M ω f ω = df ω = i ω idx i f x i = ω i, i = 1,..., n f ω i f 2 f 2 f x i x j x j x i = ω i x j = ω j x i, 1 i, j n (3) (3) ω 1.4. R 2 ω(x, y) = a(x, y

Size: px
Start display at page:

Download "M ω f ω = df ω = i ω idx i f x i = ω i, i = 1,..., n f ω i f 2 f 2 f x i x j x j x i = ω i x j = ω j x i, 1 i, j n (3) (3) ω 1.4. R 2 ω(x, y) = a(x, y"

Transcription

1 1 1.1 M n p M T p M Tp M p (x 1,..., x n ) x 1,..., x n T p M dx 1,..., dx n Tp M dx i dx i ( ) = δj i x j Tp M Tp M i a idx i 1.1. M x M ω(x) Tx M ω(x) = n ω i (x)dx i i=1 ω i C r ω M C r C ω( x i ) C r 1. x i y j x i x i = j y j dx i = j x i y j dy j (1) 1.1 ( ). M f df x : T x M T f(x) R = R Tx M df x = i f x i (x)dx i x df x x 1,..., x n dx 1,..., dx n dx 1,..., dx n 1.2 ( ). R 2 (r, θ) Φ : (0, ) R (r, θ) (r cos θ, r sin θ) R 2 \ {0} (2) Φ 1 R 2 \{0} (r, θ) dr, dθ dr, dθ R 2 \{0} (r 1, θ 1 ), (r 2, θ 2 ) r 1 = r 2, θ 1 θ 2 + 2kπ θ (1) dθ, dr 1.3 ( ). T n = R n /Z n π : R n T n R n x x + c R n 1.2 dx 1,..., dx n T 1

2 M ω f ω = df ω = i ω idx i f x i = ω i, i = 1,..., n f ω i f 2 f 2 f x i x j x j x i = ω i x j = ω j x i, 1 i, j n (3) (3) ω 1.4. R 2 ω(x, y) = a(x, y)dx + b(x, y)dy (3) a y = b x o = (0, 0), p = (x, y) γ F γ (x, y) = a(x, y)dx + b(x, y)dy γ ξ = (x, 0), η = (0, y) γ ξ γ 1 η γ 2 R F γ1 (x, y) F γ2 (x, y) = R a(x, y)dx + b(x, y)dy = R ( a y b x )dxdy = 0 F (x, y) = F γ1 (x, y) = F γ2 (x, y) F γ 1 y (x, y) = b(x, y) γ F 2 x (x, y) = a(x, y) df = ω R 2 (3) R n, B n Ω = R 2 \ {0} dr Ω r(x, y) = x 2 + y 2 dθ dθ f Ω (2) Φ F (r, θ) = f Φ(r, θ) F (r, θ + 2π) = F (r, θ) Φ df = dθ F θ (r, θ) 1, F r 0 F (r, θ) = θ + c F dθ (3) 1.3 dx 1,..., dx n T n dx i (3) 2

3 1.5 dθ (r, θ) x θ 1.4 F {0} 2π dθ (3) 1.2 p (3) (x 1,..., x n ), (y 1,..., y n ) 1-formω ω(x) = ω i (x)dx i = η j (y)dy j y 1-form ω i = η k k ω i x j ω j x i = x j (η k y k x i ) x i (η k y k x j ) = η k y k η k y k + η k ( 2 y k 2 y k ) x j x i x i x j x j x i x i x j = η k y l y k η k y l y k = ( η k η l ) y l y k (k, l ) y l x j x i y l x i x j y l y k x j x i = 1 ( η k η l )( y k y l y l y k ) (4) 2 y l y k x i x j x i x j 1 k,l n (3) Γ ij = ω i x j ω j x i 2 Γ ij V = T x M n p { }} { V p f : V V R i v 1,..., ˇv i,..., v n V v i f(v 1,..., v n ) R f : V V R f(v, w) = f(w, v) V 1.2. V p f p σ f(v 1,..., v p ) = sgn(σ)f(v σ(1),..., v σ(p) ) f V p p-form V p-form p V n Σ n Σ n n! ω p V, η q V ω η p+q V ω η(v 1,..., v p+q ) = 1 p!q! σ Σ p+q sgn(σ)ω(v σ(1),..., v σ(p) )η(v σ(p+1),..., v σ(p+q) ) x i 3

4 ω η(v τ(1),..., v τ(p+q) ) = 1 p!q! ω η τ Σ p+q σ Σ p+q sgn(σ)ω(v τσ(1),..., v τσ(p) )η(v τσ(p+1),..., v τσ(p+q) ) Σ p+q σ τσ σ = τσ ω η(v τ(1),..., v τ(p+q) ) = 1 p!q! σ Σ p+q sgn(τ 1 σ )ω(v σ (1),..., v σ (p))η(v σ (p+1),..., v σ (p+q)) = sgn(τ)ω η(v 1,..., v p+q ) ω η 1.1. ω 1, ω 2, ω 3 V p, q, r form (ω 1 ω 2 ) ω 3 = ω 1 (ω 2 ω 3 ) (5) ω 1 ω 2 = ( 1) pq ω 2 ω 1 (6) Proof. (5) 1 p!q!(p + q)!r! σ Σ p+q+r τ Σ p+q sgn(σ) sgn(τ)ω 1 (v στ(1),..., v στ(p) ) ω 2 (v στ(p+1),..., v στ(p+q) )ω 3 (v σ(p+q+1),..., v σ(p+q+r) ) τ Σ p+q {p + q + 1,..., p + q + r} p + q + r Σ p+q Σ p+q+r τ σ = στ 1 p!q!(p + q)!r! τ Σ p+q σ Σ p+q+r sgn(σ )ω 1 (v σ (1),..., v σ (p)) ω 2 (v σ (p+1),..., v σ (p+q))ω 3 (v σ (p+q+1),..., v σ (p+q+r)) Σ τ τ Σ p+q /p!q!(p+ q)!r! = 1/p!q!r! (5) 1 p!q!r! σ Σ p+q+r sgn(σ)ω 1 (v σ(1),..., v σ(p) )ω 2 (v σ(p+1),..., v σ(p+q) )ω 3 (v σ(p+q+1),..., v σ(p+q+r) ) (6) τ(i) = i+q, 1 i p, τ(p+j) = j, 1 j q τ sgn τ = ( 1) pq

5 V v 1,..., v n v 1,..., v n V I = (i 1,..., i p ) 1-form p v I = v i 1 v i p (6) v i v i = 0 I J = (j 1,..., j p ) v I (v J ) := v I sgn σ if j α = i σα (v j1,..., v jp ) = (7) 0 otherwise 1.2. v 1,..., v n {v I } 1 i1 <...i p n = {v i 1 v ip } 1 i1 <...i p n p V p > n p V = {0} p V nc p Proof. i 1 < < i p I I I a Iv I = 0 v j1,..., v jp (7) a J = 0 ω p V η = I ω(v I)v I J η(v J ) = ω(v J ) ω = η ω v I V v i = A j i w j ω p V ω = I a Iv I = J b Jw J (v i1,..., v ip ) (7) a I = J K b J A k 1 i 1... A k p i p w J (w K ) = sgn(σ)a jσ(1) J i 1 σ Σ p... A j σ(p) i p 1.6. p = 2 ω = i<j a ijv i v j = k<l b klw k w l b J a ij = k<l(a k i A l j A l ia k j )b kl (8) p = n (det A j i )v1 v n = w 1 w n 1.3 ( ). M x p Tx M ω x ω x = I ω I(x)dx I ω I x ω x M p p-form 1.7. M 1-formω(x) = i ω i(x)dx i dω = i,j ω i dx j dx i = ( ω j ω i )dx i dx j x j x i<j i x j 5

6 2-form dω M 2-form (4) ω i x j ω j x i = 1 2 = 1 k,l n 1 k<l n ( η k η l )( y k y l y l y k ) y l y k x i x j x i x j ( η k η l )( y k y l y l y k ) y l y k x i x j x i x j T x M x i = y j x i y j dω (8) 2-form ω 1-form α dα = ω p 2. 2-form ω 1-form α ω = dα 1.3 Ω p (M) M C p-form p = 0 C d 0 = d : Ω 0 (M) Ω 1 (M) d 1 = d : Ω 1 (M) Ω 2 (M) d 1 d 0 = 0 Im d 0 ker d 1 Ω p (M)... d p 2 Ω p 1 (M) d p 1 Ω p (M) d p Ω p+1 (M) d p+1... {d p } p d p d p 1 = 0 p d p d p-formω ω = I ω I(x)dx I d 1 d p ω = I dω I dx I = ω I dx j dx i 1 dx i p (9) x j I j d ω, η p, q-form (1) d(ω η) = dω η + ( 1) p ω dη (2) d 2 ω = d p+1 d p ω = 0 6

