輸送現象まとめファイル2017_01

Size: px
Start display at page:

Download "輸送現象まとめファイル2017_01"

Transcription

1 第 5 章流れの解析 5.1 平行平板内流れ 流体の連続の式と運動量方程式を連立して解き 流体内部の速 度分布を求める 第一の例は 平行平板内流れの定常状態速度分 布である 非圧縮性流体 ( 密度 ρ が一定 ) 定常状態 ( t の項 が0) 重力以外の外力が働かないとき デカルト座標系の -! 二次元速度分布 v, ( ) を決める方程式は次の様に書ける 連続の式 : u + v = 0 (5-1) Fig. 5-1 平行平板層流速度分布 軸方向運動量方程式 : u u + v u = 1 p ρ +ν u + u + g (5-) 軸方向運動量方程式 : u v + v v = 1 p ρ +ν v + v + g (5-3) 境界条件は 次の通りである =0 で u=u0 v=0 p=p0 (5-4a) =0 で u=v=0 (5-4b) 未知数は u, v, p 式の数は 3 つなので 境界条件を使って式を解くことができる 方向速度は 入口で一様流 入速度 u=u0 から次第に変化し Fig.5-1 の様にある区間 ( 速度助走区間 ) を経過すると u は 座標のみの関数と なる また 方向速度 v は v=0 となり 方向圧力損失 ( dp d = Δp Δ ) は一定になる 従って dp d 以外の を含む項と v を含む項を無視する h を中心から平行平板までの距離とし 方向に重力が働かないので 発達領 域で (5-) 式は次式のように簡略化される 0 = 1 dp ρ d +ν d u d (5-5) =0 で u=0 =h で du d = 0 (5-6) 発達速度領域で 平行平板間強制対流速度分布は次式となる u = u ma h h, u = h Δp ma µ Δ (5-7) 次の例は Fig.5- のように 重力のみが働き厚さ h の液膜が傾斜 した坂の上を流れているとき g = ρg sinθ となる また自由表面流 Fig.5- 落下液膜の流速分布 であり外からの圧力は均一一定である 発達速度状態の速度分布は 上と同様の手段で求められ 最大速度は次式 で得られる u ma = ρh g µ sinθ ( 液膜落下のとき ) (5-8) 6

2 5. 円管内速度分布 円管内速度分布は広く流体 熱 物質移動によく現れる (,,z) の直交座標系から (r,θ,z) の円筒座標系への変数変 換の詳細は省略し結果のみを書くと 密度 ρ と粘度 µ が一定のときの三次元連続の式と運動量方程式は次式になる 円筒座標連続の式 : 1 r r rv r ( ) + z + 1 r 円筒座標 r 方向と z 方向運動量方程式 : v θ θ = 0 (5-9) v r t + v v r r r + v v r z z + v v θ r r θ v θ r = 1 p ρ r + µ 1 ( ρ r r r rv r ) + v r z t + v r r + v z z + v v θ z r θ = 1 p ρ z + µ ρ 1 r r r r + z + 1 r θ + 1 r v r θ v r r + g θ r (5-10) + g z (5-11) r-z 二次元運動量方程式では θ の項と v θ を含む項が無視できる 定常状態で t の項も消える 円管内流動 で 流体が均一分布で入口から入り 入口からしばらく進むと r 方向速度分布 vr を含む項は消え 発達した速度分 布状態で z = 0 であり z の項も消える 最終的に (5-11) 式の z 方向方程式のみが残る 重力の項を無視 すると (5-11) 式は次式のように簡単になる 0 = dp dz + µ 1 r d dr r d dr (5-1) 境界条件は r=0 で d dr = 0 r=r0 で vz=0 である 従って円管内速度分布 : = 1 r v ma r v = r 0 ma 0 4µ を得る Δp Δz (5-13) 一般的な速度分布の場合 例えば密度一定のとき 連続の式 (4-4) 式 運動量方程式 (4-8), (4-9), (4-10) 式の4つの! 方程式を定められた境界条件で解き 三次元速度 v u,v, w ( ) 圧力 p を求めることになる しかし運動量方程式は非 線形であり 例え 次元でも解析的に解くことは不可能である 最近では 大型計算機を使った直接数値解法の手 段が発達しており結果が得られている しかし直接解法だけでは パラメーターの影響あるいは作用する支配的力 等に関する情報を得る事は なかなか難しい そこで 以後に示す無次元化と無次元数を用いて どの項が支配因 子なのか さらには 次元解析を用いて整理する手法が有効となる 5.3 速度境界層流体がある物体の回りを流れるとき 物体近辺の境界壁表面近くと 境界壁から遠く離れた位置とでは 流体に働く要素が異なってくる 例えば Fig.5-3 の翼周りの流れを考えると 翼から十分離れた領域では 粘性の効果が十分に小さいと考えられる すなわち 運動量方程式の右辺粘性項が無視できる 一般に非圧縮性の運動量方程式 (Navier-Stokes 方程式 ) で粘性項を無視した場合の流れをポテンシャル流れ ( 完全流体 ) と呼ぶ 完全流体は理論数 学手段を使いかなり解き明かされており 詳しい内容は流体 力学教科書 ( 例えば 今井功著 流体力学 岩波書店 ) に説 7 Fig. 5-3 物体の周りに発生する境界層

3 明されている 一方翼に近い部分では 固体壁上で速度 0 の境界条件が課されるので 速度が主流速度から小さくなる この領 域を速度境界層と呼び 流れを解析する上で 重要な概念である 速度境界層内では 流体の粘性が無視できない 逆に圧力項は 固体壁に近くなっても境界条件の影響を受けにくいので 境界層内では 圧力は境界層外部の値を 使用する 従って まず圧力分布を粘性の影響を考慮しないポテンシャル流で解析し 求めた圧力分布を既知とし て 粘性の影響を考慮した境界層方程式で解析する ( 境界層近似 ) 手法がよく用いられる 例えば 後で出てくる Fig. 6-4 の平板境界層から十分離れた主流流れ u は 一定で一様と考えられる 従って 重力を無視し非圧縮性 次元定常状態の平板境界層における流れの方程式は次式になる u + v = 0 (5-14) u u + v u = ν " u + u % $ ' (5-15) # & 通常 (5-15) の右辺第一項 ( 方向速度変化の 方向変化 ) は第二項に比べて十分に小さいので 無視される 主流速度が遅いとき 流れは層流であり u, v とも時間的に変化しない この条件で 流れ関数を使う解法があ る 流れ関数 φ を次の様に定義すると (5-14) 式は自動的に満足される u = φ v = φ (5-16) さらに次の相似変数 η と無次元流れ関数 ζ を使って整理する η = u ν φ = u ν ζ (5-17) (5-16) 式に (5-17) 式を代入して整理すると 次の速度式を得る u = u dζ dη v = u ν η dζ dη ζ (5-18) その結果 (5-15) 式は次式に変形される d 3 ζ dη + ζ d ζ 3 dη = 0 (5-19) 境界条件は次のように表せる η=0 で ζ =0 ζ =0 η= で ζ =1 (5-0) ζ を η の多項式で表し (5-19) 式 (5-0) 式に代入して多 項式の係数を順次求める 現在では表計算ソフトを使っ て パソコン上で数知的に求める事が出来る 解いた結 果は Blasius の解と呼ばれ Fig 5-4 に示されている Fig. 5-4 層流境界層内の速度分布 要するに 境界層内速度は η のみの関数として表わせる η 定義式中の Re = u ν ( ) は先の次元解析で現れた無次元数である 流速 粘度等が異なっても Re で整理する 事により 層流境界層内の速度分布がみごとに一つの関係で表す事が出来る これが境界層の相似と無次元数の意 味である 8

4 5.4 無次元化と無次元数 直角座標系における連続の式 運動量方程式 エネルギー式 拡散方程式の独立変数は,, z, t であり 従属 変数は u, v, w, p, T, CA である それぞれ以下のように 代表長さ L 代表速度 U 代表温度差 ΔT 代表濃度差 ΔCA を使って無次元化する 代表長さ L として 例えば内部流れのときダクトの直径を取り 外部流れのとき着目 している物体の長さ等をとる 代表速度 U は外部流れのとき主流速度を取り 内部流れのときは平均流速 um を取 る 代表温度差 ΔT は二つの離れた位置での温度差 (ΔT=T1-T0) を 同様に代表濃度差 ΔCA は二つの離れた位置で の成分 A の濃度差 (ΔCA=CA,1 CA,0) を取る 無次元変数を次のように定義する 時間 :!t = tu L 速度 :!u = u U!v = v U!w = w U 距離 :! = L! = L!z = z L 圧力 : p = 発熱項 :! Q H = Q H L ρc P U ΔT 濃度 :!c A = c c A A,0 発生項: S! Δc A = S L A A U Δc A 以上の無次元変数を使うと 連続の式 運動量方程式 熱収支式 拡散式は次のように変形できる 無次元連続の式 :!u! +!v! +!w!z = 0 (5-1) p ρu 温度 :! T = T T 0 ΔT 無次元 ( 方向 ) 運動量方程式 :!u!u!u!u +!u +!v +!w!t!!!z = 1!u Re! +!u! +!u!z!p! + Gr Re (5-) 非定常項対流項粘性項圧力項浮力項 無次元エネルギー式 :!T!t +!u!t! +!v!t! +!w!t!z = 1!T Re Pr! +!T! +!T!z + Q! H (5-3) 無次元拡散式 :!c A!t 非定常項対流項熱伝導項発熱項 +!u!c A! +!v!c A! +!w!c A!z = 1 Re Sc!c A! +!c A! +!c A!z 非定常項対流項拡散項発生項 ここで Re, Pr, Sc, Gr は次に定義する重要な無次元数である Re = ρul µ Pr = µc P µ Sc = Gr = gl3 k T ρd AB ν (5-5) 以上の無次元化により 次の事が分かる + S! A (5-4) (1) 事なった体系にある異なった流体 熱移動 物質輸送の方程式を無次元化するとすべて同じ式で表される そ れぞれの状況に応じた Re, Sc, Pr, Gr を代入する事で 各場合の移動量を定量化する事ができる () 運動量方程式 エネルギー式 拡散式ともそれぞれの独立変数 u, T, CA を入れ替えると 同じ形式で表される すなわち運動量輸送 熱輸送 物質輸送は類似性 ( アナロジー ) が成立し エネルギー式で現れる現象は 同 様に物質輸送でも現れる (3) Re 数は 流体の慣性力と粘性力の比を表し この比が大きくなると粘性によって流れの乱れを抑制させる働き が弱まる 9

