審査委員会081214_4章まで.ppt

Size: px
Start display at page:

Download "審査委員会081214_4章まで.ppt"

Transcription

1 Presentation title 1 / 54 NO Study on the Control Methods of NOx Component in Diesel Exhaust by Combustion Control and its Application Keishi TAKADA

2 Contents 2 / NOxUrea-SCR NOx 3 4 NOx 5 NOx 6 NOx Urea-SCR 7

3 3 / 54 1

4 Background and Motivation 4 / 54 CO 2 CO x 1 9 t/year 26 (CO 2 ) 1.34 x 1 9 t/year % Vehicles 89.7 % Cf.) CO 2 18% / > / > / > ( ) MiEV FCHV CO 2

5 Background and Motivation 5 / 54 CO 2 Combustion improvement PM emission ( 2 3 ) (NOx PM ) Aftertreatment NOx emission Fig. Conceptual figure of diesel emission standards > >DPF PM1% >NOx 8 9% NOx, NOx NOx,

6 Previous Studies 6 / 54 >DPF, CSF (Catalyzed Soot Filter) NO NO 2 NO PM PM NO 2 Soot C + 2NO 2 CO 2 + 2NO >LNT, NSR (NOx ),NOx, NOx N 2 NOx NO NO 2 NO 2 NO 2 Lean operation Rich spike O 2 NO NO 2 NO 2 N 2, CO 2, H 2 O H 2, CO, HC NOx NOx storage material Pt Pt Al 2 O 3 Al 2 O 3

7 Previous Studies of Urea-SCR System 7 / 54 NOx reduction % NOx >Urea-SCR DOC_A DOC_B DOC_C DOC_A DOC_B DOC_C Oxidation power A > B > C SCR Catalyst Temperature deg. C Fig. NOx reduction and NO 2 /NOx v.s. SCR cat. Temp.* NO 2 /NOx Johnson Matthey York (24) 3 DOC NOx ( ) NOx *SAE Paper Urea-SCR (JARI Ford) Biodiesel (NREL) HC Ford (ORNL) (PSI) DPF PM NO 2 (Penn. State Univ.)

8 Outline of Doctor Thesis 8 / 54 NOx Urea-SCR NOx ( 2 ) ( 3 ) NOx Urea-SCR NOx NOx NOx ( 4 ) NOx ( 5 ) NOx Urea-SCR ( 6 ) NOx STAR-CD NOx NO NO 2 Pilot Post NOx NOx Urea-SCR NOx NOx NOx

9 9 / 54 2 NOxUrea-SCR NOx

10 Outline of Urea-SCR System 1 / 54 Urea-SCR? NOx Urea decomposition (NH 2 ) 2 CO HNCO + NH 3 - Pyrolysis HNCO + H 2 O NH 3 + CO 2 - Hydrolysis Overall SCR reaction 4NH 3 + 4NO + O 2 4N 2 + 6H 2 O 8NH 3 + 6NO 2 7N H 2 O 2NH 3 + NO + NO 2 2N 2 + 3H 2 O (1) Standard SCR reaction (2) NO 2 SCR reaction (3) Fast SCR reaction Urea-SCR NOx etc etc NOx Urea-SCR NOx NOx

11 Experimental Apparatus 1 - Engine Test Bench - 11 / 54 Type : 7.8 L, DOHC, DI The numbers of cylinders : In-line 6 Bore Stroke : mm Aspiration : Turbocharged PC Radiator Dynamometer Common Rail Fuel tank A/D converter Turbocharger Engine Engine Fuel consumption meter Supply pump Urea-SCR system MEXA-91DEGR MEXA-4FT Measuring method Rotary Encoder MEXA-91DEGR Analyzing Recorder NOx Chemiluminescence CO, CO 2 Non-Dispersive Infrared Detection (NDIR) THC Flame Ionization Detection Intercooler (FID) Air MEXA-4FT Air flow meter Filter Fourier Transform Infrared spectrometer (FT-IR)

12 Experimental Apparatus 2 - Base Urea-SCR System - 12 / 54 Urea-SCR Function generator Urea tank (32.5 wt% urea-solution) Urea dosing control circuit Urea Injector Water jacket 2 Pump 1 Exhaust gas Pre-oxidation catalyst SCR catalyst specifications Vanadium catalyst Cell density : 3 cells/inch 2 Total catalyst volume : 22.6 L (2.8 times engine swept volume) Zeolite catalyst Cell density : 4 cells/inch 2 Total catalyst volume : 22.6 L (2.8 times engine swept volume) SCR catalyst Post-oxidation catalyst catalyst

13 Basic performance test 1 - experimental condition - 13 / 54 Urea Injection 2 1 Sampling Points Diesel oxidation catalyst Zeolite SCR catalyst Table Experimental condition Operation steady state Engine speed rpm 144 Load % 2, 4, 6, 8 Urea equivalence ratio 1. SCR catalyst Zeolite 3 Pre-oxidation catalyst 1 Post-oxidation catalyst 1 Urea equivalence ratio urea urea =1. means the precise amount of urea, which can reduce all of the NOx. NO NO 2 NO reduction by Standard SCR NO 2 reduction by NO 2 SCR NO and NO 2 reduction by Fast SCR

14 Basic performance test 2 - test results - 14 / 54 NOx >2% Fast SCR reaction >SCR NO 2 1 Sampling Points Oxi. cat. SCR cat. NOx reduction % Zeolite catalyst : NOx reduction %Load 4%Load 6%Load 8%Load sampling point NO, NO 2 ppm Zeolite catalyst : 2% Load SCR Catalyst temp. 457 K (184 ) Fast SCR NO:NO 2 =1:1 NO NO 2 Standard SCR sampling point NOx NO 2

15 Experimental Apparatus 3 - Modified System Layout - 15 / 54 Exhaust gas Bypass line Catalyst line 2 1 Valve Modification 1. Pre-oxidation catalyst 2. Bypass line 3. Two valves Pre-oxidation catalyst ( 2) NO 2 NO 2

16 Definition of NO 2 /NOx 16 / 54 NOx NO 2 /NOx NOx 2 /NOx Exhaust gas NO 2 /NOx = NO 2 NO + NO 2 NOx NO, NO 2, N 2 O trace quantity NO NO 2 Load % NO 2 /NOx with Pre-Oxi. cat. w/o Pre-Oxi. cat NO 1% NO 2 % - NO 2 /NOx =. NO 5% NO 2 5% - NO 2 /NOx =.5 NO % NO 2 1% - NO 2 /NOx = 1.

17 Effect of NO 2 /NOx on NOx Reduction (1) 17 / 54 NOxUrea-SCR NOx SCR NO 2 /NOx NOx Table Experimental condition Urea Injection bypass line catalyst line Zeolite Oxi. cat. SCR cat. Operation steady state Engine speed rpm 144 Urea equivalence ratio 1. SCR catalyst temp. K 45, 5 NO 2 /NOx 45 K.1,.2,.29,.42 5 K.1,.27,.5 SCR catalyst Zeolite x 3

18 Effect of NO 2 /NOx on NOx Reduction (2) NOx 18 / 54 Conventional SCR system Modified SCR system Normalized NOx emission % NOx reduction performance Catalyst temperature : 45 K NOx reduction 43.% 92.6% 6.1% 91.8% 1 13 S. P. 4 S. P Normalized NOx emission % NOx reduction performance Catalyst temperature : 5 K NOx reduction 72.7% 97.4% 9.6% 99.4% 1 1 S. P. 4 S. P. 7 NO 2 /NOx = NO 2 /NOx = NOx NOx 6 21 %

19 Effect of Catalyst Composition on NOx Reduction 19 / 54 NOx NOx (V 2 O 5 ) Table Experimental condition Urea Injection bypass line catalyst line Vanadium SCR cat. Zeolite SCR cat. Operation steady state Engine speed rpm 144 Urea equivalence ratio 1. SCR catalyst temp. K 55 NO 2 /NOx Va..1,.2,.3,.4,.5,.59,.65 Ze..2,.25,.49,.69 SCR catalyst Vanadium x 3, or Zeolite x 3 2 (Slide No.9 ) 3 cpsi, 4 cpsi

20 Effect of Catalyst Composition on NOx Reduction 2 / 54 NOx Vanadium catalyst SCR Cat. temp. 55 K (277 ) 1 Zeolite catalyst SCR Cat. temp. 55 K (277 ) NOx reduction % Sampling point No NO2/NOx NOx reduction % NO2/NOx Standard SCR reactionno 2 SCR reaction Fast SCR reaction Urea-SCR