7 Proof. ω = I ω Idx I, η = J η Jdx J ω η = I,J ω Iη J dx I dx J d (6) d(ω η) = d(ω Iη J )dx I dx J = ( ω I η J η J + ω I )dx k dx I dx J I,J I,J,k x k x k = { ωi dx k dx I η J dx J + ( 1) p ω I dx I η } J dx k dx J I,J,k x k x k = dω η + ( 1) p ω dη (3) f d 1 d 0 f = 0 1.3(1) d 2 ω = I d2 ω I dx I = 0 d p d p p d p : Ω p (M) Ω p+1 (M) (A) d 0 (B) d 1.3 d d 1.4. (1) d 1.3(1) d x M ω 0 dω(x) = 0 (2) (A) (B) d (9) Proof. (1) x U ω 0 φ φ(x) = 1 U bump function 0 d(φω) = dφ ω + φdω dω(x) = 0 d ω = I ω Idx I d(ω) = { dωi dx I + ω d(dx i 1 dx i p ) } I = dω + { } ω d 2 x i 1 dx ip ± dx i 1 d 2 x i 2 dx ip... = dω I (2) (A) (B) d (9) d 1.4. M {U α } α A M {χ α } α A (1) M χ α (x) 0 M \ U α χ α 0 (2) α A χ α 1 7

8 1.5. M {U α } α χ α Proof. M x U x φ x B 1 R n V x = φ 1 x (B 1 ) 2 bump functionθ x V x θ x 1 U 0 {V x } x M M {V α } α bump function θ α χ α (x) = θ α(x) α θ α(x) V χ α 1 dω = α d α(χ α ω) d α U α (9) U α d α (χ α ω) = 0 (p + 1)-form 1.6. d (A) (B) Proof. (A) d α d(ω η) = α d α (χ α ω η) = α {d α (χ α ω) η + ( 1) p ω χ α d α η} = dω η + ( 1) p ω ( α χ α d α η) χ α d α η = d α (χ α η) d 0 χ α η U α M d(ω η) = dω η + ( 1) p ω dη α dχ α ω η α χ α 1 d 2 = 0 d 2 f = d(df) = 0 d(df) = α d α (χ α df) = α {dχ α df + χ α d 2 αf} = 0 (9) 1-formω dω(x, Y ) = X(ω(Y )) Y (ω(x)) ω([x, Y ]) 3. X 1,..., X p+1 M ω p-form F (X 1,..., X p+1 ) = p+1 ( 1) i+1 X i {ω(x 1,..., ˆX i,..., X p+1 )} i=1 + i<j ( 1) i+j ω([x i, X j ], X 1,..., ˆX i,..., ˆX j,..., X p+1 ) 8

9 [X i, X j ] X i { } F (p + 1)-form dω (1) (X 1,..., X p+1 ) F (X 1,..., X p+1 ) F I := F ( x i1,..., x ip+1 ) dω = I F Idx I (2) f F (fx 1,..., X p+1 ) = ff (X 1,..., X p+1 ) F (X 1,..., X p+1 ) F (X 1,..., X p+1 ) x M X 1 (x),..., X p+1 (x) T x M M m, N n F : M N N p-formω M p-formf ω F ω x (X 1,..., X p ) = ω F (x) (df x (X 1 ),..., df x (X p )) F ω ω F 1.8 ( ). M N ι T x M T x N N p-form ω T x M M p-form ι ω N (x 1,..., x n ) U φ(m U) = {(x 1,..., x n ); x m+1 = = x n = 0} ω ω = I ω Idx I M (x 1,..., x m ) ι ω = I {1,...,m} ω I M dx I dx m+1,..., dx n 1.7. M, N, F ω, η N (1) G : N X X α F G α = (G F ) α (2) F (ω η) = F ω F η (3) df ω = F dω Proof. (1) (2) (3) N f(x) (y 1,..., y n ) ω = I ω Idy I (2) F ω = I F ω I F dy i 1 F dy i p N f F df = df df = d(f F ) = df f 1.3(1) d 2 y i = 0 df ω = I F dω I F dy i 1 F dy ip = F dω 9

10 d p : Ω p (M) Ω p+1 (M) Z p (M) = ker d p, B p (M) = d p 1 Ω p 1 (M) Z p (M) B p (M) d 2 = 0 Z p B p Ω p (M) H p DR (M) = Zp (M)/B p (M) H p DR (M) M p 1.8. (1) M A HDR 0 (M) = α A R M HDR 0 (M) = R (2) F : M N F F : H p DR (N) Hp DR (M) F - Proof. (1) HDR 0 (M) = Z0 (M) Z 0 (M) (2) 1.7(3) F N M F : Z p (N) Z p (M) F : H p DR (N) Hp DR (M) 1.4 n M n-formω (y 1,..., y n ) f ω x = f(y)dy 1 dy n (x 1,..., x n ) ω x = f(y)dy 1 dy n = f(y) det( yi x j )dx1 dx n (10) y = Φ(x) ΦΩ f(y)dy 1... dy n = Ω f(φ(x)) det( Φi x j ) dx1... dx n n-form n-form 1.5. M {(U α, φ α )} α α, β y = φ β φ 1 α (x) det( yi ) > 0 x j M M M M 1.9. (1) n M M n-form M (2) M 10

11 Proof. M (U α, φ α ) (x 1,..., x n ) ω α = dx 1 dx n ω α 1 χ α ω = α χ αω α (10) ω = fdx 1 dx n f n-formω M (x 1,..., x n ) ω(x) = f(x)dx 1 dx n f ( x 1, x 2..., x n ) ω f (10) M n-formω f M n-formω 1, ω 2 S = ω 1 /ω 2 S ω 1 = Sω 2 M S S ω 1, ω 2 4. S n R n+1 A S n f A : S n S n RP n S n x S n f E (x) = x S n π : S n RP n (1) R n+1 n-formv n+1 V = ( 1) i 1 x i dx 1... dxi ˆ dx n+1 i=1 V S n n-form S n (2) A V = det AV f A (3) RP n n-formω f E π ω = π ω n RP n 1.6 ( ). M n Ω M Ω x M (U, φ) φ(ω U) = {(x 1,..., x n ) φ(u); x n 0} H n = {(x 1,..., x n ) R n ; x n 0} 11

12 Ω M Ω H n R n Ω Ω φ 2 φ 1 1 ( H φ 1(U 1 )) H (11) Ω M Ω (n 1) M Ω M Ω Proof. M Ω x Ω (U, φ), (V, ψ) F = ψ φ 1 Ω φ(x) = ψ(x) = 0 x n 0 F n (x n ) 0 F n x n (0) 0 (11) F n x i (0) = 0, i < n F 1 F x x n J 1 (F ) =.... F (n 1) F x (n 1) x n F n x n (n 1) Ω J 2 F 0 < det J 1 (F ) = det J n 2 x n (0) det J 2 > 0 n M (n 1) Σ Ω Σ M 1.9 ( ). S 2 S 2 S 1 T 2 S Σ M 12

13 1.10. RP 2 RP 2 S 1 RP 3 RP 2 RP RP 3 \ RP 2 3 RP 2 RP Ω M {U α } α M Ω (1) α V α U α V α U α {V α } α (2) {U α } Ω {χ α } α χ α (a) χ α K U α (b) x Ω α χ α(x) 1 Proof. bump function U R n K U K f > 0 R n f 0 U 1.4 x Ω x U α α x W x U α U α W x W 1,..., W k W i α W i U α V α = Wi U α W i 1.5 M n Ω M Ω n-formω M Ω {(U α, φ α )} χ α χ α ω U α U α ω = f α dx 1 dx n I (Uα,φ α )(χ α ω) := χ α (x)f α (x)dx H 1... dx n (12) + ω Ω ω := I Uα (χ α ω) Ω α (12) U α, φ α, χ α 13

14 Proof. {(V β, ψ β )} β ν β y 1,..., y n V β ω = g β dy 1 dy n {(U α V β, φ α )} α,β, {(U α V β, ψ α )} α,β χ α ν β U α V β I (Uα V β,ψ β )(χ α ν β ω) = χ α (y)ν β (y)g β (y)dy ψ α (U α V β ) H 1... dy n + = χ α (x)ν β (x)g β (y) det( φα(uα Vβ) H yi + x j ) dx1... dx n = χ α (x)ν β (x)f α (x)dx φ α (U α V β ) H 1... dx n = I (Uα V β,φ α )(χ α ν β ω) + I Uα (χ α ω) = I (Uα,φ α )(χ α ν β ω) α α β = I (Uα Uβ,ψ β )(χ α ν β ω) = I Vβ (ν β ω) β α β Ω (n 1)- η ω = dη η U α η = n i=1 η i(x)dx 1... dx i dx n dη = n i=1 ( 1) i 1 η i x i (x)dx1 dx n n I Uα = H χ α ( 1) i 1 η i x i (x)dx1... dx n i=1 dx i i < n φ α (U α ) H χ η i α x i (x)dx1... dx n = H η χ α i x i dx1... dx n i = n H φ α(u α) H χ η n α x n (x)dx1... dx n = H η nχ α dx 1... dx n 1 H η χ α n x n dx1... dx n I α = ( 1) n H η nχ α dx 1... dx n 1 i ( 1) H i 1 η χ α i x i dx1... dx n dχ α η dχ α η = i,j χ α x j dxj η i dx 1... dx i dx n = i ( 1) i 1 χ α x i η idx 1 dx n 1.12 U α dχ α η 14