5 (4) 運動量方程式の左辺は非線形であり 流れが速くなると 乱れが大きくなり 層流から乱流に至る Re 数が円管内強制対流では 300 以上になると層流から乱流に遷移する (5) Gr 数は 自然対流の大きさを表す無次元数であり この数が大きくなると 自然対流の大きさが大きくなる 最終的は乱流になる (6) Pr=1 Sc=1 のとき 壁近傍の濃度変化と温度変化は同じ形で変化する 5.5 次元解析 いままで見てきたように 例えば流体中で運動する物体 は 連続の式と運動量方程式 (Navier-Stokes 方程式 ) で Fig.5-5 記述できる しかし実際の体系で この運動量方程式は非線形であり 解く事が非常に難しい そこで系統的に実験をおこない データーを整理し 未知の条件における値を既知条件の値から合理的に求める方法が次元解析である ここでの次元解析とは 現象に関係する物理量間にある関数関係を 次元を持たない無次元数で記述する方法である 無次元数は 現象に関係する物理量の組 み合わせからなり 次元解析を用いる事により 対象とする現象の特徴をうまく 表すように導く事が出来る すなわち 着目する物理現象が複雑でこれを記述す る理論解を求める事が不可能である場合がほとんどである この場合 現象に関 Fig. 5-6 静止流体中を動 く球に働く力 与する物理量 ( 速度 温度 圧力 物性値 系の大きさ等 ) をパラメーターにして 多くの実験をおこない 関係する物理量への依存性をうまく表すように実験結果を整理する 次元解析を用いて 実験によって得られた物理量間の複雑な関係を一般的な実験相関式の形で表そうとするものである (a) 次元解析の例 Fig.5-6 の様に 密度 ρ[kg/m 3 ] 粘性係数 μ[pa s] の静止流体中を速度 v[m/s] で運動する直径 d[m] の球に作用す る抗力 ( 抵抗 )Fd[N] を考える Fd は F d = f d,v,ρ,µ ( ) の関数として表される Fd への d, v, ρ, µ の各物理量の依存性 を調べるため いろいろな状況の Fd 値を実験で求めデーター整理する 次元解析では Fd の一般式が各物理量の塁乗積として表せると考える ( 指数法 ) 従って次式を得る F d = K ρ ( ) a 1 ( µ ) a ( v) a 3 ( d) a 4 (5-6) K は無次元の係数 a1 a4 は未知指数である (5-6) 式が成立するためには 基本次元が両辺で同じである必要が ある 基本次元として 長さ L 質量 M 時間 τ とすると (5-6) 式に含まれる各物理量の次元は 次式で表せる F d = ML τ ρ = M L µ 3 = M τ L v = L τ d = L (5-6) 式の両辺で 3 個の基本次元が一致するためには 次式が成立する必要がある 30

6 L の指数について : 1 = 3a 1 a + a 3 + a 4 M の指数について : 1= a 1 + a τ の指数について : = a a 3 4 個の未知数に対して 方程式が 3 個であるので a を使って残りの未知の指数を表すと a1=1 - a a3= - a a4= - a を得る この関係を再度 (5-19) 式に代入し 整理すると 次式を得る F d ρv d = K ρvd µ a (5-7) 球の投影面積 A(=πd /4) 流れの動圧 ρv / を使って ( 無次元 ) 抗力係数 Cd を次式で定義する F d C d = A ρv (5-8) (5-7) 式の右辺は粘性力 µv d に対する慣性力 ρv の比を表す無次元数で 前の Renolds 数である Re = ρvd µ = vd ν (5-9) (5-7) 式に (5-8), (5-9) 式を考慮すると 抗力係数は 次の様な Renolds 数のみの関数で表せる事が予測できる C D = f Re ( ) (5-30) 過去多くの異なった流体 流速 形状の条件で集められた球の抗力係数データーをまとめたものが Fig.5-7 である データーが1 本のカーブ f(re) で相関でき 次元解析を用いて得られた無次元数の関数関係から 異なる条件での抗力係数を求める事が出来る Re 数の小さい領域は Stokes 流領域であり CD=4/Re の関係で表せる 続いて Re=1 付近から球背後に渦を発生し始め Re=100 付近で周期的な Karman 渦が発生する そのため 抗力係数は Stokes 流の仮定からはなれ CD は大きくなる その後 Re>1500 になると球背後の流れは乱流になり 大きな渦が発生し CD=0.6 付近でほぼ一定の状況が続く さらに Re>310 5 以上になると 球表面での流れ も乱流に遷移し CD は急に小さくなる Fig. 5-7 球の抗力係数の無次元整理 流れはいくら複雑になっても 当初の基 本次元と関係する物理量に変化がなく CD が Re 数で整理できることに変わりはない (b) バッキンガムの π 定理 次元解析では 現象に関係する因子 ( 物理量 ) を組み合わせた無次元数の種類を知る事が出来るが 一般には 31

7 次のバッキンガムのπ 定理によりその個数が規定される すなわちある現象に関与する物理量が φ1, φ, φ3, - - φn の n 個あり これらの間に次式のような関係があるものとする ( ) = 0 (5-31) f 1 φ 1,φ,φ 3,,φ n このとき 物理量 φ1, φ, φ3, - - φn を表すのに必要な k 個の基本次元が必要であるとすると この物理量は m=n-k 個の無次元数 π1, π, - -,πm を用いて次のように表す事が出来る これがバッキンガムのπ 定理である f ( ) = 0 (5-3) π 1,π,,π m 静止流体中に動く球に対する抗力係数の次元解析では 抗力を含む物理量の数は n=5 基本次元の数は m=3 であり 独立な無次元量の数は k= である 基本次元は 基本単位と呼ぶこともあるが ここでは次元と単位を区別して扱う 次元が ある物理的な挙動や性質の特性を表す 長さ 質量 時間等の物理特性であるのに対して 単位は [m], [kg], [s] 等の次元の大きさを表す尺度の基準である 次元解析で用いる基本次元には 力学現象において現れる物理量に対して 長さ L 質量 M 時間 τの次元を 伝熱現象には熱量 H 温度 θ 物質移動現象には 濃度 C を独立次元として加えて用いる しかしながら 熱移動における熱量は H=ML /τ であるから L, M, τ およびθを基本次元として次元解析をおこなう事が出来る ( 補講 5) 乱流応力 乱流において 流れは不規則に時間的に変化しながら流れる 任意の瞬間における,,z 方向速度 v, v, vz と圧 力 p を 時間平均値 v, v,, p と変動値 v,, p に分け次式で考える v = v v = v = + p = p + p (5-33) 微小時間 dt 内に 軸に直角な微小面積 da を通過する流体の質量は ρv dadt であり 方向運動量流束は J = ρv dadt である JX の時間平均を取ったものを dj で表すと 簡単のため密度一定の仮定のもとで 次式のよ うに表す事が出来る dj = ρv da = ρ( v ) da (5-34) 同様に, 方向と z 方向の運動量流束の時間平均 dj,dj z も次式で表せる dj = ρ( v v )da = ρ( v v v )da (5-35) dj z = ρ( v )da = ρ( v )da (5-36) 各時間変動分の時間平均について v = v = = 0 であるが (5-34)-(5-36) 式右辺第二項中に現れる二つの方向の変 動成分を乗じたものは 時間平均をとっても 0 にはならない これらは 軸方向に垂直な面の単位面積に働く力に なる 方向の垂直応力が ρ v ( ) あるいは z 方向の剪断応力が ρ v v + ( v v ) ρ v ( ) である 夫々の第一項は 3.1 節で示した粘性応力に相当する 第二項は乱れがあるときに現れる応力で 乱流応力あるいは Renolds 応力と呼ばれる 結果を 3 次元に拡張すると 3 次元の乱流応力は次式のように書ける 3

8 σ,τ,τ z v v τ,σ,τ z = ρ v v τ z,τ z,σ z v, v, (5-37) Prandtle は 乱流においても分子の平均自由行程に対応する混合距離 l が存在し 混合距離離れた位置間で 運動 量が輸送されると考えた その理論によれば 例えば 乱流応力成分 τ は次式で表せる τ = ρ v v = ρε v M (5-38) 導入された混合距離は場所や対象としている流れによって変化するが 平均速度に依らないとされている 式中の ε M は渦動粘性係数であり これに適切なモデルを導入し N-S 方程式中で計算される場合がある ε M = v (5-39) 33

パソコンシミュレータの現状

パソコンシミュレータの現状 第 2 章微分 偏微分, 写像 豊橋技術科学大学森謙一郎 2. 連続関数と微分 工学において物理現象を支配する方程式は微分方程式で表されていることが多く, 有限要素法も微分方程式を解く数値解析法であり, 定式化においては微分 積分が一般的に用いられており. 数学の基礎知識が必要になる. 図 2. に示すように, 微分は連続な関数 f() の傾きを求めることであり, 微小な に対して傾きを表し, を無限に

More information

19年度一次基礎科目計算問題略解

19年度一次基礎科目計算問題略解 9 年度機械科目 ( 計算問題主体 ) 略解 基礎科目の解析の延長としてわかる範囲でトライしてみたものです Coprigh (c) 7 宮田明則技術士事務所 Coprigh (c) 7 宮田明則技術士事務所 Ⅳ- よってから は許容荷重として は直径をロ - プの断面積 Ⅳ- cr E E E I, から Ⅳ- Ⅳ- : q q q q q q q q q で絶対値が最大 で絶対値が最大モーメントはいずれも中央で最大となる

More information

伝熱学課題

伝熱学課題 練習問題解答例 < 第 章強制対流熱伝達 >. 式 (.9) を導出せよ (.6) を変換する 最初に の微分値を整理しておく (.A) (.A) これを用いて の微分値を求める (.A) (.A) (.A) (.A6) (.A7) これらの微分値を式 (.6) に代入する (.A8) (.A9) (.A) (.A) (.A) (.9). 薄い平板が温度 で常圧の水の一様な流れの中に平行に置かれている

More information

第 3 章二相流の圧力損失

第 3 章二相流の圧力損失 第 3 章二相流の圧力損失 単相流の圧力損失 圧力損失 (/) 壁面せん断応力 τ W 力のバランス P+ u m πd 4 τ w 4 τ D u τ w m w πd : 摩擦係数 λ : 円管の摩擦係数 λ D u m D P τ W 摩擦係数 層流 16/Re 乱流 0.079 Re -1/4 0.046 Re -0.0 (Blasius) (Colburn) 大まかには 0.005 二相流の圧力損失液相のみが流れた場合の単相流の圧力損失

