SO(n) [8] SU(2)

Size: px
Start display at page:

Download "SO(n) [8] SU(2)"

Transcription

1 SO(n) [8] SU(2) SO(3) SU(3) , version

2 U(n) U(n) U(n) U(n) SU(n) U(n) SU(n) Spin(2n) Sp(n) Sp(n) Sp(n) Sp(n) Sp(n) Spin(4n) Cl 2m grading U(n) Sp(n)Sp(1) E H formulation sp(n) sp(1) Sp(n)Sp(1) Sp(n)Sp(1) Sp(n)Sp(1) Kraines SU(2), SU(3) 2

3 1.1 Definition 1.1. G V C π : G GL(V ) V G G V g V π : g End(V ) Definition 1.2. (, ) V G (π(g)v, π(g)w) = (v, w) g G, v, w V (π(x)v, w) + (v, π(x)w) = 0 X g, v, w V Remark 1.1. (π(exp tx)v, π(exp tx)w) = (v, w) (π(x)v, w) + (v, π(x)w) = 0 Proposition 1.1. G Proof. V (, ) 1 (v, w) inv = (gv, gw)dg vol(g) G G Definition 1.3. V G W G GW W V, {0} Proposition 1.2. G Proof. V G W V G W W W G 3

4 Definition 1.4. G (π, V ), (π, V ) Φ : V V G Φ(π(g)v) = π (g)φ(v) g G, v V Proposition 1.3 ( ). G (π, V ), (π, V ) Φ : V V G Φ(π(g)v) = π (g)φ(v) g G, v V V V Φ = 0 V V Φ = λid λ C λ = 0 Definition 1.5. (π, V ), (π, V ) G Hom G (V, V ) Corollary 1.4. (π, V ), (π, V ) { 0 π π Hom G (V, V ) = C π π Proof of proposition. Φ : V V G ker Φ, ImageΦ G Φ 0 ker Φ = 0 ImageΦ = V Φ π π π π Φ = 0 G T : V V T 1 Φ : V V Φ Φ λ Φ λ G ker(φ λ) {0} G ker(φ λ) = V Φ = λid Example 1.1. G (π, V ) V (π(g)f)(v) = f(π(g 1 )v), f V, v V V V V V := { v v V } v + w = v + w, z v = z v v v V π(g) v = π(g)v, v V 4

5 V G V V G V Example 1.2. (π, V ), (π, V ) 1. V V (π π )(g) := π(g) π (g) G 2. V Λ k (V ) G 3. V S k (V ) G 4. Hom(V, V ) G Definition 1.6. g g C = g C C g g C Example 1.3. gl(n, R), u(n), u(p, q) p + q = n gl(n, C) Definition 1.7. G H g h G H H G Example 1.4. GL(n, R), U(n), U(p, q) GL(n, C) Proposition 1.5. Lie Lie easy Proposition 1.6 (Weyl ). G C G V C 1. g V 2. g C V 3. G V 4. G C V holomorphic 5

6 Proof. g g C π(x + 1Y ) = π(x) + 1π(Y ) g C G C G C GL(V ) π G C GL(V ) exp exp g C π End(V ) G g (π, V ) χ(g) = tr V π(g) χ(gtg 1 ) = χ(t) U(n) Lie Lie weight 1.2 S 1 = U(1) u(1) = 1R exp : 1R t e 2πit U(1) U(1) V g U(1) π(g) : V V U(1) π(g) U(1) π(g) = λ g λ g C 1 U(1) U(1) GL(1, C) π : U(1) U(1) π 1R 1R π : 1R 1R π(t) = αt α R π : U(1) U(1) π(e 2πit ) = e α2πit well-defined α Z m Z π π m : U(1) g g m U(1) m n π m π n 6

7 Proposition 1.7. U(1) 1 Z π m : U(1) g g m U(1) GL(1, C) α R 1R t αt 1R gl(1, C) α Z integral T l = S 1 S 1 Proposition 1.8. T l 1 Z l π m1,,m l (t 1,, t l ) = t m 1 1 t m l l T l V = m Z le(m 1,, m l ) E(m 1,, m l ) (t 1,, t l ) T l t m 1 1 t m l l 1.3 SU(2) π π(g)v gv SU(2) ( ) e it 0 T = { 0 t 2π} S 1 0 e it Proof. T T T g T, g / T T g T T = T 7

8 su(2) ( ) ( ) ( ) i i σ 1 =, σ 2 =, σ 3 = 0 i 1 0 i 0 t = {tσ 1 t R} su(2) exp t = T su(2) C = sl(2, C) ( ) ( ) ( ) 1 0 H =, X = (σ iσ 3 ) =, Y = ( σ iσ 3 ) = 1 0 [H, X] = 2X, [H, Y ] = 2Y, [X, Y ] = H SU(2) V = C 2 SU(2) g g SU(2) GL(C 2 ) T C 2 = E(1) E( 1) = C C E(±1) v ±1 Hv + = v +, Xv + = 0, Y v + = v, Hv = v, Xv = v +, Y v = 0 k S k (V ) k + 1 {w k 2i := v k i + v i i = 0,, k} H S k (V ) k i + ( i) = k 2i S k (V ) = i E(k 2i) = i C(w k 2i ), Hw k 2i = (k 2i)w k 2i Hw k 2i = (k 2i)w k 2i, Xw k 2i = iw k 2i+2, Y w k 2i = (k i)w k 2i 2 X E( k) X E( k + 2) X X E(k 2) X E(k) X {0} Y {0} Y E( k) Y E( k + 2) Y 8 Y E(k 2) Y E(k)

9 Lemma 1.9. S k (V ) Proof. W S k (V ) v 0 v W v = a i w k 2i v X X l v 0, X(X l v) = 0 X l v X l v = cw k Y w k 2i W = V Lemma SU(2) S k (V ) k Proof. W T W = E(i) E(i) H i T i Z k v E(k) [H, X] = 2X H(Xv) = (k +2)Xv Xv 0 Xv = 0 [H, Y ] = 2Y HY v = (k 2)Y v X(Y v) = Y Xv + Hv = kv XY 2 v = [X, Y ]Y v + Y XY v = HY v + ky v = (k 2)Y v + ky v XY l v = l(k l + 1)Y l 1 v {v, Y v, Y 2 v,, } W = {v, Y v, Y 2 v,, } Y n v = 0 Y n 1 v 0 0 = XY n v = n(k n + 1)Y n 1 v k n+1 = 0 W = {v, Y v,, Y k v} X, Y, H W = S k (V ) SU(2) SU(2) W Zv, w + v, Zw = 0 Z su(2) 1Z W t t R = 1t t R W = E(i) weight weight vector weight weight weight vector v Xv = 0 highest weight vector weight highest weight highest weight W weight 9

10 Example 1.5. S k (V ) spin-k/2 S k (V ) i E(k 2i) weight k 2i weight k highest weight Theorem SU(2) Z 0 k Z 0 k V k := S k (V ) k highest weight Example 1.6. SU(2) sl(2, C) sl(2, C) = E(2) E(0) E( 2) = C(X) C(H) C(Y ) weight weight Example 1.7. SU(2) J; C 2 (α, β) ( β, ᾱ) C 2 J 2 = 1 J(g(α, β)) = gj(α, β) SU(2) SU(2) J k : (C 2 ) k k k S k (V ) k k Ω((α, β), (α, β )) = αβ α β k k (π k, V k ) (π l, V l ) {w k, w k 2,, w k }, {v l, v l 2,, v l } H(w k v l ) = (Hw k ) v l + w k Hv l = (k + l)w k v l, X(w k v l ) = 0 w k v l highest weight vector w k v l Y V k+l V k+l V k V l X(w k v l 2 w k 2 v l ) = w k v l w k v l = 0 H(w k v l 2 w k 2 v l ) = (k + l 2)(w k v l 2 w k 2 v l ) 10

11 V k+l 2 V k V l s ( s X{ i i=0 s ( s = i i=1 s 1 ( s = j =0 j=0 H{ s i=0 ) ( 1) i w k 2i v l 2(s i) } ) ( 1) i iw k 2(i 1) v l 2(s i) + s 1 i=0 ) (s j)( 1) j+1 w k 2j v l 2(s j 1) + ( ) s (s i)( 1) i w k 2i v l 2(s i 1) i s 1 j=0 ( ) s ( 1) i w k 2i v l 2(s i) } = (k + l 2s){ i ( ) s (s i)( 1) i w k 2i v l 2(s i 1) i s i=0 ( ) s ( 1) i w k 2i v l 2(s i) } i V k+l 2s V k V l s = 0, 1,, min{k, l} dim V k+l 2s = k + l 2s + 1, dim V k V l = (k + 1)(l + 1) Theorem (π k, V k ) (π l, V l ) V k V l = V k+l V k+l 2 V k+l 4 V k l SO(3) SO(3) Spin(3) = SU(2) SO(3) SO(3) SU(2) SU(2) SO(3) SU(2) SO(3) S k (V ) k SO(3) SU(2) su(2) R 3 Ad : SU(2) SO(3) SU(2) T SO(3) cos t sin t 0 T = Ad(T ) = { sin t cos t 0 0 t < 2π} S 1 = SO(2)

12 Ad : T Ad(T ) U(1) = S t = span R {H = } SO(3) W Ad(T ) 1t weight W = i E(i), w.r.t Ad(T ) SU(2) lift T W = i E(2i) w.r.t T SO(3) SU(2) lift S 2k (V ) S 2k+1 (V ) SO(3) Proposition SO(3) Z 0 k Z 0 S 2k (V ) su(2) so(3) S 2k+1 (V ) so(3) su(2) so(3) H = 1H 2 V = C 2 H v + = 1 2 Hv + = 1 2 v +, H v = 1 2 v so(3) weight weight Proposition so(3) k/2 S k (V ) spin-k/2 SO(3) lift Spin(3) = SU(2) Spin(3) = SU(2) SO(3) S k (V ) so(3) highest weight k/2 so(n) weight Spin(n) SO(n) weight integral half-integral 12

13 1.6 SU(3) SU(3) e i2πa T = { 0 e i2πa 2 0 a 1 + a 2 + a 3 = 0} S 1 S e i2πa 3 h = a { 0 a 2 0 a 1 + a 2 + a 3 = 0} 0 0 a 3 a h R := { 0 a 2 0 a 1 + a 2 + a 3 = 0} 0 0 a 3 V h R weight weight h R V = E(α), α h R H h R v E(α) Hv = α(h)v α h R weight weight a h R = R{L 1, L 2, L 3 }/{L 1 + L 2 + L 3 = 0}, L i 0 a 2 0 = a i 0 0 a 3 weight m 1 L 1 + m 2 L 2 + m 3 L 3, m 1, m 2, m 3 Z T integral SU(3) sl(3, C) weight sl(3, C) = h C C(E ij ) C(E ji ) 1 i<j 3 1 i<j 3 13

14 E ij (i, j) 1 weight weight [E kk, E ij ] = δ ki E kj δ jk E ik = δ ki E ij δ jk E ij = (L i L j )(E kk )E ij E ij weight L i L j sl(3, C) = g 0 i<j g Li L j i<j g Lj L i L 1 L 2, L 2 L 3, L 1 L 3 L 2 L 1, L 3 L 2, L 1 L 3 sl(3, C) V weight V = E(α) v E(α) X g β HX(v) = XHv + [H, X]v = (α + β)xv Xv 0 Xv weight vector weight α + β V = E(α) weight α weight α {L i L j } i j E 12, E 23, E 13 weight V V weight v E 12 v = E 23 v = E 13 v = 0 highest weight vector weight highest weight vector highest weight vector SU(2) highest weight vector v E 21, E 31, E 3,2 V [E ij, E ji ] = E ii E jj 1 i < j 3 [E ii E jj, E ij ] = 2E ij, [E ii E jj, E ji ] = 2E ji E ij X, E ji Y, E ii E jj H E ij, E ji, E ii E jj 1 i < j 3 p sl(2, C) highest weight vector v E ij v = 0 p highest vector k (E ii E jj )v = kv highet weight (m 1 L 1 + m 2 L 2 + m 3 L 3 )(E ii E jj ) 0, 1 i < j 3 14

15 m 1 m 2 m 3 dominant weight m 1 m 2 m 3, m i Z dominant integral dominant integral (m 1, m 2, m 3 ) C(v) v E 12 v = E 23 v = E 13 v = 0 Hv = (m 1 L 1 + m 2 L 2 + m 3 L 3 )(H)v H h R Z(m 1, m 2, m 3 ) := span C {E k 21E l 32E m 31v k, l, m Z 0 } sl(3, C) Y (m 1, m 2, m 3 ) Z/Y highest weight m 1 L 1 + m 2 L 2 + m 3 L 3 Theorem SU(3) dominant integral weight (m 1, m 2, m 3 ) Z 3 mod Z(1, 1, 1), m 1 m 2 m 3 dominant integral weight highest weight Remark 1.2. mod Z(1, 1, 1) h R = R{L 1, L 2, L 3 }/{L 1 + L 2 + L 3 = 0} Example 1.8. SU(3) V = C 3 V = E(L 1 ) E(L 2 ) E(L 3 ) E(L 1 ) = C{(1, 0, 0)} highest weight vector g h h R g C weight h R Rl h R weight Example 1.9. sl(3, C) l(a 1 L 1 + a 2 L 2 + a 3 L 3 ) = aa 1 + ba 2 + ca 3, a + b + c = 0, a > b > c 15

16 l : h R R l(α) > 0 α > 0, l(β) < 0 β < 0 α > β l(α β) > 0 l(l 1 L 2 ) = a b > 0, l(l 2 L 3 ) = b c > 0, l(l 1 L 3 ) = a c > 0 L 1 L 2 > 0, L 2 L 3 > 0, L 1 L 3 > 0 L 2 L 3 L 2 L 1 L 2 L 1 L 3 L 1 L 3 L 3 L 1 L 1 L 2 L 3 L 2 sl(3, C) L 1 + L 2 + L 3 = 0 h R Rl α = (α 1,, α l ) g C g C = g 0 α g α α g α, g 0 = h C, α h R 1 α α dim R h R g α, g α, [g α, g α ] sl(2, C) W weight W = β E(β) β h R X g α α Xv = 0 weight vector highest weight vector highest weight 1 highest weight vector weight 1 SU(3) g α, g α, [g α, g α ] sl(2, C) dominant G lift integral half-integral G highest weight dominat integral dominant integral highest weight dominant integral weight 16