15 1.13 ( ). n M Ω Ω (n 1)-form η dη = Ω η Ω Ω η Ω η Ω M (x 1,..., x n ) Ω (x 1,..., x n 1 ) n Proof. dη = I α = } {( 1) n Ω α α H η nχ α dx 1... dx n 1 H dχ α η η Ω η n dx 1... dx n 1 α χ α 1 1. M n (1) M (n 1)-form η M dη = 0 (2) (n 1)-form η dη = 0 M Proof Ω p cpt (M) M p-form d(ωp cpt (M)) Ωp+1 cpt (M) H p cpt (M) = ker{d : Ω p(m) Ω p+1 (M)}/d(Ω p 1 cpt (M)) M n I M : H n (M) [ω] M ω R I(dη) = 0 well-defined 1.9 M M n-formvol I M (vol) > 0 I M H n (M) 0 M I M : Hcpt(M) n R n-form I M 0, Hcpt(M) n 0 M I M (n 1) Σ n 1 M n [η] H n 1 (M) [η Σ ] H n 1 (Σ) Σ Ω Ω = Σ I Σ ([η]) = Ω dη Σ = 0 15

16 [η] = 0 f : Σ M Ω = Σ f f : Ω M I Σ ([f η]) = d f η = f dη = 0 Ω Ω Σ [f η] = 0 [η Σ ] M, N f 0, f 1 : M N F : M [0, 1] N F (x, i) = f i (x), x M f 0, f 1 F f 0, f 1 f 0 f 1 f : M N g : N M g f id M, f g id N f M, N 1. F : M [0, 1] N M [0, 1] M R 2.1. f 0, f 1 : M N f0, f 1 : Hp (N) H p (M) 1. M, N H p (M) H p (M) π : M [0, 1] (x, t) x M, ι t : M x (x, t) M [0, 1] f i = F ι i ι 0 = ι 1 : Hp (M [0, 1]) H p (M) ι 0, ι 1 π π ι i = id M ι i π = id π ι i = id t 0 [0, 1] K p : Ω p (M [0, 1]) Ω p 1 (M [0, 1]) ( 1) p 1 (dk p K p+1 d)ω = ω π ι t 0 ω Proof. ω Ω p (M [0, 1]) (x 1,..., x n, t) ω = I f I(x, t)dx I dt + J g J(x, t)dx J K p (ω) = I ( t t 0 f I (x, t)dt)dx I M t dk(ω) = f I (x, t)dt dx I + ( d x f I (x, t)dt) dx I I t 0 = t ( 1) p 1 f I (x, t)dx I dt + ( d x f I (x, t)dt) dx I I t 0 16

17 dω = I d x f I (x, t) dx I dt + J d x g J (x, t) dx J + g J dt dxj t = I d x f I (x, t) dx I dt + J d x g J (x, t) dx J + ( 1) p g J t dxj dt K p+1 dω = ( t t 0 d x f I (x, t)dt) dx I + ( 1) p (g J (x, t) g J (x, t 0 ))dx J (dk Kd)ω = ( 1) p 1 (ω J g J (x, t 0 )dx J ) = ( 1) p 1 (ω π ι t 0 ω) R n 1 ( ). H p R if p = 0 DR (Rn ) 0 otherwise Ω p cpt (M) Ω p cpt (M (0, 1)) Ωp 1 cpt (M) 2.2 K cpt : Ω p cpt (M (0, 1)) Ωp 1 cpt (M) ω = f I (x, t)dx I dt + g J (x, t)dx J Ω p cpt (M (0, 1)) K cpt ω = ( 1 0 f I (x, t)dt)dx I 2.2 g J dk cpt K cpt d = 0 K cpt π : H p cpt (M (0, 1)) Hp 1 cpt (M) 5. dk cpt K cpt d = 0 L : Ω p 1 cpt (M) Ωp cpt (M (0, 1)) φ C (0, 1) 1 0 φ(t)dt = 1 η Ω p 1 (M) cpt Lη = π η φ(t)dt π η dl = Ld L : H p 1 cpt (M) Hp cpt (M (0, 1)) K cpt L(η) = η L K cpt L K cpt (ω) = ( 1 0 f I (x, t)dt)dx I φ(t)dt (13) 17

18 2.3. π : H p cpt (M (0, 1)) Hp 1 cpt (M) L K cpt 2.2 H : Ω p cpt (M (0, 1)) Ωp 1 cpt (M (0, 1)) H(ω) = ( t 0 f I (x, t)dt t 0 φ(t)dt 1 0 f I (x, t)dt)dx I Hω 2.2 (13) 2.4. dh(ω) H(dω) = ( 1) p 1 (ω L K cpt (ω)) ( ). H p R if p = n cpt (Rn ) = 0 otherwise 2.2 M U, V M = U V j U : U V U, j V : U V V, i U : U M, i V : V M Ω p (M) i U i V Ω p (U) Ω p (V ) j U j V Ω p (U V ) (14) i U i V j U j V Im(i U i V ) ker(j U j V ) (ω U, ω V ) ker(ju j V ) j U j V (ω U ω V ) = ju (ω U) jv (ω V ) = 0 U, V ω U, ω V U V U ω U V ω V M ω i U i V (ω) = (ω U, ω V ) Im(i U i V ) = ker(j U j V ) (14) Ω p (U) Ω p (V ) 0 Ω p (M) i U i V Ω p (U) Ω p (V ) j U j V Ω p (U V ) 0 (15) Ω p (M), Ω p (U V ) Ω p (M) i U i V Ωp (U V ) ju j V 2.5. (15) Ω p (M), Ω p (U) Ω p (V ), Ω p (U V ) 18

19 1. (15) 3 Proof. i U i V j U j V U, V χ U, χ V χ U, χ V U, V ω Ω p (U V ) χ U ω V χ V ω U ω = (ju j V )(χ V ω, χ U ω ) (15) p Ω p Ω p+1 Ω p+2 d 2 = 0 Im ker d d Ω p 1 (M) i U i V Ω p 1 (U) Ω p 1 (V ) ju j V d Ω p 1 (U V ) d d Ω p (M) i U i V Ω p (U) Ω p (V ) ju j V d Ω p (U V ) d d Ω p+1 (M) i U i V Ω p+1 (U) Ω p+1 (V ) ju j V d Ω p+1 (U V ) d... d... d ( ). δ δ H p 1 DR (M) δ H p DR (M) δ H p+1 DR (M) i U i V H p 1 DR (U) Hp 1 DR (V ) i U i V H p DR (U) Hp 1 DR (V ) i U i V H p+1 DR (U) Hp 1 DR (V ) ju j V H p 1 DR (U V ) ju j V H p DR (U V ) j U j V H p+1 DR (U V ) Proof. H p DR (U) Hp 1 DR (V ) (15) (j U j V ) i U i V = 0 Im ker ([ω U], [ω V ]) ker(ju j V ) η Ωp 1 (U V ) U V ω U ω V = dη (15) η = η U η V ω U dη U, ω V dη V U V ω Ω p (M) i U i V ([ω]) = ([ω U dη U, ω V dη V ]) = ([ω U, ω V ]) δ [η] H p 1 DR (U V ) (15) ju j V (η U, η V ) = η U V dη U dη V = dη = 0 (15) dη U, dη V M p-form ω Ω p (M) U, V dω = 0 H p 1 DR (U V ) [η] [ω] Hp (M) δ η η U, η V δ δ (ju j V ) = 0 [η] ker δ 19

20 ω = dα η U α, η V α (ju j V )([η U α], [η V α]) = [η U η V ] = [η] [η] Im(jU j V ) H p DR (M) 2.6 U, V M S n n B N n B S B S B N S n 1 S n 1 (0, 1) k : S n B S B N k : H p DR (B N B S ) H p DR (Sn 1 ) p H p DR (B N) = H p DR (B S) = 0 H p DR (B N) H p DR (B S) = 0 H p+1 DR (Sn ) j U j V H p DR (B N B S ) = H p DR (Sn 1 ) i U i V H p+1 DR (B N) H p+1 DR (B S) = 0 δ H p DR (Sn 1 ) H p+1 DR (Sn ) 2 p n H p DR (Sn ) HDR 1 (Sn p+1 ) H 1 H 0 DR (Sn ) i U i V H 0 DR (B N) H 0 DR (B S) j U j V H 0 DR (B N B S ) δ H 1 DR (Sn ) i U i V H 1 DR (B N) H 1 DR (B S) = 0 0 H 0 (S n ) = R, n > 0, H 0 (S 0 ) = R 2 H 1 (S n ) = 0, n > 1, H 1 (S 1 ) = R n > 0 H p R if p = 0, n DR (Sn ) = 0 otherwise 2.2. n T n 1.3 dim H p DR (T n ) = nc p n = T n = T n 1 S 1 S 1 I N, I S U = T n 1 I N, V = T n 1 I S T n T n 1 U, V H p DR (U) Hp DR (T n 1 ) H p DR (V ) U V = T n 1 (I N I S ) W 0, W 1 W i T n 1 f i : T n 1 W i U f 0, f 1 H p DR (U) Hp DR (T n 1 ) α (α, α) H p DR (T n 1 ) H p DR (T n 1 ) H p DR (W 0) H p DR (W 1) = H p DR (U V ) 20

