ k (3.B.24)

129 3.C C (UCST) [ ] UCST 1 T 3.17 ( ) C [ ] (3.8) Rayleigh

130 I 1 30 ( 30 )

131 3.C 125 (2.B.46) T I I 1 T I 1 0 T s 1 T s PICS (Pulse Induced Critical Scattering) (C D) (A B) I T s [ ] f 4 (M w = 45300) f 40 (M w = ) ξ 4 f 4 2 r( ) T r T T 0 r 1 T 0 r T 0 r 0

132 f 4 (M w = 45300)+f 40 (M w = ) r (ξ = 0.500)

133 r (ξ = 0.950) 3.21 ϕ c ϕ c ϕ c ϕ r T r = 1 T r = 1 T T ϕ 3.22 ϕ c T c III R. Koningsveld, W. H. Stockmayer, and E. Nies, Polymer Phase Diagrams, Oxford University Press, Oxford, G. Rehage, D. Moeller, and O. Ernst, Makromol. Chem., 88, 232 (2965).

134 J. W. Kennedy, M. Gordon, and R. Koningsveld, J. Polym. Sci., C39, 71 (1972). 5. J. W. Breitenbach and B. A. Wolf, Makromol. Chem., 108, 263 (1967). 6. L. A. Kleintjens, R. Koningsveld, and W. H. Stockmayer, Brit. Polym. J., 8, 144 (1976). 7. H. Fujita and Y. Einaga, Makromol. Chem., Macromol. Symp., 12, 75 (1987). 8. Z. Tong, Y. Einaga, and H. Fujita, Macromolecules, 18, 2264 (1985). 9. Y. Einaga, Z. Tong, and H. Fujita, Macromolecules, 18, 2258 (1985). 10. H. Tompa, Trans. Faraday Soc., 45, 1142 (1949). 11. Y. Einaga, Y. Nakamura, and H. Fujita, Macromolecules, 20, 1083 (1987). 12. K. W. Derham, J. Goldsbrough, and M. Gordon, Pure & Appl. Chem., 38, 97 (1974). 13. M. Tsuyumoto, Y. Einaga, and H. Fujita, Polym. J., 16, 229 (1984).

135 (PS) (PBD) 2 PS M w PBD M w C PS-PBD 1 PS-PBD 4.1 (PS) (PVME) PS M w 2100 PVME M w C 28 C 30 C (C 2 HCl 3 ) 14 C PS+C 2 HCl C 30 C 3 2

136

137 (PS) (PIP) (CH) PS M w PIP M w PS-PIP 1 PS PIP 15 C Φ PS T PS+CH2 PS+PIP PS ξ PS ( ) PS-PIP ξ PS ( T ) 4.4 ξ PS (PS ) ξ rmp S (PS ) PS+CH2 2 ( ) (

138

139 ( ) ( ) ) 1 (PS) (PIB) (CH) (Benzene) ξ PS M w 2 ξ PS (PS ) 4.4 PS+PIP+CH PS+CH2 PIB PIB+Benzene2 PS 4.6 PS+PIB+CH3 PS+PIB+Benzene3 PS

140 ( ) ( ) PIB PS-PIB PS PIB PS+PIB+CH3 CH PS PS+CH2 Φ PS T PS+PIB+Benzene3 Benzene PIB PIB+CH2 Φ PIB T 3 30 C ( ) ( )

141 M w PS PIB PS+PIB+CH3 Φ PS PS PS PS+PIB+Benzene3 Φ PIB PIB PIB PS+CH2 PIB+Benzene2

142 van t Hoff µ 0 i µ i van t Hoff Flory-Huggins Gibbs G 2 ( 2 ) ϕ i G = RT (N 0 + N i P i ) ϕ 0 ln ϕ 0 + ln ϕ i + h P i i=1 i=1 (4.1) N i ϕ i P i i h Flory-Huggins h h = χ 01 ϕ 0 ϕ 1 + χ 02 ϕ 0 ϕ 2 + χ 12 ϕ 1 ϕ 2 (4.2) 6, 7 χ ij i j 2 3 Koningsveld 8 h h = g 01 (ϕ 1, ϕ 2 ) + g 02 (ϕ 1, ϕ 2 ) + g 12 (ϕ 1, ϕ 2 ) (4.3) 3 g ij h 9 µ 0