21 Summary of Section II 21 / L NOx Urea-SCR NOx NOx Urea-SCR NOx NO NO 2 Fast SCR reaction 2 NO 2 /NOx.5 NOx Urea-SCR NOx 3 Fast SCR reaction NO Standard SCR NO 2 NO 2 SCR reaction NO 2 Fast SCR reaction 45K(177 ) NOx 1/5

22 22 / 54 3

23 Outline of Diesel Combustion Modeling 23 / 54 Physical process > > NOx PM Coupling Chemical process RH QOOH > R OOQOOH > ROO HOOQ OOH HOOQ O + OH R: Alkyl radical NOx

24 Reaction Scheme - Outline 24 / 54 CFD STAR-CD v3.26 Complex Chemistry Module n-heptane reaction scheme* N series reactions Parameter modification Extended Zel dovich mechanism, Prompt NO, NO via N 2 O, NO 2 formation Species : 33 Elementary reactions : 66 CPU time: Approximately 54 hours for basic conditions. Machine spec. : Intel Core 2 Duo processor 2.4 GHz 2GB Memory (single core calculation) *A. Patel et al., Development and Validation of a Reduced Reaction Mechanism for HCCI Engine Simulations, SAE Paper (24).

25 Engine Specifications and Calculation Grids 25 / 54 Table Engine specifications Engine type 4-cycle, 2.2L, DOHC, In-line 4 cylinders, DI Bore Stroke 86 mm 96 mm Top clearance Con-rod length.98 mm mm Compression ratio 15.8 Calculation grids Fixed line The number of cells 5464 at BDC timing 2344 at TDC timing

26 Calculation Models Used in This Study 26 / 54 Table Applied physical models Turbulence model Breakup model Wall impingement model Atomization model NOx model Turbulent chemistry interaction model RNG k-epsiron model KH-RT model sb=.61, b1=15., ctau=1. crt=.1, We l =1., cb=17.5 Bai model Reitz-Diwarkar model Extended Zel dovich N 2 O, NO 2 reaction Kong model C mix =.1* *Adjusted as a fitting parameter

27 Reaction Scheme Ignition Delay Test 27 / 54 ignition delay ms P = 1.3 MPa 1. LLNL scheme ERC scheme /K Ignition delay characteristics of each scheme calculated by -D chemical reaction analysis. LLNL scheme: 56 species, 2537 reactions ERC scheme : 29 species, 52 reactions This study : 33 species, 66 reactions Pressure MPa Operating conditions Engine speed : 2 rpm Fuel injection timing : TDC Exp_pressure Fuel quantity : 2 mm 3 /st ERC scheme 2 EGR ratio: 19.1% Crank angle deg. ATDC

28 Reaction Scheme Ignition Delay Test n-heptane 28 / 54 C 7 H 16 + O 2 = C 7 H HO 2 C 7 H 16 + HO 2 = C 7 H H 2 O 2 Fuel RH R H-atom abstraction O 2 addition ROO O 2 addition C 7 H O 2 = C 7 H 15 O 2 C 7 H 15 O 2 + O 2 = C 7 KET12 + OH C 7 KET12 = C 5 H 11 CO + CH 2 O + OH isomerization QOOH OOQOOH HOOQ OOH CH 3, C 2 H 5 Methyl radical, Ethyl radical isomerization chain branching NTC HOOQ O + OH C 7 H 15-2 = C 2 H 5 + C 2 H 4 + C 3 H 6 R Alkyl radical OQ O + OH

29 Arrhenius parameter modification 29 / 54 Arrhenius Equation: k=at n exp(-e/rt) Elementary reaction A ERC mech. This study C 7 H 16 + HO 2 = C 7 H H 2 O E E+13 C 7 H 15 + O 2 = C 7 H HO 2 2.E+15 8.E+15 C 7 H O 2 = C 7 H 15 O E E+12 C 7 H 15 O 2 + O 2 = C 7 KET12 + OH 4.5E E+15 C 7 KET12 = C 5 H 11 CO + CH 2 O + OH 9.53E E+15 C 7 H 15-2 = C 2 H 5 + C 2 H 4 + C 3 H 6 7.5E E+15 H + O 2 + M = HO 2 + M 3.6E E+17 H 2 O 2 + M = OH + OH + M 1.E+16 2.E+16 OH + H 2 = H 2 O + H 1.17E E+9 A 2-4

30 Reaction Scheme Ignition Delay Test 3 / 54 ignition delay ms P = 1.3 MPa 1. LLNL scheme ERC scheme Applied scheme /K Ignition delay characteristics of each scheme calculated by -D chemical reaction analysis. LLNL scheme: 56 species, 2537 reactions ERC scheme : 29 species, 52 reactions This study : 33 species, 66 reactions Pressure MPa 5 4 Peak Pressure timing.1 ms Pressure rise.1 ms Peak Pressure 3% 3 Operating conditions Engine speed : 2 rpm Fuel injection timing : TDC Exp_pressure Exp_pressure Fuel quantity : 2 mm 3 /st ERC scheme Applied ERC scheme scheme EGR ratio: 19.1% Crank angle deg. ATDC

31 Calculation Conditions for Validation 31 / 54 Parameter : Fuel Injection Timing Engine speed rpm 2 Intake pressure kpa 13 ( 1 in Exp.) Intake temperature K 33.15* ( 1.5 in Exp.) Injection timing deg. ATDC -5, -2,, 2 Injection quantity mm 3 /st 2 EGR ratio % Intake O 2 concentration vol. % 2.9 Parameter : EGR Ratio (Intake O 2 concentration) Engine speed rpm 2 Injection timing deg. ATDC Injection quantity mm 3 /st 2 Intake pressure kpa Intake temperature K 33.4* EGR ratio % Intake O 2 concentration vol. % *Heat transfer (+1-15 K) between intake gas and cylinder wall is assumed in calculation

32 Calculation Results - Pressure and Heat Release - 32 / 54 Cylinder pressure MPa Parameter : Fuel Injection Timing Exp. Cal. Fuel injection timing -5 deg. ATDC -2 deg. ATDC TDC 2 deg. ATDC Heat release J/deg. CA Cylinder pressure MPa Parameter : EGR Ratio (Intake O 2 concentration) Exp. Cal. EGR ratio.4% 27.8% 3.2% 32.5% Heat release J/deg. CA Crank angle deg. ATDC Crank angle deg. ATDC 8

33 Calculation Results - NOx (NO, NO 2 ) Emission - NOx 2 33 / 54 Parameter : Fuel Injection Timing Parameter : EGR Ratio (Intake O 2 concentration) NOx emission ppm NO Exp. Cal. NO 2 Exp. Cal (TDC) 2 Fuel injection timing deg. ATDC NO 2 emission ppm NOx emission ppm NO NO 2 Exp. Cal. Exp. Cal. Exp. 7. Cal O 2 concentration vol% EGR ratio % NO 2 emission ppm EGR NOx NOx 2

34 Calculation Results - NO 2 /NOx Prediction - 34 / 54 NO 2 /NOx NO NO 2 /NO NO 2 emission Calculated NO 2 /NOx Oxygen concentration vol% Injection timing deg. ATDC % Measured NO 2 /NOx Calculated NO 2 emission ppm Oxygen concentration vol% Injection timing deg. ATDC Measured NO 2 emission ppm NO 2 /NOx NO 2 15% NO 2 /NOx

35 Summary of Section III NOx n-heptane.1ms 3%.1ms EGR EGR NOx NOx EGR NOx NO 2 /NOx 35 / 54

36 36 / 54 4 NOx

37 Outline of Supercharge with EGR 37 / 54 EGR EGR line VNT/VGT turbocharger Fig. Diesel engine system Common-rail fuel injection system EGR EGR NOx PM >EGR >EGR PM NOx > EGR NOx NOx NO 2 /NOx