21 V j p := ju j V Hp (T n 1 ) H p (T n 1 ) j p : H p (U) H p (U) (α, β) (α β, α β) H p DR (U V ) p = { (α, β) H p DR (T n 1 ) H p DR (T n 1 ); α = β } Im j p = ker j p = p H p DR (T n 1 ) 2.6 H p DR (T n ) Im i p ker i p = ker j p Im δ p 1 ker j p H p 1 (U V )/ Im j p 1 H p DR (T n 1 ) H p 1 DR (T n 1 ) HDR (T n 1 ) HDR (T n ) b n,p = dim H p (T n ) b n,p = b n 1,p + b n 1,p 1 b n,p = n C p 2.6 M ( )M {U α } U α1 U α2 U αk R n 2.7. M Proof. M U 1,..., U k k k = U = U k, V = k 1 i=1 U i U, V U V = k 1 i=1 U k U i U V 2.6 H p 1 DR (U V ) Hp DR (M) Hp DR (U) Hp DR (V ) dim H p DR (M) dim Hp DR (U)+dim Hp DR (V )+dim Hp 1 DR (U V ) M x T x M g x g x x x g x g (M, g) 8. (M, g) γ : [a, b] M b L(γ) = g( dγ dt, dγ dt )dt a d(x, y) := inf {L(γ); γ : [0, 1] M, γ(0) = x, γ(1) = y} r B(x, r) d(x, y) x, y γ : [a, b] M t 0 [a, b] t 0 γ 21

22 2.2 ( ). C (M, g) x, y C x, y γ γ x, y C 2.3. R n S n x v T x M γ v (0) = x, γ v (0) = v γ v t = 0 γ t D r T x M r r exp x : D r v γ v (1) M D r 2.8. (M, g) x r > 0 (1) exp x : D r B(x, r) (2) B(x, r) M r > 0 x 1. M Proof. 2.8 x r > 0 ρ = r/2 B(x, ρ) y, z d(y, z) < r M U 1 = B(x 1, ρ),..., U k = B(x k, ρ) V = U i1 U il x V V B(x, r) W = exp 1 x (V ) exp x : W V V w W 0, w T x M L 2.8 x, exp x (w) L W T x M R n 9. U R n R n 2.3 HDR n (M) M n H n (M) [ω] ω R M M 22

23 2.9. M n n-formω ω = 0 ω = dη ω M Hcpt(R n n ) = R ω Ω n cpt(r n ) R ω = 0 η Ω n 1 n cpt (Rn ) ω = dη M = S n H n (S n ) = R S n R n U N, U S χ N, χ S ω N = χ N ω, ω S = χ S ω U N, U S a := ω N = U N ω S U S (16) a = 0 x U N U S V U N U S V φ(x)dx 1... dx n = 1 V V bump function α = aφ(x)dx 1 dx n V ω N, ω S ω N α, ω S +α a = 0 ω N α = dη N, ω S + α = dη S U N, U S (n 1)-form η = η N + η S ω N, ω S (16) U N U S M R n U 1,..., U k χ i ω i = χ i ω a i = 0, a i = i U i ω i a i = 0 U 1,..., U k U i U j U i, U j Γ M Γ v 1,..., v k Γ a 1,..., a k v i, v j a i, a j α a i + α, a j α Γ 23

24 10. (1) Γ T (2) Proof. ( 2.9) Γ T T v i v i v j (a i, a j ) (0, a i + a j ) v i T a i M n σ HDR n (M) = 0, Hn cpt(m) = R 2.9 n M, N f : M N HDR n (M) = Hn DR (N) = R [ω] 0 Hn DR (N) M deg f := f ω N ω deg f f f q N f 1 (q) x df x : T x M T q N df x f x ε x = 1 ε x = 1 f 1 (q) M f 1 (q) M, N, f, q deg f = x f 1 (q) ε x Proof. f 1 (q) = {x 1,..., x l } x i U i q V i f f : U i V i V i V i W i = f 1 (V ) U i f W i, V f 1 (V ) = i W i V ω f ω = f ω = ε i ω M i W i i V n M k Σ M Hcpt(M) k [ω] ω R 24 Σ

25 Σ (Hcpt(M)) k [Σ] Hcpt(M), k H n k DR (M) Hcpt(M) k H n k DR (M) ([ω], [η]) ω η P D : H n k DR (M) (Hk cpt(m)) [Σ] = P D 1 [Σ] H n k (M) DR 3.1 ( ). M P D : H n k DR (M) (Hk DR (M)) M {U α } N α=1 2.7 P D : H n k DR (M) (Hk cpt(m)) M R n P D 2.9 k = n N M U 0 U 1 U 0 U 1 i U 1 U U, V M 0 Ω p cpt (U V ) j Ω p cpt (U) Ωp cpt (V ) i Ω p cpt (U V ) 0 j = i U U V iv U V, i = i U V U + i U V V Proof. χ U, χ V ω Ω p cpt (U V ) (χ Uω, χ V ω) Ω p cpt (U) Ωp cpt (V ) (15) ( ). δ H p 1 cpt (U V ) δ H p cpt (U V ) δ H p+1 cpt (U V ) j H p 1 cpt (U) Hp 1 cpt (V ) j H p cpt (U) Hp 1 cpt (V ) j H p+1 cpt (U) Hp 1 cpt (V ) i H p 1 cpt (U V ) i H p cpt (U V ) i H p+1 cpt (U V ) H p DR (U V ) P D i U i V H p DR (U) Hp DR (V ) ju j V H p DR (U V ) δ H p+1 DR (U V ) cpt P D (H n p cpt (U V )) i (H n p (U) H p 1 j (V )) cpt P D ±P D (H n p cpt (U V )) δ (H n p 1 cpt (U V )) (17) 3.3 P D δ = ±δ P D 25

26 11. A, B f : A B f : B A ker f = {b B ; b (x) = 0 if x Im f} Im f = {a A ; a (x) = 0 if x ker f} 3.4. [ω] H p DR (U V ), [η] Hn p 1 cpt (U V ) δω η = ( 1) p 1 ω δ η U V U V Proof. δ U V ω = ω U ω V ω U Ω p (U), ω V Ω p (V ) U V 0 = dω = dω U dω V δω = dω U = dω V U V δω η = χ U dω U η + χ V dω V η U V U V ω U χ V ω U V dχ U ω U η dχ V ω V η = dχ U ω η U V δ η (χ U η, χ V η) (dχ U η, dχ V η) U V dχ U η = dχ V η δ η = dχ U η U V A 1,..., A 5, B 1,..., B 5 A 1 A 2 A 3 A 4 A 5 f 1 f 2 f 3? f 4 f 5 B 1 B 2 B 3 B 4 B 5 f 3 f 1, f 2, f 4, f 5 f 3 Proof. ( 3.1) (17) 5- U, V, U V U V {U α } N α=1 N N = 1 N = m N = m + 1 U = U 1 U m, V = U m+1 U V = (U 1 U m+1 ) (U m U m+1 ) m 5-26

27 3.2 n M n k Σ [Σ] (H n k [Σ] = P D 1 ([Σ] ) HDR k DR (M)) (M) Σ k- ω Σ ω Σ [η] H n k Σ η = M DR (M) η ω Σ (18) ω Σ k Σ [Σ] [Σ ] := ω Σ ω Σ M x Σ T x Σ T x M M g ν x Σ := T x Σ = {ξ T x M; g(ξ, v) = 0 v T x Σ} Σ ν x Σ = T x M/T x Σ p-form Σ 3.1 ( ). k E, B π : E B p B E p := π 1 (p) k p B p U πφ U (u, ξ) = u Φ U : U R k E U = π 1 (U) u U R n ξ Φ(u, ξ) π 1 (u) π : E B B k E (total space) B (base space) p M E p p 1. B E 3.1 ( ). E = B R k π : E B B B R k 3.2 ( ). n M T M = {(x, v); x M, v T x M} π : T M M n 27