17 (π, V ), (π, V ) highest weight ρ, ρ highest weight vector v ρ, v ρ V V v ρ v ρ highest weight vector highest weight ρ + ρ V V highest weight ρ + ρ SU(2) Spin(n) 2 2n 2.1 Spin c (n). Definition 2.1. ±1 Spin(n), ±1 U(1), Spin c (n) := (Spin(n) U(1))/{±1}. Spin(n) Cl n U(1) Cl n = Cl n C 1 C Spin c (n) [g, z] g z Cl n C well-defined g z = 1 g = z 1 Spin(n) C = {±1} g = z 1 = ±1 (g, z) = (1, 1) or (g, z) = ( 1, 1) well-defined Spin c (n) 17

18 Spin c (n) := Spin(n) U(1) C Cl n Spin c (n) C = U(1) spin c (n) := spin(n) 1R Cl n Spin c (n) := exp spin c (n) Cl n Spin c (n).. Ad : Spin(n) g Ad(g) SO(n), Ad : Spin c (n) [g, z] Ad(g) SO(n), i : Spin(n) g [g, 1] Spin c (n), j : U(1) z [1, z] Spin c (n), l : Spin c (n) [g, z] z 2 U(1), p = Ad l : Spin c (n) [g, z] (Ad(g), z 2 ) SO(n) U(1). well-defined p, 1 Spin(n) i Spin c (n) l U(1) 1 1 U(1) j Spin c (n) Ad SO(n) 1 Spin(n) SO(n), Spin c (n) SO(n) U(1) U(1). Lemma 2.1. n 3, 1. π 1 (Spin c (n)) = Z, l : π 1 (Spin c (n)) π 1 (U(1)) = Z 2. α π 1 (Spin c (n)) = Z, β = 1 π 1 (SO(n)) = Z 2, γ π 1 (U(1)) = Z, l (α) = γ. p : π 1 (Spin c (n)) π 1 (SO(n)) π 1 (U(1)) p (α) = β + γ. Proof. π 1 (Spin(n)) π 1 (Spin c (n)) π 1 (U(1)) π 0 (Spin(n)) 18

19 α π 1 (Spin c (n)) = Z, β π 1 (SO(n)) = Z 2, γ π 1 (U(1)) = Z, l (α) = γ Ad (α) = β π 1 (SO(n)) = Z 2 Ad (α) = 0 Z 2 π 1 (U(1)) j π 1 (Spin c (n)) Ad π 1 (SO(n)) π 0 (U(1)) δ π 1 (U(1)) j (δ) = α γ = l (α) = l j (δ) = 2δ in π 1 (U(1)) γ U(m) R n e i e i R n+2 Cl n Cl n+2 Spin(n) Spin(n + 2). spin(n + 2) e n+1 e n+2 exp e n+1 e n+2 t U(1) (e n+1 e n+2 ) 2 = 1 e i e j 1 i < j n e n+1 e n+2 1. U(1) Spin(n + 2) (Spin(n) U(1))/{±1} Spin(n + 2). Lemma Spin c (n) p SO(n) U(1) = SO(n) SO(2) f Spin(n + 2) Ad i SO(n + 2) (2.1) f. Proof. 2.2 Definition 2.2. Cl n Spin c (n) n. W 2m+1 W 2m ± Spin c (n) W ([g, z], φ) ([g, z])φ = z (g)φ = zgφ W (2.2) well-defined.. 19

20 Spin(n) n : Spin(n) U(W n ) SU(W n ) n 3. Proof. det, Spin(n) U(1), Spin(n) Spin(n) R, Spin(n) R 0. det = 1. det( 2m+1 ([g, z])) = z 2m det( ± 2m([g, z])) = z 2m 1. Spin c (n) det U(1) z U(1) Spin c (n) Remark 2.1.,. U(1) z, J J([g, z] v) = [g, z] J(v) Remark 2.2. l = 2k + 1 k Z Spin c (n) W ([g, z], φ) l ([g, z])φ = z l (g)φ = z l gφ W l Spin(n) U(1) Spin c (n) = Spin(n) U(1)/±1 SO(n) 3 SO(n), U(n), SU(n), Sp(n), Sp(n)Sp(1), G 2, Spin(7) Hol 0 (M, g) Hol(M, g) G 2, Spin(7) G 2, Spin(7) 20

21 3.1 Lemma 3.1 ( ). G, H G G H π : G G f : H G F : H G f (π 1 (H, e H )) π (π 1 ( G, e G)) H F f G π G Proof. f (π 1 (H, e H )) π (π 1 ( G, e G)) h H e H ω f(ω) e G f(h) π : G G e G ω F (h) ω f(ω ) f(ω 1 ) γ f (π 1 (H, e H )) [γ] γ π [ γ] = [γ] γ γ γ ω ω F F Remark 3.1. H H H = G = Z 2 = {±1}, G = {1} f(±1) = 1 f F F (±1) = ±1 F (±1) = 1 Proposition 3.2 ([6]). (M, g) Hol(M) SO(n) F F G = Hol(M, g) F i Spin(n) Ad SO(n) 21

22 M M Proof. g ij (x) G f ij = F (g ij ) Spin(n) f ij f jk f kl = F (g ij g jk g kl ) = id f ij Spin(n) Ad g ij SO(n) g ij Spin(n) g ij g jk g ki = z ijk Z 2 [z ijk ] = w 2 (M) g ij g ij g jk g ki = id Z 2 [6] Hol(M) Hol(M) Example 3.1. SU(n) π 1 (SU(n)) = 1 SU(n) G 2 Spin(7) π 1 (G 2 ) = 1, π 1 (Spin(7)) = 1 G 2 Spin(7), Spin(7) Spin(8) G 2 Spin(7) Example 3.2. U(n) 3.2 U(n) U(n) I compatible I I 2 = 1, Iv, Iw = v, w, for v, w R 2n U(n) SO(2n) 22

23 Definition 3.1. U(n) = {A SO(2n) AI = AI} = {A GL(2n, R) Au, Av = u, v, AI = IA} (3.1) GL(n, C) = {A GL(2n, R) AI = AI} I V = (R 2n, I) V C I ± 1 (1, 0), (0, 1) V C = V 1,0 V 0,1 V 0,1 = V 1,0, V C h(u, v) := u, v V C V 1,0 h V 0,1 Proof. u V 1,0, v V 0,1 v V 1,0 h(u, v) = u, v = Iu, I v = 1 2 u, v = h(u, v) = 0 V 1,0, V 0,1 (V 1,0, h), (V 0,1, h) Proof. v V 1,0 h(v, v) = 0 v, v = 0 v + v, v + v = v, v + 2 v, v + v, v = v, v + v, v = 0 v, v = Iv, Iv = v, v = 0 v + v V, V v + v = 0 v = 0 = v (V 1,0, h) U(n) GL(n, C) Definition 3.2. U(n) := {A GL(V 1,0 ) h(au, Av) = h(u, v)} (3.2) 3.2 U(n) 3.1 U(n) 23

24 Proof. A GL(V 1,0 ) v V 1,0 v + v V A (v + v) = Av+Av A GL(2n, R) Av + Av = Av+Av V A (I(v + v)) = A ( 1v + 1v) = 1Av + A 1v = 1Av 1 Av = IA (v + v) I GL(V 1,0 ) = GL(n, C) GL(2n, R) I Av + Av, Aw + Aw = 2 Av, Aw = 2h(Av, Aw) U(n) (3.1) (3.2) Remark 3.2., ( ) A B GL(n, C) A + ib GL(2n, R) B A ( ) 0 id I = id 0 Λ 1,0 := (V 1,0 ), Λ 0,1 := (V 0,1 ) V 1,0 v h(, v) =, v Λ 0,1 V 0,1 Λ 1,0 Remark 3.3. (1, 0) (0, 1) U(n) V e 1, e 2 = Je 1,, e 2n 1, e 2n = Je 2n 1 a i := 1 2 (e 2i 1 1Je 2i 1 ), a i := 1 2 (e 2i 1 + 1Je 2i 1 ) Ja i = 1a i Ja i = 1a i V 1,0 = C{a i 1 i n}, V 0,1 = C{a i 1 i n} a i = a i, a i = a i h(a i, a j ) = δ ij/2, h(a i, a j ) = δ ij /2, h(a i, a j) = 0 24

25 Remark 3.4. a i 1 (e 2 2i 1 1Je 2i 1 ) a i a j + a j a i = δ ij V 1,0 Λ 0,1 Λ 0,1 = C{a i 1 i n}, Λ1,0 = C{a i 1 i n} Remark a i 2a i V 1,0 h(, 2a i ) = 2h(, a i ) 2a i V 0,1 = Λ 1,0 a i 1 (e 2 2i 1 1Je 2i 1 ) U(n) Definition 3.3. V 1,0 Λ 1,0 = V 1,0 V 0,1 gl(n, C) V 1,0 ɛ i ɛ i := 1 2 (e 2i 1 1Je 2i 1 ) = 1 2a i ɛ i := 1 2 (e 2i 1 + 1Je 2i 1 ) = 1 2a i V 1,0 Λ 0,1 V 0,1 ɛ i gl(n, C) ɛ i ɛ j = ɛ i (ɛ j ) = 2a i a j 1 i, j n E ij V 1,0 ɛ i ɛ j (ɛ k ) = δ kj ɛ i [ɛ i ɛ j, ɛ k ɛ l ] = ɛ j (ɛ k )ɛ i ɛ j ɛ l (ɛ i )ɛ k ɛ j = δ jk ɛ i ɛ j δ il ɛ k ɛ j ([E ij, E kl ] = δ jk E ij δ il E kj ) Remark 3.6. i j k = δ jk i i j k l = δ jk i l 25

26 u(n) gl(n, C) zij ɛ i ɛ j z ij ɛ j ɛ i u(n) 1ɛi ɛ i, 1 i n, 1(ɛi ɛ j +ɛ j ɛ i ), ɛ i ɛ j ɛ j ɛ i, 1 i < j n. u(n) R{ 1ɛ i ɛ i } i h R := R{ɛ i ɛ i 1 i n} gl(n, C) U(n) h R weight λ = (λ 1,, λ n ) weight λ i ɛ i ɛ i λ i Z weight highest weight ρ highest weight dominant integral ρ = (ρ 1,, ρ n ) Z n, ρ 1 ρ 2 ρ n highest weight U(n) GL(n, C) U(n) GL(n, C) Weyl highest weight ρ (π ρ, V ρ ) π ρ V ρ gl(n, C) =h C i<j C(ɛ i ɛ j ) i<j C(ɛ j ɛ i ) = i C(E ii ) i<j C(E ij ) i<j C(E ji ) Definition 3.4. weight λ = (λ 1,, λ n ) k j k j (0 i 1, 1, 0 n i ) = (0,, 0, 1, 0,, 0) }{{}}{{} i 1 n i 26

27 Example 3.3 ( ). V 1,0. span C {a i i = 1,, n} = span C {ɛ i i = 1,, n} a 1 ɛ 1 highest weight vector highest weight (1, 0 n 1 ) ɛ i ɛ i (ɛ 1 ) = δ i1 ɛ i ɛ i ɛ i i = 1 1 i 1 weight (1, 0,, 0) ɛ i ɛ j (ɛ 1 ) = δ 1j ɛ i = 0, 1 i < j n ɛ 1 highest weight vector a i weight (0 i 1, 1, 0 n i ). weights (1, 0,, 0) > (0, 1, 0,, 0) > > (0,, 0, 1) highest weight (1, 0 n 1 ) lowest weight (0 n 1, 1). Example 3.4 ( ).. span C {a i i = 1,, n}. a i weight (0 i 1, 1, 0 n i ). highest weight (0 n 1, 1) highest weight vector a n. Example 3.5 ((0, p)-form). Λ p V (1,0) = Λ 0,p highest weight (1 p, 0 n p ), highest weight vector a 1 a p. Example 3.6 (det ). det (det, Λ 0,n ) highest weight (1 n ). det k highest weight (k n ). Example 3.7 ((p, 0)-form). Λ p V (0,1) = Λ p,0. highest weight (0 n p, ( 1) p ). Λ p,0 Λ 0,n highest weight (0 n p, ( 1) p ) + (1 n ) = (1 n p, 0 p ) Λ p,0 Λ 0,n Λ 0,n p. Example 3.8 ( ). k.. highest weight (k, 0 n 1 ) weight vector k a 1. Example 3.9 ( ). U(n) gl(n, C) adjiont.. gl(n, C) C{I}. highest weight (1, 0 n 2, 1). 27

28 gl(n, C) V (0n ) V (1,0n 2, 1). gl(n, C) = sl(n, C) tracepart. gl(n, C) = V (1,0) Λ 1,0 = Λ 0,1 Λ 1,0 = Λ 1,1 Λ 1,1 U(n) Ω = 2 1 a i a i = 1 ɛ i ɛ i = n e 2i 1 e 2i Ω = Ω (1, 1) Λ 1,1 = Λ 1,1 0 ΩΛ 0,0 0 primitive (1, 1) highest weight(1, 0 n 2, 1) Λ p,q = Λ p,0 Λ 0,q Λ 1,1 Ω Ω Ω Λ p,q U(n) Λ p,q Remark 3.7. W highest weight vector highest weight ρ V ρ W V ρ dim V ρ = dim W V ρ = W W Remark 3.8., (π ρ, V ρ ), conjugate representation or contragradient representation weight weight ( 1). highest weight lowest weight ( 1) highest weight lowest weight weight diagram., postive root negative root, highest weight lowest weight. Proposition 3.3. highest weight ρ = (ρ 1,, ρ n ) (π ρ, V ρ ) highest weight. ( ρ n, ρ n 1,, ρ 1 ) 28 i=1

