Einmahl and Magnus (2007) Records in athretics through extreme-value theory. 04:35

Size: px
Start display at page:

Download "Einmahl and Magnus (2007) Records in athretics through extreme-value theory. 04:35"

Transcription

1 ( ) r-taka@maritime.kobe-u.ac.jp

2 Einmahl and Magnus (2007) Records in athretics through extreme-value theory. 04:35

3 Age Castillo, Hadi, Balakrishnan and Sarabia (2004) p The yearly oldest ages at death in Sweden during the period from 1905 to 1958 for women

4 (m/s)

5 Kumamoto Max. Daily Rainfall Year (0.1mm)

6 Nara Daily Rainfall (0.1mm) Day Nara Daily Rainfall (0.1mm) Day (0.1mm)

7 Daily Maximum Temperature Kyoto ( 0.1 C)

8

9 Coles A. B.

10 (block maximum) Fréchet Fisher and Tippett von Mises Gnedenko

11 1960 Geffroy Tiago de Oliveira Sibuya Gumbel (1958)

12 Peaks Over Threshold (POT) (threshold exceedances Balkema and de Haan (1974) Pickands (1975) r Weissman (1978) Smith (1986) Tawn (1988)

13 X 1, X 2,..., X n,... F (x) = P (X i x), i = 1, 2,... X 1, X 2,..., X n X (1:n) X (2:n)... X (n:n) Z n = X (n:n) = max { X 1, X 2,..., X n } = max 1 i n X i

14 n Z n F x + Z n x + = sup{x : F (x) < 1}, n. Z n a n > 0, b n R (n = 1, 2,...) G(x) Z P ( Zn b n Z n b n a n d Z, n. a n ) x P (Z x) = G(x). G (extreme value distribution) F G (maximum domain of attraction) F MDA(G) (a n, b n )

15 (1) G(x) (2) F MDA(G) F (3) a n b n W n = min 1 i n X i W n = min { } { } X 1, X 2,..., X n = max X1, X 2,..., X n W G W (x) = 1 G( x)

16 P ( Zn b n a n ) x = P (Z n a n x + b n ) = P ( max 1 i n X i a n x + b n ) = P (X i a n x + b n, i = 1, 2,..., n) = n i=1 P (X i a n x + b n ) = F n (a n x + b n ).

17 lim n F n (a n x + b n ) = G(x), x R. a n x + b n x + = sup{x : F (x) < 1} y = a n x + b n ( ) P (Z n y) = F n y bn (y) G. a n Xi = µ + σx i i = 1, 2,..., n µ R σ > 0 = Z n = max 1 i n X i = µ + σ max 1 i n X i = µ + σz n.

18 0 < G(x) < 1 lim n F n (a n x + b n ) = G(x) lim n[1 F (a n n x + b n )] = log G(x). { F n (a n x+b n ) = 1 + n[1 F (a nx + b n )] n } n { } exp lim n[1 F (a n n x+b n )] ( x n x, n = lim 1 + x ) n n = e x. n n

19 Block Maximum from Exp(1) Block Maximum from N(0, 1) maximum Block Maximum from Par(2) maximum Block Maximum from U(0, 1) maximum maximum

20 F f(x) Exp(1) F (x) = 1 e x, f(x) = e x, x 0. F n (x + log n) = { { } 1 e (x+log n)} n { n = 1 e x e log n} n = 1 + e x n a n = 1 b n = log n e e x = exp( exp( x)), n. ( < x < ).

21 (α > 0) F (x) = 1 1 x α, f(x) = αx α 1, x 1. F n (n 1/α x) = { 1 1 (n 1/α x) α } n = { 1 + x α n } n a n = n 1/α b n = 0 e x α = exp( x α ), n. (x > 0).

22 (α > 0) F (x) = 1 (1 x) α, f(x) = α(1 x) α 1, 0 x 1. F n (n 1/α x + 1) = { { } n 1 ( n 1/α x) α} n = 1 + ( x)α n a n = n 1/α b n = 1 e ( x)α = exp( ( x) α ), n. (x 0).

23 [Fréchet (1927) Fisher and Tippett (1928) Gnedenko (1943); Trinity Theorem ] G(x) Λ(x) = exp( exp( x)), x R (Gumbel), Φ α (x) = exp( x α ), x 0, α > 0 (Fréchet), Ψ α (x) = exp( ( x) α ), x 0, α > 0 (Weibull). x R n N Λ n (x + log n) = Λ(x), Φ n α (n1/α x) = Φ α (x), Ψ n α (n 1/α x) = Ψ α (x).

24 s.t. G a n > 0, b n R (n = 1, 2,...) G n (a n x + b n ) = G(x), x R and n = 1, 2,... (max-stable)

25 von Mises-Jenkinson ((1936) (1955)) G γ (x) = exp{ (1 + γx) 1/γ }, 1 + γx > 0, < γ <. G γ (x) Z Z = (E γ 1)/γ, E Exp(1); γ 1 log(1 + γz) = Z 0 Λ. Λ(x) = G 0 (x), Φ α (x) = G 1/α (α(x 1)), Ψ α (x) = G 1/α (α(x 1)).

26

27 [Gnedenko (1943) de Haan (1970)] F MDA(Φ α ) F (x) < 1, x and lim x 1 F (tx) 1 F (x) = t α, t > 0. F MDA(Ψ α ) x + < and lim x x+ 1 F (x + (x + x)t) 1 F (x) = t α, t > 0. 1 F (x + ts(x)) F MDA(Λ) s( ) > 0 s.t. ( ) lim x x+ 1 F (x) ( ) = x+ x = s(x) = (1 F (y))dy <, x < x + x+ x = e t. (1 F (y))dy/(1 F (x)) satisfies ( ).

28 F MDA(Φ α ), F (a n ) = 1 1/n, b n = 0. F MDA(Ψ α ), F (x + a n ) = 1 1/n, b n = x +. F MDA(Λ), F (b n ) = 1 1/n, a n = s(b n ).

29 {X i } i=1 F MDA(G) N {X i } i=1 Po(λ) P (N = i) = e λ λi, i = 0, 1, 2,.... i! N 1 Z N = max{x 1,..., X N } F N (y) F N (y) = P (Z N y N 1) = P (max{x 1,..., X N } y, N 1) P (N 1) 1 ( = e λ{1 F (y)} 1 e λ e λ).

30 a n b n F y a [λ] x + b [λ] [λ] λ lim λ { 1 F (a [λ] x + b [λ] ) } λ = lim λ λ [λ] [λ] { 1 F (a [λ] x + b [λ] ) } = log G(x). λ F N (a [λ] x + b [λ] ) exp(log G(x)) = G(x). P (Z N y N 1) G y b [λ] a [λ].

31

32 (generalized extreme value) GEV(µ, σ, ξ) < µ < σ > 0 < ξ < G(z) = exp { [ 1 + ξ ( z µ σ )] 1/ξ } ( ) z µ = G ξ, 1+ξ(z µ)/σ > 0. σ G ξ GEV(0, 1, ξ) G ξ (z) = exp [ (1 + ξz) 1/ξ], 1 + ξz > 0, µ σ ξ

33 G(z) ξ < 0 Weibull z < µ σ/ξ ξ = 0 Gumbel < z < G 0 ((z µ)/σ) = lim ξ 0 G ξ ((z µ)/σ) = exp{ exp[ (z µ)/σ]} ξ > 0 Fréchet z > µ σ/ξ G ξ (z) { } (1 + ξ z) 1/ξ 1 exp (1 + ξ z) 1/ξ, 1 + ξz > 0, ξ 0, g ξ (z) = { } exp z exp( z), < z <, ξ = 0,

34 GEV( 2.5, 1, 0.4) 0 GEV(0, 1, 0) GEV(2.5, 1, 0.4) 0

35 (generalized Pareto) GP(σ, ξ) σ > 0 < ξ < H(y) = 1 ( 1 + ξ y ) 1/ξ ( ) y = Hξ, 1 + ξy/σ > 0. σ σ H ξ GP(1, ξ) H ξ (y) = 1 (1 + ξy) 1/ξ, 1 + ξy > 0, σ ξ

36 H(y) ξ < 0 0 < y < σ/ξ ξ = 0 0 < y < H 0 (y/σ) = lim ξ 0 H ξ (y/σ) = 1 e y/σ ξ > 0 0 < y < H ξ (y) (1 + ξ y) 1/ξ 1, 1 + ξy > 0, ξ 0, h ξ (y) = exp( y), 0 < y <, ξ = 0,

37 GP(1, ξ) ξ = 0.4, 0, 0.4

38 [von Mises (1936) Smith (1990) ] φ(x) := 1 F (x), φ (x) = d f(x) dx φ(x) lim φ (x) = ξ = F MDA(G x x ξ ). + d {log(1 F (x))} = f(x) dx 1 F (x) x = log(1 F (x)) = x = inf{x : F (x) > 0} [ ] [ x dt 1 F (x) = exp = exp [1 F (t)]/f(t) x x x x dt φ(t) f(t) 1 F (t) dt. ].