28 3.3. Σ n k M n E = {(x, n); x Σ, n ν x Σ} π : E Σ Σ k νσ 13. p-form p T M π : E B U, V φ UV : U V GL n (R) Φ 1 V Φ U : (U V ) R k (u, ξ) (u, φ UV (u)ξ) (U V ) R k U α B {U α } α U α φ αβ : U α U β GL n (R) GL + n (R) = {A GL n (R); det A > 0} U α φ αβ GL + n (R) E B E E x R n 3.4 ( ). M n T M 1.9 n T M M Σ M νσ E B T M M g νσ M D r (νσ) = {n νσ; n g < r} D r (νσ) νσ 3.5 ( ). M Σ M Σ νσ T T Σ Proof. M g exp exp : νσ (x, n) exp p n M exp Σ νσ Σ M exp Σ r > 0 D r (νσ) T M dim Σ + 1 = dim M Σ, M νσ 1.9 Σ Σ R 28

29 Σ n k k-form ω Σ ω Σ T νσ Σ R k 2.3 π : H p+k cpt (Σ Rk ) H p DR (Σ) (19) π R n p = 0 π ([ω]) = [1] u Hcpt(Σ k R k ) u ω ω = 1 R k ω u Σ, R k x, y R k φ φ(y)dy R 1... dy k = 1 k ω(x, y) = φ(y)dy 1 dy k 3.6. Σ νσ u ω (18) Proof. (18) ω D r R k φ r ω r = φ r (y)dy 1 dy k η ω r = φ M Σ R r (y)η(x, y)dx dy k r η ω r η = φ M Σ Σ R r (y)(η(x, y) η(x, 0))dx dy 0 as r 0 k E B (19) B E Ω p fiber (E) Hp fiber (E) π : E k B π U B E U U R k U x 1,..., x n k R k t 1,..., t k ω Ω p+k (E) fiber ω = I ω I 0(x, t)dx I dt 1 dt k + ω dx dt +... dx π : Ω p+k fiber (E) Ωp (B) π ω = ( ω0(x, I t)dt 1 dt k )dx I I 29

30 E V V R k (y, s) φ Φ x = φ(y), t = Φ(y)s dx i = j φ i dy j dt i = φ i j (x)dsj + dy +... ω ω = I ω I 0dx I det Φ(y)ds 1 ds k + ω dy ds +... det Φ > 0 π : H p+k fiber (U Rk ) H p (U) 2.3 π 0 Ω p+k fiber (E U V ) Ω p+k fiber (E U) Ω fiber (E V ) Ω p+k fiber (E U V ) 0 π π π 0 Ω p DR (U V ) Ωp DR (U) Ω DR(V ) Ω p DR (U V ) 0 H p+k fiber (E U V ) π H p+k fiber (E U) Ω fiber (E V ) π H p+k fiber (E U V ) π δ H p DR (U V ) Hp DR (U) Ω DR(V ) H p DR (U V ) δ B k π : E B π H p+k cpt (E) Hp DR (B) p = 0 u Hcpt(E) k π u = [1] HDR 0 (B) E u ω νσ Proof. λ λ : νσ νσ ω u λ ω ω λ = λ ω ω λ = λ k ω 0 (x, λt)dt 1 dt k + λ k 1 (dx dt ) +... ω D 1 (νσ) ω λ D λ 1(νΣ) 3.6 (18) λ k λ ω Ω k cpt(e), η B Ω n k (B) π ω η Σ = ω π η B (20) B 30 M

31 B η = M ω π ι η ω η B = ι η ι : B E ω 14. (20) 2. E, B, u 3.7 U B ω U E U K U K ω U u ω Proof. V = M \ K M = U V E U, E V ω U, ω V U V U V U, V ω U ω V = dα α = α U α V α U, α V α U K ω U dα U, ω V dα V U V M = U V Σ 1, Σ 2 M x Σ 1 Σ 2 T x M = T x Σ 1 + T x Σ 2 Σ 1, Σ 2 x Σ 1 Σ 2 Σ 1, Σ 2 dim M = n, dim Σ 1 = k, dim Σ 2 = n k x M U Σ 1 U = {(x 1,..., x k, 0,..., 0)}, Σ 2 U = {(0,..., 0, x k+1,..., x n )} (21) Σ 1 Σ 2 M, Σ 1, Σ 2 Σ 1, Σ 2 Σ 1 Σ 2 Σ 1, Σ 2 T 1, T 2 T 1 T 2 x Σ 1 Σ 2 Dr k D n k R k R n k M, Σ 1, Σ 2 (x 1,..., x n ) M (x 1,..., x k ) Σ 1 ε 1 (x) = ±1 (x k+1,..., x n ) Σ 2 ε 2 (x) = ±1 sgn(x) = ε 1 (x)ε 2 (x) 15. (21) sgn(x) 3.8. M Σ k 1, Σn k 2 [Σ 1 ] H n k (M), [Σ 2 ] H k (M) ω 1, ω 2 ω 1 ω 2 = sgn(x) M x Σ 1 Σ 2 r 31

32 Proof. ω 1, ω 2 νσ 1, νσ 2 x Σ 1 Σ 2 U x 2 U x φ α dx = 1 ω 1 = ε 1 (x)φ 1 (x k+1,..., x n )dx k+1 dx n, ω 2 = ( 1) k(n k) ε 2 (x)φ 2 (x 1,..., x k )dx 1 dx k ω 1 ω 2 = sgn(x) M x Σ 1 Σ 2 D k r D n k r φ 1 (z)φ 2 (y)dy dz = x Σ 1 Σ 2 sgn(x) 1. Σ n M (n 1) Σ T M [Σ] H 1 (M) 32

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,, 2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).

More information

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 1 1 1.1 ɛ-n 1 ɛ-n lim n a n = α n a n α 2 lim a n = 1 n a k n n k=1 1.1.7 ɛ-n 1.1.1 a n α a n n α lim n a n = α ɛ N(ɛ) n > N(ɛ) a n α < ɛ

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E

7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E B 8.9.4, : : MIT I,II A.P. E.F.,, 993 I,,, 999, 7 I,II, 95 A A........................... A........................... 3.3 A.............................. 4.4....................................... 5 6..............................

More information

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46..

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46.. Cotets 6 6 : 6 6 6 6 6 6 7 7 7 Part. 8. 8.. 8.. 9..... 3. 3 3.. 3 3.. 7 3.3. 8 Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3.

More information

2 p T, Q

2 p T, Q 270 C, 6000 C, 2 p T, Q p: : p = N/ m 2 N/ m 2 Pa : pdv p S F Q 1 g 1 1 g 1 14.5 C 15.5 1 1 cal = 4.1855 J du = Q pdv U ( ) Q pdv 2 : z = f(x, y). z = f(x, y) (x 0, y 0 ) y y = y 0 z = f(x, y 0 ) x x =

More information

5 36 5................................................... 36 5................................................... 36 5.3..............................

5 36 5................................................... 36 5................................................... 36 5.3.............................. 9 8 3............................................. 3.......................................... 4.3............................................ 4 5 3 6 3..................................................

More information

12 2 E ds = 1 ρdv ε 1 µ D D S S D B d S = 36 E d B l = S d S B d l = S ε E + J d S 4 4 div E = 1 ε ρ div B = rot E = B 1 rot µ E B = ε + J 37 3.2 3.2.

12 2 E ds = 1 ρdv ε 1 µ D D S S D B d S = 36 E d B l = S d S B d l = S ε E + J d S 4 4 div E = 1 ε ρ div B = rot E = B 1 rot µ E B = ε + J 37 3.2 3.2. 213 12 1 21 5 524 3-5465-74 nkiyono@mail.ecc.u-tokyo.ac.jp http://lecture.ecc.u-tokyo.ac.jp/~nkiyono/index.html 3 2 1 3.1 ρp, t EP, t BP, t JP, t 35 P t xyz xyz t 4 ε µ D D S S 35 D H D = ε E B = µ H E

More information

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9 1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n 1-2. 0 m n m n 0 2 = 1.41421356 π = 3.141516 1-3. 1 0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c),

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................ 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h f(a + h, b) f(a, b) h........................................................... ( ) f(x, y) (a, b) x A (a, b) x (a, b)

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

3 - { } / f ( ) e nπ + f( ) = Cne n= nπ / Eucld r e (= N) j = j e e = δj, δj = 0 j r e ( =, < N) r r r { } ε ε = r r r = Ce = r r r e ε = = C = r C r e + CC e j e j e = = ε = r ( r e ) + r e C C 0 r e =

More information

第86回日本感染症学会総会学術集会後抄録(II)

第86回日本感染症学会総会学術集会後抄録(II) χ μ μ μ μ β β μ μ μ μ β μ μ μ β β β α β β β λ Ι β μ μ β Δ Δ Δ Δ Δ μ μ α φ φ φ α γ φ φ γ φ φ γ γδ φ γδ γ φ φ φ φ φ φ φ φ φ φ φ φ φ α γ γ γ α α α α α γ γ γ γ γ γ γ α γ α γ γ μ μ κ κ α α α β α

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980 % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2006.11.20 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

I.2 z x, y i z = x + iy. x, y z (real part), (imaginary part), x = Re(z), y = Im(z). () i. (2) 2 z = x + iy, z 2 = x 2 + iy 2,, z ± z 2 = (x ± x 2 ) +

I.2 z x, y i z = x + iy. x, y z (real part), (imaginary part), x = Re(z), y = Im(z). () i. (2) 2 z = x + iy, z 2 = x 2 + iy 2,, z ± z 2 = (x ± x 2 ) + I..... z 2 x, y z = x + iy (i ). 2 (x, y). 2.,,.,,. (), ( 2 ),,. II ( ).. z, w = f(z). z f(z), w. z = x + iy, f(z) 2 x, y. f(z) u(x, y), v(x, y), w = f(x + iy) = u(x, y) + iv(x, y).,. 2. z z, w w. D, D.