143 χ µ 0 µ o RT ( = ln ϕ ) + χϕ 2 (4.4) P n ϕ = ϕ 1 + ϕ 2 P n 1 P n = ξ 1 P 1 + ξ 2 P 2 (4.5) ξ i = ϕ i /ϕ χ (4.1) h [ ] (h/ϕ) χ = ϕ T,p,ξ 1 (4.6) (4.4) Gibbs-Duhem i µ i µ i µ ( i = ln ϕ i + P i 1 1 ) ϕ RT P n [ ( ) χ P i {χϕ 0 ϕ + ϕ χ + (1 ξ i ) ξ i 0 T,p,ϕ ] } dϕ (i = 1, 2) (4.7) µ i = lim ϕ 0 (µ i RT ln ϕ i ) (i = 1, 2) (4.8) (4.7) i µ i h h = ϕ ϕ 0 χdϕ + ϕ 2 i=1 [ µ ξ i µ 0 i P i RT 1 ] + 1 P i (4.9) µ i µ 0 Flory-Huggins 1 2

144 138 4 T µ 0 3 π 11 π RT = µ 0 µ 0 V 0 RT 2 c i = + 1 M i 2 i= i=1 j=1 k=1 i=1 j=1 2 B ij c i c j 2 B ijk c i c j c k + (4.10) (4.4) 4.A χ χ = ξ 2 1χ 11 (ϕ 1 ) + ξ 2 2χ 22 (ϕ 2 ) + 2ξ 1 ξ 2 χ 12 (ϕ 1, ϕ 2 ) (4.11) χ ii χ 12 χ ii (ϕ i ) = E ii + E iii ϕ i + E iiii ϕ 2 i + (i = 1, 2) (4.12) E B E ij = 1 ( 1 V 0B ij 2 v i v j χ 12 (ϕ 1, ϕ 2 ) = E (E 112ϕ 1 + E 122 ϕ 2 ) + (4.13) ), E ijk = 1 3 ( 1 V ) 0B ijk, (4.14) v i v j v k v i i (4.11) χ ii (ϕ i ) (4.12) 0 i 2 2 χ 12 (ϕ 1, ϕ 2 ) χ 11 (ϕ 1 ) χ 22 (ϕ 2 ) 3 χ 12 (ϕ 1, ϕ 2 ) χ ij 2 (4.14) 1/2 1/3 V 0 (4.11) χ

145 (4.4) (4.7) 2 2.B (2.B.46) 4.B Rayleigh R 0 KV 0 ϕ = 1 + ϕ(1 ϕ) 1 P w ϕ(p w L + Y ) R 0 W X (4.15) K 2πn 2 /N A λ 4 0 (n λ 0 ) W X Y W = γ2 1P 1 ξ 1 + γ 2 2P 2 ξ 2 (1 ϕ) 2 (4.16) [ ( ) ] ξ 1 ξ 2 1 X = 1 + {( γ γ 1 2P 1ξ 1 + γ 2 2P 1 γ 2 ) 2 P 1 P ϕ ϕ 2ξ 2 P n 2( γ 1 γ 2 )( γ 1 P 1 γ 2 P 2 )ϕ ( γ 1 γ 2 ) 2 P 1 P 2 (1 ϕ) 2 ϕl +2( γ 1 γ 2 )( γ 1 ξ 1 + γ 2 ξ 2 )P 1 P 2 (1 ϕ)ϕq } +( γ 1 ξ 1 + γ 2 ξ 2 ) 2 P 1 P 2 S [ ( 1 Y = ξ 1 ξ 2 2(P 1 P 2 )Q P 1 P 2 1 ϕ + 1 ] )S P n ϕ L +P 1 P 2 ϕq 2 (4.17) (4.18) P w = P 1 ξ 1 + P 2 ξ 2 (4.19) γ i = γ i 2 ϕ j γ j (4.20) j=1 ( ) n γ i = (4.21) ϕ i ϕ k ( ) χ L = 2χ + ϕ (4.22) ϕ ξ 1