More information

Microsoft PowerPoint - 第7章(自然対流熱伝達 )_H27.ppt [互換モード]

Microsoft PowerPoint - 第7章(自然対流熱伝達 )_H27.ppt [互換モード] 第 7 章自然対流熱伝達 伝熱工学の基礎 : 伝熱の基本要素 フーリエの法則 ニュートンの冷却則 次元定常熱伝導 : 熱伝導率 熱通過率 熱伝導方程式 次元定常熱伝導 : ラプラスの方程式 数値解析の基礎 非定常熱伝導 : 非定常熱伝導方程式 ラプラス変換 フーリエ数とビオ数 対流熱伝達の基礎 : 熱伝達率 速度境界層と温度境界層 層流境界層と乱流境界層 境界層厚さ 混合平均温度 強制対流熱伝達 :

More information

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように 3 章 Web に Link 解説 連続式 微分表示 の誘導.64 *4. 連続式連続式は ある領域の内部にある流体の質量の収支が その表面からの流入出の合計と等しくなることを定式化したものであり 流体における質量保存則を示したものである 2. 連続式 微分表示 の誘導図のような微小要素 コントロールボリューム の領域内の流体の増減と外部からの流体の流入出を考えることで定式化できる 微小要素 流入

More information

<4D F736F F D20824F B CC92E8979D814696CA90CF95AA82C691CC90CF95AA2E646F63>

<4D F736F F D20824F B CC92E8979D814696CA90CF95AA82C691CC90CF95AA2E646F63> 1/1 平成 23 年 3 月 24 日午後 6 時 52 分 6 ガウスの定理 : 面積分と体積分 6 ガウスの定理 : 面積分と体積分 Ⅰ. 直交座標系 ガウスの定理は 微分して すぐに積分すると元に戻るというルールを 3 次元積分に適用した定理になります よく知っているのは 簡単化のため 変数が1つの場合は dj ( d ( ににします全微分 = 偏微分 d = d = J ( + C d です

More information

Microsoft PowerPoint - 夏の学校(CFD).pptx

Microsoft PowerPoint - 夏の学校(CFD).pptx /9/5 FD( 計算流体力学 ) の基礎理論 性能 運動分野 夏の学校 神戸大学大学院海事科学研究科勝井辰博 流体の質量保存 流体要素内の質量の増加率 [ 単位時間当たりの増加量 ] 単位時間に流体要素に流入する質量 流体要素 Fl lm (orol olm) v ( ) ガウスの定理 v( ) /9/5 = =( ) b=b =(b b b ) b= b = b + b + b アインシュタイン表記

More information

ニュートン重力理論.pptx

ニュートン重力理論.pptx 3 ニュートン重力理論 1. ニュートン重力理論の基本 : 慣性系とガリレイ変換不変性 2. ニュートン重力理論の定式化 3. 等価原理 4. 流体力学方程式とその基礎 3.1 ニュートン重力理論の基本 u ニュートンの第一法則 = 力がかからなければ 等速直線運動を続ける u 等速直線運動に見える系を 慣性系 と呼ぶ ² 直線とはどんな空間の直線か? ニュートン理論では 3 次元ユークリッド空間

More information

Microsoft PowerPoint - Š’Š¬“H−w†i…„…C…m…‰…Y’fl†j.ppt

Microsoft PowerPoint - Š’Š¬“H−w†i…„…C…m…‰…Y’fl†j.ppt 乱流とは? 不規則運動であり, 速度の時空間的な変化が複雑であり, 個々の測定結果にはまったく再現性がなく, 偶然の値である. 渦運動 3 次元流れ 非定常流 乱流は確率過程 (Stochastic Process) である. 乱流工学 1 レイノルズの実験 UD = = ν 慣性力粘性力 乱流工学 F レイノルズ数 U L / U 3 = mα = ρl = ρ 慣性力 L U u U A = µ

More information

Microsoft PowerPoint - 12_2019裖置工�榇諌

Microsoft PowerPoint - 12_2019裖置工å�¦æ¦‡è«Œ 1 装置工学概論 第 12 回 蒸留装置の設計 (3) 流動装置の設計 (1) 東京工業大学物質理工学院応用化学系 下山裕介 2019.7.15 装置工学概論 2 第 1 回 4 /15 ガイダンス : 化学プロセスと装置設計 第 2 回 4 /22 物質 エネルギー収支 第 3 回 5 /6( 祝 ) 化学プロセスと操作変数 5 /13 休講 第 4 回 5 /20 無次元数と次元解析 第 5 回

More information

線積分.indd

線積分.indd 線積分 線積分 ( n, n, n ) (ξ n, η n, ζ n ) ( n-, n-, n- ) (ξ k, η k, ζ k ) ( k, k, k ) ( k-, k-, k- ) 物体に力 を作用させて位置ベクトル A の点 A から位置ベクトル の点 まで曲線 に沿って物体を移動させたときの仕事 W は 次式で計算された A, A, W : d 6 d+ d+ d@,,, d+ d+

More information

OCW-iダランベールの原理

OCW-iダランベールの原理 講義名連続体力学配布資料 OCW- 第 2 回ダランベールの原理 無機材料工学科准教授安田公一 1 はじめに今回の講義では, まず, 前半でダランベールの原理について説明する これを用いると, 動力学の問題を静力学の問題として解くことができ, さらに, 前回の仮想仕事の原理を適用すると動力学問題も簡単に解くことができるようになる また, 後半では, ダランベールの原理の応用として ラグランジュ方程式の導出を示す

More information

DVIOUT-SS_Ma

DVIOUT-SS_Ma 第 章 微分方程式 ニュートンはリンゴが落ちるのを見て万有引力を発見した という有名な逸話があります 無重力の宇宙船の中ではリンゴは落ちないで静止していることを考えると 重力が働くと始め静止しているものが動き出して そのスピードはどんどん大きくなる つまり速度の変化が現れることがわかります 速度は一般に時間と共に変化します 速度の瞬間的変化の割合を加速度といい で定義しましょう 速度が変化する, つまり加速度がでなくなるためにはその原因があり

More information

微分方程式による現象記述と解きかた

微分方程式による現象記述と解きかた 微分方程式による現象記述と解きかた 土木工学 : 公共諸施設 構造物の有用目的にむけた合理的な実現をはかる方法 ( 技術 ) に関する学 橋梁 トンネル ダム 道路 港湾 治水利水施設 安全化 利便化 快適化 合法則的 経済的 自然および人口素材によって作られた 質量保存則 構造物の自然的な性質 作用 ( 外力による応答 ) エネルギー則 の解明 社会的諸現象のうち マスとしての移動 流通 運動量則

More information

Microsoft Word - thesis.doc

Microsoft Word - thesis.doc 剛体の基礎理論 -. 剛体の基礎理論初めに本論文で大域的に使用する記号を定義する. 使用する記号トルク撃力力角運動量角速度姿勢対角化された慣性テンソル慣性テンソル運動量速度位置質量時間 J W f F P p .. 質点の並進運動 質点は位置 と速度 P を用いる. ニュートンの運動方程式 という状態を持つ. 但し ここでは速度ではなく運動量 F P F.... より質点の運動は既に明らかであり 質点の状態ベクトル

More information

喨微勃挹稉弑

喨微勃挹稉弑 == 全微分方程式 == 全微分とは 変数の関数 z=f(, ) について,, の増分を Δ, Δ とするとき, z の増分 Δz は Δz z Δ+ z Δ で表されます. この式において, Δ 0, Δ 0 となる極限を形式的に dz= z d+ z d (1) で表し, dz を z の全微分といいます. z は z の に関する偏導関数で, を定数と見なし て, で微分したものを表し, 方向の傾きに対応します.

More information

FEM原理講座 (サンプルテキスト)

FEM原理講座 (サンプルテキスト) サンプルテキスト FEM 原理講座 サイバネットシステム株式会社 8 年 月 9 日作成 サンプルテキストについて 各講師が 講義の内容が伝わりやすいページ を選びました テキストのページは必ずしも連続していません 一部を抜粋しています 幾何光学講座については 実物のテキストではなくガイダンスを掲載いたします 対象とする構造系 物理モデル 連続体 固体 弾性体 / 弾塑性体 / 粘弾性体 / 固体

More information

様々なミクロ計量モデル†

様々なミクロ計量モデル† 担当 : 長倉大輔 ( ながくらだいすけ ) この資料は私の講義において使用するために作成した資料です WEB ページ上で公開しており 自由に参照して頂いて構いません ただし 内容について 一応検証してありますが もし間違いがあった場合でもそれによって生じるいかなる損害 不利益について責任を負いかねますのでご了承ください 間違いは発見次第 継続的に直していますが まだ存在する可能性があります 1 カウントデータモデル

More information

Microsoft Word - 1B2011.doc

Microsoft Word - 1B2011.doc 第 14 回モールの定理 ( 単純梁の場合 ) ( モールの定理とは何か?p.11) 例題 下記に示す単純梁の C 点のたわみ角 θ C と, たわみ δ C を求めよ ただし, 部材の曲げ 剛性は材軸に沿って一様で とする C D kn B 1.5m 0.5m 1.0m 解答 1 曲げモーメント図を描く,B 点の反力を求める kn kn 4 kn 曲げモーメント図を描く knm 先に得られた曲げモーメントの値を

More information

物理学 II( 熱力学 ) 期末試験問題 (2) 問 (2) : 以下のカルノーサイクルの p V 線図に関して以下の問題に答えなさい. (a) "! (a) p V 線図の各過程 ( ) の名称とそのと (& きの仕事 W の面積を図示せよ. # " %&! (' $! #! " $ %'!!!