29 Remark 3.9. (π ρ, V ρ ) det highest weight ρ + k(1 n ) SU(n) (1 n ) {ρ mod Z(1 n ) ρ dominant integral } SU(n) SU(n) U(n) ˆρ i = ρ i 1 n n j=1 ˆρ 1 ˆρ 2 ˆρ n ˆρ i ˆρ j Z ρ j ˆρ 1 + ˆρ ˆρ n = 0 parametrize U(n) F U(n) F i Spin(2n) Ad SO(2n) Lemma 3.4. π 1 (SO(n)) = Z 2 n 3, π 1 (SO(2)) = Z cos t sin t 0 γ(t) = sin t cos t 0, 0 t 2π 0 0 I Proof. n = 2 n 3 1 Z 2 Spin(n) SO(n) 1 0 π 1 (Spin(n)) = 0 π 1 (SO(n)) π 0 (Z 2 ) 0 29

30 γ π 1 (SO(n)) Spin(n) Z 2 ±1 γ(t) γ(t) = cos t/2 + e 1 e 2 sin t/2 1 γ(t) π 1 (SO(n)) Z 2 G N H G = NH, N H = {e} G N H N H gng 1 N (nh)(n h ) = (nhn h 1 )(hh ) Lemma 3.5. U(n) = SU(n)U(1) U(n) U(1) SU(n) π 1 (U(n)) = Z ( ) e it 0 γ(t) =, 0 t 2π 0 I ( ) a 0 Proof. SU(n) U(n) U(1) U(n) 0 I SU(n) U(1) = {e} ( ) ( ) det A 1 0 det A 0 U(n) A A SU(n)U(1) 0 I 0 I Proposition 3.6. F U(n) F i Spin(2n) Ad SO(2n) Proof. π 1 (U(n)) U(n) SO(2n) cos t sin t 0 γ(t) = sin t cos t 0, 0 t 2π 0 0 I i (π 1 (U(n)) = Z 2 Ad (π 1 (Spin(2n))) = Corollary 3.7. U(n) Spin c (2n) 30

31 3.2.5 U(n) U(1) U(n) A i det Spin c (2n) p = Ad l (A, det A) SO(2n) U(1) Spin c (2n) SO(n) U(1) Proposition 3.8. F U(n) F f=i det Spin c (2n) p = Ad l SO(2n) U(1) F U(n) Spin c (2n) Proof. δ π 1 (U(n)) α, β, γ π 1 (Spin c (2n)), π 1 (SO(2n)), π 1 (U(1)) l (α) = γ p (α) = β+γ f (δ) = β +γ f (π 1 (U(n))) p (π 1 (Spin c (2n)) F f = p F f = i det i f F Remark f k : U(n) A (A, (det A) 2k+1 ) SO(2n) U(1), k Z f k (δ) = β+(2k+1)γ = (2k+1)β+(2k+1)γ f k (π 1 (U(n))) p (π 1 (Spin c (2n)) k Z U(n) F k f k Spin c (2n) p = Ad l SO(2n) U(1) U(n) Spin c (2n) 31

32 3.2.6 SU(n) SU(n) SU(n) Spin(2n) SU(n) or Proposition 3.9. F SU(n) F i Spin(2n) Ad SO(2n) Spin(2n) Spin c (2n) SU(n) Spin c (2n) U(n) U(n) Spin c (2n) u(n) R 1ɛi ɛ i, 1 i n, 1(ɛi ɛ j +ɛ j ɛ i ), ɛ i ɛ j ɛ j ɛ i, 1 i < j n 1ɛi ɛ i 1a i a i = 1 2 e 2i 1e 2i Cl2n 1(ɛi ɛ j + ɛ j ɛ i ) 1(a i a j + a j a i) Cl 2n ɛ i ɛ j ɛ j ɛ i a i a j a j a i Cl 2n 1a i a i = 1e 2 2i 1e 2i u(n) Remark a i a i a i a i u(n) C gl(n, C) ɛ i ɛ j a i a j. Lemma [a, b] = ab ba u(n) Cl 2n Proof. 32

33 u(n) Cl 2n G := exp u(n) Spin c (2n) Proposition G U(n) U(n) Spin c (2n) Propostion 3.8 Proof. V 1,0 Cl 2n [a i a j, a k ] = a i a ja k a k a i a j = δ jk a i Cl 2n G exp Cl 2n u(n) Ad U(n) exp ad u(n) ad Ad(exp X) = exp ad(x) ad U(n) g U(n) g = exp X X u(n) Ad Ad Ad(exp X) = id (exp X)a k (exp( X)) = a k k exp X = exp Y exp it G Spin c (2n) = Spin(2n) U(1) Ad(exp X)a k = (exp Y exp it)a k (exp it exp Y ) = (exp Y )a k (exp Y ) = a k (exp Y )a k (exp Y ) = a k (exp Y )a k(exp Y ) = a k exp Y Spin(2n) Spin(2n) exp Y = ±1 Ad(exp X) = id exp X = 1 exp it = 1 λ Spin(2n) U(1) t T = exp t G = g G Ad(g)T R{ 1a i a i} i exp T λ = exp X = gtg 1 t T λ t = λ t = λ T t = (cos θ 1 + sin θ 1 e 1 e 2 ) (cos θ n + sin θ n e 2n 1 e 2n )e 1(θ 1 + +θ n ) 33

34 θ 1 = m 1 π, θ 2 = m 2 π,..., θ n = m n π t = ( 1) m 1+ +m n e 1(m 1 + +m n)π = ( 1) 2(m 1+ +m n) = 1 λ = 1 Ad(exp X) = id exp X = id G = U(n) Spin c (2n) SO(2n) U(1) i det : U(n) SO(2n) U(1) U(n) Ad [a i a j, a k ] = a i a ja k a k a i a j = δ jk a i i : U(n) SO(2n) det det exp X = exp trx 1ɛi ɛ i u(n) 1ɛi ɛ i (a k ) = 1δ ik a i 1 u(n) 1ɛ i ɛ i 1a i a i e z z 2i 1e 2i u(1) 2 U(n) Spin c (2n) SO(2n) U(1) i det : U(n) SO(2n) U(1) Remark u(n) spin(2n) 1ɛi ɛ i 1a i a i 1/2 = 1 e 2 2i 1e 2i t = ±1 1 exp u(n) Ad : G U(n) U(n) exp ta 1a 1 = cos t/2 + e 1 e 2 sin t/2 Ad ( e it 0 0 I U(n) SO(2n) exp ta 1a 1 = (cos t/2 + e 1 e 2 sin t/2)e t 1/2 Ad ( ) e it 0 0 I Remark F k : U(n) Spin c (2n) 1ɛi ɛ i 1 e 2 2i 1e 2i + (2k + 1) 1/2 34 )

35 3.2.8 SU(n) Spin(2n) SU(n) Spin(2n) su(n) R 1(ɛi ɛ i ɛ n ɛ n ), 1 i n 1, 1(ɛi ɛ j +ɛ j ɛ i ), ɛ i ɛ j ɛ j ɛ i, 1 i < j n 1 1(ɛi ɛ i ɛ n ɛ n ) 1(a i a i a na n ) = 1 2 e 2i 1e 2i 1 2 e 2n 1e 2n 1(ɛi ɛ j + ɛ j ɛ i ) 1(a i a j + a j a i) ɛ i ɛ j ɛ j ɛ i a i a j a j a i su(n) exp su(n) Spin(2n) SU(n) = exp su(n) Spin c (2n) U(n) a k 1 a k 2 a k j vac, 1 k 1 < k 2 < < k j n, j = 0, 1,, n Spin c (2n) U(n) Λ 0,p U(n) Cl 2n N = a i a i Remark Ω = 2 1 a i a i Ω = i e 2i 1 e 2i = 2 1 i (a i a i 1/2) = 2 1(N n/2) 35

36 N u(n) [u(n), Ω] = 0 p N = p W p := C{a k 1 a k 2 a k p vac, 1 k 1 < k 2 < < k p n} u(n) wight a i a i a i 1 wight (0,..., 0, 1,..., 1, 0,..., 0, 1...) 1 p 0 n p highest weight (1 p, 0 n p ) = (1,..., 1, 0,..., 0) highest weight vector a 1a 2 a p vac Λ 0,p Proposition U(n) n p=0λ 0,p Remark N c 1 highest weight ρ = (ρ 1,, ρ n ) π ρ (c 1 ) = i ρi p i=0 1 = p W Λ 0,p. a i 1 a i l vac 2 l 2 a i 1 a i l 2 h(a i, a j ) = δ ij/2 W Λ 0,p. a i 2a i, a i 2i(a i ) Λ 0,p i(a i ) i(a i )(a i 1 a i l ) = ( 1) k 1 h(a i k, a i )a i 1 â i k a i l 1ai 1 2i(a i ). i( ), a i a i,. W Λ 0,p. 36

37 Remark e i 2 1(a i + i(a i )) Je i 2(a i i(a i )) Remark U(n) Spin(2n) u(n) spin(2n) 1ɛi ɛ i 1a i a i 1/2 u(n) W p := C{a k 1 a k 2 a k p vac, 1 k 1 < k 2 < < k p n} highest weight ((1/2) p, ( 1/2) n p ) dominant integral dominant integral Remark integral U(n) u(n) U(n) highest weight U(n) Remark highest weight integral u(n) u(n) C ɛ i ɛ i 1 2 id i = 1,, n u(n) highest weight ((1/2) n ) (det) 1/2 Λ 0,n = Λ n,0 1 W p Λ n,0 1 highest weight (1 p, 0 n p ) Λ 0,p 37

38 Proposition u(n) W p Λ 0,p Λ n,0, W n p=0(λ 0,p Λ n,0 ) W p W n p Proof. W p W p W p = Λ 0,p Λ n,0 = Λ p,0 Λ 0,n Λ n,0 = Λ 0,n p Λ n,0 = W n p Remark S S = S p = (Λ 0,p (M) K) K Λ n,0 (M) fiber S p = S n p SU(n) Λ n,0 Λ 0,n Proposition SU(n) W p Λ 0,p, Λ 0,p = Λ p,0 = Λ 0,n p Proof. U(n) SU(n) Λ 0,n p U(n) highest weight (1 n p, 0 p ) SU(n) highest weight (1 n p, 0 p ) mod Z(1 n ) Λ p,0 U(n) highest weight (0 n p, ( 1) p ) (0 n p, ( 1) p ) + (1 n ) SU(n) highest weight (1 n p, 0 p 1 ) mod Z(1 n ) 3.3 Sp(n) subsection subsection 38

39 3.3.1 Sp(n) (R 4n,,, I, J, K) 4n, compatible I, J, K I 2 = J 2 = 1, IJ = JI = K Sp(n) := {A SO(4n, R) AI = IA, AJ = JA, AK = KA} U(2n) SO(4n) Sp(n, R) Sp(n, C) Remark I 2 = J 2 = 1, IJ = JI K K = IJ (R 4n, I) J J JI = JI J 2 = 1 Sp(n) (V = R 4n,,, I, J, K) V C I, J, K I V 1,0 V 0,1 V 1,0, V 0,1 h JI = IJ J : V 1,0 V 0,1, J : V 0,1 V 1,0 V 0,1 = V 1,0 J : V 1,0 u J(ū) V 1,0 J 2 = 1, h(ju, Jv) = h(v, u) Proof. J u = v z V C J(v z) = (Jv) z J(u) = J(ū) J 2 (u) = J(J(ū)) = J 2 (u) = u J 2 = 1 h(ju, Jv) = J(ū), J( v) = J(ū), J(v) = ū, v = v, ū = h(v, u) (V 1,0, h) compatible J σ(u, v) := h(u, Jv) V 1,0 σ(u, v) = σ(ju, Jv), σ(v, Jv) > 0 v 0 (3.3) 39

40 Proof. σ(u, v) = h(u, Jv) = h(jjv, Ju) = h(v, Ju) = σ(v, u) σ(ju, Jv) = h(ju, v) = h(v, Ju) = σ(v, u) = σ(u, v), σ(v, Jv) = h(v, JJv) = h(v, v) > 0, v 0 Remark J (3.3) h(u, v) := σ(u, Jv) J compatible σ, J, h compatible V 1,0 Λ 0,1 V 1,0 Λ 1,0 V 1,0 V 0,1 Λ 1,0 Λ 0,1 Sp(n) Sp(n) : = {A GL(2n, C) JA = AJ, h(au, Av) = h(u, v)} = {A GL(2n, C) JA = AJ, σ(au, Av) = σ(u, v)} = {A GL(2n, C) h(au, Av) = h(u, v), σ(au, Av) = σ(u, v)} Sp(n, C) = {A GL(2n, C) σ(au, Av) = σ(u, v)} Sp(n, C) U(2n) = Sp(n) (V 1,0, J, h) E E ɛ α, α = n, (n 1),, 1, 1, 2, n σ(ɛ α, ɛ β ) = sign(α)δ α, β, h(ɛ α, ɛ β ) = δ α,β J(ɛ α ) = sign(α)ɛ α 40