39 1 F (u + xφ(u)) 1 F (u) = exp [ u+xφ(u) = exp u < t < u + xφ(u), φ(u + sφ(u)) φ(u) u dt [ φ(t) ] u+xφ(u) x = exp [ dt φ(t) x 0 ] / exp ds [ u x φ(u + sφ(u))/φ(u) dt φ(t) 0 < s = (t u)/φ(u) < x φ φ(u + sφ(u)) φ(u) = 1+ φ(u) u < y < u + xφ(u) [ 1 F (u + xφ(u)) x ds = exp 1 F (u) sφ (y) s = 1+ 0 φ (u+wφ(u))dw = 1+sφ (y). ] = exp [ 1+xφ (y) 1 ]. ] dt φ (y)t ]

40 = exp [ ( t = 1 + sφ (y) ) 1 φ (y) log(1 + xφ (y)) ] = (1 + xφ (y)) 1/φ (y). n[1 F (b n )] = 1 a n = φ(b n ) b n x + φ (b n ) ξ n[1 F (b n + xφ(b n ))] n[1 F (b n )] (1 + xφ (b n )) 1/φ (b n ), lim n n[1 F (a nx + b n )] = (1 + ξx) 1/ξ = log G ξ (x). lim n F n (a n x + b n ) = G ξ (x). F (b n ) = 1 1/n, a n = [1 F (b n )]/f(b n ) = n[1 F (b n )]/nf(b n ) = 1/nf(b n )

41 ξ = 1 ξ = 1/α < 0 ξ = 0 ξ > 0

42 f(x) = cx c 1 exp ( x c), x 0, c > 0. F (x) = 1 exp( x c ) φ(x) = 1 cx c 1 φ (x) = 1 c cx c 0, x. Gumbel (ξ = 0)

43 Penultimate n[1 F (a n x + b n )] (1 + ξ n x) 1/ξn, ξ n = φ (b n ). F n (a n x + b n ) exp[ (1 + ξ n x) 1/ξn ] = G ξn (x). G ξn G ξ penultimate ξ = 0 ξ n > 0 ξ n < 0 ξ = 0 Gumbel Fisher and Tippett (1928) Penultimate Cohen (1982) Gumbel ξ n

44 1 F (u + xφ(u)) 1 F (u) = [1 + xφ (y)] 1/φ (y), x > 0. y = xφ(u) σ = φ(u) P (X > u+y X > u) = 1 F (u + y) 1 F (u) = ( 1 + φ (y)y φ(u) ) 1/φ (y) ( 1 + ξ y σ) 1/ξ. F u (y) = P (X u y X > u) 1 (1 + ξy/σ) 1/ξ = H ξ (y/σ). F MDA(G ξ ) F G ξ ξ H ξ

45 tail index F G ξ F MDA(G ξ ) F H ξ ξ F F ξ Teugels ISI 1999 (F ) ξ < 0 ξ = 0 ξ > 0

46 R d {Y i } N(A) := i I A (Y i ), A R d, I A A I A (x) = { 1, x A, 0, x / A. N(A) A {Y i } N = N( ) (point process)

47 N Poisson (i) N(A) Po(Λ(A)) A Borel (ii) Borel B 1... B n N(B 1 )... N(B n ) Λ( ) Borel A Λ(A) = A λ(y)dy λ(y) Poisson λ(y) = Poisson

48 X 1, X 2,... i.i.d. Z n = max 1 i n X i a n > 0 b n R P { (Z n b n )/a n z } G(z), F MDA(G) { [ ( z µ G(z) = exp 1 + ξ σ )] 1/ξ } z z + G {( i N n = n + 1, X ) } i b n : i = 1,..., n a n u > z (0, 1) (u, z + ) A = [t 1, t 2 ] (z, z + ) Poisson [ ( )] z µ 1/ξ Λ(A) = (t 2 t 1 ) 1 + ξ. σ.

49 Point Process

50 A = [0, 1] (u, z + ) n A p u N n p = P { (X i b n )/a n > u } = 1 F (a n u + b n ) = n[1 F (a nu + b n )] n 1 n ( log G(u)) = 1 [ ( )] u µ 1/ξ 1 + ξ. n σ X i N n (A) B(n, p) n N n (A) Poisson N n (A) B(n, p) d Po(np), n. np = Λ(A) = [ 1 + ξ ( u µ σ )] 1/ξ.

51 A = [t 1, t 2 ] (u, z + ) [t 1, t 2 ] [0, 1] N n (A) Po(Λ(A)) Λ(A) = (t 2 t 1 ) [ 1 + ξ ( u µ σ )] 1/ξ. A

52 GEV A z = (0, 1) (z, ) {(Z n b n )/a n z} {N n (A z ) = 0} P { (Z n b n )/a n z } = P { N n (A z ) = 0 } P { N(A z ) = 0 } = exp{ Λ(A z )} = exp { [ 1 + ξ ( z µ σ )] 1/ξ }.

53 GP Λ(A z ) = Λ 1 ([t 1, t 2 ]) Λ 2 ((z, )) Λ 1 ([t 1, t 2 ]) = t 2 t 1 and Λ 2 ((z, )) = σ = σ + ξ(u µ) P { (X i b n )/a n > z (X i b n )/a n > u } [ 1 + ξ ( z µ σ )] 1/ξ. Λ 2(z, ) Λ 2 (u, ) = [1 + ξ(z µ)/σ] 1/ξ [1 + ξ(u µ)/σ] 1/ξ = [ 1 + ξ ( z u σ )] 1/ξ.

54 r r(> 1) r (X (n:n), X (n 1:n),..., X (n r+1:n) ) Z n = X (n:n) GEV(µ, σ, ξ) r (X (n:n), X (n 1:n),..., X (n r+1:n) ) z (1) z (2) z (r) ξ 0 { [ )] 1/ξ } r [ f ξ (z (1),..., z (r) ) = exp 1 + ξ ( z (r) µ σ k=1 1 + ξ(z (k) µ)/σ > 0 k = 1, 2,..., r 1 σ 1 + ξ ( )] z (k) 1/ξ 1 µ, σ

55 ξ = 0 { [ ( )]} z f 0 (z (1),..., z (r) (r) µ ) = exp exp σ r k=1 [ 1 σ exp rgev(µ, σ, ξ) ( )] z (k) µ. σ (µ, σ, ξ)

56 {X i } i=1 F i 1,..., i n k, n N = {1, 2,...} (X i1,..., X in ) d = (X i1 +k,..., X in +k). { X i } i=1 F Z n = max { X 1,..., X n }, Z n = max { X 1,..., X n },

57 i < j < i < j max { } X i,..., X j max { } X i,..., X j i j a n > 0 b n R lim n P { ( Z n b n )/a n x } = G(x) lim n P { (Z n b n )/a n x } = G θ (x), θ (0, 1]. θ (extremal index) X i (clustering) 1/θ

58 F = {f(x; θ) : θ Θ} f(x; θ) θ X n {X 1, X 2,..., X n } {x 1, x 2,..., x n } k θ = (θ 1, θ 2,..., θ k ) Θ R k

59 L(θ) = l(θ) = n i=1 n i=1 f(x i ; θ) log f(x i ; θ) θ l(θ) θ i = 0, i = 1, 2,..., k.

60 θ = ( θ 1, θ 2,..., θ k )

61 F n e ij (θ) = E I E (θ) = { 2 θ. N k (θ, I E (θ) 1 ). e 11 (θ) e 12 (θ) e 1k (θ) e 21 (θ). e 22 (θ). e 2k (θ). e k1 (θ) e k2 (θ) e kk (θ) l(θ) θ i θ j } = ne { 2, log f(x; θ) θ i θ j. I E (θ) }.