38 Analysis Method of EGR Mechanism 38 / 54 EGR NOx 2NOx Inert O 2 EGR O 2 Inert O 2 Inert O 2 > > Inert O 2 2

39 Calculation Conditions - EGR Mechanism - 39 / 54 Table Calculation conditions (Operating conditions) Engine speed rpm 2 Intake pressure kpa 1 Injection timing deg. ATDC Injection quantity mm 3 /st 2 Intake temperature K Table Calculation conditions (In-cylinder gas components) Case A B C O 2 vol% , 17.7, 16. N 2 vol% , 78.3, 78. H 2 O, CO 2 vol%. 1., 2., 3.. Inert O 2 vol%.. 2., 4., 6. EGR Case A EGR CO 2 H 2 O Case B Inert O 2 Case C

40 Calculation results - EGR mechanism - 4 / 54 Average in-cylinder temp. (-5 15 deg. ATDC) Temperature K Inert_O2 EGR 92 Dilution gas % 9 2.% 4.% 6.% Crank angle deg. ATDC Temperature K Average in-cylinder temp. (1 3 deg. ATDC) 17 EGR Inert_O Crank angle deg. ATDC Inert O 2 Case(A) Case (B) (C)

41 Calculation Results - EGR Mechanism - 41 / 54 Cylinder pressure MPa In-cylinder Pressure and HRR Dilution gas w/o EGR CO2, H2O Inert_O2 Dilution gas % 2.% 4.% 6.% Crank angle deg. ATDC NOx Heat release J/deg. CA NO, NO2 ppm Case NO NOx 2 /NOx emissions Inert O NO NO2 EGR(CO 2,H 2 O) Inert O2 EGR Inert O2 EGR Inert O2 EGR Dilution gas vol% A C B C B C B 2 Case A C ( ) Case B C () EGR NOx EGR NOx 2 /NOx

42 In-cylinder Behaviour of NO and Gas Temp. NO (movie) 1 9 deg. ATDC (1 deg. CA/sec) Case A Case B* Case C* 42 / 54 Temperature K Min. 4 Max. 25 NO mass fraction Min.. Max..8 *Dilution gas amount of Case B and C is 4.%

43 NO and Temperature Distribution 43 / 54 NO Temperature K 4 25 NO mass fraction..8 (A) w/o EGR (B) EGR (C) Inert O 2 (A) w/o EGR (B) EGR (C) Inert O 2 14 deg. ATDC 14 deg. ATDC 18 deg. ATDC 18 deg. ATDC 26 deg. ATDC 26 deg. ATDC NO NO NO

44 Sensitivity Analysis - Analysis method - 44 / 54 Typical heat release rate curve D > (B, C, D, E) (B, C, D) Heat release > C SOI A B E A:Ignition delay (Cool flame) B:Ignition delay (Hot flame) C:Max. heat release D:Max. heat release timing E:Combustion duration 7. J/deg. CA Crank angle 5

45 Sensitivity Analysis - Analysis method - 45 / 54 Cylinder pressure MPa base 1 kpa base 2, +2, +4, +6, +8, +1 kpa In-cylinder pressure and heat release kPa +4kPa +6kPa +8kPa +1kPa base -2kPa Crank angle deg. ATDC Heat release J/deg Base operating conditions Engine speed : 2 rpm EGR ratio. : 19.1 % Fuel quantity : 2 mm 3 /st Fuel injection timing : TDC (single)

46 Sensitivity analysis results Parameter : Intake pressure 46 / 54 In-cylinder Pressure and HRR Cylinder pressure MPa Relative sensitivity kPa +8kPa +6kPa +4kPa +2kPa base -2kPa Crank angle deg. ATDC base C: Maximum heat release rate Heat release J/deg Initial pressure kpa (v.s. base) Relative sensitivity Relative sensitivity 2.5 A: Cool flame timing 2 base Initial pressure kpa (v.s. base) D: Timing of maximum H. R. R base Initial pressure kpa (v.s. base) Relative sensitivity Relative sensitivity 2.5 B: Hot flame timing 2 base Initial pressure kpa (v.s. base) 2.5 E: Combustion duration 2 base Initial pressure kpa (v.s. base)

47 Ignition timing and intake pressure - 47 / 54 Cylinder pressure MPa In-cylinder Pressure and HRR Crank angle deg. ATDC +2kPa +4kPa +6kPa +8kPa +1kPa base -2kPa fuel O2 product Heat release J/deg 5 deg ATDC Base K Base+4 kpa K d[ fuel] β = [ ][ ] dt α + k fuel O2 [ O2 ] O 2 molar concentration mol/cm 3 Base+8 kpa K

48 Numerical Analysis of Supercharge with EGR Intake pressure / O 2 vol% : base 1 kpa / 18.5% EGR base 2kPa / 23.4%, +2kPa / 15.3%, +4kPa / 13.%, +6kPa / 11.4%, +8kPa / 1.1%, +1 kpa / 9.% 48 / 54 Cylinder pressure MPa EGR In-cylinder Pressure and HRR Crank angle deg. ATDC +2kPa +4kPa +6kPa +8kPa +1kPa -2kPa base Heat release J/deg.

49 Sensitivity analysis results Parameter : Intake pressure 49 / 54 Cylinder pressure MPa In-cylinder Pressure and HRR Relative sensitivity kPa +4kPa +6kPa +8kPa +1kPa -2kPa base Crank angle deg. ATDC C: Maximum heat release rate base Initial pressure kpa (v.s. base) Heat release J/deg Relative sensitivity Relative sensitivity A: Cool flame timing base Initial pressure kpa (v.s. base) D: Timing of maximum H. R. R base Initial pressure kpa (v.s. base) Relative sensitivity Relative sensitivity 2.5 B: Hot flame timing 2 base Initial pressure kpa (v.s. base) 2.5 E: Combustion duration 2 base Initial pressure kpa (v.s. base) C, E O 2 B, D

50 Calculation conditions - EGR and supercharge - 5 / 54 NOx emission ppm NOx emission ppm NOx NOx 2 /NOx Parameter: Intake temp NOx NO 2 /NOx Intake temperature vs. base Parameter: O 2 concentration Oxygen concentration vol.% NO 2 /NOx NO 2 /NOx Parameter: Intake pres. NOx emission ppm Intake pressure kpa (gage) Parameter: Intake pres. (P O2 : const) NOx emission ppm Intake pressure kpa (gage) NO 2 /NOx NO 2 /NOx

51 Calculation conditions - EGR and supercharge - 51 / 54 EGR EGR NOx EGR Table Calculation and experimental conditions Engine speed rpm 2 Intake temperature K Injection timing deg. ATDC Injection quantity mm 3 /st 2 Intake O 2 concentration vol% EGR ratio % Intake pressure kpa Case name A B C Exp. or Cal. Cal. Exp.,Cal. Exp., Cal. w/o EGR w/o Supercharge with EGR with Supercharge

52 Calculation results - EGR and supercharge - 52 / 54 EGR NOx Cylinder pressure MPa In-cylinder Pressure and HRR Engine speed: 2 rpm 2 mm 3 /st, single Injection timing: TDC NA, with EGR 1 kpa, O vol% Supercharge with EGR 12 kpa, O vol% Exp. Cal. NA, w/o EGR 1 kpa, O 2 2.9% Crank angle deg. ATDC Heat release J/deg. CA NO, NO2 ppm NOx emission 1 kpa O % Exp 143 Cal NO 1 Intake pressure kpa Exp NO2 Cal kpa O % NOx g/kwh kpa O % Intake oxygen concentration vol% Cal 13. EGR NOx 85% NOx 2 /NOx [ ] [ g/kwh]

53 Summary of Section IV 53 / 54 NOx EGR NOx NOx EGR NOx EGR NOx NO NOx NO 2 /NOx NOx NO EGR NOx NO EGR EGR NOx NOx

54 54 / 54 End

090117公聴会_提出版.ppt

090117公聴会_提出版.ppt Presentation title 1 / 6 ( ) NO Study on the Control Methods of NOx Component in Diesel Exhaust by Combustion Control and its Application Keishi TAKADA Contents 2 / 6 > > > > NOxUrea-SCR NOx NOx NOx NOx

More information

教室説明会1113.ppt

教室説明会1113.ppt Presentation title 1 / 62 NO Study on the Control Methods of NOx Component in Diesel Exhaust by Combustion Control and its Application Keishi TAKADA Contents 2 / 62 > > > NOxUrea-SCR NOx NOx NOx NOx Urea-SCR

More information

研究成果報告書

研究成果報告書 (NOx) (SOx)2016 (EGR) (SCR) NOx NOx (UHC) NOx 25 ( ) CO 2 ( ) (Gas Permeation Membrane; GPM) 1 GPM GPM (2 ) (Anti-Quenching Membrane; AQM) GPM 2 (Oxygen Enriched Air; )1 (Nitrogen Enriched Air; NEA) NEA