41 3.3.2 Sp(n) E 2n compatible {ɛ α } α x αβ := ɛ α ɛ β sign(αβ)ɛ β ɛ α E E, α + β 0 (3.4) σ 2n 2 + n sp(n, C) sp(n, C) = C{x αβ α + β 0, α, β = ±1,, ±n}. gl(n, C) [x αβ, x µν ] = δ βµ x αν δ αν x µβ + sign(αβ)(δ βν x µ α δ αµ x βν ). E x αβ ɛ γ = δ βγ ɛ α sign(αβ)δ αγ ɛ β x αβ α + β 0 α, β (3.4) x αβ = sign(αβ)x β α Λ 1,0 V 1,0 ɛ α = Ω(, ɛ α ) sign(α)ɛ α x αβ = ɛ α ɛ β sign(αβ)ɛ β ɛ α = sign(β)ɛ α ɛ β sign(β)ɛ β ɛ α = sign(β)ɛ α ɛ β sp(n, C) sp(n, C) = S 2 (E). E ɛ α ɛ β (ɛ γ ) = σ(ɛ α, ɛ γ )ɛ β + σ(ɛ β, ɛ γ )ɛ α sp(n) E J S 2 (E) E E J J sp(n) sp(n, C) = S 2 (E) J J(ɛ α ɛ β ) = sign(αβ)ɛ α ɛ β { ɛα ɛ β + sign(αβ)ɛ α ɛ β 1(ɛα ɛ β sign(αβ)ɛ α ɛ β ) 41

42 sp(n) = sp(n, C) u(2n) { xαβ x βα 1(xαβ + x βα ) sp(n) = R{x αβ x βα α + β 0, α > β} R{ 1(x αβ + x βα ) α + β 0, α β} sp(n) 1hR := R{ 1x αα α 0} h R := R{x ii i = 1,, n} Sp(n) weight h R (V, π) Sp(n) h R V = V (λ) λ = (λ 1,, λ n ) weight λ i x ii weight weight ρ highest weight highest weight ρ = (ρ 1,, ρ n ) Z n, ρ 1 ρ 2 ρ 1 0 dominant integral ρ highest weight highest weight ρ V ρ π ρ [x ii, x αβ ] = (δ α,i + δ β,i δ β,i δ α,i )x αβ {x k, l 1 k l n} {x k,l 1 k < l n} x k, l (0,, 0, }{{} 1, 0,, 0, }{{} 1, 0,, 0) (1 k l n) k l x k,l (0,, 0, }{{} 1, 0,, 0, }{{} 1, 0,, 0) (1 k < l n) k l 42

43 Example E (1, 0 n 1 ) highest weight ɛ ±i weight (0 i 1, ±1, 0 n i ) ɛ 1 highest weight vector x k, l (ɛ 1 ) = δ l,1 ɛ k + δ k,1 ɛ l = 0, (1 k l n) x kl (ɛ 1 ) = δ l1 ɛ k δ k,1 ɛ l = 0 (1 k < l n) x ii (ɛ 1 ) = δ i1 ɛ i δ i,1 ɛ i = δ i1 ɛ 1 highest weight vector Example Λ 2 (E) Λ 2 0(E) C Λ 2 0(E) highest weight (1 2, 0 n 2 ) C E σ σ = 1 sign(α)ɛ α ɛ α 2 α Proof. σ(ɛ β, ɛ γ ) = 1 sign(α)(ɛ α ɛ 2 α)(ɛ β, ɛ γ ) α = 1 sign(α)(δ αβ δ γα δ γ α δ αβ ) 2 α =sign(β)δ γβ Example S 2 (E) = sp(n, C) highest weight (2, 0 n 1 ) Example Λ p (E) 0 p n σ Λ p (E) = [p/2] k=0 σk Λ p 2k 0 (E), Λ p 0(E) = ker σ Λ p 0(E) highest weight (1 p, 0 n p ) Remark U(n) Λ p,q Example Λ k 0(E) Λ l 0(E) k l highest weight highest weight Λ k,l 0 (E) highest weight (2 k, 1 l k.0 n 1 ) Λ k 0(E) Λ l 0(E) highest weight vector v k, v l v k v l weight (2 k, 1 l k.0 n 1 ) = (1 k, 0 n k ) + (1 l, 0 n l ) 43

44 3.3.3 Sp(n) Sp(n) [3] Sp(n) (π ρ, V ρ ) weight π ρ weight lowest weight ρ Sp(n) Z n 2 lowest weight ρ weight ρ highest weight (π ρ, V ρ ) highest weight ρ Sp(n) (π ρ, V ρ ) (π ρ, V ρ ) (π ρ, V ρ ) Sp(n) V ρ V ρ V ρ V ρ Example E E E E E Sp(n) V ρ Hom Sp(n) (V ρ, Vρ ) Sp(n) V ρ Vρ V ρ Vρ Hom Sp(n)(V ρ, Vρ ) = Hom Sp(n) (V ρ, V ρ ) = C Sp(n) Ω Proof. Sp(n) Ω radical ker Ω = {φ Ω(φ, ψ) = 0, ψ V ρ } Sp(n) V ρ V ρ Ω Ω ± (φ, ψ) := Ω(φ, ψ) ± Ω(ψ, φ) Sp(n) Ω + Ω Sp(n) 1 Ω = Ω ± Sp(n) Ω ± V ρ V ρ Vρ V ρ Ω + V ρ Sp(n) J Ω Sp(n) 44

45 J h(jφ, Jψ) = h(ψ, φ) ψ, φ V ρ Sp(n) E E E J even E odd E Proposition Sp(n) (π ρ, V ρ ) ρ i 0 mod 2 Sp(n) J ρ i 1 mod 2 Sp(n) J V ρ h h(jφ, Jψ) = h(ψ, φ) compatible Sp(n) Spin(4n) Sp(n) SU(2n) Proposition F Sp(n) F i Spin(4n) Ad SO(4n) Spin(4n) Spin c (4n) Sp(n) Spin c (4n) sp(n, C) Cl 4n x αβ = ɛ α ɛ β sign(αβ)ɛ β ɛ α a αa β sign(αβ)a β a α Cl 4n sp(n) W SU(2n) W = 2n p=0λ 0,p Sp(n) SU(2n) SU(2n) Sp(n) Λ 0,p = Λ p (E) σ σ = 1 2 sign(α)a α a α 45

46 σ = 1 2 sign(α)aα a α σ [σ, σ ] = N n, [N n, σ] = 2σ, [N n, σ ] = 2σ X := σ, Y := σ, H := N n = [X, Y ] sl(2, C) Proof. [σ, a β ] = 1 2 sign(α)(a α a αa β a β a αa α) = 1 2 sign(α)(a α (δ β α a β a α) (δ βα a αa β )a α) = sign(β)a β [σ, σ ] = 1 sign(β)([σ, aβ ]a β + a β [σ, a β ]) 2 = 1 sign(β)( sign(β)a β 2 a β + sign(β)a β a β ) = N n Λ(E) := p Λ p (E) sl(2, C) ker σ lowest vector σ Λ(E) Λ(E) = n l=0σ l ker σ σ ker σ highest weight vector sl(2, C) Sp(n) Λ(E) = 2n p=0 n l=0 (σ l ker σ Λ p (E)) p n Λ p 0(E) := ker σ Λ p (E) Λ p (E) Λ p (E) = [p/2] k=0 σk Λ p 2k 0 (E) σ Λ p 0(E) ( ) ( ) ( ) 2n 2n 2n + 1 2n 2p + 2 = p p 2 p 2n p

47 a 1a 2 a p vac σ Λ p 0(E) Sp(n) highest weight vector weight (1 p, 0 n p ) Λ p 0(E) V (1p,0 n p ) Λ p 0(E) Weyl dim V (1p,0n p ) V (1p,0n p ) = Λ p 0(E) Remark Weyl Weyl [8] φ Λ p 2k 0 (E) σ φ = 0 (N n)φ = (p 2k n)φ = ((n p) + 2k)φ φ sl(2, C) lowest weight vector σ weight (n p + 2k) weight sl(2, C) highest weight vector weight σ φ σ σφ σ σ 2 φ σ σ σ n p+2k φ = σ n p+k σ k φ σ 0 σ n p Λ p (E) Λ 2n p (E) Sp(n) σ k Λ p 2k 0 (E) σ n p dim Λ p (E) = dim Λ 2n p (E) σ n p Λ p (E) = Λ 2n p (E) Λ 2n p (E) = [p/2] k=0 σn p+k Λ p 2k 0 (E) Proposition Sp(n) Λ (E) Λ p (E) = [p/2] k=0 σk Λ p 2k 0 (E), Λ 2n p (E) = [p/2] k=0 σn p+k Λ p 2k 0 (E) Remark Λ p (E) Λ 2n p (E) σ n φ Λ p (E), ψ Λ 2n p (E) φ ψ = φ, ψ σ n Λ p (E) (Λ 2n p (E)) Λ 2n p (E) Λ p 0(E) p = 0,, n n p k=0 σk Λ p 0(E) sl(2, C) highest weight n p dim Λ p 0(E) n p k=0 σk Λ p 0(E) = S n p ˆ Λ p 0(E) S n p sl(2, C) highest weight n p n p + 1 Proposition W = Λ(E) sl(2, C) sp(n) W = n p=0s n p ˆ Λ p 0(E) 47

48 3.4 SO(n) Spin(n) g = spin(n) g C [e k, e l ] 1. n = 2m g C {ω k = a k a k 1/2} m k=1 {a k a l} k<l {a k a l } k<l {a k a l } k<l {a k a l } k<l {a k a l} k<l, {a k a l } k<l 2. n = 2m + 1 g C {ω k = a k a k 1/2} m k=1 {a k a l} k<l {a k a l } k<l {a k a l } k<l {a k a l } k<l {a k b} m k=1 {a k b}m k=1 {a k a l} k<l, {a k a l } k<l, {a k b} k g a k = a k, a k = a k a k a l + a k a l 1(a k a l a k a l ) g h 1 h R := 1h = span R {ω 1,, ω m } g (π, V ) h π(h) h h R, V (λ), λ (h R ) weight λ = (λ 1,, λ m ) λ i ω i weight λ λ 1 = λ 2 = = λ k = 0, λ k+1 > 0 k weight λ, λ λ > λ λ λ > 0 48

49 weight highest weight ρ ρ dominant integral ρ = (ρ 1,, ρ m ) in Z m or (Z + 1/2) m ρ 1 ρ m 1 ρ m for n = 2m, ρ 1 ρ m 1 ρ m 0 for n = 2m + 1. ρ, highest weight ρ g (π ρ, V ρ ) highest weight ρ Remark ρ (Z + 1/2) m integral integral root ρ (Z + 1/2) m g SO(n) ρ Z m integral ρ Z m ρ (Z + 1/2) m integral or half-integral ρ Z m g SO(n) Ad : Spin(n) SO(n) ρ (Z + 1/2) m Ad SO(n) Example SO(n) Spin(n) (π Ad, R n C) SO(n). π Ad ([e i, e j ])a = [[e i, e j ], a]. (3.5) C n {a k } k {a k } k for n = 2m {a k } k {a k } k {b} for n = 2m + 1. n = 2m. [ω k, a i ] = δ ki a i [ω k, a i ] = δ kia i a i a i weight vector weight (0 i 1, 1, 0 m i ) (0 i 1, 1, 0 m i ). weight 1 highest weight vector a 1 highest weight (1, 0 m 1) Example q q S q 49

50 x 2 i S q Λ p,q H q R n q spin(n) spin(n) H q ([e k, e l ], f(x)) 4x k f x l + 4x l f x k H q. (3.6) highest weight vector z q 1 = x 1 q 1x 2 highest weight (q, 0 m 1 ) dim H q = (n + q 3)! (n + 2q 2). q!(n 2)! Example n = 2m Λ p Λ p := Λ p (R 2m ) C p Λ p = Cl 2m spin(2m) ad([e k, e l ])(φ) = [[e k, e l ], φ] for φ in Λ p 0 p m 1 Λ p Λ 2m p Λ p ( ) 2m p highest weight vector a 1 a p highest weight (1 p, 0 m p ) p = m Λ m Λ m + Λm 1 ( 2 2m m ) Λ m + resp. Λm highest weight vector a 1 a m highest weight (1 m ) resp. a 1 a m 1 a m with weight (1 m 1, 1) Λ p Cl 2m ω spin(2m) ω 2 = 1 e k ω = ωe k ω : Λ p Λ 2m p ω Λ m ±1 ω(a 1 a m) = a 1 a m Λm ± ω ±1 Remark n = 4 Λ 2 = Λ 2 + Λ 2 Remark Λ p Λ 2m p ω ω ω 2 = 1 Λ p Λ 2m p V (1) V ( 1) V (1), V ( 1) Remark n = 2m = 4k + 2 Λ m = Λ m + Λ m Example n = 2m+1 Λ p Λ p (R 2m+1 ) C ( 2m+1 ) p spin(2m+1) n = 2m 0 p m Λ p Λ 2m+1 p highest weight vector a 1 a p highest weight (1 p, 0 m p ) 50

51 3.4.3 SO(n) Λ p = Λ p (R n ) C Λ p (R n ) R n (R n ) Λ p (Λ p ) Sp(n) Λ p SO(n) Λ p (R n ) SO(n) n = 2m Λ m ω Hodge : Λ p (R n ) Λ n p (R n ) 2 = ( 1) p(n p) n = 2m Λ m (R 2m ) Λ m (R 2m ) 2 = ( 1) m n = 2m = 4l 2 = 1 n = 2m = 4l = 1 n = 4l Λ 2l (R 4l ) Λ 2l ± Λ2l ± = (Λ 2l ±) n = 4l + 2 Λ 2l+1 (R 4l+2 ) Λ 2l+1 ± (Λ± 2l+1 ) Λ 2l+1 ± SO(n) Λ 2l+1 ± (Λ 2l+1 ) Λ 2l+1 Λ 2l+1 ± Spin(n) Sp(n) n = 2m + 1 2m+1 highest weight ((1/2) m ) weight ±1/2 weight highest weight ((1/2) m ) 2m+1 ( 2m+1 ) n = 2m ± highest weight ((1/2) m 1, ±1/2) weight 1/2, 1/2 weight 1. n = 4l ± 4l weight 1/2, 1/2 2l + 4l weight 1/2 1/2 weight weight 1/2 1/2 highest weight ((1/2) 2l ) + 4l ( + 4l ) 4l weight 1/2 1/2 4l ( 4l ) 51