146 140 4 ( ) χ Q = (4.23) ξ 1 ϕ ϕ ( 2 ) χ S = dϕ (4.24) 0 γ i ξ 2 1 (4.15) χ χ (4.11) (4.15) 3 Rayleigh R 0 3 χ 11 (ϕ 1 ) χ 22 (ϕ 2 ) χ 12 (ϕ 1, ϕ 2 ) χ 11 (ϕ 1 ) χ 22 (ϕ 2 ) R 0 (4.15) χ 12 (ϕ 1, ϕ 2 ) R 0 χ 12 (ϕ 1, ϕ 2 ) χ 12 (ϕ 1, ϕ 2 ) 3 R 0 (4.15) R 0 χ 12 (ϕ 1, ϕ 2 ) 0 i 2 (4.15) L ii χ ii (ϕ i ) KV 0 γ i R 0 = 1 1 ϕ + 1 P i ϕ L ii (4.25) χ ii (ϕ i ) = 1 ϕ 2 i ϕi 0 L ii ϕ i dϕ i (4.26) 2 χ ii L ii (4.15) ϕ KV 0 ϕ = 1 P + 1 P [ (γ 1 P 1 ξ 1 + γ 2 P 2 ξ 2 ) 2 (1 2χ 0 ) R 0 ( ) χ0 2ξ 1 ξ 2 (γ 1 P 1 ξ 1 + γ 2 P 2 ξ 2 )(γ 1 P 1 γ 2 P 2 ) ξ 1 ( (ξ 1 ξ 2 ) 2 (γ 1 P 1 γ 2 P 2 ) 2 2 )] χ 0 ξ1 2 ϕ + (4.27)

147 P γ 2 1P 1 ξ 1 + γ 2 2P 2 ξ 2 (4.28) χ 0 1 χ(ϕ, ξ 1 ) = χ 0 (ξ 1 ) + χ 1 (ξ 1 )ϕ + (4.29) (Θ) 12 γ 1 P 1 ξ 1 + γ 2 P 2 ξ 2 = 0 (4.27) KV 0 ϕ = 1 P (ξ 1ξ 2 ) 2 (γ 1 P 1 γ 2 P 2 ) 2 ( 2 ) χ 0 R 0 P 2 ξ1 2 ϕ + (4.30) (4.2) χ χ = χ 01 ξ 1 +χ 02 (1 ξ 1 )+χ 12 ξ 1 (1 ξ 1 ) χ 12 (PS) (PIP) (CH) L 11 (ϕ 1 ) ( 2 Z 2Z = L 11 ) [ L 11 (ϕ 1 ) = 2 χ conc + ϕ Aϕ Bϕ 2 1 ( ) Θ χ conc = T 1 [ ( exp P 2/3 1 +(χ dil χ conc)r(p 1/2 1 ϕ 1 ) ( )( Θ T 1 P 1/2 1 )] ] 45 P 2 1 ) (4.31) (4.32)

148 ( ) ( ) 2 Θ Θ χ dil = T T 1 (4.33) A = 1.4P 1/3 1 (4.34) [ ( )] B = 7P 1/3 Θ 1 exp 18 T 1 (4.35) R(x) = exp( x 0.3x 3 ) (4.36) (M w = 53300) L 22 (ϕ 2 ) 2 L 22,dil (ϕ 2 ) L 22,conc (ϕ 2 ) L 22 (ϕ 2 ) = L 22,dil (ϕ 2 ) + L 22,conc (ϕ 2 ) (4.37) 2 L 22,dil (ϕ 2 ) = exp( 47ϕ 2 ) (4.38)

149 ( L 2,conc (ϕ 2 ) = ) ϕ 2 (4.39) T 4.8 (4.26) χ 22 (ϕ 2 ) χ 22 (ϕ 2 ) = ( ) ϕ 2 3 T [1 (1 + 47ϕ 2) exp( 47ϕ 2 )] (47ϕ 2 ) 2 (4.40) (PIP+CH PIP ) 4.9 PS+PIP+CH3 3 ξ PS (=ξ 1 )= ϕ KV 0 ϕ/ R 0 P 1 χ 12 (ϕ, ξ 1 ) ϕ ϕ 1

150 144 4 χ 12 (ϕ, ξ 1 ) = k 0 + (k 1 ξ 1 + k 2 ξ 2 )ϕ (4.41) k 0 k 1 k 2 (4.31) (4.40) (4.41) (4.15) KV 0 ϕ/ R k 0 k 1 k 2 KV 0 ϕ/ R 0 k 0 k 1 k 2 k 0 = 0.44, k 1 = T, k 2 = T (4.42) L ii (ϕ i ) χ ii (ϕ i ) χ 12 (ϕ, ξ 1 ) 4.C L ii (=2Z) (PS)+ (PIP)+ (CH)3 PS+ (PIB)+CH 3 χ ii χ 12 ϕ ξ 1 (=ξ PS ) χ 11 χ 22 χ 12 ξ PS (=ξ 1 ) 0 1 χ 12 ξ PS ϕ PIP+CH2 PIB+CH2 χ 22 PS+CH2 χ 11 ϕ=0 χ 12 χ 11 χ 22 χ 12 ξ PS = 0 PIP+CH2 PIB+CH2 χ 22 ξ PS PS+CH2 χ 11