More information

untitled

untitled NAOSITE: Nagasaki University's Ac Title Author(s) 予混合圧縮着火機関における天然ガスおよびメタノールの着火 燃焼特性に関する研究 鄭, 奭鎬 Citation (2008-03-19) Issue Date 2008-03-19 URL http://hdl.handle.net/10069/16303 Right This document is

More information

Journal of the Combustion Society of Japan Vol.51 No.155 (2009) FEATURE Clarification of Engine Combustion and the Evolution デ

Journal of the Combustion Society of Japan Vol.51 No.155 (2009) FEATURE Clarification of Engine Combustion and the Evolution デ 51 155 2009 23-30 Journal of the Combustion Society of Japan Vol.51 No.155 (2009) 23-30 FEATURE Clarification of Engine Combustion and the Evolution ディーゼルエンジン燃焼の課題と今後 Diesel Combustion Challenge and Future

More information

5 11 3 1....1 2. 5...4 (1)...5...6...7...17...22 (2)...70...71...72...77...82 (3)...85...86...87...92...97 (4)...101...102...103...112...117 (5)...121...122...123...125...128 1. 10 Web Web WG 5 4 5 ²

More information

Development of Induction and Exhaust Systems for Third-Era Honda Formula One Engines Induction and exhaust systems determine the amount of air intake

Development of Induction and Exhaust Systems for Third-Era Honda Formula One Engines Induction and exhaust systems determine the amount of air intake Development of Induction and Exhaust Systems for Third-Era Honda Formula One Engines Induction and exhaust systems determine the amount of air intake supplied to the engine, and as such are critical elements

More information

Table 2 DENSO Port Injection Fuel Injectors Fig.1 Port Fuel Injection System and Module 1996 CO ポート噴射システム 1 ( 1) HC 2 UC [2] (

Table 2 DENSO Port Injection Fuel Injectors Fig.1 Port Fuel Injection System and Module 1996 CO ポート噴射システム 1 ( 1) HC 2 UC [2] ( 52 161 2010 189-197 Journal of the Combustion Society of Japan Vol.52 No.161 (2010) 189-197 FEATURE Evolution of Element and Peripheral Technologies in Engine Combustion 燃料噴射系製品のこれまでの歩みと将来の展望 History and

More information

untitled

untitled 1 JCAP 5 WG 2007 2 22 2 1. 2. 2.1 CR-DPF ( DPF) 2.2 NSR (NOx ) S P 2.3 SCR (NOx ) S P 2.4 3. CO 2 4. 3 CR-DPF NSR SCR SAPS* *SAPS Sulfated Ash ) Phosphate Sulfur CO 2 4 5 1. 2. 2.1 CR-DPF 2.2 NSR S P 2.3

More information

Journal of the Combustion Society of Japan Vol.56 No.178 (2014) FEATURE /Issues and Solutions for Engine Combustion φ-t マッ

Journal of the Combustion Society of Japan Vol.56 No.178 (2014) FEATURE /Issues and Solutions for Engine Combustion φ-t マッ 56 178 2014 291-297 Journal of the Combustion Society of Japan Vol.56 No.178 (2014) 291-297 FEATURE /Issues and Solutions for Engine Combustion φ-t マップとエンジン燃焼コンセプトの接点 A Point of Contact between a φ-t Map

More information

A Akzo 12y26.doc Example of sun shade mat: ECO-MAT Power consumption of air-conditioner is saved by 10%. Picture of air-conditioner with ECO-MAT Comparison of consumed power of air-conditioner

More information

(a) -4furne.ce Fig. I Schematic drawing of cooling chamber Fig. 2 Priventive gas velocity at nozzle 405

(a) -4furne.ce Fig. I Schematic drawing of cooling chamber Fig. 2 Priventive gas velocity at nozzle 405 Fig. 1 Experimental Apparatus Fig. 2 Typical Ion Distribution in COG-Air Flame Fig. 3 Relation between Steel Temperature and Reduction Time (a) -4furne.ce Fig. I Schematic drawing of cooling chamber Fig.

More information

燃焼圧センサ

燃焼圧センサ 49 Combustion Pressure Sensor Kouji Tsukada, Masaharu Takeuchi, Sanae Tokumitsu, Yoshiteru Ohmura, Kazuyoshi Kawaguchi π 1000N 150 225N 1 F.S Abstract A new combustion pressure sensor capable of measuring

More information

1 VW EGR NOx NOx NOx (HC) SCR NOx (NH 3 ) 2L 2007 1,100 0 36 EA189 27 12 3L 2008 8.5 0 35 27 12 NO NO 2 NPO ICCT, International Council on Clean Transportation West Virginia University NOx EPA, Environmental

More information

ブローダウン過給システムを用いたガソリンHCCI機関の 運転領域拡大について

ブローダウン過給システムを用いたガソリンHCCI機関の 運転領域拡大について 1/ 35 ブローダウン過給システムを用いたガソリン HCCI 機関の運転領域拡大 後藤俊介, 窪山達也, 森吉泰生 ( 千葉大学 ) 畑村耕一, 鈴木正剛,( 畑村エンジン研究事務所 ) 山田敏生,(CDAJ) 高梨淳一,( 本田技術研究所 ) 本日の発表内容 2/ 35 1. 背景 2. 目的 3. ブローダウン過給 (BDSCI) システム 4.EGRガイド 5. 実験装置 6. 実験結果と考察

More information

17 Fig.2-1 Relationship between cooling water temperature and steam consumption of booster Source: The new oil and fat technology, Mr. E. Bornardini, Publishing house Technologie, Rome Note:

More information

ノック解析(1) CARSによるエンジン筒内未燃ガス温度の高精度測定と自着火反応モデルの評価

ノック解析(1)  CARSによるエンジン筒内未燃ガス温度の高精度測定と自着火反応モデルの評価 15 Analysis of Knock Phenomena (1) Unburned Gas Temperature Measurement by Accurate CARS Thermometry and Validation of a Reduced Chemical Kinetic Model for Auto-ignition Kazuhiro Akihama, Michio Nakano,

More information

35TS.indd

35TS.indd 海 外 開 発 / 海 外 生 産 特 集 海 外 の 大 学 とのエンジン 共 同 研 究 Collaboration on Engine Research with Foreign Universities 米 谷 俊 一 Shunichi Kometani 研 究 創 発 センター コア 技 術 研 究 室 1 はじめに 2 研 究 課 題 とテストエンジン 表 1 図 1 Engine Type

More information

橡

橡 CO2 Laser Treatment of Tinea Pedis Masahiro UEDA:,' Kiyotaka KITAMURA** and Yukihiro GOKOH*** Table I Specifications 1. Kind of Laser 2. Wavelength of Lasers. Power of Laser. Radiation Mode. Pulse Duration.

More information

藤村氏(論文1).indd

藤村氏(論文1).indd Nano-pattern profile control technology using reactive ion etching Megumi Fujimura, Yasuo Hosoda, Masahiro Katsumura, Masaki Kobayashi, Hiroaki Kitahara Kazunobu Hashimoto, Osamu Kasono, Tetsuya Iida,

More information

レーザ誘起蛍光法( LIF法) によるピストンの油膜挙動の解析

レーザ誘起蛍光法( LIF法) によるピストンの油膜挙動の解析 Analysis of Piston Oil Film Behavior by Using Laser Induced Fluorescence Method Shuzou Sanda, Akinori Saito ( Laser Induced Fluorescence Method LIF ) LIF Scanning -LIF Abstract Analysis of the oil film

More information

L kW/6000rpm 181Nm/4500rpm 100kW/3500rpm 310Nm/2000rpm /2 2/3 2 km 10km/L 12.5km 100 /L 75 /L 2 km CO2 1- -

L kW/6000rpm 181Nm/4500rpm 100kW/3500rpm 310Nm/2000rpm /2 2/3 2 km 10km/L 12.5km 100 /L 75 /L 2 km CO2 1- - 50 82 87 77 70 2.0L 4 1 104kW/6000rpm 181Nm/4500rpm 100kW/3500rpm 310Nm/2000rpm 72 2 3 2 3 1/2 2/3 2 km 10km/L 12.5km 100 /L 75 /L 2 km 20 12 CO2 1- DaimlerChrysler 1 Mercedes-Benz E 2 2.7L 5 E270CDI 2.6L