More information

body.dvi

body.dvi ..1 f(x) n = 1 b n = 1 f f(x) cos nx dx, n =, 1,,... f(x) sin nx dx, n =1,, 3,... f(x) = + ( n cos nx + b n sin nx) n=1 1 1 5 1.1........................... 5 1.......................... 14 1.3...........................

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

3 0 4 3 5 6 6 7 7 8 4 9 6 0 30 33 34 3 36 4 4 5 44 6 47 7 54 8 56 9 60 0 6 64 67 3 70 4 7 5 75 6 80

3 0 4 3 5 6 6 7 7 8 4 9 6 0 30 33 34 3 36 4 4 5 44 6 47 7 54 8 56 9 60 0 6 64 67 3 70 4 7 5 75 6 80 3 0 4 3 5 6 6 7 7 8 4 9 6 0 30 33 34 3 36 4 4 5 44 6 47 7 54 8 56 9 60 0 6 64 67 3 70 4 7 5 75 6 80 7 8 3 elemet, set A, A A, A A, A A, b, c, {, b, c, }, x P x, P x x {x P x}, A x, P x {x A P x} 3 { {,,

More information

1. x { e 1,..., e n } x = x1 e1 + + x n en = (x 1,..., x n ) X, Y [X, Y ] Intrinsic ( ) Intrinsic M m P M C P P M P M v 3 v : C P R 1

1. x { e 1,..., e n } x = x1 e1 + + x n en = (x 1,..., x n ) X, Y [X, Y ] Intrinsic ( ) Intrinsic M m P M C P P M P M v 3 v : C P R 1 1. x { e 1,..., e n } x = x1 e1 + + x n en = (x 1,..., x n ) X, Y [X, Y ] Intrinsic ( ) Intrinsic M m P M C P P M P M v 3 v : C P R 1 f, g C P, λ R (1) v(f + g) = v(f) + v(g) (2) v(λf) = λv(f) (3) v(fg)

More information

1 1 1 1 1 1 2 f z 2 C 1, C 2 f 2 C 1, C 2 f(c 2 ) C 2 f(c 1 ) z C 1 f f(z) xy uv ( u v ) = ( a b c d ) ( x y ) + ( p q ) (p + b, q + d) 1 (p + a, q + c) 1 (p, q) 1 1 (b, d) (a, c) 2 3 2 3 a = d, c = b

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

2

2 1 2 3 4 FIRING RATE (imp/sec) 400 300 200 100 100 80 60 40 CELLS 0 20 0 40m s N =163 TIME (msec) 10 20 40 80 160 STIMULUS SPEED (deg/sec) 10 20 40 80 160 STIMULUS SPEED (deg/sec) 10 20 40 80 160 STIMULUS

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

確率論と統計学の資料

確率論と統計学の資料 5 June 015 ii........................ 1 1 1.1...................... 1 1........................... 3 1.3... 4 6.1........................... 6................... 7 ii ii.3.................. 8.4..........................

More information

note01

note01 γ 5 J, M α J, M α = c JM JM J, M c JM e ipr p / M p = 0 M J(J + 1) / Λ p / M J(J + 1) / Λ ~ 1 / m π m π ~ 138 MeV J P,I = 0,1 π 1, π, π 3 ( ) ( π +, π 0, π ) ( ), π 0 = π 3 π ± = m 1 π1 ± iπ ( ) π ±,

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1...........................

i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1........................... 2008 II 21 1 31 i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1............................................. 2 0.2.2.............................................

More information

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

( )/2   hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1 ( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S

More information

A 2008 10 (2010 4 ) 1 1 1.1................................. 1 1.2..................................... 1 1.3............................ 3 1.3.1............................. 3 1.3.2..................................

More information

,..,,.,,.,.,..,,.,,..,,,. 2

,..,,.,,.,.,..,,.,,..,,,. 2 A.A. (1906) (1907). 2008.7.4 1.,.,.,,.,,,.,..,,,.,,.,, R.J.,.,.,,,..,.,. 1 ,..,,.,,.,.,..,,.,,..,,,. 2 1, 2, 2., 1,,,.,, 2, n, n 2 (, n 2 0 ).,,.,, n ( 2, ), 2 n.,,,,.,,,,..,,. 3 x 1, x 2,..., x n,...,,

More information

2 (f4eki) ρ H A a g. v ( ) 2. H(t) ( ) Chapter 5 (f5meanfp) ( ( )? N [] σ e = 8π ( ) e mc 2 = cm 2 e m c (, Thomson cross secion). Cha

2 (f4eki) ρ H A a g. v ( ) 2. H(t) ( ) Chapter 5 (f5meanfp) ( ( )? N [] σ e = 8π ( ) e mc 2 = cm 2 e m c (, Thomson cross secion). Cha http://astr-www.kj.yamagata-u.ac.jp/~shibata P a θ T P M Chapter 4 (f4a). 2.. 2. (f4cone) ( θ) () g M θ (f4b) T M L 2 (f4eki) ρ H A a g. v ( ) 2. H(t) ( ) Chapter 5 (f5meanfp) ( ( )? N [] σ e = 8π ( )

More information

mugensho.dvi

mugensho.dvi 1 1 f (t) lim t a f (t) = 0 f (t) t a 1.1 (1) lim(t 1) 2 = 0 t 1 (t 1) 2 t 1 (2) lim(t 1) 3 = 0 t 1 (t 1) 3 t 1 2 f (t), g(t) t a lim t a f (t) g(t) g(t) f (t) = o(g(t)) (t a) = 0 f (t) (t 1) 3 1.2 lim

More information

I

I I 2008 I i 1 1 1.1.............................. 1 1.2................................. 7 1.3......................... 13 2 23 2.1......................... 23 2.2............................... 31 3 37

More information

α = 2 2 α 2 = ( 2) 2 = 2 x = α, y = 2 x, y X 0, X 1.X 2,... x 0 X 0, x 1 X 1, x 2 X 2.. Zorn A, B A B A B A B A B B A A B N 2

α = 2 2 α 2 = ( 2) 2 = 2 x = α, y = 2 x, y X 0, X 1.X 2,... x 0 X 0, x 1 X 1, x 2 X 2.. Zorn A, B A B A B A B A B B A A B N 2 1. 2. 3. 4. 5. 6. 7. 8. N Z 9. Z Q 10. Q R 2 1. 2. 3. 4. Zorn 5. 6. 7. 8. 9. x x x y x, y α = 2 2 α x = y = 2 1 α = 2 2 α 2 = ( 2) 2 = 2 x = α, y = 2 x, y X 0, X 1.X 2,... x 0 X 0, x 1 X 1, x 2 X 2.. Zorn

More information

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d ) 23 M R M ϕ : R M M ϕt, x) ϕ t x) ϕ s ϕ t ϕ s+t, ϕ 0 id M M ϕ t M ξ ξ ϕ t d ϕ tx) ξϕ t x)) U, x 1,...,x n )) ϕ t x) ϕ 1) t x),...,ϕ n) t x)), ξx) ξ i x) d ϕi) t x) ξ i ϕ t x)) M f ϕ t f)x) f ϕ t )x) fϕ

More information

Fourier (a) C, (b) C, (c) f 2 (a), (b) (c) (L 2 ) (a) C x : f(x) = a 0 2 + (a n cos nx + b n sin nx). ( N ) a 0 f(x) = lim N 2 + (a n cos nx + b n sin

Fourier (a) C, (b) C, (c) f 2 (a), (b) (c) (L 2 ) (a) C x : f(x) = a 0 2 + (a n cos nx + b n sin nx). ( N ) a 0 f(x) = lim N 2 + (a n cos nx + b n sin ( ) 205 6 Fourier f : R C () (2) f(x) = a 0 2 + (a n cos nx + b n sin nx), n= a n = f(x) cos nx dx, b n = π π f(x) sin nx dx a n, b n f Fourier, (3) f Fourier or No. ) 5, Fourier (3) (4) f(x) = c n = n=

More information

( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED)

( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED) rational number p, p, (q ) q ratio 3.14 = 3 + 1 10 + 4 100 ( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED) ( a) ( b) a > b > 0 a < nb n A A B B A A, B B A =

More information

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2. A A 1 A 5 A 6 1 2 3 4 5 6 7 1 1.1 1.1 (). Hausdorff M R m M M {U α } U α R m E α ϕ α : U α E α U α U β = ϕ α (ϕ β ϕβ (U α U β )) 1 : ϕ β (U α U β ) ϕ α (U α U β ) C M a m dim M a U α ϕ α {x i, 1 i m} {U,

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1 1/5 ( ) Taylor ( 7.1) (x, y) f(x, y) f(x, y) x + y, xy, e x y,... 1 R {(x, y) x, y R} f(x, y) x y,xy e y log x,... R {(x, y, z) (x, y),z f(x, y)} R 3 z 1 (x + y ) z ax + by + c x 1 z ax + by + c y x +

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P 1 1.1 (population) (sample) (event) (trial) Ω () 1 1 Ω 1.2 P 1. A A P (A) 0 1 0 P (A) 1 (1) 2. P 1 P 0 1 6 1 1 6 0 3. A B P (A B) = P (A) + P (B) (2) A B A B A 1 B 2 A B 1 2 1 2 1 1 2 2 3 1.3 A B P (A

More information

1 1 3 1.1 (Frequecy Tabulatios)................................ 3 1........................................ 8 1.3.....................................