62 I E (θ) θ = θ 2 2 θ 2l(θ) 1 θ 1 θ l(θ) 2 θ 2 1 θ l(θ) k I O (θ) = θ 2 2 θ l(θ) θ 2l(θ) 2 θ 2 θ l(θ) k.... θ 2 k θ l(θ) 2 1 θ k θ l(θ) 2 2 θ 2 l(θ) k 2 l(θ) = θ i θ j n l=1 2 θ i θ j log f(x l ; θ).

63 θ φ = g(θ) f(x; θ) φ R 1 θ θ φ = g(θ) φ φ = g( θ)

64 n θ θ V θ φ = g(θ) φ = g( θ). N(φ, V φ ) V φ = φ T V θ φ φ = [ φ,..., φ ] T θ 1 θ k θ

65 θ = (θ 1,..., θ k ) l(θ i, θ i ) θ i θ θ i θ i (profile log-likelihood) l p (θ i ) = max θ i l(θ i, θ i ) θ 2 (θ (1), θ (2) ) θ (1) k 1 θ (2) k k 1 θ (1) l p (θ (1) ) = max θ (2) l(θ(1), θ (2) ).

66 θ k θ = (θ (1), θ (2) ) θ (1) θ k 1 n D p (θ (1) ) = 2 { } l( θ) l p (θ (1). ) χ 2 k1

67 1 θ i (1 α) } { } {θ i : D p (θ i ) χ 2 1 (α) = θ i : max l(θ i, θ i ) l( θ) χ 2 1 θ (α)/2 i χ 2 1 (α) χ2 1 α θ M 1 M 0 θ k 1 0 θ = (θ (1), θ (2) ) M 0 k 1 0 D p (θ (1) ) > χ 2 k (α) 1 α M 1

68 PWM F (x; θ) X E(X p ) V (X) θ θ 2 x s 2 x = 1 n n i=1 x i, s 2 = 1 n n i=1 (x i x) 2.

69 PWM F (x) = F (x; θ) X (probabilityweighted moment PWM) p r s M p, r, s = E [X p {F (X)} r {1 F (X)} s ] = 1 0 (F 1 (u)) p u r (1 u) s du PWM M 1, r, s u r (1 u) s u 1 u M 1, r, 0 M 1, 0, s α r := M 1, r, 0 = E [X{F (X)} r ], r = 0, 1, 2,... β s := M 1, 0, s = E [X{1 F (X)} s ], s = 0, 1, 2,... r = s = 0 α 0 = β 0 = E(X)

70 α r β s x (1) x (2) x (n) a r = 1 n b s = 1 n n i=1 n i=1 (i 1)(i 2) (i r) (n 1)(n 2) (n r) x (i), r = 1, 2,... (n i)(n i 1) (n i s + 1) x (n 1)(n 2) (n s) (i), s = 1, 2,... γ δ α r = 1 n β s = 1 n n i=1 n i=1 p r i,n x (i), r = 0, 1,... (1 p i,n ) s x (i), s = 0, 1,... p i,n = i + γ, i = 1, 2,..., n. n + δ

71 {x 1, x 2,..., x n } F n x (1) x (2) x (n) ˆF F F F (x) = 1 n + 1 n i=1 I (, x] (x i )

72 True Estimate H 0 GP(1, 0)

73 (probability plot {( ˆF (x (i) ), i n + 1 ) PP plot) } : i = 1,..., n. (quantile plot QQ plot) {( ˆF 1 ( i n + 1 ), x (i) ) } : i = 1,..., n. ˆF 1 (i/(n + 1)) x (i) F i/(n + 1)

74 GEV) G(z) = exp { {z 1, z 2,..., z n } GEV(µ, σ, ξ) [ 1 + ξ ( z µ σ )] 1/ξ } ( ) z µ = G ξ, 1+ξ(z µ)/σ > 0, σ (µ, σ, ξ)

75 GEV(µ, σ, ξ) 1 p z p ( ) zp µ G ξ = 1 p σ µ + σ [{ log(1 p) } ξ ]/ 1 ξ, ξ 0, z p = µ + σ [ log { log(1 p) }], ξ = 0. z p (return period) 1/p (return level) 1/p = 200 z 1/ p 1/n

76 y p = log(1 p) z p = µ + σ ( y ξ p 1 )/ ξ, ξ 0, µ + σ ( log y p ), ξ = 0, { ( log yp, z p ); 0 < p < 1 } (return level plot) ξ < 0 (concave) p 0 ( log y p ) µ σ/ξ ξ = 0 ξ > 0 (convex) p 0

77 GEV(0, 1, ξ) ξ = 0.2, 0, 0.2

78 GEV(µ, σ, ξ) ξ 0 l(µ, σ, ξ) = n log σ (1 + 1/ξ) n [ ( )] zi µ log 1 + ξ σ i=1 n [ ( )] 1/ξ zi µ 1 + ξ, σ i=1 1 + ξ(z i µ)/σ > 0, i = 1,..., n, ξ = 0 l(µ, σ) = n log σ n i=1 ( zi µ σ ) n i=1 exp { ( zi µ σ )}. ( µ, σ, ξ) ( µ, σ)

79 GEV(µ, σ, ξ) (Prescott and Walden, 1980) n σ 2 ξ 2 ξ 2 p ξ { p 2 Γ(2 + ξ) } σξ 1 2 Γ(2 ξ) + p σ σ 2 [ 1 γ + π2 6 + ( ( q p ξ ) 1 Γ(2 + ξ) ξ 1 γ + 1 ξ q + p ξ ) 2 2q ξ + p ] ξ 2 (µ, σ, ξ) Γ( ) Ψ(r) = d log Γ(r)/dr p = (1+ξ) 2 Γ(1+2ξ) q = Γ(2+ξ){Ψ(1+ξ)+(1+ξ)/ξ} γ = Euler

80 {GEV(µ, σ, ξ), < µ <, σ > 0, < ξ < } ξ > 0.5 Smith, 1985 ξ < ξ < 0.5 (µ, σ, ξ)

81 z p y p = log(1 p) ẑ p = µ + σ { y ξ p 1 }/ ξ, ξ 0, µ + σ { log y p }, ξ = 0. V (ẑ p ) zp T V z p V ( µ, σ, ξ) z T p = = [ zp µ, z p σ, z p ξ [ 1, (y ξ p ( µ, σ, ξ) ] ] 1)/ξ, σyp ξ ( log y p)/ξ σ(yp ξ 1)/ξ 2

82 ξ < 0 z 0 = µ σ/ξ ẑ 0 = µ σ/ ξ z T p = [ 1, 1/ξ, σ/ξ 2 ]

83 ξ z p ξ ξ = ξ 0 l(µ, σ, ξ 0 ) µ σ ξ 95% { ξ : 2 { l( µ, σ, ξ) } max µ, σ l(µ, σ, ξ)} χ 2 1 (0.05) = { = ξ : max µ, σ l(µ, σ, ξ) l( µ, σ, ξ) } 1.921

84 z p µ = z p σ [ y ξ p 1 ] /ξ (µ, σ, ξ) (z p, σ, ξ) n [ )] n [ )] 1/ξ l(z p, σ, ξ) = n log σ (1+1/ξ) i=1 log y ξ p + ξ ( zi z p σ i=1 y ξ p + ξ ( zi z p z p 95% { z p : 2 { l(ẑ p, σ, ξ) max l(z p, σ, ξ) } } χ 2 1 (0.05) σ, ξ { = z p : max l(z p, σ, ξ) l(ẑ p, σ, ξ) } χ 2 1 (0.05)/2 σ, ξ σ

85 PWM PWM (Hosking et al., 1985) α r := M 1, r, 0 = E [X{G(X)} r ], r = 0, 1, 2,... { { G 1 µ + σ ( log u) (u) = ξ 1 } /ξ, ξ 0, µ + σ log( log u), ξ = 0, ξ 0 PWM α r = 0 G 1 (u)u r du = µ + σ { (r + 1) ξ Γ(1 ξ) 1 } /ξ, ξ < 1. r + 1 1

86 α 0 = µ + σ { Γ(1 ξ) 1 } /ξ, 2α 1 α 0 = σ(2 ξ 1)Γ(1 ξ)/ξ, (3α 2 α 0 )/(2α 1 α 0 ) = (3 ξ 1)/(2 ξ 1). 1 2 σ = (2α 1 α 0 ) ξ Γ(1 ξ)(2 ξ 1), µ = α 0 + σ { } 1 Γ(1 ξ). ξ 3 1/2 < ξ < 1/2 ξ = c c 2, c = log 2 log 3 2α 1 α 0 3α 2 α