More information

第2章

第2章 2 2.1 1.3 L DISI DISI DISI PIV DISI DISI 3-8 - 2.2 DISI 1954 300SL (3) 6 SOHC 3L DISI 1950 1960 1970 MAN-FM (4) HC Soot PFI DISC 1970 TCCS Texaco Controlled Combustion System Ford-PROCO programmed combustion

More information

LEGACY 1. LEGACY A: DIMENSION 1. SEDAN MODEL 2.5 L SOHC 2.5 L DOHC turbo Overall length mm (in) 4,730 (186.2) Overall width mm (in) 1,730 (68.1) Overa

LEGACY 1. LEGACY A: DIMENSION 1. SEDAN MODEL 2.5 L SOHC 2.5 L DOHC turbo Overall length mm (in) 4,730 (186.2) Overall width mm (in) 1,730 (68.1) Overa LEGACY 1. LEGACY A: DIMENSION 1. SEDAN MODEL 2.5 L SOHC 2.5 L DOHC turbo Overall length mm (in) 4,730 (186.2) Overall width mm (in) 1,730 (68.1) Overall height (at C.W.) mm (in) 1,425 (56.1), 1,435 (56.5)

More information

EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju

EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Jun Motohashi, Member, Takashi Ichinose, Member (Tokyo

More information

LM35 高精度・摂氏直読温度センサIC

LM35 高精度・摂氏直読温度センサIC Precision Centigrade Temperature Sensors Literature Number: JAJSB56 IC A IC D IC IC ( ) IC ( K) 1/4 55 150 3/4 60 A 0.1 55 150 C 40 110 ( 10 ) TO-46 C CA D TO-92 C IC CA IC 19831026 24120 11800 ds005516

More information

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット Bulletin of Japan Association for Fire Science and Engineering Vol. 62. No. 1 (2012) Development of Two-Dimensional Simple Simulation Model and Evaluation of Discharge Ability for Water Discharge of Firefighting

More information

„´™Ÿ/’£flö

„´™Ÿ/’£flö 48 144 2006 206-213 Journal of the Combustion Society of Japan Vol. 48 No. 144 (2006) 206-213 ORGNAL PAPER * * An Approach to Combustion Diagnostics of Premixed Flame by Chemiluminescence of OH * and CH

More information

Microsoft PowerPoint - datatel Presentation Wind Power Testing V01.ppt

Microsoft PowerPoint - datatel Presentation Wind Power Testing V01.ppt Typical Telemetry Applications on Wind Turbines Roller Bearing Load Rotor Shaft Torque and Bending Load Rotor Blade Strain and Vibration Generator Rotor Temperature Gear Wheel Tooth Root Force Generator

More information

Fig. 3 Coordinate system and notation Fig. 1 The hydrodynamic force and wave measured system Fig. 2 Apparatus of model testing

Fig. 3 Coordinate system and notation Fig. 1 The hydrodynamic force and wave measured system Fig. 2 Apparatus of model testing The Hydrodynamic Force Acting on the Ship in a Following Sea (1 St Report) Summary by Yutaka Terao, Member Broaching phenomena are most likely to occur in a following sea to relative small and fast craft

More information

: u i = (2) x i Smagorinsky τ ij τ [3] ij u i u j u i u j = 2ν SGS S ij, (3) ν SGS = (C s ) 2 S (4) x i a u i ρ p P T u ν τ ij S c ν SGS S csgs

: u i = (2) x i Smagorinsky τ ij τ [3] ij u i u j u i u j = 2ν SGS S ij, (3) ν SGS = (C s ) 2 S (4) x i a u i ρ p P T u ν τ ij S c ν SGS S csgs 15 C11-4 Numerical analysis of flame propagation in a combustor of an aircraft gas turbine, 4-6-1 E-mail: tominaga@icebeer.iis.u-tokyo.ac.jp, 2-11-16 E-mail: ntani@iis.u-tokyo.ac.jp, 4-6-1 E-mail: itoh@icebeer.iis.u-tokyo.ac.jp,

More information

Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yu

Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yu Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yuichiro KITAGAWA Department of Human and Mechanical

More information

ガソリンエンジンシステムにおける未燃炭化水素の生成・排出挙動解析

ガソリンエンジンシステムにおける未燃炭化水素の生成・排出挙動解析 23 Formation and Emission Characteristics of Unburned Hydrocarbons During Cold Start of a Spark-Ignited Engine System Shuichi Kubo 60% C2 C4 C2 C4 SR C2 C4 THC SR The emission characteristics of hydrocarbons

More information

Vol. 36, Special Issue, S 3 S 18 (2015) PK Phase I Introduction to Pharmacokinetic Analysis Focus on Phase I Study 1 2 Kazuro Ikawa 1 and Jun Tanaka 2

Vol. 36, Special Issue, S 3 S 18 (2015) PK Phase I Introduction to Pharmacokinetic Analysis Focus on Phase I Study 1 2 Kazuro Ikawa 1 and Jun Tanaka 2 Vol. 36, Special Issue, S 3 S 18 (2015) PK Phase I Introduction to Pharmacokinetic Analysis Focus on Phase I Study 1 2 Kazuro Ikawa 1 and Jun Tanaka 2 1 2 1 Department of Clinical Pharmacotherapy, Hiroshima

More information

研究論文 尿素 SCR システムの NOx 浄化率向上に関する研究 ( 第 7 報 ) 鉄および銅ゼオライト系 SCR 触媒の比較と N 2 O 排出要因の解明 * 1) 伊藤聡一郎 2) 菊池裕 5) 鈴木央一 3) 田中陽 6) 石井素 4) 大聖泰弘 A Study on t

研究論文 尿素 SCR システムの NOx 浄化率向上に関する研究 ( 第 7 報 ) 鉄および銅ゼオライト系 SCR 触媒の比較と N 2 O 排出要因の解明 * 1) 伊藤聡一郎 2) 菊池裕 5) 鈴木央一 3) 田中陽 6) 石井素 4) 大聖泰弘 A Study on t 研究論文 2134187 鉄および銅ゼオライト系 SCR 触媒の比較と N 2 O 排出要因の解明 * 1) 伊藤聡一郎 2) 菊池裕 5) 鈴木央一 3) 田中陽 6) 石井素 4) 大聖泰弘 A Study on the Improvement of NOx Reduction Efficiency for a Urea SCR System (Seventh Report) Comparison

More information

Fig. 1. Schematic drawing of testing system. 71 ( 1 )

Fig. 1. Schematic drawing of testing system. 71 ( 1 ) 1850 UDC 669.162.283 : 669.162.263.24/. 25 Testing Method of High Temperature Properties of Blast Furnace Burdens Yojiro YAMAOKA, Hirohisa HOTTA, and Shuji KAJIKAWA Synopsis : Regarding the reduction under

More information

Table 1. Reluctance equalization design. Fig. 2. Voltage vector of LSynRM. Fig. 4. Analytical model. Table 2. Specifications of analytical models. Fig

Table 1. Reluctance equalization design. Fig. 2. Voltage vector of LSynRM. Fig. 4. Analytical model. Table 2. Specifications of analytical models. Fig Mover Design and Performance Analysis of Linear Synchronous Reluctance Motor with Multi-flux Barrier Masayuki Sanada, Member, Mitsutoshi Asano, Student Member, Shigeo Morimoto, Member, Yoji Takeda, Member

More information

S-5.indd

S-5.indd Development and pplication of Ultrasonic Noise B-scan nalysis ( I-CLT ) Creep Damage ssessment for Fossil-Fuel Boiler Piping precise creep damage assessment method has been required for boiler plants using

More information

Table 1. Assumed performance of a water electrol ysis plant. Fig. 1. Structure of a proposed power generation system utilizing waste heat from factori

Table 1. Assumed performance of a water electrol ysis plant. Fig. 1. Structure of a proposed power generation system utilizing waste heat from factori Proposal and Characteristics Evaluation of a Power Generation System Utilizing Waste Heat from Factories for Load Leveling Pyong Sik Pak, Member, Takashi Arima, Non-member (Osaka University) In this paper,