52 2. n = 4l l+2 weight 1/2 1/2 highest weight 1/2 2l + 1 weight weight 1/2 1/2 highest weight ((1/2) 2l, 1/2) ( ± 4l+2 ) 4l+2 ± 4l+2 Remark highest weight Sp(n) SO(n) 1. n = 2m W W = m!2 m 1 2. n = 2m + 1 W W = m!2 m Proposition n = 2m + 1 2m+1 2m+1 2. n = 2m 2m 2m (a) n = 4l ± 4l ( ± 4l ). (b) n = 4l + 2 ± 4l+2 ( 4l+2 ). Cl n = Cl n,0 Cl 1 = C, Cl 2 = H, Cl 3 = H H, Cl 4 = H(2) Cl 5 = C(4) Cl 6 = R(8) Cl 7 = R(8) R(8) Cl 8 = R(16) 1. n = 8k + 2 8k+2 J : ± 8k+2 8k+2 2. n = 8k + 3 8k+3 3. n = 8k + 4 8k+4 n = 8k + 3 ± 8k+4 52

53 4. n = 8k + 6 8k+6 J : ± 8k+6 8k+6 5. n = 8k + 7 8k+7 6. n = 8k 8k+8 ± 8k+8 n = 8k + 1, 8k + 5 Cl 0,n Cl 0,1 = R R, Cl 0,2 = R(2), Cl 0,3 = C(2), Cl 0,4 = H(2) Cl 0,5 = H(2) H(2) Cl 0,6 = H(4) Cl 0,7 = C(8) Cl 0,8 = R(16) Cl 0,n Spin(n) Cl 0,n Cl n = Cl n,0 C R 0,n {e i} i Cl n = Cl n C e i 1e i Cl n,0 C = Cl n Cl n,0 v R n Cl n,0 J J(e i φ) = J( 1e i φ) = 1e ij(φ) = e i J(φ) 1. n = 8k + 1 8k+1 2. n = 8k + 2 8k+2 3. n = 8k + 4 8k+4 4. n = 8k + 5 8k+5 5. n = 8k + 6 8k+6 6. n = 8k + 8 8k+8 53 Cl 0,n

54 Remark Cl n,0 n = 8k+6, 8k+5 ± 8k+6 ± 8k+6 Cl0 n Cl n 1 e 1 e 2 e 1 e n Remark Cl r,s e 1,, e r e r+1,.e r+s e 1 e r+1 Proposition n = 8k + 1 8k+1 2. n = 8k + 2 8k+2 ± 8k+2 3. n = 8k + 3 8k+3 4. n = 8k + 4 8k+4 ± 8k+4 5. n = 8k + 5 8k+5 6. n = 8k + 6 8k+6 ± 8k+6 7. n = 8k + 7 8k+7 8. n = 8k 8k+8 ± 8k+8 54

55 Example n = 2 2 = = C C U(1) = Spin(2) e iθ (z, w) = (e iθ z, e iθ w) (z, w) ( w, z) (z, w) ( w, U(1) ± 2 V V Ω ± (e + f, e + f ) = f (e) ± f(e ) Ω T M Example u(n) spin(2n) W = W p Ω 1(2p m) Ω φ p W p ΩJφ = JΩφ = 1(2p n)jφ = 1(2(n p) p)jφ u(n) J : W p W n p u(n) spin c (n) u(n) u(n) n = 8k + 2 ± 8k+2, + 8k+2 8k+2 Λ2k 1. n = 2m Λ p = (1 p, 0 m p ) 1 p m 2, ± 2m = ((1/2) m 1, ±1/2) highest weight m 2 ρ = ( n p Λ p ) + k + + 2m + k 2m, p=1 n p, k ± Z 0 (1 m 1, 1) = 2 2m highest weight ρ m 2 ( n p Λ p ) ( k+ + 2m) ( k 2m) p=1 55

56 top highest weight { ρ n = 4l ( m 2 p=1 n pλ p ) + k + 2m + k + 2m n = 4l + 2 n = 4l n = 4l+2 k + = k 2l 1 ρ = ( n p Λ p ) + k( + 4l+2 + 4l+2 ) p=1 ρ Z 2l+1 SO(4l + 2) 2. n = 2m + 1 Λ p = (1 p, 0 m p ) 1 p m 1, 2m+1 = ((1/2) m ) highest weight ρ Proof. ρ ρ lowest weight Weyl W highest weight weight highest weight loweset weight W w 0 W ρ = w 0 (ρ) w 0 root positve root Φ + w 0 (Φ + ) = Φ + n = 2m + 1 (ρ 1,, ρ n ) (ρ 1,, ρ n ) w 0 V ρ Vρ 1. n (a) n = 4l + 2 V ρ Vρ 2l 1 ρ = ( n p Λ p ) + k( + 4l+2 + 4l+2 ) p=1 56

57 + 4l+2 + 4l+2 = Λ2l = (1 2l, 0) Λ p n p Λ p ) k(λ 2l ) 2l 1 ( p=1 top V ρ Remark top highest weight v i highest weight vector v ρ v i, v i = 0 v ρ, v ρ = 0 (b) n = 8l V ρ (c) n = 8l + 4 ρ = ( p=1 n p Λ p ) + k + + 8l+4 + k 8l+4, n p, k ± Z 0 k + +k SO(8l+4) 2. n (a) n = 2m + 1 = 8l + 1, 8l + 7 V ρ (b) n = 8k + 3, 8k + 5 ρ m 1 ρ = ( n p Λ p ) + k 2m+1 p=1 k SO(2m + 1) Remark

58 3.4.4 Cl 2m grading Λ Z 2 Cl 2m Cl 2m (φ, v) v φ t Cl 2m (e i1 e i2 e ik ) t = e ik e i2 e i1 Cl 2m = W 2m W2m = Hom(W 2m, W 2m ) W 2m Cl 2m = C(2 m ) W 2m W2m W 2m Cl 2m Cl 2m W 2m W2m (Cl 2m Cl 2m ) Cl 2m (φ 1 φ 2, v) φ 1 vφ t 2 Cl 2m. ( 2m ) ( 2m ) = ( 2m ) 2m = 2(Λ 0 + Λ 1 + Λ 2 + Λ m 1 ) + Λ m + + Λ m Remark Cl 2m Cl2m 0 Cl2m 1 Λ even Λ odd ω Λ ±1 even-odd Λ p Λ 2m p ω ω 2 = 1 Λ p Λ 2m p = V (1) V ( 1) W 2m W2m W 2m ±1 Cl 2m = ( + 2m 2m) 2m = ( + 2m 2m ) ( 2m 2m ) + 2m 2m + 2m + 2m top (1 m ) = 2 ((1/2) m ) highest weight Λ m + 2m 2m Λ m even-odd α : Cl 2n Cl 2n ±1 ω Cl 2n φ ωφω t = ωφω Cl 2n α 58

59 Proof. ω 2 = 1 n = 2m ωe i = e i ω ωe i ω = ωωe i = e i, ωe i e j ω = ωωe i e j = e i e j α even-odd W 2m W2m ω W 2m W2m W 2m W 2m Z 2 -grading m 1. n = 4l ± 4l ( ± 4l ) Cl 4l = ( + 4l 4l ) ( + 4l 4l ) = {( + 4l + 4l ) ( 4l 4l )} {( + 4l 4l ) ( 4l + 4l )} = Cl 0 4l Cl 1 4l highest weight Cl4l 0 = ( + 4l + 4l ) ( 4l 4l ) Λ 2l +, Λ 2l 2. n = 4l + 2 4l+2 ( ± 4l+2 ) Cl 4l+2 = ( + 4l+2 4l+2 ) (( + 4l+2 ) ( 4l+2 ) ) = {( + 4l+2 ( + 4l+2 ) ) ( 4l+2 ( 4l+2 ) )} {( + 4l+2 ( 4l+2 ) ) ( 4l+2 ( + 4l+2 ) )} = {( + 4l+2 4l+2 ) ( 4l+2 + 4l+2 )} {( + 4l+2 + 4l+2 ) ( 4l+2 4l+2 )} = Cl 0 4l+2 Cl 1 4l+2 Cl4l+2 1 = ( + 4l+2 + 4l+2 ) ( 4l+2 4l+2 ) Λ2l+1 +, Λ 2l U(n) Spin(n), Sp(n) U(n) SU(n) U(n) U(n) V ρ highest weight ( ρ n, ρ n 1,, ρ 1 ) 59

60 ρ n = ρ 1, ρ n 1 = ρ 2,, Proposition V ρ U(n) 1. n = 2m highest weight ρ (λ 1, λ 2,, λ m 1, λ m, λ m, λ m 1,, λ 1 ) V ρ Vρ 2. n = 2m + 1 highest weight ρ (λ 1, λ 2,, λ m 1, λ m, 0, λ m, λ m 1,, λ 1 ) V ρ Vρ Λ 0,p (1 p, 0 n p ) highest weight top Λ 0,p = (1 p, 0 n p ) n 1 ρ = (ρ 1,, ρ n ) = (ρ p ρ p+1 )Λ 0,p + ρ n Λ 0,n p=1 ρ p ρ p+1 Z 0 ρ n Z Λ 0,p Λ n,0 (Λ 0,n p ) (Λ 0,p Λ n,0 Λ 0,n p ) (Λ 0,p Λ n,0 Λ 0,n p ) (Λ 0,p Λ n,0 Λ 0,n p ) Λ 0,p + Λ n,0 + Λ 0,n p highest weight Proof. V V (V V ) (V V ) = V V V V V V V V Ω((e 1 + f 1 ) (e 2 + f 2 ), (e 3 + f 3 ) (e 4 + f 4 )) = (f 1 (e 3 ) ± f 3 (e 1 ))(f 2 (e 4 ) ± f 4 (e 4 )) V V V V Ω(f 1 e 2, e 3 f 4 ) = ±f 1 (e 3 )(f 4 (e 4 )) top 60

61 n = 2m V ρ Vρ highest weight ρ =(λ 1 λ 2 )Λ 0,1 + + (λ m 1 λ m )Λ 0,m 1 + 2λ m Λ 0,m + (λ m 1 λ m )Λ 0,m+1 + (λ m 2 λ m 1 )Λ 0,m (λ 1 λ 2 )Λ 0,2m 1 λ 1 Λ 0,2m =(λ 1 λ 2 )Λ 0,1 + + (λ m 1 λ m )Λ 0,m 1 + 2λ m Λ 0,m + (λ m 1 λ m )Λ 0,m+1 + (λ m 2 λ m 1 )Λ 0,m (λ 1 λ 2 )Λ 0,2m 1 + {(λ 1 λ 2 ) + (λ 2 λ 3 ) + + (λ m 1 λ m ) + λ m }Λ 2m,0 =(λ 1 λ 2 )(Λ 0,1 + Λ 2m,0 + Λ 0,2m 1 ) + + λ m (Λ 0,m + Λ 2m,0 + Λ 0,m ) V ρ n = 2m + 1 ρ =(λ 1 λ 2 )Λ 0,1 + + (λ m 1 λ m )Λ 0,m 1 + λ m Λ 0,m + λ m Λ 0,m+1 + (λ m 1 λ m )Λ 0,m+2 + (λ m 2 λ m 1 )Λ 0,m (λ 1 λ 2 )Λ 0,2m λ 1 Λ 0,2m+1 =(λ 1 λ 2 )Λ 0,1 + + (λ m 1 λ m )Λ 0,m 1 + λ m Λ 0,m + λ m Λ 0,m+1 + (λ m 1 λ m )Λ 0,m+2 + (λ m 2 λ m 1 )Λ 0,m (λ 1 λ 2 )Λ 0,2m {(λ 1 λ 2 ) + (λ 2 λ 3 ) + + (λ m 1 λ m ) + λ m }Λ 0,2m+1 V ρ SU(n) U(n) SU(n) Λ 0,p (Λ 0,n p ) φ Λ 0,p, ψ Λ 0,n p φ ψ = φ, ψ ɛ 1 ɛ n Λ 0,p Λ 0,n p pairing SU(n) U(n) n = 2m Λ 0,m (Λ 0,m ) n = 4m Λ 0,2m n = 4m + 2 Λ 0,2m+1 U(n) Example SU(2) Λ 0,1 = H U(2) U(2) with highest weight (k, k) SU(2) highest weight (2k) S 2k (H) 61

62 3.5 Sp(n)Sp(1) Sp(n)Sp(1) SO(4n) Sp(n)Sp(1) Sp(n)Sp(1) := (Sp(1) Sp(n))/Z 2 Sp(n)Sp(1) U(n) Sp(n) ±1 (1, 1), ( 1, 1) Z 2 semi-quternionic structure ( [4] V End(V ) R Q id Q R Q H Example R 4n = H n H H End(V ) H n v v q H n, q H (H n, Q = H) Example H n q H p o Sp(1) H n x xp 0 qp 1 0 = xp 0 qp 1 0 H n p 0 Hp 1 0 = H End(V ) p 0 idp 1 0 = id p 0 Hp 1 0 p 0Hp 1 0 H (H n, p 0 Hp 1 0 ) Q H (V, Q) f : V V f Q : Q Q f(qv) = f Q (q)f(v) Remark f Q : Q Q f id : Q Q f : V V f(qv) = qf(v) (V, Q) Q H Q = H g : H H H R R1 H g(a1) = ag(1) = a a R IH = R 3 SO(3) 62

63 Sp(1) = SU(2) SO(3) g : H H p Sp(1) g : H q g(q) = pqp 1 H (V, Q) (H n, H) f p Sp(1) f(v q) = f(v)p qp 1 f (v) := f(v)p f (v q) = f(v q)p = f(v)p qp 1 p = f(v)p q = f (v) q f A gl(n, H) f (v) = Av (H n, H) f(v) = Avp 1 GL(n, H)Sp(1) (V, Q) Q q Q qu, v = u, qv Q H Q = R IQ q Remark Iu, Iv = u, v, Ju, Jv = u, v, Ku, Kv = u, v q H qu, v = u, qv Sp(n)Sp(1) Proposition (V, Q,, ) Sp(n)Sp(1) E H formulation (V, Q,, ) Sp(n), Sp(1) (V, Q,, ) Sp(n) (E, σ E, J) E 2n σ E J compatible σ E (ɛ, ɛ ) = σ E (Jɛ, Jɛ ), σ(ɛ, Jɛ) > 0, ɛ 0 {ɛ α α = ±1,, ±n} (H, σ H, J) Sp(1) {h A A = ±} 63