151

152 µ 0(ϕ, ξ 1 ) = µ 0(ϕ, ξ 1 ) (4.43) µ i(ϕ, ξ 1 ) = µ i (ϕ, ξ 1 ) (i = 1, 2) (4.44) (4.44) σ i σ i = 1 ( ) ϕ i ln (i = 1, 2) (4.45) P i ϕ i (4.4) (4.7) σ i { ϕ [ ( ) ] } χ σ i = ln(1 ϕ) + χϕ + χ + (1 ξ i ) dϕ (4.46) ξ i 0 T,p,ϕ {X} X X X (4.43) (4.45) T 4 ϕ i ϕ i (i = 1, 2) (ϕ, ξ 1) (ϕ, ξ 1 ) 3 T (M w = 43900)+ (M w = 53300) C

153 ( )

154 ξ PS (= ξ 1 ) 4.4 ϕ ξ PS ξ PS 0.50 ϕ ξ PS (M w =53600)+ (M w =154000) (M w =53600)+ (M w =152000) T =30 C T =20 C ( ) N, N D

155

156 A T µ 0 π V 0 π = (µ 0 µ 0) (4.A.1) 3 π 11 π RT = 2 i= c i M i i=1 j=1 k=1 i=1 j=1 2 B ij c i c j 2 B ijk c i c j c k + (4.A.2) 1 2 V 0 π RT = ϕ P n i=1 j=1 2 i=1 j=1 k=1 2 D ij ϕ i ϕ j 2 D ijk ϕ i ϕ j ϕ k + (4.A.3) D ij = V 0B ij v i v j, D ijk = V 0B ijk v i v j v k, (4.A.4) (4.4) (4.A.1) (4.A.3) χ χ = ϕ 1 ( E ij ϕ i ϕ j + E ijk ϕ i ϕ j ϕ k + ) i=1 j=1 i=1 j=1 k=1 (4.A.5) E ij = 1 2 (1 D ij), E ijk = 1 3 (1 D ijk), (4.A.6)

157 4.A 151 E ij E ijk (4.A.5) χ = ξ1(e E 111 ϕ 1 + E 1111 ϕ ) +ξ2(e E 222 ϕ 2 + E 2222 ϕ ) +2ξ 1 ξ 2 [E (E 112ϕ 1 + E 122 ϕ 2 ) +2E 1112 ϕ E 1122 ϕ 1 ϕ 2 + 2E 1222 ϕ ] (4.A.7) ξ = χ χ 11 (ϕ 1 ) (4.A.7) χ 11 (ϕ 1 ) = E 11 + E 111 ϕ 1 + E 1111 ϕ (4.A.8) ξ 2 = χ = χ 22 (ϕ 2 ) χ 22 (ϕ 2 ) = E 22 + E 222 ϕ 2 + E 2222 ϕ (4.A.9) (4.A.7 ξ1χ 2 11 (ϕ 1 ) + ξ2χ 2 22 (ϕ 2 ) 2ξ 1 ξ 2 χ 12 (ϕ 1, ϕ 2 ) χ 12 (ϕ 1 ϕ 2 ) χ 12 (ϕ 1 ϕ 2 ) = E (E 112ϕ 1 + E 122 ϕ 2 ) +2E 1112 ϕ E 1122 ϕ 1 ϕ 2 + 2E 1222 ϕ (4.A.10) χ = ξ 2 1χ 11 (ϕ 1 ) + ξ 2 2χ 22 (ϕ 2 ) + 2ξ 1 ξ 2 χ 12 (ϕ 1, ϕ 2 ) (4.A.11)