1 1 3 1.1 (Frequecy Tabulatios)................................ 3 1........................................ 8 1.3..................................... 1 1 3 1.1 (Frequecy Tabulatios)................................ 3 1........................................ 8 1.3........................................... 1 17.1................................................

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

IV.dvi

IV.dvi IV 1 IV ] shib@mth.hiroshim-u.c.jp [] 1. z 0 ε δ := ε z 0 z

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

L A TEX ver L A TEX LATEX 1.1 L A TEX L A TEX tex 1.1 1) latex mkdir latex 2) latex sample1 sample2 mkdir latex/sample1 mkdir latex/sampl

L A TEX ver L A TEX LATEX 1.1 L A TEX L A TEX tex 1.1 1) latex mkdir latex 2) latex sample1 sample2 mkdir latex/sample1 mkdir latex/sampl L A TEX ver.2004.11.18 1 L A TEX LATEX 1.1 L A TEX L A TEX tex 1.1 1) latex mkdir latex 2) latex sample1 sample2 mkdir latex/sample1 mkdir latex/sample2 3) /staff/kaede work/www/math/takase sample1.tex

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

NumRu::GPhys::EP Flux 2 2 NumRu::GPhys::EP Flux 3 2.................................. 3 2.2 EP............................. 4 2.3.....................

NumRu::GPhys::EP Flux 2 2 NumRu::GPhys::EP Flux 3 2.................................. 3 2.2 EP............................. 4 2.3..................... NumRu::GPhys::EP Flux 7 2 9 NumRu::GPhys::EP Flux 2 2 NumRu::GPhys::EP Flux 3 2.................................. 3 2.2 EP............................. 4 2.3................................. 5 2.4.............................

More information

A B 5 C 9 3.4 7 mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3

A B 5 C 9 3.4 7 mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3 π 9 3 7 4. π 3................................................. 3.3........................ 3.4 π.................... 4.5..................... 4 7...................... 7..................... 9 3 3. p

More information

b3e2003.dvi

b3e2003.dvi 15 II 5 5.1 (1) p, q p = (x + 2y, xy, 1), q = (x 2 + 3y 2, xyz, ) (i) p rotq (ii) p gradq D (2) a, b rot(a b) div [11, p.75] (3) (i) f f grad f = 1 2 grad( f 2) (ii) f f gradf 1 2 grad ( f 2) rotf 5.2

More information

34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2 ガウス 型 関 数 1.2 1 関 数 値 0.8 0.6 0.4 0.2 0 15 10 5 0 5 10

34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2 ガウス 型 関 数 1.2 1 関 数 値 0.8 0.6 0.4 0.2 0 15 10 5 0 5 10 33 2 2.1 2.1.1 x 1 T x T 0 F = ma T ψ) 1 x ψ(x) 2.1.2 1 1 h2 d 2 ψ(x) + V (x)ψ(x) = Eψ(x) (2.1) 2m dx 2 1 34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2

More information

木オートマトン•トランスデューサによる 自然言語処理

木オートマトン•トランスデューサによる   自然言語処理 木オートマトン トランスデューサによる 自然言語処理 林 克彦 NTTコミュニケーション科学基礎研究所 hayashi.katsuhiko@lab.ntt.co.jp n I T 1 T 2 I T 1 Pro j(i T 1 T 2 ) (Σ,rk) Σ rk : Σ N {0} nσ (n) rk(σ) = n σ Σ n Σ (n) Σ (n)(σ,rk)σ Σ T Σ (A) A

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

4 4. A p X A 1 X X A 1 A 4.3 X p X p X S(X) = E ((X p) ) X = X E(X) = E(X) p p 4.3p < p < 1 X X p f(i) = P (X = i) = p(1 p) i 1, i = 1,,... 1 + r + r

4 4. A p X A 1 X X A 1 A 4.3 X p X p X S(X) = E ((X p) ) X = X E(X) = E(X) p p 4.3p < p < 1 X X p f(i) = P (X = i) = p(1 p) i 1, i = 1,,... 1 + r + r 4 1 4 4.1 X P (X = 1) =.4, P (X = ) =.3, P (X = 1) =., P (X = ) =.1 E(X) = 1.4 +.3 + 1. +.1 = 4. X Y = X P (X = ) = P (X = 1) = P (X = ) = P (X = 1) = P (X = ) =. Y P (Y = ) = P (X = ) =., P (Y = 1) =

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

example2_time.eps

example2_time.eps Google (20/08/2 ) ( ) Random Walk & Google Page Rank Agora on Aug. 20 / 67 Introduction ( ) Random Walk & Google Page Rank Agora on Aug. 20 2 / 67 Introduction Google ( ) Random Walk & Google Page Rank

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

330

330 330 331 332 333 334 t t P 335 t R t t i R +(P P ) P =i t P = R + P 1+i t 336 uc R=uc P 337 338 339 340 341 342 343 π π β τ τ (1+π ) (1 βτ )(1 τ ) (1+π ) (1 βτ ) (1 τ ) (1+π ) (1 τ ) (1 τ ) 344 (1 βτ )(1

More information

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i [ ] (2016 3Q N) a 11 a 1n m n A A = a m1 a mn A a 1 A A = a n (1) A (a i a j, i j ) (2) A (a i ca i, c 0, i ) (3) A (a i a i + ca j, j i, i ) A 1 A 11 0 A 12 0 0 A 1k 0 1 A 22 0 0 A 2k 0 1 0 A 3k 1 A rk

More information

z z x = y = /x lim y = + x + lim y = x (x a ) a (x a+) lim z z f(z) = A, lim z z g(z) = B () lim z z {f(z) ± g(z)} = A ± B (2) lim {f(z) g(z)} = AB z

z z x = y = /x lim y = + x + lim y = x (x a ) a (x a+) lim z z f(z) = A, lim z z g(z) = B () lim z z {f(z) ± g(z)} = A ± B (2) lim {f(z) g(z)} = AB z Tips KENZOU 28 6 29 sin 2 x + cos 2 x = cos 2 z + sin 2 z = OK... z < z z < R w = f(z) z z w w f(z) w lim z z f(z) = w x x 2 2 f(x) x = a lim f(x) = lim f(x) x a+ x a z z x = y = /x lim y = + x + lim y

More information

,2,4

,2,4 2005 12 2006 1,2,4 iii 1 Hilbert 14 1 1.............................................. 1 2............................................... 2 3............................................... 3 4.............................................

More information

Microsoft Word - Wordで楽に数式を作る.docx

Microsoft Word - Wordで楽に数式を作る.docx Ver. 3.1 2015/1/11 門 馬 英 一 郎 Word 1 する必要がある Alt+=の後に Ctrl+i とセットで覚えておく 1.4. 変換が出来ない場合 ごく稀に以下で説明する変換機能が無効になる場合がある その際は Word を再起動するとまた使えるようになる 1.5. 独立数式と文中数式 数式のスタイルは独立数式 文中数式(2 次元)と文中数式(線形)の 3 種類があ り 数式モードの右端の矢印を選ぶとメニューが出てくる

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63)

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63) 211 12 1 19 2.9 F 32 32: rot F d = F d l (63) F rot F d = 2.9.1 (63) rot F rot F F (63) 12 2 F F F (63) 33 33: (63) rot 2.9.2 (63) I = [, 1] [, 1] 12 3 34: = 1 2 1 2 1 1 = C 1 + C C 2 2 2 = C 2 + ( C )

More information

168 13 Maxwell ( H ds = C S rot H = j + D j + D ) ds (13.5) (13.6) Maxwell Ampère-Maxwell (3) Gauss S B 0 B ds = 0 (13.7) S div B = 0 (13.8) (4) Farad

168 13 Maxwell ( H ds = C S rot H = j + D j + D ) ds (13.5) (13.6) Maxwell Ampère-Maxwell (3) Gauss S B 0 B ds = 0 (13.7) S div B = 0 (13.8) (4) Farad 13 Maxwell Maxwell Ampère Maxwell 13.1 Maxwell Maxwell E D H B ε 0 µ 0 (1) Gauss D = ε 0 E (13.1) B = µ 0 H. (13.2) S D = εe S S D ds = ρ(r)dr (13.3) S V div D = ρ (13.4) ρ S V Coulomb (2) Ampère C H =

More information

第85 回日本感染症学会総会学術集会後抄録(III)

第85 回日本感染症学会総会学術集会後抄録(III) β β α α α µ µ µ µ α α α α γ αβ α γ α α γ α γ µ µ β β β β β β β β β µ β α µ µ µ β β µ µ µ µ µ µ γ γ γ γ γ γ µ α β γ β β µ µ µ µ µ β β µ β β µ α β β µ µµ β µ µ µ µ µ µ λ µ µ β µ µ µ µ µ µ µ µ

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

II I Riemann 2003

II I Riemann 2003 II I Remann 2003 Dfferental Geometry II Dfferental Geometry II I Dfferental Geometry I 1 1 1.1.............................. 1 1.2................................. 10 1.3.......................... 16 1.4.........................