87 z (1) z (2) z (n) n ( ) i 0.35 r z (i), r = 0, 1, 2 α r = 1 n i=1 n PWM s α r, r = 0, 1, 2 PWM ξ σ µ ξ = c c 2, c = log 2 log 3 2 α 1 α 0 3 α 2 α 0,

88 H 0 : ξ = 0 vs. H 1 : ξ 0 {z 1, z 2,..., z n } Gumbel PWM ξ H 0 : ξ = 0 N(0, /n) ξ /n. N(0, 1).

89 10% ξ / /n > H 0 reject Hosking et al. (1985) Hosking (1984) Bartlett

90 GEV F MAD(G ξ ) {( Ĝ(z (i) ), Ĝ(z (i) ) = exp i n + 1 ) [ 1 + ξ } : i = 1,..., n ( z(i) µ σ )] 1/ ξ.

91 {( Ĝ 1 ( i n + 1 ), z (i) ) } : i = 1,..., n Ĝ 1 ( i n + 1 ) = µ + σ { log ( )} i ξ n / ξ. 0 < p < 1 ẑ p z p { } ( log y p, ẑ p ) : 0 < p < 1

92 (block maximum method)?

93 GEV Z t GEV(µ(t), σ(t), ξ(t)), t = 1, 2,..., m. µ(t) µ(t) = β 0 + β 1 t µ(t) = β 0 + β 1 t + β 2 t 2 σ(t) σ(t) = exp(β 0 + β 1 t)

94 GEV Z t GEV(µ(t), σ(t), ξ(t)), t = 1, 2,..., m. µ(t) σ(t) ξ(t) β L(β) = m t=1 1 σ(t) g ξ(t) g ξ (z) GEV(0, 1, ξ) ( zt µ(t) σ(t) ). β β

95 M 0 M 1 { } 2 l 1 (M 1 ) l 0 (M 0 ) χ 2 k 1 l i (M i ) M i (i = 0, 1) k 1 M 1 M 0 1 2

96 GEV Z t GEV(µ(t), σ(t), ξ(t)), t = 1, 2,..., m, Z 0 = 1 { ( )} Zt ξ(t) log µ(t) 1 + ξ(t) σ(t) GEV(0, 1, 0) : Gumbel P (Z 0 z) = G 0 (z) = exp( exp( z)), < z <. z 1, z 2,..., z m µ(t) σ(t) ξ(t) β z t = 1 { ( )} ξ(t) log 1 + ξ(t) zt µ(t), t = 1, 2,..., m σ(t) Gumbel z (1) z (2) z (m)

97 {( G 0 ( z (i) ), i m + 1 ) } : i = 1,..., m G 0 (z (i) ) = exp( exp( z (i) )). ( i {( G 1 0 m + 1 G 1 0 ( i m + 1 ) ), z (i) ) } : i = 1,..., m = log( log(i/(m + 1))).

98 Gumbel

99 Age The yearly oldest ages at death in Sweden during the period from 1905 to 1958 for women

100 µ = (0.209), σ = (0.147), ξ = (0.0886). ξ µ σ/ ξ = /0.221 =

101 Probability Plot Quantile Plot Empirical Empirical Model Return Level Plot Model Density Plot Return Level f(z) Return Period z

102 Profile Log-likelihood Shape Parameter ξ 95% [ 0.384, 0.023]. ξ = (0.0886)

103 Profile Log-likelihood Return Level % [ , ] ẑ 1/100 =

104 (m/s) (1982) (2002) GEV (2004)

105 (m/s) (m/s)

106 GEV(µ, σ, ξ) ( µ, σ, ξ) = (15.349, 2.550, 0.111) V = ( µ, σ, ξ) µ = β 0 + β µ σ µ σ

107 Probability Plot Quantile Plot Empirical Empirical Model Return Level Plot Model Density Plot Return Level f(z) Return Period z

108 ξ = > 0 Fréchet ξ 95% ξ ± = [ 0.037, 0.259]. 95% [ 0.021, 0.274]

109 Profile Log-likelihood Shape Parameter ξ ξ = > 0 95% [ 0.021, 0.274] [ 0.037, 0.259]

110 200 z 1/ % z 1/200 ẑ 1/200 ± 1.96 z T 1/200 V z 1/200 = [25.75, 41.73]. 95% [28.29, 46.90]

111 Profile Log-likelihood Return Level 200 ẑ 1/200 = % [28.29, 46.90] ([25.75, 41.73]

112 Kumamoto Max. Daily Rainfall Year (0.1mm)

113 GEV Z t GEV(µ(t), σ(t), ξ), t = 1, 2,..., m. 1 µ(t) = µ, σ(t) = σ. 2 µ(t) = β 0 + β 1 t, σ(t) = σ. 3 µ(t) = β 0 + β 1 t + β 2 t 2, σ(t) = σ. 4 µ(t) = β 0 + β 1 t, σ(t) = exp(β 2 + β 3 t). 5 µ(t) = β 0 + β 1 t + β 2 t 2, σ(t) = exp(β 3 + β 4 t).

114 χ 2 1 (0.05) = χ 2 2 (0.05) = µ(t) = t, σ(t) = exp( t), ξ = t = (year 1953)/52

115 Probability Plot Quantile Plot Empirical Empirical Model Return Level Plot Model Density Plot Return Level f(z) Return Period z

116 Residual Probability Plot Residual Quantile Plot (Gumbel Scale) Empirical Model Model Empirical

117 kumamoto year

118 (GP) H(y) = 1 {y 1, y 2,..., y n } GP(σ, ξ) ( 1 + ξ y ) 1/ξ ( ) y = Hξ, 1 + ξy/σ > 0, σ σ

119 Y GP(σ, ξ) ξ < 1 E(Y ) = y+ y+ (1 H(y))dy = 0 0 y + = sup{y : H(y) < 1} ( 1 + ξ y ) 1/ξ σ dy = σ 1 ξ. ξ < 1/2 V (Y ) = σ 2 (1 ξ) 2 (1 2ξ).

120 U U(0, 1) ( 1 + ξ Y ) 1/ξ = U = 1 ( σ ξ log 1 + ξ Y ) σ = log U, Y = σ(u ξ 1). ξ Y v Y > v GP(σ + ξv, ξ) (v > 0) P (Y v > y Y > v) = = 1 H((y + v)/σ) = 1 H(v/σ) ( y 1 + ξ σ + ξv ) 1/ξ. ( 1 + ξ(y + v)/σ ) 1/ξ ( 1 + ξv/σ ) 1/ξ

121 e(v) = E(Y v Y > v) Y (mean excess) ẽ(v) Y (median excess) P (Y v ẽ(v) Y > v) = 1/2 Y v Y > v GP(σ + ξv, ξ) ẽ(v) = e(v) = σ + ξv 1 ξ = σ 1 ξ + ξ 1 ξ v, σ(2 ξ 1)/ξ + (2 ξ 1)v, ξ 0, σ log 2, ξ = 0.

122 GP(σ, ξ) ξ 0 l(σ, ξ) = n log σ (1 + 1/ξ) n i=1 1 + ξ y i /σ > 0, i = 1, 2,..., n, log(1 + ξ y i /σ), ξ = 0 l(σ) = n log σ 1 σ n i=1 y i. ( σ, ξ) σ

123 ξ > 0.5 (Smith, 1985) ξ > 0.5 ( σ, ξ) (σ, ξ) V = 1 n ( 2σ 2 (1 + ξ) σ(1 + ξ) σ(1 + ξ) (1 + ξ) 2 ) ξ 0.5

124 {x 1, x 2,..., x no } F n o F u y i = x [i] u i = 1, 2,..., n u GP(σ, ξ) u Smith (1987) F MDA(G ξ ) F ξ < 0 ξ > 0 ξ = 0 ξ < 0

125 m (σ, ξ) GP(σ, ξ) u X u X > u GP(σ, ξ) P (X > x X > u) = [ 1 + ξ ( )] x u 1/ξ, x > u. σ ζ u = P (X > u) P (X > x) = ζ u [1 + ξ ( x u σ )] 1/ξ,

126 x m m 1 ( )] xm u 1/ξ 1 ζ u [1 + ξ = σ m x m = u + σ ξ [(mζ u ) ξ 1 ]. ξ = 0 x m = u + σ log(mζ u ). m x m > u x m m (m-observation return level)