158 B T p Rayleigh R 0 11 ( 2 2.B (2.B.46) ) R 0 = Kv M RT r i=1 j=1 r ( ) ñ m i T,p,m k ( ñ m j )T,p,mk ψ ij ψ (4.B.1) K (K = 2π 2 n 2 /N A λ 4 0) m i i v M v M = V 0(n 0 + r i=1 n ip i ) n 0 M 0 V 0 = M 0 (1 ϕ) (4.B.2) n i i ( ) ψ µ ij = ( µ i / m j ) mk ψ ij ψ ij 3 i ϕ i m i ϕ i = M 0 m i P i 1 + M 0 2 i=i m ip i (4.B.3) ϕ i m i = M 0 P i (1 ϕ i )(1 ϕ) (4.B.4) ( m i ) m k ( ) n m i ϕ j = M 0 P i ϕ j (1 ϕ) m i [( ) 2 ( ) ] = M 0 (1 ϕ)p i ϕ j ϕ i ϕ k ϕ j ϕ k T,p,m k = M 0 (1 ϕ)p i [( ) n ϕ i j=1 ϕ k 2 j=1 ( ) ] n ϕ j ϕ j ϕ k (4.B.5) (4.B.6) = M 0 (1 ϕ)p i γ i (4.B.7)

flMŠÍ−w−î‚b

flMŠÍ−w−î‚b 23 6 30 i 2 1980 2001 1979 K. 1971 ii 1992 iii 1 1 2 5 2.1 : : : : : : : : : : : : : : : : : : : : : : : : : : 5 2.2 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 8 2.3 : : : : : : : : :

More information

untitled

untitled 1 Physical Chemistry I (Basic Chemical Thermodynamics) [I] [II] [III] [IV] Introduction Energy(The First Law of Thermodynamics) Work Heat Capacity C p and C v Adiabatic Change Exact(=Perfect) Differential

More information

// //( ) (Helmholtz, Hermann Ludwig Ferdinand von: ) [ ]< 35, 36 > δq =0 du

// //( ) (Helmholtz, Hermann Ludwig Ferdinand von: ) [ ]< 35, 36 > δq =0 du 2 2.1 1 [ 1 ]< 33, 34 > 1 (the first law of thermodynamics) U du = δw + δq (1) (internal energy)u (work)w δw rev = PdV (2) P (heat)q 1 1. U ( U ) 2. 1 (perpetuum mobile) 3. du 21 // //( ) (Helmholtz, Hermann

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

iBookBob:Users:bob:Documents:CurrentData:flMŠÍ…e…L…X…g:Statistics.dvi

iBookBob:Users:bob:Documents:CurrentData:flMŠÍ…e…L…X…g:Statistics.dvi 4 4 9............................................... 3.3......................... 4.4................. 5.5............................ 7 9..................... 9.............................3................................4..........................5.............................6...........................

More information

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E 5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E 2, S 1 N 1 = S 2 N 2 2 (chemical potential) µ S N

More information

September 25, ( ) pv = nrt (T = t( )) T: ( : (K)) : : ( ) e.g. ( ) ( ): 1

September 25, ( ) pv = nrt (T = t( )) T: ( : (K)) : : ( ) e.g. ( ) ( ): 1 September 25, 2017 1 1.1 1.2 p = nr = 273.15 + t : : K : 1.3 1.3.1 : e.g. 1.3.2 : 1 intensive variable e.g. extensive variable e.g. 1.3.3 Equation of State e.g. p = nr X = A 2 2.1 2.1.1 Quantity of Heat

More information

70 5. (isolated system) ( ) E N (closed system) N T (open system) (homogeneous) (heterogeneous) (phase) (phase boundary) (grain) (grain boundary) 5. 1

70 5. (isolated system) ( ) E N (closed system) N T (open system) (homogeneous) (heterogeneous) (phase) (phase boundary) (grain) (grain boundary) 5. 1 5 0 1 2 3 (Carnot) (Clausius) 2 5. 1 ( ) ( ) ( ) ( ) 5. 1. 1 (system) 1) 70 5. (isolated system) ( ) E N (closed system) N T (open system) (homogeneous) (heterogeneous) (phase) (phase boundary) (grain)

More information

3.2 [ ]< 86, 87 > ( ) T = U V,N,, du = TdS PdV + µdn +, (3) P = U V S,N,, µ = U N. (4) S,V,, ( ) ds = 1 T du + P T dv µ dn +, (5) T 1 T = P U V,N,, T

3.2 [ ]< 86, 87 > ( ) T = U V,N,, du = TdS PdV + µdn +, (3) P = U V S,N,, µ = U N. (4) S,V,, ( ) ds = 1 T du + P T dv µ dn +, (5) T 1 T = P U V,N,, T 3 3.1 [ ]< 85, 86 > ( ) ds > 0. (1) dt ds dt =0, S = S max. (2) ( δq 1 = TdS 1 =0) (δw 1 < 0) (du 1 < 0) (δq 2 > 0) (ds = ds 2 = TδQ 2 > 0) 39 3.2 [ ]< 86, 87 > ( ) T = U V,N,, du = TdS PdV + µdn +, (3)