物理学 II( 熱力学 ) 期末試験問題 (2) 問 (2) : 以下のカルノーサイクルの p V 線図に関して以下の問題に答えなさい. (a) ! (a) p V 線図の各過程 ( ) の名称とそのと (& きの仕事 W の面積を図示せよ. #  %&! (' $! #!  $ %'!!! 物理学 II( 熱力学 ) 期末試験問題 & 解答 (1) 問 (1): 以下の文章の空欄に相応しい用語あるいは文字式を記入しなさい. 温度とは物体の熱さ冷たさを表す概念である. 物体は外部の影響を受けなければ, 十分な時間が経過すると全体が一様な温度の定常的な熱平衡状態となる. 物体 と物体 が熱平衡にあり, 物体 と物体 が熱平衡にあるならば, 物体 と物体 も熱平衡にある. これを熱力学第 0

More information

伝熱学課題

伝熱学課題 練習問題解答例 < 第 9 章熱交換器 > 9. 入口温度 0 の kg/ の水と 入口温度 0 の 0 kg/ の水の間で熱交換を行 う 前者の出口温度が 40 の時 後者の出口温度はいくらか 解 ) 式 (9.) を使う,,,, において どちらの流体も水より に注意して 0 40 0 0, これを解いて, 9. 0 の水を用いて 0.MPa の飽和蒸気 kg/ と熱交換させ 蒸気を復水させること

More information

ギリシャ文字の読み方を教えてください

ギリシャ文字の読み方を教えてください 埼玉工業大学機械工学学習支援セミナー ( 小西克享 ) 慣性モーメント -1/6 テーマ 01: 慣性モーメント (Momet of ietia) コマ回しをすると, 長い時間回転させるには重くて大きなコマを選ぶことや, ひもを早く引くことが重要であることが経験的にわかります. 遊びを通して, 回転の運動エネルギーを増やせば, 回転の勢いが増すことを学習できるので, 機械系の学生にとってコマ回しも大切な体験学習のひとつと言えます.

More information

応用数学Ⅱ 偏微分方程式(2) 波動方程式(12/13)

応用数学Ⅱ 偏微分方程式(2) 波動方程式(12/13) 偏微分方程式. 偏微分方程式の形 偏微分 偏導関数 つの独立変数 をもつ関数 があるとき 変数 が一定値をとって だけが変化したとす ると は だけの関数となる このとき を について微分して得られる関数を 関数 の に関する 偏微分係数 略して偏微分 あるいは偏導関数 pil deiie といい 次のように表される についても同様な偏微分を定義できる あるいは あるいは - あるいは あるいは -

More information

Microsoft PowerPoint - elast.ppt [互換モード]

Microsoft PowerPoint - elast.ppt [互換モード] 弾性力学入門 年夏学期 中島研吾 科学技術計算 Ⅰ(48-7) コンピュータ科学特別講義 Ⅰ(48-4) elast 弾性力学 弾性力学の対象 応力 弾性力学の支配方程式 elast 3 弾性力学 連続体力学 (Continuum Mechanics) 固体力学 (Solid Mechanics) の一部 弾性体 (lastic Material) を対象 弾性論 (Theor of lasticit)

More information

PowerPoint Presentation

PowerPoint Presentation Non-linea factue mechanics き裂先端付近の塑性変形 塑性域 R 破壊進行領域応カ特異場 Ω R R Hutchinson, Rice and Rosengen 全ひずみ塑性理論に基づいた解析 現段階のひずみは 除荷がないとすると現段階の応力で一義的に決まる 単純引張り時の応カーひずみ関係 ( 構成方程式 ): ( ) ( ) n () y y y ここで α,n 定数, /

More information

PowerPoint Presentation

PowerPoint Presentation 付録 2 2 次元アフィン変換 直交変換 たたみ込み 1.2 次元のアフィン変換 座標 (x,y ) を (x,y) に移すことを 2 次元での変換. 特に, 変換が と書けるとき, アフィン変換, アフィン変換は, その 1 次の項による変換 と 0 次の項による変換 アフィン変換 0 次の項は平行移動 1 次の項は座標 (x, y ) をベクトルと考えて とすれば このようなもの 2 次元ベクトルの線形写像

More information

ベクトル公式.rtf

ベクトル公式.rtf 6 章ラプラシアン, ベクトル公式, 定理 6.1 ラプラシアン Laplacian φ はベクトル量である. そこでさらに発散をとると, φ はどういう形になるであろうか? φ = a + a + a φ a + a φ + a φ = φ + φ + φ = 2 φ + 2 φ 2 + 2 φ 2 2 φ = 2 φ 2 + 2 φ 2 + 2 φ 2 = 2 φ したがって,2 階の偏微分演算となる.

More information

伝熱学課題

伝熱学課題 練習問題解答例 < 第 7 章凝縮熱伝達 > 7. 式 (7.) を解いて式 (7.) を導出せよ 解 ) 式 (7.) は (7.) 境界条件は : (Q7-.) : (Q7-.) 式 (7.) の両辺を について積分して C (Q7-.) 境界条件 (Q7-.) より C (Q7-.) よって (Q7-.) で さらに両辺を について積分して C (Q7-.) 境界条件 (Q7-.) より C

More information

Microsoft Word - 演習問題9,10

Microsoft Word - 演習問題9,10 流体力学 - 演習問題 9- 境界層の運動量方程式 境界層厚さ (1) 流速 の一様流れに平行に置かれた平板の層流境界層の流速分布を u= f (y/δ)= f (η) とおけば 境界層の厚さδ 壁面摩擦応力 平均摩擦抗力係数 C f はそれぞれ下式にて表されることを証明せよ 1 x x x 3 C 0 f 但し α= f 0 1 f d,β= d 0 df である () 平板に沿う一様流の境界層内の速度分布を

More information

untitled

untitled 熱対流現象 山中透 2005 年 3 月 概要 流体を熱源に接触させ, 流体に温度傾度を与えたときを考える. 流体の温度傾度が小さいときは, 熱拡散のみが起こるが, 流体の温度傾度が閾値を越えると, 熱拡散だけでは温度傾度を解消できなくなって不安定となり, 対流が生じる. これをベナール対流とよぶ. ここでは, ベナール対流を記述する非線型方程式の線型安定性の解析によって, 流体が不安定化する条件を求め,

More information

オープン CAE 関東 数値流体力学 輪講 第 4 回 第 3 章 : 乱流とそのモデリング (3) [3.5~3.7.1 p.64~75] 日時 :2013 年 11 月 10 日 14:00~ 場所 : 日本 新宿 2013/11/10 数値流体力学 輪講第 4 回 1

オープン CAE 関東 数値流体力学 輪講 第 4 回 第 3 章 : 乱流とそのモデリング (3) [3.5~3.7.1 p.64~75] 日時 :2013 年 11 月 10 日 14:00~ 場所 : 日本 新宿 2013/11/10 数値流体力学 輪講第 4 回 1 オープン CAE 勉強会 @ 関東 数値流体力学 輪講 第 4 回 第 3 章 : 乱流とそのモデリング (3 [3.5~3.7.1 p.64~75] 日時 :2013 年 11 月 10 日 14:00~ 場所 : 日本 ESI@ 新宿 1 数値流体力学 輪講に関して 目的 数値流体力学の知識 ( 特に理論ベース を深め OpenFOAM の利用に役立てること 本輪講で学ぶもの 数値流体力学の理論や計算手法の概要

More information

Microsoft PowerPoint - H21生物計算化学2.ppt

Microsoft PowerPoint - H21生物計算化学2.ppt 演算子の行列表現 > L いま 次元ベクトル空間の基底をケットと書くことにする この基底は完全系を成すとすると 空間内の任意のケットベクトルは > > > これより 一度基底を与えてしまえば 任意のベクトルはその基底についての成分で完全に記述することができる これらの成分を列行列の形に書くと M これをベクトル の基底 { >} による行列表現という ところで 行列 A の共役 dont 行列は A

More information

<4D F736F F D20824F E B82CC90FC90CF95AA2E646F63>

<4D F736F F D20824F E B82CC90FC90CF95AA2E646F63> 1/1 平成 3 年 6 月 11 日午前 1 時 3 分 4 ベクトルの線積分 4 ベクトルの線積分 Ⅰ. 積分の種類 通常の物理で使う積分には 3 種類あります 積分変数の数に応じて 線積分 ( 記号 横(1 重 d, dy, dz d ( ine: 面積分 ( 記号 縦 横 ( 重 線 4 ベクトルの線積分 重積分記号 ddy, dydz, dzdz ds ( Surface: 1 重積分記号

More information

ÿþŸb8bn0irt

ÿþŸb8bn0irt 折戸の物理 スペシャル補習 http://oritobuturi.co/ NO.5(009..16) 今日の目的 : 1 物理と微分 積分について 微分方程式について学ぶ 3 近似を学ぶ 10. 以下の文を読み,[ ア ]~[ ク ] の空欄に適当な式をいれよ 物体物体に一定の大きさの力を加えたときの, 物体の運動について考え よう 右図のように, なめらかな水平面上で質量 の物体に水平に一定の大きさ

More information

2018/6/12 表面の電子状態 表面に局在する電子状態 表面電子状態表面準位 1. ショックレー状態 ( 準位 ) 2. タム状態 ( 準位 ) 3. 鏡像状態 ( 準位 ) 4. 表面バンドのナローイング 5. 吸着子の状態密度 鏡像力によるポテンシャル 表面からzの位置の電子に働く力とポテン

2018/6/12 表面の電子状態 表面に局在する電子状態 表面電子状態表面準位 1. ショックレー状態 ( 準位 ) 2. タム状態 ( 準位 ) 3. 鏡像状態 ( 準位 ) 4. 表面バンドのナローイング 5. 吸着子の状態密度 鏡像力によるポテンシャル 表面からzの位置の電子に働く力とポテン 表面の電子状態 表面に局在する電子状態 表面電子状態表面準位. ショックレー状態 ( 準位. タム状態 ( 準位 3. 鏡像状態 ( 準位 4. 表面バンドのナローイング 5. 吸着子の状態密度 鏡像力によるポテンシャル 表面からzの位置の電子に働く力とポテンシャル e F z ( z z e V ( z ( Fz dz 4z e V ( z 4z ( z > ( z < のときの電子の運動を考える

More information

ポリトロープ、対流と輻射、時間尺度

ポリトロープ、対流と輻射、時間尺度 宇宙物理学 ( 概論 ) 6/6/ 大阪大学大学院理学研究科林田清 ポリトロープ関係式 1+(1/) 圧力と密度の間にP=Kρ という関係が成り立っていると仮定する K とは定数でをポリトロープ指数と呼ぶ 5 = : 非相対論的ガス dlnp 3 断熱変化の場合 断熱指数 γ, と dlnρ 4 = : 相対論的ガス 3 1 = の関係にある γ 1 等温変化の場合は= に相当 一様密度の球は=に相当