127 m { } (log m, x m ); x m > u m ξ < 0 ξ = 0 ξ > 0 N n y m = N n y N z N = u + σ [ (Nny ζ u ) ξ 1 ]/ ξ, ξ 0, u + σ log ( Nn y ζ u ), ξ = 0. σ ξ ζ u σ ξ ζ u = n/n o

128 u B(n o, ζ u ) ζ u V ( ζ u ) ζ u (1 ζ u )/n o ( ζ u, σ, ξ) [ ζ V = u (1 ζ)/n o 0 T ]. 0 V 0 T = (0, 0) V ( σ, ξ)

129 x m V ( x m ) x T m V x m. x m = x m ζ u x m σ x m ξ = σm ξ ζ ξ 1 u { (mζu ) ξ 1 } /ξ ( ζ u, σ, ξ) σ(mζ u ) ξ log(mζ u )/ξ σ{(mζ u ) ξ 1}/ξ 2

130 m x m σ = (x m u)ξ (mζ u ) ξ 1, ξ 0, x m u log(mζ u ), ξ = 0, l(x m, ξ) x m max ξ l(x m, ξ) ζ u

131 GP(σ, ξ) ξ < 1/2 σ 1 ξ = y, σ 2 (1 ξ) 2 (1 2ξ) = s2 σ M = 1 2 y(y2 /s 2 + 1), ξ M = 1 2 (1 y2 /s 2 ). y s 2

132 PWM PWM (Hosking et al., 1987) β s = M 1, 0, s = E[Y {1 H(Y )} s ] = 1 0 H 1 (u)(1 u) s du = ξ < 1 s = 0, 1 β 0 = σ 1 ξ, β 1 = σ 2(2 ξ) σ (s + 1)(s + 1 ξ). σ = 2β 0β 1 β 0 2β 1, ξ = 2 β 0 β 0 2β 1.

133 β 0 = y, y (1) y (2) y (n) β 1 = 1 n n i=1 ( 1 i 0.35 n ) y (i) PWM s β 0 β 1 PWM σ ξ

134 (threshold method u u u

135 (mean excess plot) u x [1], x [2],..., x [nu ] x max u < x max u, 1 n u n u i=1 (x [i] u) : u < x max u u Y GP(σ, ξ) E(Y v Y > v) = σ 1 ξ + ξ 1 ξ v

136 (median excess plot) u < x max { {(u, median 1 i nu x[i] u }) } : u < x max u u ẽ(v) = σ(2 ξ 1)/ξ + (2 ξ 1)v, ξ 0, σ log 2, ξ = 0.

137 ξ σ u < x max {x [i] u} n u i=1 GP(σ u, ξ) σ u ξ u (u, σ ) (u, ξ) σ = σ u ξu u σ ξ u Y v Y > v GP(σ + ξv, ξ) (v > 0), σ v = σ + ξv.

138 Pareto Hill ξ > 0 m x (1) x (2) x (m) {( ( ) ) } i log, log x (i), i = 1, 2,..., m m + 1 x (k+1) x (k+1) Hill (Hill, 1975) ξ H (k) = 1 k k i=1 ( log x (i) log x (k+1) ) k ξ H (k) k x (k+1)

139 GP(σ, ξ) GP y (1) y (2)... y (n) {( Ĥ(y (i) ), i n + 1 Ĥ(y (i) ) = 1 ( ) } : i = 1,..., n 1 + ξ y (i) σ ) 1/ ξ.

140 {( Ĥ 1 ( i n + 1 ), y (i) ) } : i = 1,..., n Ĥ 1 ( i n + 1 ) = σ ( n + 1 i n + 1 ) ξ 1 / ξ. { m (log m, x m ) } [ (m x m = u + σ ζ ]/ ) ξ u 1 ξ.

141 GP GP X 1, X 2,... t s(t) X t u s(t) X t > u s(t) GP(σ s(t), ξ s(t) ). u s(t) s(t) σ ξ s(t) s(t)

142 GP Y t GP(σ(t), ξ(t)) Y 0 = 1 { ξ(t) log 1 + ξ(t) Y } t σ(t) GP(1, 0) : P (Y 0 y) = H 0 (z) = 1 exp( y), 0 < y <. y t1, y t2,..., y tk σ(t) ξ(t) β ỹ tk = 1 ξ(t) log { 1 + ξ(t) y t i σ(t) }, i = 1, 2,..., k

143 ỹ (1) ỹ (2) ỹ (k) {( 1 exp( ỹ (i) ), {( ( log 1 i k + 1 i k + 1 ) ), ỹ (i) ) } : i = 1,..., k } : i = 1,..., k

144 Anderson & Coles (2002) Beirlant et al. (2004) clean bearing steel 5µm Diameter

145 Mean Excess u

146 Modified Scale Threshold Shape Threshold σ ξ

147 GP 5 ξ = (0.0914), σ = 1.68 (0.220) PP QQ

148 Probability Plot Quantile Plot Empirical Empirical Model Model

149 0.1mm GP

150 Daily Rainfall Nara (0.1mm)

151 Mean Excess u

152 Modified Scale Threshold Shape Threshold σ ξ

153 u 300 Coles (2001) u σ ξ u = (σ, ξ) σ = (12.541), ξ = (0.0512). GP

154 Probability Plot Quantile Plot Empirical Empirical Model Return Level Plot Model Density Plot Return level f(x) Return period (years) x

155 ξ ξ ξ 95% [ 0.020, 0.183] 100 ẑ 1/100 = % [1567, 2633]

156 Profile Log-likelihood Shape Parameter ξ ξ = (0.0512) 95% [ 0.020, 0.183]

157 Profile Log-likelihood Return Level z 1/100 ẑ 1/100 = % [1567, 2633]

158 GP GP(σ, ξ) ? GP

159 DailyRainfall Nara DailyRainfall Nara (0.1mm) 1961 ( 1962 (

160 σ = (13.901), ξ = (0.0540). ξ z 1/100 ξ z 1/100 95% [ 0.032, 0.182] [1559, 2649] declustering Coles (2001) 5.3.2

161 Probability Plot Quantile Plot Empirical Empirical Model Return Level Plot Model Density Plot Return level f(x) Return period (years) x

162 Profile Log-likelihood Shape Parameter ξ ξ = (0.0540) 95% [ 0.032, 0.182]. [ 0.020, 0.183]

163 Profile Log-likelihood Return Level z 1/100 z 1/100 95% [1559, 2649] [1567, 2633]

164 (PP) u (0, 1) (u, ) N n Poisson N A = (0, 1) (u, ) { (t1, x 1 ),..., (t N(A), x N(A) ) } A N n N A = [0, 1] (u, ) Λ(A) = [ 1 + ξ ( z µ σ )] 1/ξ

165 n y L A (µ, σ, ξ; x 1,..., x n ) = exp { Λ(A) } N(A) i=1 λ(t i, x i ) exp { n y [ 1 + ξ ( u µ σ )] 1/ξ } N(A) i=1 1 σ [ 1 + ξ ( xi µ σ )] 1/ξ 1 ( µ, σ, ξ)

166 PP 0.1 C PP Coles (2001) u(t) = sin(2π(t 110)/365.25)

167 Daily Maximum Temperature Kyoto (0.1 C)

168 Coles (2001) µ(t) = β 0 + β 1 sin(2πt/365.25) + β 2 cos(2πt/365.25), log σ(t) = β 3 + β 4 sin(2πt/365.25) + β 5 cos(2πt/365.25). ξ Coles S-Plus β 0 = (1.100), β 1 = (1.377), β 2 = (2.033), β 3 = (0.1335), β 4 = (0.0465), β 5 = (0.0684), ξ = (0.0473)

169 Residual Probability Plot Residual quantile Plot (Exptl. Scale) Empirical Empirical Model Model

170

1 Tokyo Daily Rainfall (mm) Days (mm)

1 Tokyo Daily Rainfall (mm) Days (mm) ( ) r-taka@maritime.kobe-u.ac.jp 1 Tokyo Daily Rainfall (mm) 0 100 200 300 0 10000 20000 30000 40000 50000 Days (mm) 1876 1 1 2013 12 31 Tokyo, 1876 Daily Rainfall (mm) 0 50 100 150 0 100 200 300 Tokyo,

More information

(m/s)

(m/s) ( ) r-taka@maritime.kobe-u.ac.jp IBIS2009 15 20 25 30 1900 1920 1940 1960 1980 2000 (m/s) 1900 1999 -2-1 0 1 715900 716000 716100 716200 Daily returns of the S&P 500 index. 1960 Gilli & Këllezi (2006).