More information

Microsoft PowerPoint - SeniorMtng_2010_06_14V2.ppt

Microsoft PowerPoint - SeniorMtng_2010_06_14V2.ppt 日 本 機 械 学 会 関 西 支 部 シニア 会 第 8 回 情 報 交 流 サロン 2010 年 6 月 14 日 第 三 のエンジン 燃 焼 法 - 予 混 合 圧 縮 自 着 火 燃 焼 - 西 脇 一 宇 立 命 館 大 学 総 合 理 工 学 研 究 機 構 内 容 予 混 合 圧 縮 自 着 火 燃 焼 とは 予 混 合 圧 縮 自 着 火 燃 焼 研 究 の 歴 史 予 混 合 圧

More information

42 1 Fig. 2. Li 2 B 4 O 7 crystals with 3inches and 4inches in diameter. Fig. 4. Transmission curve of Li 2 B 4 O 7 crystal. Fig. 5. Refractive index

42 1 Fig. 2. Li 2 B 4 O 7 crystals with 3inches and 4inches in diameter. Fig. 4. Transmission curve of Li 2 B 4 O 7 crystal. Fig. 5. Refractive index MEMOIRS OF SHONAN INSTITUTE OF TECHNOLOGY Vol. 42, No. 1, 2008 Li 2 B 4 O 7 (LBO) *, ** * ** ** Optical Scatterer and Crystal Growth Technology of LBO Single Crystal For Development with Optical Application

More information

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member (University of Tsukuba), Yasuharu Ohsawa, Member (Kobe

More information

1 158 14 2 8 00225 2 1.... 3 1.1... 4 1.2... 5 2.... 6 2.1...7 2.2... 8 3.... 9 3.1... 10 3.2... 16 4.... 17 4.1... 18 4.2... 20 4.3... 22 5.... 23 5.1... 24 5.2... 28 5.3... 34 5.4... 37 5.5... 39 6....

More information

876 542 550 269KPa 1650 1623K 1473K SiC 170 100000 160 150 140 130 10000 120 (121%) 110 100 90 1000 0% 10% 20% 30% 40% 0% 10% 20% 30% 40% (%) (%) 850 230MPa 500 500hr. 450 1073K 800 400 350 K5C(HIP)

More information

untitled

untitled 26 3 31 BDF BDF BDF FAME BDF BDF BDF BDF BDF BDF BDF BDF BDF FAME BDF BDF 80.0 97.0% BDF 120 330 0.8% 2.2% 1. 1 1-1 1 1-2 1 2. 2 2-1 2 2-2 5 2-3 6 3. BDF 7 3-1 7 3-2 7 3-3 14 3-4 JOY 21 3-5 32 3-6 39 3-7

More information

スペースプラズマ研究会-赤星.ppt

スペースプラズマ研究会-赤星.ppt 14 1 1 1 1 Pauline Faure 1 1 2 3 (1: 2: JAXA 3: IHI) IHI (C)(No.21560819) ISAS(JAXA) ISO TC20/SC14 / (Spall) 60~90% 2 (Cone) 1% (Jetting) CDV11227 Committee Draft for Comments CDV11227 Witness plate Sabot

More information

alternating current component and two transient components. Both transient components are direct currents at starting of the motor and are sinusoidal

alternating current component and two transient components. Both transient components are direct currents at starting of the motor and are sinusoidal Inrush Current of Induction Motor on Applying Electric Power by Takao Itoi Abstract The transient currents flow into the windings of the induction motors when electric sources are suddenly applied to the

More information

no15

no15 Development of High Performance Catalyst Temperature Sensor for NOx Catalyst Control Atsushi KURANO Kaoru KUZUOKA Sotoo TAKAHASHI Itsuhei OGATA In order to meet each countrys low emission vehicle regulations

More information

A Higher Weissenberg Number Analysis of Die-swell Flow of Viscoelastic Fluids Using a Decoupled Finite Element Method Iwata, Shuichi * 1/Aragaki, Tsut

A Higher Weissenberg Number Analysis of Die-swell Flow of Viscoelastic Fluids Using a Decoupled Finite Element Method Iwata, Shuichi * 1/Aragaki, Tsut A Higher Weissenberg Number Analysis of Die-swell Flow of Viscoelastic Fluids Using a Decoupled Finite Element Method Iwata, Shuichi * 1/Aragaki, Tsutomu * 1/Mori, Hideki * 1 Ishikawa, Satoshi * 1/Shin,

More information

Fig. 1 Hydrostatic Thrust Bearing Fig. 2 Point loading of elastic half-space

Fig. 1 Hydrostatic Thrust Bearing Fig. 2 Point loading of elastic half-space Characteristics of Hydrostatic Bearing/Seal Parts of Hydraulic Pumps and Motors for Water Hydraulic Systems (2nd Report, Theory) Xiongying WANG, Atsushi YAMAGUCHI In this paper, the characteristics of

More information

Plastic Package (Note 12) Note 1: ( ) Top View Order Number T or TF See NS Package Number TA11B for Staggered Lead Non-Isolated Package or TF11B for S

Plastic Package (Note 12) Note 1: ( ) Top View Order Number T or TF See NS Package Number TA11B for Staggered Lead Non-Isolated Package or TF11B for S Overture 68W ( ) 0.1 (THD N) 20Hz 20kHz 4 68W 8 38W SPiKe (Self Peak Instantaneous Temperature ( Ke)) SOA (Safe Operating Area) SPiKe 2.0 V ( ) 92dB (min) SN 0.03 THD N IMD (SMTPE) 0.004 V CC 28V 4 68W

More information

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa-shi,

More information

charpter0.PDF

charpter0.PDF Kutateladze Zuber C 0 C 1 r eq q CHF A v /A w A v /A w q CHF [1] [2] q CHF A v /A w [3] [4] A v : A w : A : g : H fg : Q : q : q CHF : T : T 1 : T 2 : T 3 : c 100 T 4 : c 100 T b : T sat : T w : t : V

More information

Optical Lenses CCD Camera Laser Sheet Wind Turbine with med Diffuser Pitot Tube PC Fig.1 Experimental facility. Transparent Diffuser Double Pulsed Nd:

Optical Lenses CCD Camera Laser Sheet Wind Turbine with med Diffuser Pitot Tube PC Fig.1 Experimental facility. Transparent Diffuser Double Pulsed Nd: *1 *2 *3 PIV Measurement of Field of the Wind Turbine with a med Diffuser Kazuhiko TOSHIMITSU *4, Koutarou NISHIKAWA and Yuji OHYA *4 Department of Mechanical Engineering, Matsue National Collage of Technology,

More information

Size Effect of Biomass on Carbonization Rate Treated in Superheated Steam Combined with Far Infrared Heating Akiko ISA Yoshio HAGURA and Kanichi Kit Graduate School of Biosphere Science, Hiroshima University,

More information

JSME-JT

JSME-JT 2210 日本機械学会論文集 (B 編 ) 77 巻 783 号 (2011-11) 原著論文 No.2011-JBT-0600 * 1 Nissan Motor CO., Ltd. 560-2, Okatsukoku, Atsugi-shi Kanagawa 243-0192, Japan 1, 2 Development of Flame Propagation Model Considering

More information

Fig. 1 KAMOME50-2 Table 1 Principal dimensions Fig.2 Configuration of the hydrofoils (Endurance and sprint foil) Fig. 3 Schematic view of the vortex l

Fig. 1 KAMOME50-2 Table 1 Principal dimensions Fig.2 Configuration of the hydrofoils (Endurance and sprint foil) Fig. 3 Schematic view of the vortex l A study on the simulation of the motion of personal full-submerged hydrofoil craft by Yutaka Terao, Member Summary A new energy utilization project developed by Tokai University was started in 1991. It

More information

Fig. 2 Pressure-temperature diagram of pure substance and mixed thel consisting of n-tridecane and n-pentane Fig. 1 Schematic of present model

Fig. 2 Pressure-temperature diagram of pure substance and mixed thel consisting of n-tridecane and n-pentane Fig. 1 Schematic of present model Cavitation Induced Breakup Model for Multicomponent Fuel Spray Authors have developed a spray model for multicomponent fuel and reported the successful model which represents batch-distillation in multicomponent

More information

(Shigen to Sozai) Vol.116 p (2000) 石炭灰フライアッシュからのゼオライトのアルカリ水熱合成と生成物の陽イオン交換特性 * 1 1 村山憲弘山川洋亮 2 3 小川和男芝田隼次 Alkali Hydrothermal Synthesis of Zeol

(Shigen to Sozai) Vol.116 p (2000) 石炭灰フライアッシュからのゼオライトのアルカリ水熱合成と生成物の陽イオン交換特性 * 1 1 村山憲弘山川洋亮 2 3 小川和男芝田隼次 Alkali Hydrothermal Synthesis of Zeol 石炭灰フライアッシュからのゼオライトのアルカリ水 Title 熱合成と生成物の陽イオン交換特性 Author(s) 村山, 憲弘, 山川, 洋亮, 小川, 和男, 芝田, 隼次 Citation 資源と素材 : 資源 素材学会誌, 116(4): 279-284 Issue Date 2000 URL http://hdl.handle.net/10112/5454 資源 素材学会 (http://www.jstage.jst.go.