More information

<4D F736F F F696E74202D20836F CC8A C58B858B4F93B982A882E682D1978E89BA814091B28BC68CA48B E >

<4D F736F F F696E74202D20836F CC8A C58B858B4F93B982A882E682D1978E89BA814091B28BC68CA48B E > バットの角度 打球軌道および落下地点の関係 T999 和田真迪 担当教員 飯田晋司 目次 1. はじめに. ボールとバットの衝突 -1 座標系 -ボールとバットの衝突の前後でのボールの速度 3. ボールの軌道の計算 4. おわりに参考文献 はじめに この研究テーマにした理由は 好きな野球での小さい頃からの疑問であるバッテングについて 角度が変わればどう打球に変化が起こるのかが大学で学んだ物理と数学んだ物理と数学を使って判明できると思ったから

More information

Microsoft PowerPoint - 10.pptx

Microsoft PowerPoint - 10.pptx m u. 固有値とその応用 8/7/( 水 ). 固有値とその応用 固有値と固有ベクトル 行列による写像から固有ベクトルへ m m 行列 によって線形写像 f : R R が表せることを見てきた ここでは 次元平面の行列による写像を調べる とし 写像 f : を考える R R まず 単位ベクトルの像 u y y f : R R u u, u この事から 線形写像の性質を用いると 次の格子上の点全ての写像先が求まる

More information

技術者のための構造力学 2014/06/11 1. はじめに 資料 2 節点座標系による傾斜支持節点節点の処理 三好崇夫加藤久人 従来, マトリックス変位法に基づく骨組解析を紹介する教科書においては, 全体座標系に対して傾斜 した斜面上の支持条件を考慮する処理方法として, 一旦, 傾斜支持を無視した

技術者のための構造力学 2014/06/11 1. はじめに 資料 2 節点座標系による傾斜支持節点節点の処理 三好崇夫加藤久人 従来, マトリックス変位法に基づく骨組解析を紹介する教科書においては, 全体座標系に対して傾斜 した斜面上の支持条件を考慮する処理方法として, 一旦, 傾斜支持を無視した . はじめに 資料 節点座標系による傾斜支持節点節点の処理 三好崇夫加藤久人 従来, マトリックス変位法に基づく骨組解析を紹介する教科書においては, 全体座標系に対して傾斜 した斜面上の支持条件を考慮する処理方法として, 一旦, 傾斜支持を無視した全体座標系に関する構造 全体の剛性マトリックスを組み立てた後に, 傾斜支持する節点に関して対応する剛性成分を座標変換に よって傾斜方向に回転処理し, その後は通常の全体座標系に対して傾斜していない支持点に対するのと

More information

Microsoft PowerPoint - zairiki_3

Microsoft PowerPoint - zairiki_3 材料力学講義 (3) 応力と変形 Ⅲ ( 曲げモーメント, 垂直応力度, 曲率 ) 今回は, 曲げモーメントに関する, 断面力 - 応力度 - 変形 - 変位の関係について学びます 1 曲げモーメント 曲げモーメント M 静定力学で求めた曲げモーメントも, 仮想的に断面を切ることによって現れる内力です 軸方向力は断面に働く力 曲げモーメント M は断面力 曲げモーメントも, 一つのモーメントとして表しますが,

More information

領域シンポ発表

領域シンポ発表 1 次元の減衰運動の中の強制振動 ) ( f d d d d d e f e ce ) ( si ) ( 1 ) ( cos ω =ω -γ とおくと 一般解は 外力 f()=f siω の場合 f d d d d si f ce f ce si ) cos( cos si ) cos( この一般解は 1 φ は外力と変位との間の位相差で a 時間が経つと 第 1 項は無視できる この場合の振幅を

More information

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ 数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュレーションによって計算してみる 4.1 放物運動一様な重力場における放物運動を考える 一般に質量の物体に作用する力をとすると運動方程式は

More information

木村の物理小ネタ ケプラーの第 2 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という) が単位時間に描く面積を 動点 P の定点 O に

木村の物理小ネタ   ケプラーの第 2 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という) が単位時間に描く面積を 動点 P の定点 O に ケプラーの第 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という が単位時間に描く面積を 動点 P の定点 O に関する面積速度の大きさ という 定点 O まわりを回る面積速度の導き方導き方 A ( x( + D, y( + D v ( q r ( A ( x (, y( 動点 P が xy 座標平面上を時刻

More information

運動方程式の基本 座標系と変数を導入 (u,v) ニュートンの第一法則 力 = 質量 加速度 大気や海洋に加わる力を, 思いつくだけ挙げてみよう 重力, 圧力傾度力, コリオリ力, 摩擦力 水平方向に働く力に下線をつけよう. したがって水平方向の運動方程式は 質量 水平加速度 = コリオリ力 + 圧

運動方程式の基本 座標系と変数を導入 (u,v) ニュートンの第一法則 力 = 質量 加速度 大気や海洋に加わる力を, 思いつくだけ挙げてみよう 重力, 圧力傾度力, コリオリ力, 摩擦力 水平方向に働く力に下線をつけよう. したがって水平方向の運動方程式は 質量 水平加速度 = コリオリ力 + 圧 2. 潜水方程式系の導出 見延庄士郎 ( 海洋気候物理学研究室 ) minobe@mail.sci.okudai.ac.jp 第 1 回まとめ 1/2 二つの変数の関係の強さを表す統計量は相関であり, 最小値は -1, 最大値は +1, 無相関は である. 過去数十年間の ( 気象庁は 3 年 ) 月ごとの平均値を, 月平均データの平年値または気候値という. 観測値から平年値を引いたものが, 偏差である.

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 反応工学 Raction Enginring 講義時間 ( 場所 : 火曜 限 (8-A 木曜 限 (S-A 担当 : 山村 火 限 8-A 期末試験中間試験以降 /7( 木 まで持ち込みなし要電卓 /4( 木 質問受付日講義なし 授業アンケート (li campus の入力をお願いします 晶析 (crystallization ( 教科書 p. 濃度 溶解度曲線 C C s A 安定 液 ( 気

More information

ファイナンスのための数学基礎 第1回 オリエンテーション、ベクトル

ファイナンスのための数学基礎 第1回 オリエンテーション、ベクトル 時系列分析 変量時系列モデルとその性質 担当 : 長倉大輔 ( ながくらだいすけ 時系列モデル 時系列モデルとは時系列データを生み出すメカニズムとなるものである これは実際には未知である 私たちにできるのは観測された時系列データからその背後にある時系列モデルを推測 推定するだけである 以下ではいくつかの代表的な時系列モデルを考察する 自己回帰モデル (Auoregressive Model もっとも頻繁に使われる時系列モデルは自己回帰モデル

More information

D論研究 :「表面張力対流の基礎的研究」

D論研究 :「表面張力対流の基礎的研究」 D 論研究 : 表面張力対流の基礎的研究 定常 Marangoni 対流 及び非定常 Marangoni 対流に関する実験及び数値解析による検討 Si 単結晶の育成装置 Cz 法による Si 単結晶育成 FZ 法による Si 単結晶育成 気液表面 るつぼ加熱 気液表面 大きな温度差を有す気液表面では表面張力対流 (Marangoni 対流 ) が顕著 プロセス終了後のウエハ Cz 法により育成した

More information

解析力学B - 第11回: 正準変換

解析力学B - 第11回: 正準変換 解析力学 B 第 11 回 : 正準変換 神戸大 : 陰山聡 ホームページ ( 第 6 回から今回までの講義ノート ) http://tinyurl.com/kage2010 2011.01.27 正準変換 バネ問題 ( あえて下手に座標をとった ) ハミルトニアンを考える q 正準方程式は H = p2 2m + k 2 (q l 0) 2 q = H p = p m ṗ = H q = k(q

More information

Microsoft Word - 201hyouka-tangen-1.doc

Microsoft Word - 201hyouka-tangen-1.doc 数学 Ⅰ 評価規準の作成 ( 単元ごと ) 数学 Ⅰ の目標及び図形と計量について理解させ 基礎的な知識の習得と技能の習熟を図り それらを的確に活用する機能を伸ばすとともに 数学的な見方や考え方のよさを認識できるようにする 評価の観点の趣旨 式と不等式 二次関数及び図形と計量における考え方に関 心をもつとともに 数学的な見方や考え方のよさを認識し それらを事象の考察に活用しようとする 式と不等式 二次関数及び図形と計量における数学的な見

More information

輸送現象まとめファイル2017_01

輸送現象まとめファイル2017_01 第 4 章物理量の保存式 ある系内で生じるマクロとミクロ物質輸送 熱輸送 運動量輸送についてのバランス式を考える これを解く事により 流速 温度 濃度等の量を決定できる ある量 X( 運動量 熱量 質量 成分量 ) の蓄積量変化が 流れ込む量と生産量 ( あるいは消失量 ) の和から流れ出す量を引いたものに等しくなることから次のバランス式を得る (X の蓄積量 )/ 時間 =( 流れ込み量 )/ 時間

More information

.( 斜面上の放物運動 ) 目的 : 放物運動の方向の分け方は, 鉛直と水平だけではない 図のように, 水平面から角 だけ傾いた固定した滑らかな斜面 と, 質量 の小球を用意する 原点 から斜面に垂直な向きに, 速さ V で小球を投げ上げた 重力の加速度を g として, 次の問い に答えよ () 小

.( 斜面上の放物運動 ) 目的 : 放物運動の方向の分け方は, 鉛直と水平だけではない 図のように, 水平面から角 だけ傾いた固定した滑らかな斜面 と, 質量 の小球を用意する 原点 から斜面に垂直な向きに, 速さ V で小球を投げ上げた 重力の加速度を g として, 次の問い に答えよ () 小 折戸の物理 演習編 ttp://www.orito-buturi.co/ N..( 等加速度運動目的 : 等加速度運動の公式を使いこなす 問題を整理する能力を養う ) 直線上の道路に,A,B の 本の線が 5. の間隔で道路に 垂直に交差して引かれている この線上を一定の加速度で運 動しているトラックが通過する トラックの先端が A を通過してか ら後端が B を通過するまでの時間は.8s であった

More information

1 抗力 揚力の計測 Ⅰ 18 年度用 はじめに 機械応用実験であることから, 意図的に親切なテキストとはしていない. 説明を良く聞き, 自分で考え, 実験を進めること. また, レポートには 1. 目的,. 実験方法,3. 結果,4. 考察,5. 検討 等を記すこと. このため, 実験を進めながらメモを残してゆき, このメモを基にしてまとめることが必要となる. なお, この実験の HP(http://www.cce.kanagawa-it.ac.jp/~t514/experiment/index.html)

More information

Laplace2.rtf

Laplace2.rtf =0 ラプラスの方程式は 階の微分方程式で, 一般的に3つの座標変数をもつ. ここでは, 直角座標系, 円筒座標系, 球座標系におけるラプラスの方程式の解き方を説明しよう. 座標変数ごとに方程式を分離し, それを解いていく方法は変数分離法と呼ばれる. 変数分離解と固有関数展開法. 直角座標系における 3 次元の偏微分方程式 = x + y + z =0 (.) を解くために,x, y, z について互いに独立な関数の積で成り立っていると考え,

More information

Microsoft Word - NumericalComputation.docx

Microsoft Word - NumericalComputation.docx 数値計算入門 武尾英哉. 離散数学と数値計算 数学的解法の中には理論計算では求められないものもある. 例えば, 定積分は, まずは積分 ( 被積分関数の原始関数をみつけること できなければ値を得ることはできない. また, ある関数の所定の値における微分値を得るには, まずその関数の微分ができなければならない. さらに代数方程式の解を得るためには, 解析的に代数方程式を解く必要がある. ところが, これらは必ずしも解析的に導けるとは限らない.