64 E H 4n Sp(n)Sp(1) 1. J J (E H) R J(ɛ α h A ) = sign(αa)ɛ α h A ɛ α h A / (E H) R 2. σ E σ H (E H) R (σ E σ H )(ɛ α h A, ɛ β h B ) = sign(αa)δ α, β δ A, B 3. h E (ɛ, ɛ ) = σ E (ɛ, Jɛ ) E H h H E H h := h H h E h(ɛ α h A, ɛ β h B ) = (σ E σ H )(ɛ α h A, J(ɛ β h B )) =sign(βb)(σ E σ H )(ɛ α h A, ɛ β h B )) = δ α,β δ A,B {ɛ α h A } Sp(n)Sp(1) E H (V, Q,, ) Proposition (V, Q,, ) E H σ E σ H Remark E, H Salamon E H- formulation [4],[7] Proof. E H 2n 2 (z, w) E, (α, β) H (z, w) ( w, z), (α, β) ( β, ᾱ) ( ) zα zβ (z, w) (α, β) = wα wβ E H 2n 2 z, w n ( ) ( zα zβ w β ) wᾱ wα wβ z β zᾱ 64

65 E H ( ) z 1 z 2 w 1 w 2 ( ) ( ) z 1 z 2 w 2 w 1 w 1 w 2 z 2 z 1 ( ) z w w z z +jw H n (E H) R = H n E H = H n R C Sp(n)Sp(1) A+jB Sp(n) GL(n, H), α+jβ Sp(1) GL(n, H) (z + jw)(ᾱ βj) = (zᾱ + wβ) + j( zβ + wᾱ) ( ) ( z w A B ) ( ) ( z w ᾱ w z B Ā w z β ) β α Sp(n)Sp(1) (E H) R = H n E, H σ E ((z, w), (z, w )) = zw wz z t w w t z compatible σ E (( w, z), ( w, z )) = w z + z w = σ E ((z, w), (z, w )) σ E ((z, w), ( w, z)) = z z + w w > 0 (z, w) (0, 0) σ E σ H (σ E σ H )((z, w) (α, β), (z, w ) (α, β )) =(zw wz )(αβ βα ) =(zα)(w β ) (zβ)(w α ) (wα)(z β ) + (wβ)(z α ) 65

66 E H ( ) ( ) z 1 z 2 z 1 z 2 (σ E σ H )(, ) w 1 w 2 w 1 w 2 =z 1 w 2 + w 2 z 1 z 2 w 1 w 1 z 2 ( ) ( ) z 1 z 2 z 1 z 2 (σ E σ H )(, ) w 1 w 2 w 1 w 2 =2(z 1 w 2 z 2 w 1 ) ( ) ( ) z w z w (σ E σ H )(, ) w z w z =z z + zz + ww + w w H n sp(n) sp(1) Sp(n)Sp(1) ɛ α h A (E H) R (ɛ α h A )(ɛ β h B ) + (ɛ β h B )(ɛ α h A ) = 2sign(αA)δ α β δ A B a α = 1 2 ɛ α h +, a α = 1 2 sign(α)ɛ α h [a α, a β ] + = 0, [a α, a β ] + = 0 [a α, a β ] + = a αa β + a β a α = 1/2{(ɛ α h + )(sign(β)ɛ β h ) + (sign(β)ɛ β h )(ɛ α h + )} = δ αβ 1 J(a α) = sign(α)ɛ α h = a α, J(a α ) = sign(α)sign( α)ɛ α h + = a α 66

67 a α, a α Cl 4n spin(4n, C) sp(n, C) sp(1, C) spin(4n, C) sp(n, C) x αβ a αa β sign(αβ)a β a α = a β a α + sign(αβ)a α a β x αβ (ɛ γ ) = δ βγ ɛ α + sign(γβ)δ αγ ɛ β 1 [a αa β sign(αβ)a β a α, ɛ γ h ] 2 =[a αa β sign(αβ)a β a α, sign(γ)a γ ] =[ a β a α + sign(αβ)a α a β, sign(γ)a γ] = δ αγ sign(γ)a β sign(α)δ βγ a α 1 1 = δ αγ sign(γ) sign(β)ɛ β h + δ βγ ɛ α h = (δ β γ ɛ α + δ α γ sign( γβ)ɛ β ) h 2 x αβ spin(4n, C) Cl 4n ad E H E [a αa β sign(αβ)a β a α, a γ] sp(1, C) {y AB A + B 0, A, B = ±1} y AB (h C ) = δ BC h A + sign(bc)δ AC h B y ++ (h + ) = h +, y ++ (h ) = h y ++ = y y + (h + ) = 0, y + (h ) = 2h + y + (h + ) = 2h, y + (h ) = 0, [y +, y + ] = 4y ++, [y ++, y + ] = 2y +, [y ++, y + ] = 2y + y + sign(α)a αa α = 2σ y + sign(α)a α a α = 2σ y ++ a αa α n = N n = [σ, σ ] 67

68 [ sign(α)a αa α, 1 2 sign(β)ɛ β h ] = [ sign(α)a αa α, a β ] = sign(α)( δ αβ a α + δ αβ a α) = 2sign(β)a β 1 = sign(β)ɛ β 2h + 2 [ sign(α)a α a α, 1 = ɛ β 2h ɛ β h + ] = [ sign(α)a α a α, a β ] = 2sign(β)a β sp(1, C) spin(4n, C) ad H sp(n) sp(1) spin(4n) Proof. sp(1) 1y++, y + y +, 1(y + + y + ), 1( a α a α n), 2(σ σ), 2 1(σ + σ) spin(4n) Sp(n)Sp(1) Sp(n)Sp(1) Sp(n)Sp(1) Sp(1) Sp(n) 0 Z 2 Sp(1) Sp(n) Sp(n)Sp(1) 1 π 1 (Sp(n)Sp(1)) = Z 2 Proposition F n n Sp(n)Sp(1) F i Spin(4n) Ad SO(4n) 68

69 Proof. i (π 1 (Sp(n)Sp(1))) π 1 (Sp(n)Sp(1)) Sp(1) SU(2), Sp(n) SU(2n) ( ) ( ) e it I 0 e it 0 γ(t) = Sp(n)Sp(1), 0 t π 0 e it I 0 e it γ(t) = ( e it I 0 0 e it I ) ( e it 0 0 e it ) Sp(n) Sp(1) 0 t π γ(π) = ( 1)( 1) = 1 π 1 (Sp(n)Sp(1)) γ(π) = ( 1, 1) γ(t) γ(t) γ(t) SO(4n) ( ) ( e it I 0 z 0 e it I w ) ( ) w e it 0 z 0 e it SO(4n) I 2n ( 0 ) i (γ(t)) = cos 2t sin 2t 0 sin 2t cos 2t ( z e = 2it ) w e 2it w z [γγ ] = [γ][γ ] I 0 ( ) cos 2t sin 2t 0 sin 2t cos 2t β = 1 Z 2 = π 1 (SO(4n)) [i γ(t)] = nβ n i (π 1 (Sp(n)Sp(1))) = 0 n i (π 1 (Sp(n)Sp(1))) = Z 2 Remark n Sp(n)Sp(1) Sp(n) Sp(1) w 2 (S 2 (H) R ) = 0 see [7] S 2 (H) S 2 (H) R w 2 (M) = nw 2 (S 2 (H) R ) { 0 n = even w 2 (M) = w 2 (S 2 (H) R ) n = odd n w 2 (S 2 (H) R ) = 0 w 2 (M) = 0 n w 2 (M) = 0 w 2 (S 2 (H) R ) = 0 n n 69 I n

70 sp(n) sp(1) n Sp(n)Sp(1) Sp(n) Sp(1) Proposition Spin(4n) SO(4n) Sp(n) Sp(1) Sp(n)Sp(1) F Sp(n) Sp(1) Sp(n)Sp(1) F i Spin(4n) Ad SO(4n) F ( 1, 1) = ( 1) n Proof. Sp(n) Sp(1) Sp(n)Sp(1) i SO(4n) Lemma 3.1 F ( 1, 1) = ( 1) n n F Sp(n)Sp(1) F ( 1, 1) = 1 n F ( 1, 1) = ±1 F ( 1, 1) = 1 Sp(n)Sp(1) F ( 1, 1) = 1 n F G = exp sp(n) sp(1) Spin(4n) Spin(4n) G exp spin(4n) sp(n) sp(1) Ad Sp(n)Sp(1) SO(4n) exp ad sp(n) sp(1) so(4n) U(n) Ad G Sp(n)Sp(1) G G Sp(n)Sp(1) Sp(n) Sp(1) sp(n) sp(1) 1(a α a α a αa α ) (α = ±1,, ±n), 1( a αa α n) T 1( 2a k a k n) 1 k n α 70

71 exp(π2 1( n a k a k n/2)) = exp(π e 2k 1 e 2k ) k=1 =(cos π + e 1 e 2 sin π) (cos π + e 2n 1 e 2n sin π) = ( 1) n n 1 G G Sp(n)Sp(1) Sp(n) Sp(1) n U(n) Spin c (2n) T = exp T gtg 1 1 G 1 exp T (cos t 1 + e 1 e 2 sin t 1 )(cos t 1 e 2n+1 e 2n+2 sin t 1 ) (cos t n + e 2n 1 e 2n sin t n )(cos t n e 4n 1 e 4n sin t n ) (cos s + e 1 e 2 sin s) (cos s + e 2n 1 e 2n sin s) =(cos(t 1 + s) + e 1 e 2 sin(t 1 + s))(cos t 1 e 2n+1 e 2n+2 sin t 1 ) = 1 (cos(t n + s) + e 2n 1 e 2n sin(t n + s))(cos t n e 4n 1 e 4n sin t n ) t 1 + s = ±π, t 2 + s = ±π,, t n + s = ±π, t 1 = ±π,, t n = ±π 1 1 / G Proposition sp(n) sp(1) { Sp(n)Sp(1) Spin(4n) n = even exp sp(n) sp(1) = Sp(n) Sp(1) Spin(4n) n = odd Sp(n)Sp(1) Spin c (4n) n = even Spin(4n) Spin c (4n) n = odd n = odd Sp(n)Sp(1) F i Spin c (4n) Ad SO(4n) F F F F : π 1 (Sp(n)Sp(1)) = Z 2 π 1 (Spin c (4n)) = Z Hom Z (Z/nZ, Z) = 0 F = 0 n i = id Ad F = i = 0 71

72 Remark sp(1) 1( a α a α n), 2(σ σ), 2 1(σ + σ) U(n) shift 1 a α a α E H sp(1) U(n) Spin c (2n) Proposition F n n Sp(n)Sp(1) F i Spin c (4n) Ad SO(4n) Remark Sp(1)Sp(1) Sp(n)Sp(1) Sp(n) Sp(1) = SU(2) H Sp(1) k Z 0 k V k := S k (H) k + 1 spin-k/2 highest weight k Sp(1) H S even (H) S odd (H) Sp(n) Sp(1) Sp(n) (π ρ, V ρ ) Sp(1) (π k, V k ) V ρ V k V ρ ρ i = odd ρ i = even ρ = (ρ 1,, ρ n ) Proposition Sp(n) Sp(1) V ρ V k 1. k + ρ i = even 2. k + ρ i = odd 72

73 Sp(n)Sp(1) Sp(n) ±1 π( 1)π( 1) = id π( 1) = ±id E π( 1) = id E id id ρ i = even id ρ i = odd id Lemma Sp(n) V ρ 1. ρ i = even π ρ ( 1) = id 2. ρ i = odd π ρ ( 1) = id Proposition Sp(n) Sp(1) V ρ V k 1. k + ρ i = even Sp(n)Sp(1) 2. k + ρ i = odd Sp(n)Sp(1) Sp(n)Sp(1) Spin(4n) Sp(n)Sp(1) Sp(n) Sp(1) W Sp(n) sl(2, C) σ, σ, N n sp(1, C) 3.18 Proposition W Sp(n) Sp(1) n = odd Sp(n)Sp(1) n = even : W = n p=0v (1p,0 n p ) V n p = n p=0λ p 0(E) S n p (H) Kraines subsection Sp(n)Sp(1) Kraines 4-from 73

74 Sp(n)Sp(1) Kraines Sp(n) E, Sp(1) H E, H {ɛ α } α, {h A } A {ɛ α h A } α,a E H E H Lemma V W Λ 2 (V W ) = (Λ 2 (V ) S 2 (W )) (S 2 (V ) Λ 2 (W )) Proof. (v 1 w 1 ) (v 2 w 2 ) = 1 2 {(v 1 w 1 ) (v 2 w 2 ) (v 2 w 2 ) (v 1 w 1 )} = 1 2 (v 1 v 2 ) (w 1 w 2 ) 1 2 (v 2 v 1 ) (w 2 w 1 ) =1/4((v 1 v 2 ) + (v 2 v 1 )) ((w 1 w 2 ) (w 2 w 1 )) + 1/4((v 1 v 2 ) (v 2 v 1 )) ((w 1 w 2 ) + (w 2 w 1 )) =(v 1 v 2 ) (w 1 w 2 ) + (v 1 v 2 ) (w 1 w 2 ) [1] Λ 2 (E H) Λ 2 (E H) = Λ 2 (E) S 2 (H) S 2 (E) Λ 2 (H) =(Λ 2 0(E) S 2 (H)) (C(σ E ) S 2 (H)) S 2 (E) C(σ H ) Λ 2 (E H) S 2 (H) = sp(1, C) S 2 (H) = sp(1, C) {y ++, y +, y + } y ++ = h + h = y, y + = h + h +, y + = h h sp(1, C) Sp(1) C 2 = y AB y BA = y ++ y ++ + y + y + + y y + y + y + = 2(y ++ y ++ + y + y + ) S p (H) AB π p(y A B)π p (y BA ) 74