More information

LMC6022 Low Power CMOS Dual Operational Amplifier (jp)

LMC6022 Low Power CMOS Dual Operational Amplifier (jp) Low Power CMOS Dual Operational Amplifier Literature Number: JAJS754 CMOS CMOS (100k 5k ) 0.5mW CMOS CMOS LMC6024 100k 5k 120dB 2.5 V/ 40fA Low Power CMOS Dual Operational Amplifier 19910530 33020 23900

More information

LMC6082 Precision CMOS Dual Operational Amplifier (jp)

LMC6082 Precision CMOS Dual Operational Amplifier (jp) Precision CMOS Dual Operational Amplifier Literature Number: JAJS760 CMOS & CMOS LMC6062 CMOS 19911126 33020 23900 11800 ds011297 Converted to nat2000 DTD Edited for 2001 Databook SGMLFIX:PR1.doc Fixed

More information

LM3886

LM3886 Overture 68W ( ) 0.1 (THD N) 20Hz 20kHz 4 68W 8 38W SPiKe TM (Self Peak Instantaneous Temperature ( Ke)) SOA (Safe Operating Area) SPiKe 2.0 V ( ) 92dB (min) SN 0.03 THD N IMD (SMTPE) 0.004 V CC 28V 4

More information

Rate of Oxidation of Liquid Iron by Pure Oxygen Shiro BAN-YA and Jae-Dong SHIM Synopsis: The rate of oxidation of liquid iron by oxygen gas has been s

Rate of Oxidation of Liquid Iron by Pure Oxygen Shiro BAN-YA and Jae-Dong SHIM Synopsis: The rate of oxidation of liquid iron by oxygen gas has been s Rate of Oxidation of Liquid Iron by Pure Oxygen Shiro BAN-YA and Jae-Dong SHIM Synopsis: The rate of oxidation of liquid iron by oxygen gas has been studied using a volume constant technique. The process

More information

A Study of Effective Application of CG Multimedia Contents for Help of Understandings of the Working Principles of the Internal Combustion Engine (The

A Study of Effective Application of CG Multimedia Contents for Help of Understandings of the Working Principles of the Internal Combustion Engine (The A Study of Effective Application of CG Multimedia Contents for Help of Understandings of the Working Principles of the Internal Combustion Engine (The Learning Effects of the Animation and the e-learning

More information

....PDF.pmd

....PDF.pmd OBS-1000 Hans Stix HORIBA EUROPE GmbH HORIBA OBS-1000OBS-1000 CO CO 2 HC NOx NOx 1-5 HORIBA 50 OBS-1000 6-10 56 No.30 February 2005 Technical Reports 1 2 OBS-1000 CO CO 2 HCNDIR MEXA-1170HNDIR NOx A/FZrO

More information

cms.pdf

cms.pdf RoHS compliant INTERNAL STRUTURE FEATURES Part name over Slider Housing Slider contact Fixed contact Terminal pin lick spring Ground terminal Material Steel (SP), Tin-plated Polyamide opper alloy, Gold-plated

More information

Studies on the Adsorption Removal of Hydrogen Sulfide Gas Static and dynamic adsorption characteristics of hydrogen sulfide in gaseous phase on porous activated carbons and zeolites Keito Boki Department

More information

スライド タイトルなし

スライド タイトルなし 1 2 3 4 27,500 5 6 2000 7 8 9 10 11 12 < 13 SPECIFICATION CHARACTERISTICS UNIT Regular Gasoline Premium Gasoline METHOD A Type C Type A Type C Type ABNT ASTM Color - (1) (2) (1) (2) Appearance - (4) (4)

More information

RT-PCR プロトコール.PDF

RT-PCR プロトコール.PDF Real -Time RT-PCR icycler iq Bio Rad RT-PCR RT-PCR 1 icycler iq Bio Rad icycler iq 30 2 Ready-To-Go T-Primed First-Strand Kit (amersham pharmacia biotech) Ready-To-Go T-Primed First-Strand Kit QuantiTect

More information

2017 (413812)

2017 (413812) 2017 (413812) Deep Learning ( NN) 2012 Google ASIC(Application Specific Integrated Circuit: IC) 10 ASIC Deep Learning TPU(Tensor Processing Unit) NN 12 20 30 Abstract Multi-layered neural network(nn) has

More information

研究速報 JARI Research Journal バイオディーゼル燃料によるポスト新長期規制適合 エンジンの排出ガスへの影響 Effect of Biodiesel Fuel on Emissions from PNLT Diesel Engine 北村高明 *1 松浦賢 *2

研究速報 JARI Research Journal バイオディーゼル燃料によるポスト新長期規制適合 エンジンの排出ガスへの影響 Effect of Biodiesel Fuel on Emissions from PNLT Diesel Engine 北村高明 *1 松浦賢 *2 研究速報 1 バイオディーゼル燃料によるポスト新長期規制適合 エンジンの排出ガスへの影響 Effect of Biodiesel Fuel on Emissions from PT Diesel Engine 北村高明 *1 松浦賢 *2 Takaaki KITAMURA Ken MATSUURA Abstract An engine testing was conducted to investigate

More information

Microsoft Word - TSE_15_1_5.doc

Microsoft Word - TSE_15_1_5.doc Thermal Science & Engineering Vol.5 No. (7) 圧 縮 天 然 ガス() 直 接 噴 射 エンジンの 燃 焼 解 析 野 村 佳 洋 稲 垣 英 人 塚 崎 之 弘 Numerical Analysis of Combustion in a Compressed Natural Gas Direct Injection Engine Yoshihiro NOMURA,

More information

Table 1. Main specifications of VAD plant. Fig. 2. Typical operating pattern of low alloy steel.

Table 1. Main specifications of VAD plant. Fig. 2. Typical operating pattern of low alloy steel. UDC 669. 184. 244. 66-251: 669. 046. 554-982 On the Operations of LD-VAD Process and Product Qualities Takaharu MORIYA and Masanori TAWARA Synopsis: VAD (Vacuum Arc Degassing) plant is characterized by

More information

untitled

untitled 2 3 WHO (kd ) Lol p 1 grass group? 27 35 Lol p 2? 11 Lol p 3? 11 Lol p 4? 57 Lol p 5? 25 30 Lol p 9? 31 35 Lol p10 12 Lol p11 16 15 How about recent studies? Animal exposure Biomedical tests Questionnaire

More information

Fig. 1 Schematic construction of a PWS vehicle Fig. 2 Main power circuit of an inverter system for two motors drive

Fig. 1 Schematic construction of a PWS vehicle Fig. 2 Main power circuit of an inverter system for two motors drive An Application of Multiple Induction Motor Control with a Single Inverter to an Unmanned Vehicle Propulsion Akira KUMAMOTO* and Yoshihisa HIRANE* This paper is concerned with a new scheme of independent

More information

特-7.indd

特-7.indd Mechanical Properties and Weldability of Turbine Impeller Materials for High Temperature Exhaust Gas Turbocharger 1 000 1 050 246 IN100 The increase in environmental awareness in recent years has led to

More information

2章.doc

2章.doc C 2 H 4 N 2 O 2 LPG LIF 13 2.1 2.1.1 2.1 2.2 115mm70mm 727cm 3 Hand Pump Injector Driver Computer Constant Volume Chamber Injector Piezo-electronic transducer Fan Spark Plug Temperature Indicator C 2 H

More information

The Evaluation on Impact Strength of Structural Elements by Means of Drop Weight Test Elastic Response and Elastic Limit by Hiroshi Maenaka, Member Sh