More information

Morse ( ) 2014

Morse ( ) 2014 Morse ( ) 2014 1 1 Morse 1 1.1 Morse................................ 1 1.2 Morse.............................. 7 2 12 2.1....................... 12 2.2.................. 13 2.3 Smale..............................

More information

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/085221 このサンプルページの内容は, 初版 1 刷発行時のものです. i +α 3 1 2 4 5 1 2 ii 3 4 5 6 7 8 9 9.3 2014 6 iii 1 1 2 5 2.1 5 2.2 7

More information

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0. () 6 f(x) [, b] 6. Riemnn [, b] f(x) S f(x) [, b] (Riemnn) = x 0 < x < x < < x n = b. I = [, b] = {x,, x n } mx(x i x i ) =. i [x i, x i ] ξ i n (f) = f(ξ i )(x i x i ) i=. (ξ i ) (f) 0( ), ξ i, S, ε >

More information

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x n= n 2 = π2 6 3 2 28 + 4 + 9 + = π2 6 2 f(z) f(z) 2 f(z) = u(z) + iv(z) * f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x f x = i f y * u, v 3 3. 3 f(t) = u(t) + v(t) [, b] f(t)dt = u(t)dt

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b) 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h 0 f(a + h, b) f(a, b) h............................................................... ( ) f(x, y) (a, b) x A (a, b) x

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

ボールねじ

ボールねじ A A 506J A15-6 A15-8 A15-8 A15-11 A15-11 A15-14 A15-19 A15-20 A15-24 A15-24 A15-26 A15-27 A15-28 A15-30 A15-32 A15-35 A15-35 A15-38 A15-38 A15-39 A15-40 A15-43 A15-43 A15-47 A15-47 A15-47 A15-47 A15-49

More information

1 1.1 [ ]., D R m, f : D R n C -. f p D (df) p : (df) p : R m R n f(p + vt) f(p) : v lim. t 0 t, (df) p., R m {x 1,..., x m }, (df) p (x i ) =

1 1.1 [ ]., D R m, f : D R n C -. f p D (df) p : (df) p : R m R n f(p + vt) f(p) : v lim. t 0 t, (df) p., R m {x 1,..., x m }, (df) p (x i ) = 2004 / D : 0,.,., :,.,.,,.,,,.,.,,.. :,,,,,,,., web page.,,. C-613 e-mail tamaru math.sci.hiroshima-u.ac.jp url http://www.math.sci.hiroshima-u.ac.jp/ tamaru/index-j.html 2004 D - 1 - 1 1.1 [ ].,. 1.1.1

More information

f (x) f (x) f (x) f (x) f (x) 2 f (x) f (x) f (x) f (x) 2 n f (x) n f (n) (x) dn f f (x) dx n dn dx n D n f (x) n C n C f (x) x = a 1 f (x) x = a x >

f (x) f (x) f (x) f (x) f (x) 2 f (x) f (x) f (x) f (x) 2 n f (x) n f (n) (x) dn f f (x) dx n dn dx n D n f (x) n C n C f (x) x = a 1 f (x) x = a x > 5.1 1. x = a f (x) a x h f (a + h) f (a) h (5.1) h 0 f (x) x = a f +(a) f (a + h) f (a) = lim h +0 h (5.2) x h h 0 f (a) f (a + h) f (a) f (a h) f (a) = lim = lim h 0 h h 0 h (5.3) f (x) x = a f (a) =

More information

1 R n (x (k) = (x (k) 1,, x(k) n )) k 1 lim k,l x(k) x (l) = 0 (x (k) ) 1.1. (i) R n U U, r > 0, r () U (ii) R n F F F (iii) R n S S S = { R n ; r > 0

1 R n (x (k) = (x (k) 1,, x(k) n )) k 1 lim k,l x(k) x (l) = 0 (x (k) ) 1.1. (i) R n U U, r > 0, r () U (ii) R n F F F (iii) R n S S S = { R n ; r > 0 III 2018 11 7 1 2 2 3 3 6 4 8 5 10 ϵ-δ http://www.mth.ngoy-u.c.jp/ ymgmi/teching/set2018.pdf http://www.mth.ngoy-u.c.jp/ ymgmi/teching/rel2018.pdf n x = (x 1,, x n ) n R n x 0 = (0,, 0) x = (x 1 ) 2 +

More information

チュートリアル:ノンパラメトリックベイズ

チュートリアル:ノンパラメトリックベイズ { x,x, L, xn} 2 p( θ, θ, θ, θ, θ, } { 2 3 4 5 θ6 p( p( { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} K n p( θ θ n N n θ x N + { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} log p( 6 n logθ F 6 log p( + λ θ F θ

More information

1 180m g 10m/s 2 2 6 1 3 v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) 1.3 2 3 3 r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v =

1 180m g 10m/s 2 2 6 1 3 v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) 1.3 2 3 3 r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v = 1. 2. 3 3. 4. 5. 6. 7. 8. 9. I http://risu.lowtem.hokudai.ac.jp/ hidekazu/class.html 1 1.1 1 a = g, (1) v = g t + v 0, (2) z = 1 2 g t2 + v 0 t + z 0. (3) 1.2 v-t. z-t. z 1 z 0 = dz = v, t1 dv v(t), v

More information

notekiso1_09.dvi

notekiso1_09.dvi 39 3 3.1 2 Ax 1,y 1 Bx 2,y 2 x y fx, y z fx, y x 1,y 1, 0 x 1,y 1,fx 1,y 1 x 2,y 2, 0 x 2,y 2,fx 2,y 2 A s I fx, yds lim fx i,y i Δs. 3.1.1 Δs 0 x i,y i N Δs 1 I lim Δx 2 +Δy 2 0 x 1 fx i,y i Δx i 2 +Δy

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

Note5.dvi

Note5.dvi 12 2011 7 4 2.2.2 Feynman ( ) S M N S M + N S Ai Ao t ij (i Ai, j Ao) N M G = 2e2 t ij 2 (8.28) h i μ 1 μ 2 J 12 J 12 / μ 2 μ 1 (8.28) S S (8.28) (8.28) 2 ( ) (collapse) j 12-1 2.3 2.3.1 Onsager S B S(B)

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

2010 4 3 0 5 0.1......................................... 5 0.2...................................... 6 1 9 2 15 3 23 4 29 4.1............................................. 29 4.2..............................

More information

( ) 24 1 ( 26 8 19 ) i 0.1 1 (2012 05 30 ) 1 (), 2 () 1,,, III, C III, C, 1, 2,,, ( III, C ),, 1,,, http://ryuiki.agbi.tsukuba.ac.jp/lec/12-physics/ E104),,,,,, 75 3,,,, 0.2, 1,,,,,,,,,,, 2,,, 1000 ii,

More information

「数列の和としての積分 入門」

「数列の和としての積分 入門」 7 I = 5. introduction.......................................... 5........................................... 7............................................. 9................................................................................................

More information

1 Edward Waring Lagrange n {(x i, y i )} n i=1 x i p i p i (x j ) = δ ij P (x) = p i p i (x) = n y i p i (x) (1) i=1 n j=1 j i x x j x i x j (2) Runge

1 Edward Waring Lagrange n {(x i, y i )} n i=1 x i p i p i (x j ) = δ ij P (x) = p i p i (x) = n y i p i (x) (1) i=1 n j=1 j i x x j x i x j (2) Runge Edwrd Wring Lgrnge n {(x i, y i )} n x i p i p i (x j ) = δ ij P (x) = p i p i (x) = n y i p i (x) () n j= x x j x i x j (2) Runge [] [2] = ξ 0 < ξ < ξ n = b [, b] [ξ i, ξ i ] y = /( + 25x 2 ) 5 2,, 0,,

More information