75 highest weight vector 2p(p + 2) Λ 2 (E H) 1 sign(α)(ɛα h + ) (ɛ α h + ) 2 = 1 2 sign(α){(ɛα ɛ α ) (h + h + ) + (ɛ α ɛ α ) (h + h + )} = 1 2 (sign(α)ɛα ɛ α ) (h + h + ) =σ E y sign(α)(ɛα h ) (ɛ α h ) = 1 2 (sign(α)ɛα ɛ α ) (h h ) =σ E y sign(α)(ɛα h + ) (ɛ α h ) = 1 2 sign(α)(ɛα ɛ α ) (h + h ) + (sign(α)ɛ α ɛ α ) (h + h ) = 1 2 sign( α)(ɛ α ɛ α ) (h + h ) + (sign(α)ɛ α ɛ α ) (h + h ) = 1 2 sign(α)(ɛα ɛ α ) (h + h ) =σ E y ++ = σ E y σ E = 1/2 sign(α)ɛ α ɛ α E Sp(n) sp(1, C) = C(σ E ) S 2 (H) Λ 2 (E H) 2-form Sp(n)Sp(1) 4-from sp(1, C) (σ E y + ) (σ E y + ) + (σ E y + ) (σ E y + ) + 2(σ E y ++ ) (σ E y ++ ) Sp(n) Sp(1) Remark form 4-form 4-from Ω := 2(σ E y + ) (σ E y + ) + 2(σ E y ++ ) (σ E y ++ ) Kraines Sp(n)Sp(1) Proof. J(ɛ α ) = sign(α)ɛ α, J(h A ) = sign(a)h A J(σ E ) = 1/2 sign(α)j(ɛ α ) J(ɛ α ) = 1/2 sign(α)ɛ α ɛ α = σ E 75

76 σ E J(y AB ) = J( sign(b)h A h B ) = sign(a)h A h B = y BA Kraines Λ p 0(E) S n p (H) Kraines v α,a = ɛ α h A v α,a v β,b + v β,b v α,a = 2g(v α,a, v β,b ) = 2sign(αA)δ α β δ A B 2-form (σ E y + ) = ( 1 sign(α)vα,+ v α,+ ) = 1 sign(α)vα,+ v α,+ = 2σ 2 2 (σ E y + ) = ( 1 sign(α)vα, v α, ) = 1 sign(α)vα, v α, = 2σ 2 2 (σ E y ++ ) =( 1 2 sign(α)vα,+ v α, ) = 1 sign(α)vα,+ v α, 1 sign(α)i(vα,+ )v α, 2 2 = 1 sign(α)vα,+ v α, 1 sign(α)sign(α) 2 2 = 1 sign(α)vα,+ v α, n = N n = [σ, σ ] 2 2-from 4-form (v β, v β, v α,+ v α,+ ) =v β, (v β, v α,+ v α,+ ) +(i(v β, )(v β, v α,+ v α,+ )) =v β, v β, (v α,+ v α,+ ) +v β, (i(v β, )(v α,+ v α,+ )) + sign(β)δ β α (v β, v α,+ ) sign(β)δ βα (v β, v α,+ ) =v β, v β, (v α,+ v α,+ ) +v β, (sign(β)δ βα v α,+ sign(β)δ β α v α,+ ) + sign(β)δ β α (v β, v α,+ ) sign(β)δ βα (v β, v α,+ ) 76

77 {(σ E y + ) (σ E y + )} = 1/4 sign(αβ)(v β, v β, v α,+ v α,+ ) = 1/4 sign(αβ){v β, v β, (v α,+ v α,+ ) +v β, (sign(β)δ βα v α,+ sign(β)δ β α v α,+ ) + sign(β)δ β α (v β, v α,+ ) sign(β)δ βα (v β, v α,+ ) } =4σ σ + 1/4 v β, ( sign(β)v β,+ sign(β)v β,+ ) + 1/4 sign(α)(v α, v α,+ ) +1/4 sign(α)(v α, v α,+ ) =4σ σ 1/2 sign(β)v β, v β,+ 1/2 sign(β)(v β, v β,+ ) =4σ σ + 1/2 sign(β)v β, v β,+ 1/2 sign(β)(v β,+ v β, ) =4σ σ 1/2 sign(β)v β,+ v β, 2n 1/2 sign(β)(v β,+ v β, ) =4σ σ + (N 2n) + (N n) = 4σ σ + 2N 3n =4σσ 4[σ, σ ] + 2N 3n = 4σσ 4N + 4n + 2N 3n = 4σσ 2N + n (v β,+ v β, v α,+ v α, ) =v β,+ (v β, v α,+ v α, ) +(i(v β,+ )(v β, v α,+ v α, )) =v β,+ v β, (v α,+ v α, ) +v β,+ (i(v β, )(v α,+ v α, )) + sign(β)(v α,+ v α, ) +sign(β)δ βα (v β, v α,+ ) =v β,+ v β, (v α,+ v α, ) +sign(β)δ βα v β,+ v α, + sign(β)(v α,+ v α, ) +sign(β)δ βα (v β, v α,+ ) {(σ E y ++ ) (σ E y ++ )} = 1 sign(αβ)(vβ,+ v β, v α,+ v α, ) 4 = 1 sign(αβ){vβ,+ v β, (v α,+ v α, ) +sign(β)δ βα v β,+ v α, 4 + sign(β)(v α,+ v α, ) +sign(β)δ βα (v β, v α,+ ) } =N(N n) + 1 sign(α)δβα v β,+ v α, + 1 sign(α)((v α,+ v α, ) +δ βα (v β, v α,+ )) 4 4 =N(N n) + 1 sign(β)vβ,+ v β, 4 + n 1 sign(α)(v α,+ v α, ) 1 sign(α)(v α,+ v α, ) 2 4 α =N(N n) 1 2 N n(n n) (N n) = (N n)2 n/2 αβ αβ 77

78 Kraines Ω = 2(N n) 2 n + 2(4σσ 2N + n) = 2(N n)(n n 2) 3n + 8σσ Λ n p 0 (E) S p (H) 0 (E) n p σ sp(1, C) lowest weight vector σ Λ n p 0 (E) S p (H) Λ n p 0 (E) σ σλ n p 0 (E) σ σ σ p Λ n p 0 (E) σ 0 Kraines φ Λ n p 0 (E) Ω φ = (2p(p + 2) 3n)φ σφ σ σφ n p + 2 Ω(σφ) = 2( p + 2)( p)σφ 3n + 8σσ σφ =2p(p 2)σφ 3n + 8σ[σ, σ]φ =2p(p 4)σφ 3n + 8σ(n N)φ =2p(p 2)σφ 3n + 8pσφ = (2p(p + 2) 3n)σφ 0 (E) S p (H) Ω 2p(p + 2) 3n 2p(p + 2) Λ n p Λ n p Remark Ω Kraines Sp(n)Sp(1) E H Λ (E H) Λ = Cl 4n = W 4n W4n ( p Λ p 0(E) S n p (H)) ( q Λ q 0(E) S n q (H)) S n p (H) S n q (H) Λ p 0(E) Λ q 0(E) Λ p 0(E) Λ q 0(E) = a,b Λ a,b 0 (E) 78

Dynkin Serre Weyl

Dynkin Serre Weyl Dynkin Naoya Enomoto 2003.3. paper Dynkin Introduction Dynkin Lie Lie paper 1 0 Introduction 3 I ( ) Lie Dynkin 4 1 ( ) Lie 4 1.1 Lie ( )................................ 4 1.2 Killing form...........................................

More information

SO(2)

SO(2) TOP URL http://amonphys.web.fc2.com/ 1 12 3 12.1.................................. 3 12.2.......................... 4 12.3............................. 5 12.4 SO(2).................................. 6

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

SO(3) 49 u = Ru (6.9), i u iv i = i u iv i (C ) π π : G Hom(V, V ) : g D(g). π : R 3 V : i 1. : u u = u 1 u 2 u 3 (6.10) 6.2 i R α (1) = 0 cos α

SO(3) 49 u = Ru (6.9), i u iv i = i u iv i (C ) π π : G Hom(V, V ) : g D(g). π : R 3 V : i 1. : u u = u 1 u 2 u 3 (6.10) 6.2 i R α (1) = 0 cos α SO(3) 48 6 SO(3) t 6.1 u, v u = u 1 1 + u 2 2 + u 3 3 = u 1 e 1 + u 2 e 2 + u 3 e 3, v = v 1 1 + v 2 2 + v 3 3 = v 1 e 1 + v 2 e 2 + v 3 e 3 (6.1) i (e i ) e i e j = i j = δ ij (6.2) ( u, v ) = u v = ij

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

ver Web

ver Web ver201723 Web 1 4 11 4 12 5 13 7 2 9 21 9 22 10 23 10 24 11 3 13 31 n 13 32 15 33 21 34 25 35 (1) 27 4 30 41 30 42 32 43 36 44 (2) 38 45 45 46 45 5 46 51 46 52 48 53 49 54 51 55 54 56 58 57 (3) 61 2 3

More information

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ SO(3) 71 5.7 5.7.1 1 ħ L k l k l k = iϵ kij x i j (5.117) l k SO(3) l z l ± = l 1 ± il = i(y z z y ) ± (z x x z ) = ( x iy) z ± z( x ± i y ) = X ± z ± z (5.118) l z = i(x y y x ) = 1 [(x + iy)( x i y )

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x . P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

+ 1 ( ) I IA i i i 1 n m a 11 a 1j a 1m A = a i1 a ij a im a n1 a nj a nm.....

+   1 ( ) I IA i i i 1 n m a 11 a 1j a 1m A = a i1 a ij a im a n1 a nj a nm..... + http://krishnathphysaitama-uacjp/joe/matrix/matrixpdf 1 ( ) I IA i i i 1 n m a 11 a 1j a 1m A = a i1 a ij a im a n1 a nj a nm (1) n m () (n, m) ( ) n m B = ( ) 3 2 4 1 (2) 2 2 ( ) (2, 2) ( ) C = ( 46

More information

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d ) 23 M R M ϕ : R M M ϕt, x) ϕ t x) ϕ s ϕ t ϕ s+t, ϕ 0 id M M ϕ t M ξ ξ ϕ t d ϕ tx) ξϕ t x)) U, x 1,...,x n )) ϕ t x) ϕ 1) t x),...,ϕ n) t x)), ξx) ξ i x) d ϕi) t x) ξ i ϕ t x)) M f ϕ t f)x) f ϕ t )x) fϕ

More information

i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

0406_total.pdf

0406_total.pdf 59 7 7.1 σ-ω σ-ω σ ω σ = σ(r), ω µ = δ µ,0 ω(r) (6-4) (iγ µ µ m U(r) γ 0 V (r))ψ(x) = 0 (7-1) U(r) = g σ σ(r), V (r) = g ω ω(r) σ(r) ω(r) (6-3) ( 2 + m 2 σ)σ(r) = g σ ψψ (7-2) ( 2 + m 2 ω)ω(r) = g ω ψγ

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

2

2 III ( Dirac ) ( ) ( ) 2001. 9.22 2 1 2 1.1... 3 1.2... 3 1.3 G P... 5 2 5 2.1... 6 2.2... 6 2.3 G P... 7 2.4... 7 3 8 3.1... 8 3.2... 9 3.3... 10 3.4... 11 3.5... 12 4 Dirac 13 4.1 Spin... 13 4.2 Spin

More information

1 Ricci V, V i, W f : V W f f(v ) = Imf W ( ) f : V 1 V k W 1

1 Ricci V, V i, W f : V W f f(v ) = Imf W ( ) f : V 1 V k W 1 1 Ricci V, V i, W f : V W f f(v = Imf W ( f : V 1 V k W 1 {f(v 1,, v k v i V i } W < Imf > < > f W V, V i, W f : U V L(U; V f : V 1 V r W L(V 1,, V r ; W L(V 1,, V r ; W (f + g(v 1,, v r = f(v 1,, v r

More information

LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University 2002 2 2 2 2 22 2 3 3 3 3 3 4 4 5 5 6 6 7 7 8 8 9 Cramer 9 0 0 E-mail:hsuzuki@icuacjp 0 3x + y + 2z 4 x + y

More information

『共形場理論』

『共形場理論』 T (z) SL(2, C) T (z) SU(2) S 1 /Z 2 SU(2) (ŜU(2) k ŜU(2) 1)/ŜU(2) k+1 ŜU(2)/Û(1) G H N =1 N =1 N =1 N =1 N =2 N =2 N =2 N =2 ĉ>1 N =2 N =2 N =4 N =4 1 2 2 z=x 1 +ix 2 z f(z) f(z) 1 1 4 4 N =4 1 = = 1.3

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 Akito Tsuboi June 22, 2006 1 T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 1. X, Y, Z,... 2. A, B (A), (A) (B), (A) (B), (A) (B) Exercise 2 1. (X) (Y ) 2. ((X) (Y )) (Z) 3. (((X) (Y )) (Z)) Exercise

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

linearal1.dvi

linearal1.dvi 19 4 30 I 1 1 11 1 12 2 13 3 131 3 132 4 133 5 134 6 14 7 2 9 21 9 211 9 212 10 213 13 214 14 22 15 221 15 222 16 223 17 224 20 3 21 31 21 32 21 33 22 34 23 341 23 342 24 343 27 344 29 35 31 351 31 352

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c GL 2 1 Lie SL(2, R) GL(2, A) Gelbart [Ge] 1 3 [Ge] Jacquet-Langlands [JL] Bump [Bu] Borel([Bo]) ([Ko]) ([Mo]) [Mo] 2 2.1 H = {z C Im(z) > 0} Γ SL(2, Z) Γ N N Γ (N) = {γ SL(2, Z) γ = 1 2 mod N} g SL(2,

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 30 3 30.1.............. 3 30.2........................... 4 30.3...................... 5 30.4........................ 6 30.5.................................. 8 30.6...............................