More information

現代物理化学 2-1(9)16.ppt

現代物理化学 2-1(9)16.ppt --- S A, G U S S ds = d 'Q r / ΔS = S S = ds =,r,r d 'Q r r S -- ds = d 'Q r / ΔS = S S = ds =,r,r d 'Q r r d Q r e = P e = P ΔS d 'Q / e (d'q / e ) --3,e Q W Q (> 0),e e ΔU = Q + W = (Q + Q ) + W = 0

More information

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 4 1 1.1 ( ) 5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 da n i n da n i n + 3 A ni n n=1 3 n=1

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

all.dvi

all.dvi I 1 Density Matrix 1.1 ( (Observable) Ô :ensemble ensemble average) Ô en =Tr ˆρ en Ô ˆρ en Tr  n, n =, 1,, Tr  = n n  n Tr  I w j j ( j =, 1,, ) ˆρ en j w j j ˆρ en = j w j j j Ô en = j w j j Ô j emsemble

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat / Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiation and the Continuing Failure of the Bilinear Formalism,

More information

IA

IA IA 31 4 11 1 1 4 1.1 Planck.............................. 4 1. Bohr.................................... 5 1.3..................................... 6 8.1................................... 8....................................

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

2007 5 iii 1 1 1.1.................... 1 2 5 2.1 (shear stress) (shear strain)...... 5 2.1.1...................... 6 2.1.2.................... 6 2.2....................... 7 2.2.1........................

More information

P F ext 1: F ext P F ext (Count Rumford, ) H 2 O H 2 O 2 F ext F ext N 2 O 2 2

P F ext 1: F ext P F ext (Count Rumford, ) H 2 O H 2 O 2 F ext F ext N 2 O 2 2 1 1 2 2 2 1 1 P F ext 1: F ext P F ext (Count Rumford, 1753 1814) 0 100 H 2 O H 2 O 2 F ext F ext N 2 O 2 2 P F S F = P S (1) ( 1 ) F ext x W ext W ext = F ext x (2) F ext P S W ext = P S x (3) S x V V

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

δf = δn I [ ( FI (N I ) N I ) T,V δn I [ ( FI N I ( ) F N T,V ( ) FII (N N I ) + N I ) ( ) FII T,V N II T,V T,V ] ] = 0 = 0 (8.2) = µ (8.3) G

δf = δn I [ ( FI (N I ) N I ) T,V δn I [ ( FI N I ( ) F N T,V ( ) FII (N N I ) + N I ) ( ) FII T,V N II T,V T,V ] ] = 0 = 0 (8.2) = µ (8.3) G 8 ( ) 8. 1 ( ) F F = F I (N I, T, V I ) + F II (N II, T, V II ) (8.1) F δf = δn I [ ( FI (N I ) N I 8. 1 111 ) T,V δn I [ ( FI N I ( ) F N T,V ( ) FII (N N I ) + N I ) ( ) FII T,V N II T,V T,V ] ] = 0

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ SO(3) 71 5.7 5.7.1 1 ħ L k l k l k = iϵ kij x i j (5.117) l k SO(3) l z l ± = l 1 ± il = i(y z z y ) ± (z x x z ) = ( x iy) z ± z( x ± i y ) = X ± z ± z (5.118) l z = i(x y y x ) = 1 [(x + iy)( x i y )

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R =

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R = 1 1 1.1 1827 *1 195 *2 x 2 t x 2 = 2Dt D RT D = RT N A 1 6πaη (1.1) D N A a η 198 *3 ( a =.212µ) *1 Robert Brown (1773-1858. *2 Albert Einstein (1879-1955 *3 Jean Baptiste Perrin (187-1942 2 1 x 2 x 2

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0 79 4 4.1 4.1.1 x i (t) x j (t) O O r 0 + r r r 0 x i (0) r 0 x i (0) 4.1 L. van. Hove 1954 space-time correlation function V N 4.1 ρ 0 = N/V i t 80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t

More information

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0 5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â = Tr Âe βĥ Tr e βĥ = dγ e βh (p,q) A(p, q) dγ e βh (p,q) (5.2) e βĥ A(p, q) p q Â(t) = Tr Â(t)e βĥ Tr e βĥ = dγ() e βĥ(p(),q())