More information

Microsoft PowerPoint - シミュレーション工学-2010-第1回.ppt

Microsoft PowerPoint - シミュレーション工学-2010-第1回.ppt シミュレーション工学 ( 後半 ) 東京大学人工物工学研究センター 鈴木克幸 CA( Compter Aded geerg ) r. Jaso Lemo (SC, 98) 設計者が解析ツールを使いこなすことにより 設計の評価 設計の質の向上を図る geerg の本質の 計算機による支援 (CA CAM などより広い名前 ) 様々な汎用ソフトの登場 工業製品の設計に不可欠のツール 構造解析 流体解析

More information

運動方程式の基本 ニュートンの第一法則 力 = 質量 加速度 大気や海洋に加わる力を, 思いつくだけ挙げてみよう 重力, 圧力傾度力, コリオリ力, 摩擦力 水平方向に働く力に下線をつけよう. したがって水平方向の運動方程式は 質量 水平加速度 = コリオリ力 + 圧力傾度力 + 摩擦力 流体の運動

運動方程式の基本 ニュートンの第一法則 力 = 質量 加速度 大気や海洋に加わる力を, 思いつくだけ挙げてみよう 重力, 圧力傾度力, コリオリ力, 摩擦力 水平方向に働く力に下線をつけよう. したがって水平方向の運動方程式は 質量 水平加速度 = コリオリ力 + 圧力傾度力 + 摩擦力 流体の運動 2. 浅水方程式系の導出 見延庄士郎 ( 海洋気候物理学研究室 ) 第 1 回まとめ 1/2 二つの変数の関係の強さを表す統計量は相関であり, 最小値は -1, 最大値は +1, 無相関は である. 過去数十年間の ( 気象庁は 3 年 ) 月ごとの平均値を, 月平均データの平年値または気候値という. 観測値から平年値を引いたものが, 偏差である. 連続する n 個のデータを平均して, 中央のデータの値に置き換える平滑化が,

More information

物理演習問題

物理演習問題 < 物理 > =0 問 ビルの高さを, ある速さ ( 初速 をとおく,において等加速度運動の公式より (- : -= t - t : -=- t - t (-, 式よりを消去すると t - t =- t - t ( + - ( + ( - =0 0 t t t t t t ( t + t - ( t - =0 t=t t=t t - 地面 ( t - t t +t 0 より, = 3 図 問 が最高点では速度が

More information

Microsoft PowerPoint - 10.pptx

Microsoft PowerPoint - 10.pptx 0. 固有値とその応用 固有値と固有ベクトル 2 行列による写像から固有ベクトルへ m n A : m n n m 行列によって線形写像 f R R A が表せることを見てきた ここでは 2 次元平面の行列による写像を調べる 2 = 2 A 2 2 とし 写像 まず 単位ベクトルの像を求める u 2 x = v 2 y f : R A R を考える u 2 2 u, 2 2 0 = = v 2 0

More information

受信機時計誤差項の が残ったままであるが これをも消去するのが 重位相差である. 重位相差ある時刻に 衛星 から送られてくる搬送波位相データを 台の受信機 でそれぞれ測定する このとき各受信機で測定された衛星 からの搬送波位相データを Φ Φ とし 同様に衛星 からの搬送波位相データを Φ Φ とす

受信機時計誤差項の が残ったままであるが これをも消去するのが 重位相差である. 重位相差ある時刻に 衛星 から送られてくる搬送波位相データを 台の受信機 でそれぞれ測定する このとき各受信機で測定された衛星 からの搬送波位相データを Φ Φ とし 同様に衛星 からの搬送波位相データを Φ Φ とす RTK-GPS 測位計算アルゴリズム -FLOT 解 - 東京海洋大学冨永貴樹. はじめに GPS 測量を行う際 実時間で測位結果を得ることが出来るのは今のところ RTK-GPS 測位のみである GPS 測量では GPS 衛星からの搬送波位相データを使用するため 整数値バイアスを決定しなければならず これが測位計算を複雑にしている所以である この整数値バイアスを決定するためのつの方法として FLOT

More information

<4D F736F F D FCD B90DB93AE96402E646F63>

<4D F736F F D FCD B90DB93AE96402E646F63> 7 章摂動法講義のメモ 式が複雑なので 黒板を何度も修正したし 間違ったことも書いたので メモを置きます 摂動論の式の導出無摂動系 先ず 厳密に解けている Schrödiger 方程式を考える,,,3,... 3,,,3,... は状態を区別する整数であり 状態 はエネルギー順に並んでいる 即ち は基底状態 は励起状態である { m } は相互に規格直交条件が成立する k m k mdx km k

More information

vecrot

vecrot 1. ベクトル ベクトル : 方向を持つ量 ベクトルには 1 方向 2 大きさ ( 長さ ) という 2 つの属性がある ベクトルの例 : 物体の移動速度 移動量電場 磁場の強さ風速力トルクなど 2. ベクトルの表現 2.1 矢印で表現される 矢印の長さ : ベクトルの大きさ 矢印の向き : ベクトルの方向 2.2 2 個の点を用いて表現する 始点 () と終点 () を結ぶ半直線の向き : ベクトルの方向

More information

学習指導要領

学習指導要領 (1) 数と式 学習指導要領 数と式 (1) 式の計算二次の乗法公式及び因数分解の公式の理解を深め 式を多面的にみたり目的に応じて式を適切に変形したりすること 東京都立町田高等学校学力スタンダード 整式の加法 減法 乗法展開の公式を利用できる 式を1 つの文字におき換えることによって, 式の計算を簡略化することができる 式の形の特徴に着目して変形し, 展開の公式が適用できるようにすることができる 因数分解因数分解の公式を利用できる

More information

<4D F736F F F696E74202D E94D58B9393AE82F AC82B782E982BD82DF82CC8AEE E707074>

<4D F736F F F696E74202D E94D58B9393AE82F AC82B782E982BD82DF82CC8AEE E707074> 地盤数値解析学特論 防災環境地盤工学研究室村上哲 Mrakam, Satoh. 地盤挙動を把握するための基礎. 変位とひずみ. 力と応力. 地盤の変形と応力. 変位とひずみ 変形勾配テンソルひずみテンソル ひずみテンソル : 材料線素の長さの 乗の変化量の尺度 Green-Lagrange のひずみテンソルと Alman のひずみテンソル 微小変形状態でのひずみテンソル ひずみテンソルの物理的な意味

More information

Techniques for Nuclear and Particle Physics Experiments Energy Loss by Radiation : Bremsstrahlung 制動放射によるエネルギー損失は σ r 2 e = (e 2 mc 2 ) 2 で表される為

Techniques for Nuclear and Particle Physics Experiments Energy Loss by Radiation : Bremsstrahlung 制動放射によるエネルギー損失は σ r 2 e = (e 2 mc 2 ) 2 で表される為 Techniques for Nuclear and Particle Physics Experiments.. Energy Loss by Radiation : Bremsstrahlung 制動放射によるエネルギー損失は σ r e = (e mc ) で表される為 質量に大きく依存する Ex) 電子の次に質量の小さいミューオンの制動放射によるエネルギー損失 m e 0.5 MeV, m

More information

OpenFOAM(R) ソースコード入門 pt1 熱伝導方程式の解法から有限体積法の実装について考える 前編 : 有限体積法の基礎確認 2013/11/17 オープンCAE 富山富山県立大学中川慎二

OpenFOAM(R) ソースコード入門 pt1 熱伝導方程式の解法から有限体積法の実装について考える 前編 : 有限体積法の基礎確認 2013/11/17 オープンCAE 富山富山県立大学中川慎二 OpenFOAM(R) ソースコード入門 pt1 熱伝導方程式の解法から有限体積法の実装について考える 前編 : 有限体積法の基礎確認 2013/11/17 オープンCAE 勉強会 @ 富山富山県立大学中川慎二 * OpenFOAM のソースコードでは, 基礎式を偏微分方程式の形で記述する.OpenFOAM 内部では, 有限体積法を使ってこの微分方程式を解いている. どのようにして, 有限体積法に基づく離散化が実現されているのか,

More information

1/12 平成 29 年 3 月 24 日午後 1 時 1 分第 3 章測地線 第 3 章測地線 Ⅰ. 変分法と運動方程式最小作用の原理に基づくラグランジュの方法により 重力場中の粒子の運動方程式が求められる これは 力が未知の時に有効な方法であり 今のような 一般相対性理論における力を求めるのに使

1/12 平成 29 年 3 月 24 日午後 1 時 1 分第 3 章測地線 第 3 章測地線 Ⅰ. 変分法と運動方程式最小作用の原理に基づくラグランジュの方法により 重力場中の粒子の運動方程式が求められる これは 力が未知の時に有効な方法であり 今のような 一般相対性理論における力を求めるのに使 / 平成 9 年 3 月 4 日午後 時 分第 3 章測地線 第 3 章測地線 Ⅰ. 変分法と運動方程式最小作用の原理に基づくラグランジュの方法により 重力場中の粒子の運動方程式が求められる これは 力が未知の時に有効な方法であり 今のような 一般相対性理論における力を求めるのに使う事ができる 最小作用の原理 : 粒子が時刻 から の間に移動したとき 位置 と速度 v = するのが ラグランジュ関数