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo [1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin + 8 5 Clifford Spin 10 A 12 B 17 1 Clifford Spin D Euclid Clifford Γ µ, µ = 1,, D {Γ µ, Γ ν

More information

January 27, 2015

January 27, 2015 e-mail : kigami@i.kyoto-u.ac.jp January 27, 205 Contents 2........................ 2.2....................... 3.3....................... 6.4......................... 2 6 2........................... 6

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University 2004 1 1 1 2 2 1 3 3 1 4 4 1 5 5 1 6 6 1 7 7 1 8 8 1 9 9 1 10 10 1 E-mail:hsuzuki@icu.ac.jp 0 0 1 1.1 G G1 G a, b,

More information

16 B

16 B 16 B (1) 3 (2) (3) 5 ( ) 3 : 2 3 : 3 : () 3 19 ( ) 2 ax 2 + bx + c = 0 (a 0) x = b ± b 2 4ac 2a 3, 4 5 1824 5 Contents 1. 1 2. 7 3. 13 4. 18 5. 22 6. 25 7. 27 8. 31 9. 37 10. 46 11. 50 12. 56 i 1 1. 1.1..

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

II Lie Lie Lie ( ) 1. Lie Lie Lie

II Lie Lie Lie ( ) 1. Lie Lie Lie II Lie 2010 1 II Lie Lie Lie ( ) 1. Lie Lie 2. 3. 4. Lie i 1 1 2 Lie Lie 4 3 Lie 8 4 9 5 11 6 14 7 16 8 19 9 Lie 23 10 Lie 26 11 Lie Lie 31 12 Lie 35 1 1 C Lie Lie 1.1 Hausdorff M M {(U α, φ α )} α A (1)

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T SAMA- SUKU-RU Contents 1. 1 2. 7.1. p-adic families of Eisenstein series 3 2.1. modular form Hecke 3 2.2. Eisenstein 5 2.3. Eisenstein p 7 3. 7.2. The projection to the ordinary part 9 3.1. The ordinary

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

2 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a 2 + b 2 α (norm) N(α) = a 2 + b 2 = αα = α 2 α (spure) (trace) 1 1. a R aα =

2 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a 2 + b 2 α (norm) N(α) = a 2 + b 2 = αα = α 2 α (spure) (trace) 1 1. a R aα = 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a + b α (norm) N(α) = a + b = αα = α α (spure) (trace) 1 1. a R aα = aα. α = α 3. α + β = α + β 4. αβ = αβ 5. β 0 6. α = α ( ) α = α

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

chap10.dvi

chap10.dvi . q {y j } I( ( L y j =Δy j = u j = C l ε j l = C(L ε j, {ε j } i.i.d.(,i q ( l= y O p ( {u j } q {C l } A l C l

More information

,2,4

,2,4 2005 12 2006 1,2,4 iii 1 Hilbert 14 1 1.............................................. 1 2............................................... 2 3............................................... 3 4.............................................

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0 9 O y O ( O ) O (O ) 3 y O O v t = t = 0 ( ) O t = 0 t r = t P (, y, ) r = + y + (t,, y, ) (t) y = 0 () ( )O O t (t ) y = 0 () (t) y = (t ) y = 0 (3) O O v O O v O O O y y O O v P(, y,, t) t (, y,, t )

More information

6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civit

6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civit 6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civita ɛ 123 =1 0 r p = 2 2 = (6.4) Planck h L p = h ( h

More information

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc 013 6 30 BCS 1 1.1........................ 1................................ 3 1.3............................ 3 1.4............................... 5 1.5.................................... 5 6 3 7 4 8

More information

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R V (I) () (4) (II) () (4) V K vector space V vector K scalor K C K R (I) x, y V x + y V () (x + y)+z = x +(y + z) (2) x + y = y + x (3) V x V x + = x (4) x V x + x = x V x x (II) x V, α K αx V () (α + β)x

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 p µ γ µ + mp ν γ ν + m 5.1 γ p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 1 2 p µp ν {γ µ, γ ν } + m 2 5.2 p m p p µ γ µ {, } 10 γ {γ µ, γ ν } 2η µν 5.3 p µ γ µ + mp

More information

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i [ ] (2016 3Q N) a 11 a 1n m n A A = a m1 a mn A a 1 A A = a n (1) A (a i a j, i j ) (2) A (a i ca i, c 0, i ) (3) A (a i a i + ca j, j i, i ) A 1 A 11 0 A 12 0 0 A 1k 0 1 A 22 0 0 A 2k 0 1 0 A 3k 1 A rk

More information

all.dvi

all.dvi 29 4 Green-Lagrange,,.,,,,,,.,,,,,,,,,, E, σ, ε σ = Eε,,.. 4.1? l, l 1 (l 1 l) ε ε = l 1 l l (4.1) F l l 1 F 30 4 Green-Lagrange Δz Δδ γ = Δδ (4.2) Δz π/2 φ γ = π 2 φ (4.3) γ tan γ γ,sin γ γ ( π ) γ tan

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

行列代数2010A

行列代数2010A a ij i j 1) i +j i, j) ij ij 1 j a i1 a ij a i a 1 a j a ij 1) i +j 1,j 1,j +1 a i1,1 a i1,j 1 a i1,j +1 a i1, a i +1,1 a i +1.j 1 a i +1,j +1 a i +1, a 1 a,j 1 a,j +1 a, ij i j 1,j 1,j +1 ij 1) i +j a

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

( 3) b 1 b : b b f : a b 1 b f = f (2.7) g : b c g 1 b = g (2.8) 1 b b (identity arrow) id b f a b g f 1 b b c g (2.9) 3 C C C a, b a b Hom C (a, b) h

( 3) b 1 b : b b f : a b 1 b f = f (2.7) g : b c g 1 b = g (2.8) 1 b b (identity arrow) id b f a b g f 1 b b c g (2.9) 3 C C C a, b a b Hom C (a, b) h 2011 9 5 1 Lie 1 2 2.1 (category) (object) a, b, c, a b (arrow, morphism) f : a b (2.1) f a b (2.2) ( 1) f : a b g : b c (composite) g f : a c ( 2) f f a b g f g c g h (2.3) a b c d (2.4) h (g f) = (h

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 {

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 { 04 zz + iz z) + 5 = 0 + i z + i = z i z z z 970 0 y zz + i z z) + 5 = 0 z i) z + i) = 9 5 = 4 z i = i) zz i z z) + = a {zz + i z z) + 4} a ) zz + a + ) z z) + 4a = 0 4a a = 5 a = x i) i) : c Darumafactory

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

DVIOUT-fujin

DVIOUT-fujin 2005 Limit Distribution of Quantum Walks and Weyl Equation 2006 3 2 1 2 2 4 2.1...................... 4 2.2......................... 5 2.3..................... 6 3 8 3.1........... 8 3.2..........................

More information

Step 2 O(3) Sym 0 (R 3 ), : a + := λ 1 λ 2 λ 3 a λ 1 λ 2 λ 3. a +. X a +, O(3).X. O(3).X = O(3)/O(3) X, O(3) X. 1.7 Step 3 O(3) Sym 0 (R 3 ),

Step 2 O(3) Sym 0 (R 3 ), : a + := λ 1 λ 2 λ 3 a λ 1 λ 2 λ 3. a +. X a +, O(3).X. O(3).X = O(3)/O(3) X, O(3) X. 1.7 Step 3 O(3) Sym 0 (R 3 ), 1 1 1.1,,. 1.1 1.2 O(2) R 2 O(2).p, {0} r > 0. O(3) R 3 O(3).p, {0} r > 0.,, O(n) ( SO(n), O(n) ): Sym 0 (R n ) := {X M(n, R) t X = X, tr(x) = 0}. 1.3 O(n) Sym 0 (R n ) : g.x := gxg 1 (g O(n), X Sym 0

More information

等質空間の幾何学入門

等質空間の幾何学入門 2006/12/04 08 tamaru@math.sci.hiroshima-u.ac.jp i, 2006/12/04 08. 2006, 4.,,.,,.,.,.,,.,,,.,.,,.,,,.,. ii 1 1 1.1 :................................... 1 1.2........................................ 2 1.3......................................

More information

dynamics-solution2.dvi

dynamics-solution2.dvi 1 1. (1) a + b = i +3i + k () a b =5i 5j +3k (3) a b =1 (4) a b = 7i j +1k. a = 14 l =/ 14, m=1/ 14, n=3/ 14 3. 4. 5. df (t) d [a(t)e(t)] =ti +9t j +4k, = d a(t) d[a(t)e(t)] e(t)+ da(t) d f (t) =i +18tj

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

多体問題

多体問題 Many Body Problem 997 4, 00 4, 004 4............................................................................. 7...................................... 7.............................................

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ± 7 7. ( ) SU() SU() 9 ( MeV) p 98.8 π + π 0 n 99.57 9.57 97.4 497.70 δm m 0.4%.% 0.% 0.8% π 9.57 4.96 Σ + Σ 0 Σ 89.6 9.46 K + K 0 49.67 (7.) p p = αp + βn, n n = γp + δn (7.a) [ ] p ψ ψ = Uψ, U = n [ α

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like () 10 9 30 1 Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [], [13]) Poincaré e m Poincaré e m Kähler-like Kähler-like Kähler M g M X, Y, Z (.1) Xg(Y, Z) = g( X Y, Z) + g(y, XZ)

More information

C (q, p) (1)(2) C (Q, P ) ( Qi (q, p) P i (q, p) dq j + Q ) i(q, p) dp j P i dq i (5) q j p j C i,j1 (q,p) C D C (Q,P) D C Phase Space (1)(2) C p i dq

C (q, p) (1)(2) C (Q, P ) ( Qi (q, p) P i (q, p) dq j + Q ) i(q, p) dp j P i dq i (5) q j p j C i,j1 (q,p) C D C (Q,P) D C Phase Space (1)(2) C p i dq 7 2003 6 26 ( ) 5 5.1 F K 0 (q 1,,q N,p 1,,p N ) (Q 1,,Q N,P 1,,P N ) Q i Q i (q, p). (1) P i P i (q, p), (2) (p i dq i P i dq i )df. (3) [ ] Q αq + βp, P γq + δp α, β, γ, δ [ ] PdQ pdq (γq + δp)(αdq +

More information

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0 79 4 4.1 4.1.1 x i (t) x j (t) O O r 0 + r r r 0 x i (0) r 0 x i (0) 4.1 L. van. Hove 1954 space-time correlation function V N 4.1 ρ 0 = N/V i t 80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t

More information

量子力学3-2013

量子力学3-2013 ( 3 ) 5 8 5 03 Email: hatsugai.yasuhiro.ge@u.tsukuba.ac.jp 3 5.............................. 5........................ 5........................ 6.............................. 8.......................

More information

,,..,. 1

,,..,. 1 016 9 3 6 0 016 1 0 1 10 1 1 17 1..,,..,. 1 1 c = h = G = ε 0 = 1. 1.1 L L T V 1.1. T, V. d dt L q i L q i = 0 1.. q i t L q i, q i, t L ϕ, ϕ, x µ x µ 1.3. ϕ x µ, L. S, L, L S = Ld 4 x 1.4 = Ld 3 xdt 1.5

More information

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18 2013 8 29y, 2016 10 29 1 2 2 Jordan 3 21 3 3 Jordan (1) 3 31 Jordan 4 32 Jordan 4 33 Jordan 6 34 Jordan 8 35 9 4 Jordan (2) 10 41 x 11 42 x 12 43 16 44 19 441 19 442 20 443 25 45 25 5 Jordan 26 A 26 A1

More information

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a φ + 5 2 φ : φ [ ] a [ ] a : b a b b(a + b) b a 2 a 2 b(a + b). b 2 ( a b ) 2 a b + a/b X 2 X 0 a/b > 0 2 a b + 5 2 φ φ : 2 5 5 [ ] [ ] x x x : x : x x : x x : x x 2 x 2 x 0 x ± 5 2 x x φ : φ 2 : φ ( )

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

II Time-stamp: <05/09/30 17:14:06 waki> ii

II Time-stamp: <05/09/30 17:14:06 waki> ii II waki@cc.hirosaki-u.ac.jp 18 1 30 II Time-stamp: ii 1 1 1.1.................................................. 1 1.2................................................... 3 1.3..................................................

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

koji07-01.dvi

koji07-01.dvi 2007 I II III 1, 2, 3, 4, 5, 6, 7 5 10 19 (!) 1938 70 21? 1 1 2 1 2 2 1! 4, 5 1? 50 1 2 1 1 2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 3 1, 2 1, 3? 2 1 3 1 2 1 1, 2 2, 3? 2 1 3 2 3 2 k,l m, n k,l m, n kn > ml...?

More information

1 Euclid Euclid Euclid

1 Euclid Euclid Euclid II 2000 1 Euclid 1 1.1..................................... 1 1.2..................................... 8 1.3 Euclid............. 19 1.4 3 Euclid............................ 22 2 28 2.1 Lie Lie..................................

More information

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n . 99 () 0 0 0 () 0 00 0 350 300 () 5 0 () 3 {a n } a + a 4 + a 6 + + a 40 30 53 47 77 95 30 83 4 n S n S n = n = S n 303 9 k d 9 45 k =, d = 99 a d n a n d n a n = a + (n )d a n a n S n S n = n(a + a n

More information

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1 appointment Cafe David K2-2S04-00 : C

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1  appointment Cafe David K2-2S04-00 : C 2S III IV K200 : April 16, 2004 Version : 1.1 TA M2 TA 1 10 2 n 1 ɛ-δ 5 15 20 20 45 K2-2S04-00 : C 2S III IV K200 60 60 74 75 89 90 1 email 3 4 30 A4 12:00-13:30 Cafe David 1 2 TA 1 email appointment Cafe

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information