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

6 6.1 B A: Γ d Q S(B) S(A) = S (6.1) T (e) Γ (6.2) : Γ B A R (reversible) 6-1

6 6.1 B A: Γ d Q S(B) S(A) = S (6.1) T (e) Γ (6.2) : Γ B A R (reversible) 6-1 6 6.1 B A: Γ d Q S(B) S(A) = S (6.1) (e) Γ (6.2) : Γ B A R (reversible) 6-1 (e) = Clausius 0 = B A: Γ B A: Γ d Q A + d Q (e) B: R d Q + S(A) S(B) (6.3) (e) // 6.2 B A: Γ d Q S(B) S(A) = S (6.4) (e) Γ (6.5)

More information

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t) Radiation from moving harges# Liénard-Wiehert potential Yuji Chinone Maxwell Maxwell MKS E x, t + B x, t = B x, t = B x, t E x, t = µ j x, t 3 E x, t = ε ρ x, t 4 ε µ ε µ = E B ρ j A x, t φ x, t A x, t

More information

2013 25 9 i 1 1 1.1................................... 1 1.2........................... 2 1.3..................................... 3 1.4..................................... 4 2 6 2.1.................................

More information

( ) ,

( ) , II 2007 4 0. 0 1 0 2 ( ) 0 3 1 2 3 4, - 5 6 7 1 1 1 1 1) 2) 3) 4) ( ) () H 2.79 10 10 He 2.72 10 9 C 1.01 10 7 N 3.13 10 6 O 2.38 10 7 Ne 3.44 10 6 Mg 1.076 10 6 Si 1 10 6 S 5.15 10 5 Ar 1.01 10 5 Fe 9.00

More information

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [ 3 3. 3.. H H = H + V (t), V (t) = gµ B α B e e iωt i t Ψ(t) = [H + V (t)]ψ(t) Φ(t) Ψ(t) = e iht Φ(t) H e iht Φ(t) + ie iht t Φ(t) = [H + V (t)]e iht Φ(t) Φ(t) i t Φ(t) = V H(t)Φ(t), V H (t) = e iht V (t)e

More information

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + 2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz 2 Rutherford 2. Rutherford N. Bohr Rutherford 859 Kirchhoff Bunsen 86 Maxwell Maxwell 885 Balmer λ Balmer λ = 364.56 n 2 n 2 4 Lyman, Paschen 3 nm, n =3, 4, 5, 4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n

More information

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m A f i x i B e e e e 0 e* e e (2.1) e (b) A e = 0 B = 0 (c) (2.1) (d) e

More information

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2 Hanbury-Brown Twiss (ver. 1.) 24 2 1 1 1 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 3 3 Hanbury-Brown Twiss ( ) 4 3.1............................................

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120) 2.6 2.6.1 mẍ + γẋ + ω 0 x) = ee 2.118) e iωt Pω) = χω)e = ex = e2 Eω) m ω0 2 ω2 iωγ 2.119) Z N ϵω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j 2.120) Z ω ω j γ j f j f j f j sum j f j = Z 2.120 ω ω j, γ ϵω) ϵ

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

Maxwell

Maxwell I 2018 12 13 0 4 1 6 1.1............................ 6 1.2 Maxwell......................... 8 1.3.......................... 9 1.4..................... 11 1.5..................... 12 2 13 2.1...................

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint ( 9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) 2. 2.1 Ĥ ψ n (r) ω n Schrödinger Ĥ ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ + Ĥint (t)] ψ (r, t), (2) Ĥ int (t) = eˆxe cos ωt ˆdE cos ωt, (3)

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3 II (Percolation) 12 9 27 ( 3-4 ) 1 [ ] 2 [ ] 3 [ ] 4 [ ] 1992 5 [ ] G Grimmett Percolation Springer-Verlag New-York 1989 6 [ ] 3 1 3 p H 2 3 2 FKG BK Russo 2 p H = p T (=: p c ) 3 2 Kesten p c =1/2 ( )

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji 8 4 2018 6 2018 6 7 1 (Contents) 1. 2 2. (1) 22 3. 31 1. Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji SETO 22 3. Editorial Comments Tadashi

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

II

II II 28 5 31 3 I 5 1 7 1.1.......................... 7 1.1.1 ( )................ 7 1.1.2........................ 12 1.1.3................... 13 1.1.4 ( )................. 14 1.1.5................... 15