The Evaluation on Impact Strength of Structural Elements by Means of Drop Weight Test Elastic Response and Elastic Limit by Hiroshi Maenaka, Member Sh The Evaluation on Impact Strength of Structural Elements by Means of Drop Weight Test Elastic Response and Elastic Limit by Hiroshi Maenaka, Member Shigeru Kitamura, Member Masaaki Sakuma Genya Aoki, Member

More information

untitled

untitled 1 2 3 4 Alteration of program parameters Effect Increase hybridization temperature Can prevent false positive signals, decrease background, can also increase dynamic range Decrease hybridization temperature

More information

LM3876

LM3876 Overture 56W ( ) 8 0.1 (THD N) 20Hz 20kHz 56W SPiKe (Self Peak Instantaneous Temperature ( Ke)) SOA(Safe Operating Area) SPiKe 2.0 V( ) 95dB(Min) SN 0.06 THD N IMD (SMTPE) 0.004 8 56W 100W SN 95dB(min)

More information

スライド 1

スライド 1 API Gas API Topics API Gas Gas Heater Gas Temparature Gas Topics API Gas API Gas Curtain Gas 60PSI API Gas Neblizer Gas Gas1 TurboIonSpray API Gas Heater Gas Gas1 Gas2 Gas2 API Gas Exhaust Gas Exhaust

More information

IIC Proposal of Range Extension Control System by Drive and Regeneration Distribution Based on Efficiency Characteristic of Motors for Electric

IIC Proposal of Range Extension Control System by Drive and Regeneration Distribution Based on Efficiency Characteristic of Motors for Electric IIC-1-19 Proposal of Range Extension Control System by Drive and Regeneration Distribution Based on Efficiency Characteristic of Motors for Electric Vehicle Toru Suzuki, Hiroshi Fujimoto (Yokohama National

More information

パナソニック技報

パナソニック技報 Smaller, Lighter and Higher-output Lithium Ion Battery System for Series Hybrid Shinji Ota Jun Asakura Shingo Tode 24 ICECU Electronic Control Unit46 16 We have developed a lithium-ion battery system with

More information

155 13 2 15 B97176 1 1.1. 4 1.2. 5 1.2.1. 1.2.2. 1.3. 7 2. 2.1. 9 2.2. 1 2.3. 13 2.4. 16 3. 3.1. 3.1.1. 18 3.1.2. 26 3.1.3. 33 3.2. 3.2.1. 34 3.2.2. 5 4. 4.1. 52 4.2. 53 54 55 2 1 1.1 1.2 1.3 3 4 Fig.

More information

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels). Fig. 1 The scheme of glottal area as a function of time Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels). Fig, 4 Parametric representation

More information

IPSJ SIG Technical Report Vol.2009-BIO-17 No /5/26 DNA 1 1 DNA DNA DNA DNA Correcting read errors on DNA sequences determined by Pyrosequencing

IPSJ SIG Technical Report Vol.2009-BIO-17 No /5/26 DNA 1 1 DNA DNA DNA DNA Correcting read errors on DNA sequences determined by Pyrosequencing DNA 1 1 DNA DNA DNA DNA Correcting read errors on DNA sequences determined by Pyrosequencing Youhei Namiki 1 and Yutaka Akiyama 1 Pyrosequencing, one of the DNA sequencing technologies, allows us to determine

More information

スライド 1

スライド 1 Matsuura Laboratory SiC SiC 13 2004 10 21 22 H-SiC ( C-SiC HOY Matsuura Laboratory n E C E D ( E F E T Matsuura Laboratory Matsuura Laboratory DLTS Osaka Electro-Communication University Unoped n 3C-SiC

More information

GPGPU

GPGPU GPGPU 2013 1008 2015 1 23 Abstract In recent years, with the advance of microscope technology, the alive cells have been able to observe. On the other hand, from the standpoint of image processing, the

More information

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS 2 3 4 5 2. 2.1 3 1) GPS Global Positioning System

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS 2 3 4 5 2. 2.1 3 1) GPS Global Positioning System Vol. 52 No. 1 257 268 (Jan. 2011) 1 2, 1 1 measurement. In this paper, a dynamic road map making system is proposed. The proposition system uses probe-cars which has an in-vehicle camera and a GPS receiver.

More information

LP3470 Tiny Power On Reset Circuit (jp)

LP3470  Tiny Power On Reset Circuit (jp) Tiny Power On Reset Circuit Literature Number: JAJS547 IC ( C) CMOS IC 2.63V 2.93V 3.08V 3.65V 4.00V 4.38V 4.63V 6 (V RTH ) 2.4V 5.0V V CC (L ow ) ( ) V CC ( ) IC SOT23-5 1 : 2.63V 2.93V 3.08V 3.65V 4.00V

More information

NUMERICAL CALCULATION OF TURBULENT OPEN-CHANNEL FLOWS BY USING A MODIFIED /g-e TURBULENCE MODEL By Iehisa NEZU and Hiroji NAKAGA WA Numerical calculat

NUMERICAL CALCULATION OF TURBULENT OPEN-CHANNEL FLOWS BY USING A MODIFIED /g-e TURBULENCE MODEL By Iehisa NEZU and Hiroji NAKAGA WA Numerical calculat NUMERICAL CALCULATION OF TURBULENT OPEN-CHANNEL FLOWS BY USING A MODIFIED /g-e TURBULENCE MODEL By Iehisa NEZU and Hiroji NAKAGA WA Numerical calculation techniques of turbulent shear flows are classified

More information

LM2940

LM2940 1A 3 1A 3 0.5V 1V 1A 3V 1A 5V 30mA (V IN V OUT 3V) 2 (60V) * C Converted to nat2000 DTD updated with tape and reel with the new package name. SN Mil-Aero: Order Info table - moved J-15 part from WG row

More information

Fig. 1 Experimental apparatus.

Fig. 1 Experimental apparatus. Effects of Concentration of Surfactant Solutions on Drag-Reducing Turbulent Boundary Layer In this study, the influence of a drag-reducing surfactant on the turbulent boundary layer was extensively investigated

More information

The Effect of the Circumferential Temperature Change on the Change in the Strain Energy of Carbon Steel during the Rotatory Bending Fatigue Test by Ch

The Effect of the Circumferential Temperature Change on the Change in the Strain Energy of Carbon Steel during the Rotatory Bending Fatigue Test by Ch The Effect of the Circumferential Temperature Change on the Change in the Strain Energy of Carbon Steel during the Rotatory Bending Fatigue Test by Chikara MINAMISAWA, Nozomu AOKI (Department of Mechanical

More information

Reaction Mechanism and Liquefaction Process of Coal Yosuke MAEKAWA

Reaction Mechanism and Liquefaction Process of Coal Yosuke MAEKAWA Reaction Mechanism and Liquefaction Process of Coal Yosuke MAEKAWA Fig.2 Produced gas composition of vitrinite hydrogenation at 400 Ž Fig.1 Symplified average structural model of Taiheiyo coal hydrogenation

More information

K02LE indd

K02LE indd I Linear Stage Table of Contents 1. Features... 1 2. Description of part Number... 1 3. Maximum Speed Limit... 2 4. Specifications... 3 5. Accuracy Grade... 4 6. Motor and Motor Adaptor Flange... 4 6-1

More information

206“ƒŁ\”ƒ-fl_“H„¤‰ZŁñ

206“ƒŁ\”ƒ-fl_“H„¤‰ZŁñ 51 206 51 63 2007 GIS 51 1 60 52 2 60 1 52 3 61 2 52 61 3 58 61 4 58 Summary 63 60 20022005 2004 40km 7,10025 2002 2005 19 3 19 GIS 2005GIS 2006 2002 2004 GIS 52 2062007 1 2004 GIS Fig.1 GIS ESRIArcView

More information

VOL.39 S-3

VOL.39 S-3 VOL.39 S-3 CHEMOTHERAPY SEPT.1991 Table 1. Background of characteristics and allocation of 5 healthy male volunteers in a multiple-dose study on panipenem/betamipron Day 1 Fig. 1. Schedule of multiple-dose

More information

橡A PDF

橡A PDF 2 1 MS 300 TRT MS JDI-800 2 g MS Py MS GC Py-GC Py GC 50 Py MS MS Py GC PY-GC 2 JDI-800 MS JDI-800 QP 2000 QP 1000 QP 2000 Fig 1 QP 1000 CI PEG 300 600 423 MS EI CI MS PEG 3 10 g Fig.1 300 600 MS 3 JDI-800

More information