More information

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46..

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46.. Cotets 6 6 : 6 6 6 6 6 6 7 7 7 Part. 8. 8.. 8.. 9..... 3. 3 3.. 3 3.. 7 3.3. 8 Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3.

More information

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 1 1 1.1 ɛ-n 1 ɛ-n lim n a n = α n a n α 2 lim a n = 1 n a k n n k=1 1.1.7 ɛ-n 1.1.1 a n α a n n α lim n a n = α ɛ N(ɛ) n > N(ɛ) a n α < ɛ

More information

3 3.3. I 3.3.2. [ ] N(µ, σ 2 ) σ 2 (X 1,..., X n ) X := 1 n (X 1 + + X n ): µ X N(µ, σ 2 /n) 1.8.4 Z = X µ σ/ n N(, 1) 1.8.2 < α < 1/2 Φ(z) =.5 α z α

3 3.3. I 3.3.2. [ ] N(µ, σ 2 ) σ 2 (X 1,..., X n ) X := 1 n (X 1 + + X n ): µ X N(µ, σ 2 /n) 1.8.4 Z = X µ σ/ n N(, 1) 1.8.2 < α < 1/2 Φ(z) =.5 α z α 2 2.1. : : 2 : ( ): : ( ): : : : ( ) ( ) ( ) : ( pp.53 6 2.3 2.4 ) : 2.2. ( ). i X i (i = 1, 2,..., n) X 1, X 2,..., X n X i (X 1, X 2,..., X n ) ( ) n (x 1, x 2,..., x n ) (X 1, X 2,..., X n ) : X 1,

More information

June 2016 i (statistics) F Excel Numbers, OpenOffice/LibreOffice Calc ii *1 VAR STDEV 1 SPSS SAS R *2 R R R R *1 Excel, Numbers, Microsoft Office, Apple iwork, *2 R GNU GNU R iii URL http://ruby.kyoto-wu.ac.jp/statistics/training/

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

確率論と統計学の資料

確率論と統計学の資料 5 June 015 ii........................ 1 1 1.1...................... 1 1........................... 3 1.3... 4 6.1........................... 6................... 7 ii ii.3.................. 8.4..........................

More information

1 1 3 1.1 (Frequecy Tabulatios)................................ 3 1........................................ 8 1.3.....................................

1 1 3 1.1 (Frequecy Tabulatios)................................ 3 1........................................ 8 1.3..................................... 1 1 3 1.1 (Frequecy Tabulatios)................................ 3 1........................................ 8 1.3........................................... 1 17.1................................................

More information

1 1 ( ) ( 1.1 1.1.1 60% mm 100 100 60 60% 1.1.2 A B A B A 1

1 1 ( ) ( 1.1 1.1.1 60% mm 100 100 60 60% 1.1.2 A B A B A 1 1 21 10 5 1 E-mail: qliu@res.otaru-uc.ac.jp 1 1 ( ) ( 1.1 1.1.1 60% mm 100 100 60 60% 1.1.2 A B A B A 1 B 1.1.3 boy W ID 1 2 3 DI DII DIII OL OL 1.1.4 2 1.1.5 1.1.6 1.1.7 1.1.8 1.2 1.2.1 1. 2. 3 1.2.2

More information

4 4. A p X A 1 X X A 1 A 4.3 X p X p X S(X) = E ((X p) ) X = X E(X) = E(X) p p 4.3p < p < 1 X X p f(i) = P (X = i) = p(1 p) i 1, i = 1,,... 1 + r + r

4 4. A p X A 1 X X A 1 A 4.3 X p X p X S(X) = E ((X p) ) X = X E(X) = E(X) p p 4.3p < p < 1 X X p f(i) = P (X = i) = p(1 p) i 1, i = 1,,... 1 + r + r 4 1 4 4.1 X P (X = 1) =.4, P (X = ) =.3, P (X = 1) =., P (X = ) =.1 E(X) = 1.4 +.3 + 1. +.1 = 4. X Y = X P (X = ) = P (X = 1) = P (X = ) = P (X = 1) = P (X = ) =. Y P (Y = ) = P (X = ) =., P (Y = 1) =

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

f (x) f (x) f (x) f (x) f (x) 2 f (x) f (x) f (x) f (x) 2 n f (x) n f (n) (x) dn f f (x) dx n dn dx n D n f (x) n C n C f (x) x = a 1 f (x) x = a x >

f (x) f (x) f (x) f (x) f (x) 2 f (x) f (x) f (x) f (x) 2 n f (x) n f (n) (x) dn f f (x) dx n dn dx n D n f (x) n C n C f (x) x = a 1 f (x) x = a x > 5.1 1. x = a f (x) a x h f (a + h) f (a) h (5.1) h 0 f (x) x = a f +(a) f (a + h) f (a) = lim h +0 h (5.2) x h h 0 f (a) f (a + h) f (a) f (a h) f (a) = lim = lim h 0 h h 0 h (5.3) f (x) x = a f (a) =

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

z z x = y = /x lim y = + x + lim y = x (x a ) a (x a+) lim z z f(z) = A, lim z z g(z) = B () lim z z {f(z) ± g(z)} = A ± B (2) lim {f(z) g(z)} = AB z

z z x = y = /x lim y = + x + lim y = x (x a ) a (x a+) lim z z f(z) = A, lim z z g(z) = B () lim z z {f(z) ± g(z)} = A ± B (2) lim {f(z) g(z)} = AB z Tips KENZOU 28 6 29 sin 2 x + cos 2 x = cos 2 z + sin 2 z = OK... z < z z < R w = f(z) z z w w f(z) w lim z z f(z) = w x x 2 2 f(x) x = a lim f(x) = lim f(x) x a+ x a z z x = y = /x lim y = + x + lim y

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980 % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2006.11.20 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

チュートリアル:ノンパラメトリックベイズ

チュートリアル:ノンパラメトリックベイズ { x,x, L, xn} 2 p( θ, θ, θ, θ, θ, } { 2 3 4 5 θ6 p( p( { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} K n p( θ θ n N n θ x N + { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} log p( 6 n logθ F 6 log p( + λ θ F θ

More information

0 (1 ) 0 (1 ) 01 Excel Excel ( ) = Excel Excel =5+ 5 + 7 =5-5 3 =5* 5 10 =5/ 5 5 =5^ 5 5 ( ), 0, Excel, Excel 13E+05 13 10 5 13000 13E-05 13 10 5 0000

0 (1 ) 0 (1 ) 01 Excel Excel ( ) = Excel Excel =5+ 5 + 7 =5-5 3 =5* 5 10 =5/ 5 5 =5^ 5 5 ( ), 0, Excel, Excel 13E+05 13 10 5 13000 13E-05 13 10 5 0000 1 ( S/E) 006 7 30 0 (1 ) 01 Excel 0 7 3 1 (-4 ) 5 11 5 1 6 13 7 (5-7 ) 9 1 1 9 11 3 Simplex 1 4 (shadow price) 14 5 (reduced cost) 14 3 (8-10 ) 17 31 17 3 18 33 19 34 35 36 Excel 3 4 (11-13 ) 5 41 5 4

More information

( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED)

( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED) rational number p, p, (q ) q ratio 3.14 = 3 + 1 10 + 4 100 ( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED) ( a) ( b) a > b > 0 a < nb n A A B B A A, B B A =

More information

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x) 3 3 22 Z[i] Z[i] π 4, (x) π 4,3 (x) x (x ) 2 log x π m,a (x) x ϕ(m) log x. ( ). π(x) x (a, m) = π m,a (x) x modm a π m,a (x) ϕ(m) π(x) ϕ(m) x log x ϕ(m) m f(x) g(x) (x α) lim f(x)/g(x) = x α mod m (a,

More information

6. Euler x

6. Euler x ...............................................................................3......................................... 4.4................................... 5.5......................................

More information

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9 1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n 1-2. 0 m n m n 0 2 = 1.41421356 π = 3.141516 1-3. 1 0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c),

More information

tokei01.dvi

tokei01.dvi 2. :,,,. :.... Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 3. (probability),, 1. : : n, α A, A a/n. :, p, p Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN

More information

5 36 5................................................... 36 5................................................... 36 5.3..............................