More information

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

SFGÇÃÉXÉyÉNÉgÉãå`.pdf SFG 1 SFG SFG I SFG (ω) χ SFG (ω). SFG χ χ SFG (ω) = χ NR e iϕ +. ω ω + iγ SFG φ = ±π/, χ φ = ±π 3 χ SFG χ SFG = χ NR + χ (ω ω ) + Γ + χ NR χ (ω ω ) (ω ω ) + Γ cosϕ χ NR χ Γ (ω ω ) + Γ sinϕ. 3 (θ) 180

More information

液晶の物理1:連続体理論(弾性,粘性)

液晶の物理1:連続体理論(弾性,粘性) The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

main.dvi

main.dvi SGC - 70 2, 3 23 ɛ-δ 2.12.8 3 2.92.13 4 2 3 1 2.1 2.102.12 [8][14] [1],[2] [4][7] 2 [4] 1 2009 8 1 1 1.1... 1 1.2... 4 1.3 1... 8 1.4 2... 9 1.5... 12 1.6 1... 16 1.7... 18 1.8... 21 1.9... 23 2 27 2.1

More information

KENZOU

KENZOU KENZOU 2008 8 2 3 2 3 2 2 4 2 4............................................... 2 4.2............................... 3 4.2........................................... 4 4.3..............................

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2 1 6 6.1 (??) (P = ρ rad /3) ρ rad T 4 d(ρv ) + PdV = 0 (6.1) dρ rad ρ rad + 4 da a = 0 (6.2) dt T + da a = 0 T 1 a (6.3) ( ) n ρ m = n (m + 12 ) m v2 = n (m + 32 ) T, P = nt (6.4) (6.1) d [(nm + 32 ] )a

More information

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco post glacial rebound 3.1 Viscosity and Newtonian fluid f i = kx i σ ij e kl ideal fluid (1.9) irreversible process e ij u k strain rate tensor (3.1) v i u i / t e ij v F 23 D v D F v/d F v D F η v D (3.2)

More information

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n . X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

2009 2 26 1 3 1.1.................................................. 3 1.2..................................................... 3 1.3...................................................... 3 1.4.....................................................

More information

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef 4 213 5 8 4.1.1 () f A exp( E/k B ) f E = A [ k B exp E ] = f k B k B = f (2 E /3n). 1 k B /2 σ = e 2 τ(e)d(e) 2E 3nf 3m 2 E de = ne2 τ E m (4.1) E E τ E = τe E = / τ(e)e 3/2 f de E 3/2 f de (4.2) f (3.2)

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

第1章 微分方程式と近似解法

第1章 微分方程式と近似解法 April 12, 2018 1 / 52 1.1 ( ) 2 / 52 1.2 1.1 1.1: 3 / 52 1.3 Poisson Poisson Poisson 1 d {2, 3} 4 / 52 1 1.3.1 1 u,b b(t,x) u(t,x) x=0 1.1: 1 a x=l 1.1 1 (0, t T ) (0, l) 1 a b : (0, t T ) (0, l) R, u

More information

ver.1 / c /(13)

ver.1 / c /(13) 1 -- 11 1 c 2010 1/(13) 1 -- 11 -- 1 1--1 1--1--1 2009 3 t R x R n 1 ẋ = f(t, x) f = ( f 1,, f n ) f x(t) = ϕ(x 0, t) x(0) = x 0 n f f t 1--1--2 2009 3 q = (q 1,..., q m ), p = (p 1,..., p m ) x = (q,

More information

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb r 1 r 2 r 1 r 2 2 Coulomb Gauss Coulomb 2.1 Coulomb 1 2 r 1 r 2 1 2 F 12 2 1 F 21 F 12 = F 21 = 1 4πε 0 1 2 r 1 r 2 2 r 1 r 2 r 1 r 2 (2.1) Coulomb ε 0 = 107 4πc 2 =8.854 187 817 10 12 C 2 N 1 m 2 (2.2)

More information

現代物理化学 1-1(4)16.ppt

現代物理化学 1-1(4)16.ppt (pdf) pdf pdf http://www1.doshisha.ac.jp/~bukka/lecture/index.html http://www.doshisha.ac.jp/ Duet -1-1-1 2-a. 1-1-2 EU E = K E + P E + U ΔE K E = 0P E ΔE = ΔU U U = εn ΔU ΔU = Q + W, du = d 'Q + d 'W

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

B 1 B.1.......................... 1 B.1.1................. 1 B.1.2................. 2 B.2........................... 5 B.2.1.......................... 5 B.2.2.................. 6 B.2.3..................

More information

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v 12 -- 1 4 2009 9 4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 4-10 c 2011 1/(13) 4--1 2009 9 3 x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information