More information

問題-1.indd

問題-1.indd 科目名学科 学年 組学籍番号氏名採点結果 016 年度材料力学 Ⅲ 問題 1 1 3 次元的に外力負荷を受ける物体を考える際にデカルト直交座標 - を採る 物体 内のある点 を取り囲む微小六面体上に働く応力 が v =- 40, = 60 =- 30 v = 0 = 10 v = 60 である 図 1 の 面上にこれらの応力 の作用方向を矢印で記入し その脇にその矢印が示す応力成分を記入しなさい 図

More information

Chap2.key

Chap2.key . f( ) V (V V ) V e + V e V V V V ( ) V V ( ) E. - () V (0 ) () V (0 ) () V (0 ) (4) V ( ) E. - () V (0 ) () V (0 ) O r θ ( ) ( ) : (r θ) : { r cos θ r sn θ { r + () V (0 ) (4) V ( ) θ θ arg( ) : π π

More information

<4D F736F F D208D7E959A82A882E682D18F498BC78BC882B B BE98C60816A2E646F63>

<4D F736F F D208D7E959A82A882E682D18F498BC78BC882B B BE98C60816A2E646F63> 降伏時および終局時曲げモーメントの誘導 矩形断面 日中コンサルタント耐震解析部松原勝己. 降伏時の耐力と変形 複鉄筋の矩形断面を仮定する また コンクリートの応力ひずみ関係を非線形 放物線型 とする さらに 引張鉄筋がちょうど降伏ひずみに達しているものとし コンクリート引張応力は無視する ⅰ 圧縮縁のひずみ

More information

ÿþŸb8bn0irt

ÿþŸb8bn0irt 折戸の物理 スペシャル補習 http://orito-buturi.com/ NO.3 今日の目的 : 1 微分方程式をもう一度 三角関数の近似について学ぶ 3 微分の意味を考える 5. 起電力 の電池, 抵抗値 の抵抗, 自己インダクタンス のコイルとスイッチを用いて右図のような回路をつくった 始めスイッチは 開かれている 時刻 t = でスイッチを閉じた 以下の問に答えよ ただし, 電流はコイルに

More information

Microsoft PowerPoint - H22制御工学I-2回.ppt

Microsoft PowerPoint - H22制御工学I-2回.ppt 制御工学 I 第二回ラプラス変換 平成 年 4 月 9 日 /4/9 授業の予定 制御工学概論 ( 回 ) 制御技術は現在様々な工学分野において重要な基本技術となっている 工学における制御工学の位置づけと歴史について説明する さらに 制御システムの基本構成と種類を紹介する ラプラス変換 ( 回 ) 制御工学 特に古典制御ではラプラス変換が重要な役割を果たしている ラプラス変換と逆ラプラス変換の定義を紹介し

More information

Probit , Mixed logit

Probit , Mixed logit Probit, Mixed logit 2016/5/16 スタートアップゼミ #5 B4 後藤祥孝 1 0. 目次 Probit モデルについて 1. モデル概要 2. 定式化と理解 3. 推定 Mixed logit モデルについて 4. モデル概要 5. 定式化と理解 6. 推定 2 1.Probit 概要 プロビットモデルとは. 効用関数の誤差項に多変量正規分布を仮定したもの. 誤差項には様々な要因が存在するため,

More information

<4D F736F F D208D5C91A297CD8A7793FC96E591E631308FCD2E646F63>

<4D F736F F D208D5C91A297CD8A7793FC96E591E631308FCD2E646F63> 第 1 章モールの定理による静定梁のたわみ 1-1 第 1 章モールの定理による静定梁のたわみ ポイント : モールの定理を用いて 静定梁のたわみを求める 断面力の釣合と梁の微分方程式は良く似ている 前章では 梁の微分方程式を直接積分する方法で 静定梁の断面力と変形状態を求めた 本章では 梁の微分方程式と断面力による力の釣合式が類似していることを利用して 微分方程式を直接解析的に解くのではなく 力の釣合より梁のたわみを求める方法を学ぶ

More information

A

A A04-164 2008 2 13 1 4 1.1.......................................... 4 1.2..................................... 4 1.3..................................... 4 1.4..................................... 5 2

More information

第 5 章 構造振動学 棒の振動を縦振動, 捩り振動, 曲げ振動に分けて考える. 5.1 棒の縦振動と捩り振動 まっすぐな棒の縦振動の固有振動数 f[ Hz] f = l 2pL である. ただし, L [ 単位 m] は棒の長さ, [ 2 N / m ] 3 r[ 単位 Kg / m ] E r

第 5 章 構造振動学 棒の振動を縦振動, 捩り振動, 曲げ振動に分けて考える. 5.1 棒の縦振動と捩り振動 まっすぐな棒の縦振動の固有振動数 f[ Hz] f = l 2pL である. ただし, L [ 単位 m] は棒の長さ, [ 2 N / m ] 3 r[ 単位 Kg / m ] E r 第 5 章 構造振動学 棒の振動を縦振動, 捩り振動, 曲げ振動に分けて考える 5 棒の縦振動と捩り振動 まっすぐな棒の縦振動の固有振動数 f[ Hz] f l pl である ただし, L [ 単位 m] は棒の長さ, [ N / m ] [ 単位 Kg / m ] E は (5) E 単位は棒の材料の縦弾性係数 ( ヤング率 ) は棒の材料の単位体積当りの質量である l は境界条件と振動モードによって決まる無

More information

破壊の予測

破壊の予測 本日の講義内容 前提 : 微分積分 線形代数が何をしているかはうろ覚え 材料力学は勉強したけど ちょっと 弾性および塑性学は勉強したことが無い ー > ですので 解らないときは質問してください モールの応力円を理解するとともに 応力を 3 次元的に考える FM( 有限要素法 の概略 内部では何を計算しているのか? 3 物が壊れる条件を考える 特に 変形 ( 塑性変形 が発生する条件としてのミーゼス応力とはどのような応力か?

More information

<4D F736F F F696E74202D2091E6328FCD E9F8CB392E88FED944D936093B1298D758B F E291E892C789C1292E B8CDD8

<4D F736F F F696E74202D2091E6328FCD E9F8CB392E88FED944D936093B1298D758B F E291E892C789C1292E B8CDD8 第 章一次元定常熱伝導 伝熱工学の基礎 : 伝熱の基本要素 フーリエの法則 ニュートンの冷却則 次元定常熱伝導 : 熱伝導率 熱通過率 熱伝導方程式 次元定常熱伝導 : ラプラスの方程式 数値解析の基礎 非定常熱伝導 : 非定常熱伝導方程式 ラプラス変換 フーリエ数とビオ数 対流熱伝達の基礎 : 熱伝達率 速度境界層と温度境界層 層流境界層と乱流境界層 境界層厚さ 混合平均温度 強制対流熱伝達 :

More information

航空機の運動方程式

航空機の運動方程式 可制御性 可観測性. 可制御性システムの状態を, 適切な操作によって, 有限時間内に, 任意の状態から別の任意の状態に移動させることができるか否かという特性を可制御性という. 可制御性を有するシステムに対し, システムは可制御である, 可制御なシステム という言い方をする. 状態方程式, 出力方程式が以下で表されるn 次元 m 入力 r 出力線形時不変システム x Ax u y x Du () に対し,

More information

Microsoft PowerPoint - 第5章(対流熱伝達)講義用_H27.ppt [互換モード]

Microsoft PowerPoint - 第5章(対流熱伝達)講義用_H27.ppt [互換モード] 第 5 章対流熱伝達の基礎 伝熱工学の基礎 : 伝熱の基本要素 フーリエの法則 ニュートンの冷却則 次元定常熱伝導 : 熱伝導率 熱通過率 熱伝導方程式 次元定常熱伝導 : ラプラスの方程式 数値解析の基礎 非定常熱伝導 : 非定常熱伝導方程式 ラプラス変換 フーリエ数とビオ数 対流熱伝達の基礎 : 熱伝達率 速度境界層と温度境界層 層流境界層と乱流境界層 境界層厚さ 混合平均温度 強制対流熱伝達

More information

14 化学実験法 II( 吉村 ( 洋 mmol/l の半分だったから さんの測定値は くんの測定値の 4 倍の重みがあり 推定値 としては 0.68 mmol/l その標準偏差は mmol/l 程度ということになる 測定値を 特徴づけるパラメータ t を推定するこの手

14 化学実験法 II( 吉村 ( 洋 mmol/l の半分だったから さんの測定値は くんの測定値の 4 倍の重みがあり 推定値 としては 0.68 mmol/l その標準偏差は mmol/l 程度ということになる 測定値を 特徴づけるパラメータ t を推定するこの手 14 化学実験法 II( 吉村 ( 洋 014.6.1. 最小 乗法のはなし 014.6.1. 内容 最小 乗法のはなし...1 最小 乗法の考え方...1 最小 乗法によるパラメータの決定... パラメータの信頼区間...3 重みの異なるデータの取扱い...4 相関係数 決定係数 ( 最小 乗法を語るもう一つの立場...5 実験条件の誤差の影響...5 問題...6 最小 乗法の考え方 飲料水中のカルシウム濃度を

More information

<4D F736F F D20824F F6490CF95AA82C696CA90CF95AA2E646F63>

<4D F736F F D20824F F6490CF95AA82C696CA90CF95AA2E646F63> 1/15 平成 3 年 3 月 4 日午後 6 時 49 分 5 ベクトルの 重積分と面積分 5 重積分と面積分 Ⅰ. 重積分 と で 回積分することを 重積分 といいます この 重積分は何を意味しているのでしょう? 通常の積分 (1 重積分 ) では C d 図 1a 1 f d (5.1) 1 f d f ( ) は 図形的には図 1a のように面積を表しています つまり 1 f ( ) を高さとしてプロットすると図

More information

Microsoft Word - EM_EHD_2010.doc

Microsoft Word - EM_EHD_2010.doc H のための電磁気学 機能材料工学科阿部洋 . 電磁気学電磁気学電磁気学電磁気学の基礎基礎基礎基礎 - マクスウェルマクスウェルマクスウェルマクスウェルの応力応力応力応力静電場の条件は e div ρ ( ) ot ( ) である 体積 V で電荷密度 ρ e に働く力はクーロン力から ρ dv F e ( 3) と表せる ( 3) 式に ( ) を代入すると ( ) dv div F ( 4) となる