5 36 5................................................... 36 5................................................... 36 5.3.............................. 9 8 3............................................. 3.......................................... 4.3............................................ 4 5 3 6 3..................................................

More information

1 1 1.1...................................... 1 1.2................................... 5 1.3................................... 7 1.4............................. 9 1.5....................................

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,, 2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).

More information

2 p T, Q

2 p T, Q 270 C, 6000 C, 2 p T, Q p: : p = N/ m 2 N/ m 2 Pa : pdv p S F Q 1 g 1 1 g 1 14.5 C 15.5 1 1 cal = 4.1855 J du = Q pdv U ( ) Q pdv 2 : z = f(x, y). z = f(x, y) (x 0, y 0 ) y y = y 0 z = f(x, y 0 ) x x =

More information

: ( )

: ( ) : 7 3...........................................................................................3............................................. 3.4............................ 4.5.............................

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

,..,,.,,.,.,..,,.,,..,,,. 2

,..,,.,,.,.,..,,.,,..,,,. 2 A.A. (1906) (1907). 2008.7.4 1.,.,.,,.,,,.,..,,,.,,.,, R.J.,.,.,,,..,.,. 1 ,..,,.,,.,.,..,,.,,..,,,. 2 1, 2, 2., 1,,,.,, 2, n, n 2 (, n 2 0 ).,,.,, n ( 2, ), 2 n.,,,,.,,,,..,,. 3 x 1, x 2,..., x n,...,,

More information

第86回日本感染症学会総会学術集会後抄録(II)

第86回日本感染症学会総会学術集会後抄録(II) χ μ μ μ μ β β μ μ μ μ β μ μ μ β β β α β β β λ Ι β μ μ β Δ Δ Δ Δ Δ μ μ α φ φ φ α γ φ φ γ φ φ γ γδ φ γδ γ φ φ φ φ φ φ φ φ φ φ φ φ φ α γ γ γ α α α α α γ γ γ γ γ γ γ α γ α γ γ μ μ κ κ α α α β α

More information

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) 2017 12 9 4 1 30 4 10 3 1 30 3 30 2 1 30 2 50 1 1 30 2 10 (1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) (1) i 23 c 23 0 1 2 3 4 5 6 7 8 9 a b d e f g h i (2) 23 23 (3) 23 ( 23 ) 23 x 1 x 2 23 x

More information

untitled

untitled 10 log 10 W W 10 L W = 10 log 10 W 10 12 10 log 10 I I 0 I 0 =10 12 I = P2 ρc = ρcv2 L p = 10 log 10 p 2 p 0 2 = 20 log 10 p p = 20 log p 10 0 2 10 5 L 3 = 10 log 10 10 L 1 /10 +10 L 2 ( /10 ) L 1 =10

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

untitled

untitled 18 1 2,000,000 2,000,000 2007 2 2 2008 3 31 (1) 6 JCOSSAR 2007pp.57-642007.6. LCC (1) (2) 2 10mm 1020 14 12 10 8 6 4 40,50,60 2 0 1998 27.5 1995 1960 40 1) 2) 3) LCC LCC LCC 1 1) Vol.42No.5pp.29-322004.5.

More information

example2_time.eps

example2_time.eps Google (20/08/2 ) ( ) Random Walk & Google Page Rank Agora on Aug. 20 / 67 Introduction ( ) Random Walk & Google Page Rank Agora on Aug. 20 2 / 67 Introduction Google ( ) Random Walk & Google Page Rank

More information

α = 2 2 α 2 = ( 2) 2 = 2 x = α, y = 2 x, y X 0, X 1.X 2,... x 0 X 0, x 1 X 1, x 2 X 2.. Zorn A, B A B A B A B A B B A A B N 2

α = 2 2 α 2 = ( 2) 2 = 2 x = α, y = 2 x, y X 0, X 1.X 2,... x 0 X 0, x 1 X 1, x 2 X 2.. Zorn A, B A B A B A B A B B A A B N 2 1. 2. 3. 4. 5. 6. 7. 8. N Z 9. Z Q 10. Q R 2 1. 2. 3. 4. Zorn 5. 6. 7. 8. 9. x x x y x, y α = 2 2 α x = y = 2 1 α = 2 2 α 2 = ( 2) 2 = 2 x = α, y = 2 x, y X 0, X 1.X 2,... x 0 X 0, x 1 X 1, x 2 X 2.. Zorn

More information

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B 1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n

More information

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P 1 1.1 (population) (sample) (event) (trial) Ω () 1 1 Ω 1.2 P 1. A A P (A) 0 1 0 P (A) 1 (1) 2. P 1 P 0 1 6 1 1 6 0 3. A B P (A B) = P (A) + P (B) (2) A B A B A 1 B 2 A B 1 2 1 2 1 1 2 2 3 1.3 A B P (A

More information

IV.dvi

IV.dvi IV 1 IV ] shib@mth.hiroshim-u.c.jp [] 1. z 0 ε δ := ε z 0 z

More information

body.dvi

body.dvi ..1 f(x) n = 1 b n = 1 f f(x) cos nx dx, n =, 1,,... f(x) sin nx dx, n =1,, 3,... f(x) = + ( n cos nx + b n sin nx) n=1 1 1 5 1.1........................... 5 1.......................... 14 1.3...........................

More information

.. F x) = x ft)dt ), fx) : PDF : probbility density function) F x) : CDF : cumultive distribution function F x) x.2 ) T = µ p), T : ) p : x p p = F x

.. F x) = x ft)dt ), fx) : PDF : probbility density function) F x) : CDF : cumultive distribution function F x) x.2 ) T = µ p), T : ) p : x p p = F x 203 7......................................2................................................3.....................................4 L.................................... 2.5.................................

More information

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/085221 このサンプルページの内容は, 初版 1 刷発行時のものです. i +α 3 1 2 4 5 1 2 ii 3 4 5 6 7 8 9 9.3 2014 6 iii 1 1 2 5 2.1 5 2.2 7

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

b3e2003.dvi

b3e2003.dvi 15 II 5 5.1 (1) p, q p = (x + 2y, xy, 1), q = (x 2 + 3y 2, xyz, ) (i) p rotq (ii) p gradq D (2) a, b rot(a b) div [11, p.75] (3) (i) f f grad f = 1 2 grad( f 2) (ii) f f gradf 1 2 grad ( f 2) rotf 5.2

More information

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n . X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10 1 2007.4.13. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 0. 1. 1. 2. 3. 2. ɛ-δ 1. ɛ-n

More information

untitled

untitled B2 3 2005 (10:30 12:00) 201 2005/10/04 10/04 10/11 9, 15 10/18 10/25 11/01 17 20 11/08 11/15 22 11/22 11/29 ( ) 12/06 12/13 L p L p Hölder 12/20 1/10 1/17 ( ) URL: http://www.math.tohoku.ac.jp/ hattori/hattori.htm

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

Copyrght 7 Mzuho-DL Fnancal Technology Co., Ltd. All rghts reserved.

Copyrght 7 Mzuho-DL Fnancal Technology Co., Ltd. All rghts reserved. 766 Copyrght 7 Mzuho-DL Fnancal Technology Co., Ltd. All rghts reserved. Copyrght 7 Mzuho-DL Fnancal Technology Co., Ltd. All rghts reserved. 3 Copyrght 7 Mzuho-DL Fnancal Technology Co., Ltd. All rghts

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2007.11.5 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

COE SITAIE- ICE IEICE IEICE IEICE IEICE (PRMU) () IEEE Committee Members of IT Society Japan ChapterIEEE Computational Intelligence Society Japan Chap

COE SITAIE- ICE IEICE IEICE IEICE IEICE (PRMU) () IEEE Committee Members of IT Society Japan ChapterIEEE Computational Intelligence Society Japan Chap 12 Collection of Technical Reports of the 12th Workshop on Information-Based Induction Sciences (IBIS 2009) IBIS 2009 2009 10 19-21 COE SITAIE- ICE IEICE IEICE IEICE IEICE (PRMU) () IEEE Committee Members

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a 3 3.1 3.1.1 A f(a + h) f(a) f(x) lim f(x) x = a h 0 h f(x) x = a f 0 (a) f 0 (a) = lim h!0 f(a + h) f(a) h = lim x!a f(x) f(a) x a a + h = x h = x a h 0 x a 3.1 f(x) = x x = 3 f 0 (3) f (3) = lim h 0 (

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

23 7 28 i i 1 1 1.1................................... 2 1.2............................... 3 1.2.1.................................... 3 1.2.2............................... 4 1.2.3 SI..............................