More information

学習指導要領

学習指導要領 (1) 数と式 ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 絶対値の意味を理解し適切な処理することができる 例題 1-3 の絶対値をはずせ 展開公式 ( a + b ) ( a - b ) = a 2 - b 2 を利用して根号を含む分数の分母を有理化することができる 例題 5 5 + 2 の分母を有理化せよ 実数の整数部分と小数部分の表し方を理解している

More information

20年度一次基礎略解

20年度一次基礎略解 年度一次機械問題略解 計算問題中心 orih c 0 宮田明則技術士事務所 正解番号 Ⅳ- Ⅳ- Ⅳ- Ⅳ- Ⅳ- Ⅳ-6 Ⅳ-7 Ⅳ-8 Ⅳ-9 Ⅳ-0 Ⅳ- Ⅳ- Ⅳ- Ⅳ- Ⅳ- Ⅳ-6 Ⅳ-7 Ⅳ-8 orih c 0 宮田明則技術士事務所 Ⅳ-9 Ⅳ-0 Ⅳ- Ⅳ- Ⅳ- Ⅳ- Ⅳ- Ⅳ-6 Ⅳ-7 Ⅳ-8 Ⅳ-9 Ⅳ-0 Ⅳ- Ⅳ- Ⅳ- Ⅳ- Ⅳ- 特定入力関数と応答の対応の組み合わせフィードバック制御に関する記述の正誤正弦波入力に対する定常出力の計算フィードバック系の特性根を求める計算比熱等に関する

More information

0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生

0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生 0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生まれ, コンピューテーショナルフォトグラフィ ( 計算フォトグラフィ ) と呼ばれている.3 次元画像認識技術の計算フォトグラフィへの応用として,

More information

第1章 単 位

第1章  単  位 H. Hamano,. 長柱の座屈 - 長柱の座屈 長い柱は圧縮荷重によって折れてしまう場合がある. この現象を座屈といい, 座屈するときの荷重を座屈荷重という.. 換算長 長さ の柱に荷重が作用する場合, その支持方法によって, 柱の理論上の長さ L が異なる. 長柱の計算は, この L を用いて行うと都合がよい. この L を換算長 ( あるいは有効長さという ) という. 座屈荷重は一般に,

More information

大阪大学物理 8 を解いてみた Ⅱ. 問 ( g cosq a sin q ) m - 台 B 上の観測者から見ると, 小物体は, 斜面からの垂直抗力 N, 小物体の重力 mg, 水平左向きの慣性力 ma を受け, 台 B の斜面と平行な向きに運動する したがって, 小物体は台 B の斜面に垂直な方

大阪大学物理 8 を解いてみた Ⅱ. 問 ( g cosq a sin q ) m - 台 B 上の観測者から見ると, 小物体は, 斜面からの垂直抗力 N, 小物体の重力 mg, 水平左向きの慣性力 ma を受け, 台 B の斜面と平行な向きに運動する したがって, 小物体は台 B の斜面に垂直な方 大阪大学物理 8 を解いてみた Ⅰ. 問 g 最高点の座標を y max とすると, 力学的エネルギー保存則より \ y m mgy 補足 max g max 小物体の運動方向に対する仕事は重力 ( 保存力 ) の斜面に沿った成分のみであり, 垂直抗力 ( 非保存力 ) の仕事は である よって, 力学的エネルギー保存則が成り立つ これを確かめてみよう 小物体は重力の斜面に沿った外力を受けながらその運動エネルギーを失っていく

More information

<4D F736F F D2097CD8A7793FC96E582BD82ED82DD8A E6318FCD2E646F63>

<4D F736F F D2097CD8A7793FC96E582BD82ED82DD8A E6318FCD2E646F63> - 第 章たわみ角法の基本式 ポイント : たわみ角法の基本式を理解する たわみ角法の基本式を梁の微分方程式より求める 本章では たわみ角法の基本式を導くことにする 基本式の誘導法は各種あるが ここでは 梁の微分方程式を解いて基本式を求める方法を採用する この本で使用する座標系は 右手 右ネジの法則に従った座標を用いる また ひとつの部材では 図 - に示すように部材の左端の 点を原点とし 軸線を

More information

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X (

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X ( 第 週ラプラス変換 教科書 p.34~ 目標ラプラス変換の定義と意味を理解する フーリエ変換や Z 変換と並ぶ 信号解析やシステム設計における重要なツール ラプラス変換は波動現象や電気回路など様々な分野で 微分方程式を解くために利用されてきた ラプラス変換を用いることで微分方程式は代数方程式に変換される また 工学上使われる主要な関数のラプラス変換は簡単な形の関数で表されるので これを ラプラス変換表

More information

横浜市環境科学研究所

横浜市環境科学研究所 周期時系列の統計解析 単回帰分析 io 8 年 3 日 周期時系列に季節調整を行わないで単回帰分析を適用すると, 回帰係数には周期成分の影響が加わる. ここでは, 周期時系列をコサイン関数モデルで近似し単回帰分析によりモデルの回帰係数を求め, 周期成分の影響を検討した. また, その結果を気温時系列に当てはめ, 課題等について考察した. 気温時系列とコサイン関数モデル第 報の結果を利用するので, その一部を再掲する.

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 電磁波工学 第 5 回平面波の媒質への垂直および射入射と透過 柴田幸司 Bounda Plan Rgon ε μ Rgon Mdum ( ガラスなど ε μ z 平面波の反射と透過 垂直入射の場合 左図に示す様に 平面波が境界面に対して垂直に入射する場合を考える この時の入射波を とすると 入射波は境界において 透過波 と とに分解される この時の透過量を 反射量を Γ とおくと 領域 における媒質の誘電率に対して透過量

More information

学習指導要領

学習指導要領 (1 ) 数と式 ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 自然数 整数 有理数 無理数の包含関係など 実 数の構成を理解する ( 例 ) 次の空欄に適当な言葉をいれて, 数の集合を表しなさい 実数の絶対値が実数と対応する点と原点との距離で あることを理解する ( 例 ) 次の値を求めよ (1) () 6 置き換えなどを利用して 三項の無理数の乗法の計

More information

ディジタル信号処理

ディジタル信号処理 ディジタルフィルタの設計法. 逆フィルター. 直線位相 FIR フィルタの設計. 窓関数法による FIR フィルタの設計.5 時間領域での FIR フィルタの設計 3. アナログフィルタを基にしたディジタル IIR フィルタの設計法 I 4. アナログフィルタを基にしたディジタル IIR フィルタの設計法 II 5. 双 次フィルタ LI 離散時間システムの基礎式の証明 [ ] 4. ] [ ]*

More information

輸送現象まとめファイル2017_01

輸送現象まとめファイル2017_01 第 章ミクロ輸送とマクロ輸送の接点.1 気体の粘性と分子運動論で表したミクロ輸送現象ミクロ気体分子運動論に基づき 先の 章で示した速度勾配 粘度 剪断応力の関係 (Newton の粘性則 ) を調べる 対象とする運動は y= 面 (x 軸を含む面 ) をはさみ 互いにl(=λ/, λ は分子の平均自由行程 ) だけ離れた区域内から最後の衝突をして y= 面を通して運動量交換と輸送がおこなわれる状況である

More information

耳桁の剛性の考慮分配係数の計算条件は 主桁本数 n 格子剛度 zです 通常の並列鋼桁橋では 主桁はすべて同じ断面を使います しかし 分配の効率を上げる場合 耳桁 ( 幅員端側の桁 ) の断面を大きくすることがあります 最近の桁橋では 上下線を別橋梁とすることがあり また 防音壁などの敷設が片側に有る

耳桁の剛性の考慮分配係数の計算条件は 主桁本数 n 格子剛度 zです 通常の並列鋼桁橋では 主桁はすべて同じ断面を使います しかし 分配の効率を上げる場合 耳桁 ( 幅員端側の桁 ) の断面を大きくすることがあります 最近の桁橋では 上下線を別橋梁とすることがあり また 防音壁などの敷設が片側に有る 格子桁の分配係数の計算 ( デモ版 ) 理論と解析の背景主桁を並列した鋼単純桁の設計では 幅員方向の横桁の剛性を考えて 複数の主桁が協力して活荷重を分担する効果を計算します これを 単純な (1,0) 分配に対して格子分配と言います レオンハルト (F.Leonhardt,1909-1999) が 1950 年初頭に発表した論文が元になっていて 理論仮定 記号などの使い方は その論文を踏襲して設計に応用しています

More information

(Microsoft PowerPoint - \221\34613\211\361)

(Microsoft PowerPoint - \221\34613\211\361) 計算力学 ~ 第 回弾性問題の有限要素解析 (Ⅱ)~ 修士 年後期 ( 選択科目 ) 担当 : 岩佐貴史 講義の概要 全 5 講義. 計算力学概論, ガイダンス. 自然現象の数理モデル化. 行列 場とその演算. 数値計算法 (Ⅰ) 5. 数値計算法 (Ⅱ) 6. 初期値 境界値問題 (Ⅰ) 7. 初期値 境界値問題 (Ⅱ) 8. マトリックス変位法による構造解析 9. トラス構造の有限要素解析. 重み付き残差法と古典的近似解法.

More information

多次元レーザー分光で探る凝縮分子系の超高速動力学

多次元レーザー分光で探る凝縮分子系の超高速動力学 波動方程式と量子力学 谷村吉隆 京都大学理学研究科化学専攻 http:theochem.kuchem.kyoto-u.ac.jp TA: 岩元佑樹 iwamoto.y@kuchem.kyoto-u.ac.jp ベクトルと行列の作法 A 列ベクトル c = c c 行ベクトル A = [ c c c ] 転置ベクトル T A = [ c c c ] AA 内積 c AA = [ c c c ] c =

More information

構造力学Ⅰ第12回

構造力学Ⅰ第12回 第 回材の座屈 (0 章 ) p.5~ ( 復習 ) モールの定理 ( 手順 ) 座屈とは 荷重により梁に生じた曲げモーメントをで除して仮想荷重と考える 座屈荷重 偏心荷重 ( 曲げと軸力 ) 断面の核 この仮想荷重に対するある点でのせん断力 たわみ角に相当する曲げモーメント たわみに相当する ( 例 ) 単純梁の支点のたわみ角 : は 図 を仮想荷重と考えたときの 点の支点反力 B は 図 を仮想荷重と考えたときのB

More information