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

受賞講演要旨2012cs3

受賞講演要旨2012cs3 アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート α β α α α α α

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

(interval estimation) 3 (confidence coefficient) µ σ/sqrt(n) 4 P ( (X - µ) / (σ sqrt N < a) = α a α X α µ a σ sqrt N X µ a σ sqrt N 2

(interval estimation) 3 (confidence coefficient) µ σ/sqrt(n) 4 P ( (X - µ) / (σ sqrt N < a) = α a α X α µ a σ sqrt N X µ a σ sqrt N 2 7 2 1 (interval estimation) 3 (confidence coefficient) µ σ/sqrt(n) 4 P ( (X - µ) / (σ sqrt N < a) = α a α X α µ a σ sqrt N X µ a σ sqrt N 2 (confidence interval) 5 X a σ sqrt N µ X a σ sqrt N - 6 P ( X

More information

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,. (1 C205) 4 10 (2 C206) 4 11 (2 B202) 4 12 25(2013) http://www.math.is.tohoku.ac.jp/~obata,.,,,..,,. 1. 2. 3. 4. 5. 6. 7. 8. 1., 2007 ( ).,. 2. P. G., 1995. 3. J. C., 1988. 1... 2.,,. ii 3.,. 4. F. ( ),..

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................ 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h f(a + h, b) f(a, b) h........................................................... ( ) f(x, y) (a, b) x A (a, b) x (a, b)

More information

Lebesgue Fubini L p Banach, Hilbert Höld

Lebesgue Fubini L p Banach, Hilbert Höld II (Analysis II) Lebesgue (Applications of Lebesgue Integral Theory) 1 (Seiji HIABA) 1 ( ),,, ( ) 1 1 1.1 1 Lebesgue........................ 1 1.2 2 Fubini...................... 2 2 L p 5 2.1 Banach, Hilbert..............................

More information

I.2 z x, y i z = x + iy. x, y z (real part), (imaginary part), x = Re(z), y = Im(z). () i. (2) 2 z = x + iy, z 2 = x 2 + iy 2,, z ± z 2 = (x ± x 2 ) +

I.2 z x, y i z = x + iy. x, y z (real part), (imaginary part), x = Re(z), y = Im(z). () i. (2) 2 z = x + iy, z 2 = x 2 + iy 2,, z ± z 2 = (x ± x 2 ) + I..... z 2 x, y z = x + iy (i ). 2 (x, y). 2.,,.,,. (), ( 2 ),,. II ( ).. z, w = f(z). z f(z), w. z = x + iy, f(z) 2 x, y. f(z) u(x, y), v(x, y), w = f(x + iy) = u(x, y) + iv(x, y).,. 2. z z, w w. D, D.

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1 67 A Section A.1 0 1 0 1 Balmer 7 9 1 0.1 0.01 1 9 3 10:09 6 A.1: A.1 1 10 9 68 A 10 9 10 9 1 10 9 10 1 mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1 A.1. 69 5 1 10 15 3 40 0 0 ¾ ¾ É f Á ½ j 30 A.3: A.4: 1/10

More information

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x + (.. C. ( d 5 5 + C ( d d + C + C d ( d + C ( ( + d ( + + + d + + + + C (5 9 + d + d tan + C cos (sin (6 sin d d log sin + C sin + (7 + + d ( + + + + d log( + + + C ( (8 d 7 6 d + 6 + C ( (9 ( d 6 + 8 d

More information

地域総合研究第40巻第1号

地域総合研究第40巻第1号 * abstract This paper attempts to show a method to estimate joint distribution for income and age with copula function. Further, we estimate the joint distribution from National Survey of Family Income

More information

.. ( )T p T = p p = T () T x T N P (X < x T ) N = ( T ) N (2) ) N ( P (X x T ) N = T (3) T N P T N P 0

.. ( )T p T = p p = T () T x T N P (X < x T ) N = ( T ) N (2) ) N ( P (X x T ) N = T (3) T N P T N P 0 20 5 8..................................................2.....................................3 L.....................................4................................. 2 2. 3 2. (N ).........................................

More information

10:30 12:00 P.G. vs vs vs 2

10:30 12:00 P.G. vs vs vs 2 1 10:30 12:00 P.G. vs vs vs 2 LOGIT PROBIT TOBIT mean median mode CV 3 4 5 0.5 1000 6 45 7 P(A B) = P(A) + P(B) - P(A B) P(B A)=P(A B)/P(A) P(A B)=P(B A) P(A) P(A B) P(A) P(B A) P(B) P(A B) P(A) P(B) P(B

More information

3 0 4 3 5 6 6 7 7 8 4 9 6 0 30 33 34 3 36 4 4 5 44 6 47 7 54 8 56 9 60 0 6 64 67 3 70 4 7 5 75 6 80

3 0 4 3 5 6 6 7 7 8 4 9 6 0 30 33 34 3 36 4 4 5 44 6 47 7 54 8 56 9 60 0 6 64 67 3 70 4 7 5 75 6 80 3 0 4 3 5 6 6 7 7 8 4 9 6 0 30 33 34 3 36 4 4 5 44 6 47 7 54 8 56 9 60 0 6 64 67 3 70 4 7 5 75 6 80 7 8 3 elemet, set A, A A, A A, A A, b, c, {, b, c, }, x P x, P x x {x P x}, A x, P x {x A P x} 3 { {,,

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

土木学会構造工学論文集(2014.3)

土木学会構造工学論文集(2014.3) Vol. 6A 214 3 Numerical stud on ultimate strength of compressive flange considering statistical data for distributions of initial displacement and residual stress * ** *** **** Masato Komuro, Yoshiaki

More information

( 30 ) 30 4 5 1 4 1.1............................................... 4 1.............................................. 4 1..1.................................. 4 1.......................................

More information

第85 回日本感染症学会総会学術集会後抄録(III)

第85 回日本感染症学会総会学術集会後抄録(III) β β α α α µ µ µ µ α α α α γ αβ α γ α α γ α γ µ µ β β β β β β β β β µ β α µ µ µ β β µ µ µ µ µ µ γ γ γ γ γ γ µ α β γ β β µ µ µ µ µ β β µ β β µ α β β µ µµ β µ µ µ µ µ µ λ µ µ β µ µ µ µ µ µ µ µ

More information

I L01( Wed) : Time-stamp: Wed 07:38 JST hig e, ( ) L01 I(2017) 1 / 19

I L01( Wed) : Time-stamp: Wed 07:38 JST hig e,   ( ) L01 I(2017) 1 / 19 I L01(2017-09-20 Wed) : Time-stamp: 2017-09-20 Wed 07:38 JST hig e, http://hig3.net ( ) L01 I(2017) 1 / 19 ? 1? 2? ( ) L01 I(2017) 2 / 19 ?,,.,., 1..,. 1,2,.,.,. ( ) L01 I(2017) 3 / 19 ? I. M (3 ) II,

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2 7 1995, 2017 7 21 1 2 2 3 3 4 4 6 (1).................................... 6 (2)..................................... 6 (3) t................. 9 5 11 (1)......................................... 11 (2)

More information

st.dvi

st.dvi 9 3 5................................... 5............................. 5....................................... 5.................................. 7.........................................................................

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b 1 Introduction 2 2.1 2.2 2.3 3 3.1 3.2 σ- 4 4.1 4.2 5 5.1 5.2 5.3 6 7 8. Fubini,,. 1 1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)?

More information

II 1 3 2 5 3 7 4 8 5 11 6 13 7 16 8 18 2 1 1. x 2 + xy x y (1 lim (x,y (1,1 x 1 x 3 + y 3 (2 lim (x,y (, x 2 + y 2 x 2 (3 lim (x,y (, x 2 + y 2 xy (4 lim (x,y (, x 2 + y 2 x y (5 lim (x,y (, x + y x 3y

More information

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x 1 1.1 4n 2 x, x 1 2n f n (x) = 4n 2 ( 1 x), 1 x 1 n 2n n, 1 x n n 1 1 f n (x)dx = 1, n = 1, 2,.. 1 lim 1 lim 1 f n (x)dx = 1 lim f n(x) = ( lim f n (x))dx = f n (x)dx 1 ( lim f n (x))dx d dx ( lim f d

More information