Microsoft PowerPoint コンピュータ物理2_第13回.pptx

Size: px
Start display at page:

Download "Microsoft PowerPoint コンピュータ物理2_第13回.pptx"

Transcription

1 コンピュータ物理学 第 3 回 06.. 第 回 0/ 金 ガイダンス 第 回 0/ 9 金 数値表現と誤差 第 3 回 0/6 金 第 4 回 0/3 金 数値微分 積分 第 5 回 0/30 木 第 6 回 /3 金 第 7 回 /0 金 常微分方程式 第 8 回 /7 金 第回 / 4 金 休講 第 9 回 / 金 常微分方程式 第 0 回 /8 金 偏微分方程式 第 回 /5 金 第 回 / 8 金 第 3 回 / 金 量子力学 第 4 回 / 9 金 最終レポート 第 5 回 / 5 金 モンテカルロ法

2 課題 4 解答例 Nma 0 N ma 00 36points 980points y 逐次 469 回 : δma= e 06 N ma points 逐次 847 回 : δma=9.9956e 06 収束の具合 y N ma 00 y 逐次 8045 回 : δma=9.998e 06 Nma 0 N ma 00

3 課題 4 解答例 課題 4 3 解答例 U,y Mes: iter=360 errorma=9.9839e 06 y y U,y y= 中心 +cm y=.5cm 中心面 cm

4 課題 4 3 補足 無限に広い電極なら同一平面上では同電位だが +5V 有限サイズの電極では. +5V 中心面 A での電位は 0 になるはずだが 実際は計算誤差が生じる 収束条件を厳しくすれば誤差は減らせる deltama=e 08 deltama=e 07 5V 3 3 5V y=+cm deltama=e 06 電極間内部 cm iter=739 deltama= e 07 電極内部でも電極端付近では一様性が悪い iter=8645 deltama=9.9844e 08 iter=9898 deltama= e 09 電極中心付近では一様性が良い cm

5 課題 4 3 プログラム補足 電極線上の電位 +5000V, 5000V は値が書き換えられてはならない 電極 電極上の点では電位計算を行わない wile errorma > e 6{ errorma = 0; forj=; j<=n_ma ; j++{ fori=; i<=n_ma ; i++{ ifi>=0 && i<=80&&j==0 j==80 continue; delta = U[i][j] 0.5*U[i+][j]+U[i ][j]+u[i][j+]+u[i][j ]; U[i][j] = 0.5*U[i+][j]+U[i ][j]+u[i][j+]+u[i][j ]; iffabsdelta>errorma errorma = fabsdelta; printf"iter=%d errorma=%e n", iter, errorma; iter++; 電極上の電位値を設定値にリセットする foriter=0;iter<=0000;iter++{ delta_ma=0.; fori=;i<=nma ;i++{ forj=;j<=nma ;j++{ delta=u[i][j] 0.5*U[i+][j]+U[i ][j]+u[i][j+]+u[i][j ]; U[i][j]=0.5*U[i+][j]+U[i ][j]+u[i][j+]+u[i][j ]; 値のリセット ifi>=0 && i<=80 { U[i][0]= 5000; U[i][80]=5000; ifj!=0&&j!=80 j==0 j==80&&i<0 i>80{ iffabsdelta> delta_ma delta_ma=fabsdelta; 収束判断は電極以外の場所のみで printf"%d %e n", iter, delta_ma; ifdelta_ma <.0e 6 brea;

6 例題 の program sample /* Partial Differential equation */ /* Sample problem; Poisson */ #include <stdio.> #include <mat.> main{ int i, j, iter; int N_ma=00; double, e0=8.85e, q=.0e 9; double errorma, corr; double U[N_ma+][N_ma+], ro[n_ma+][n_ma+]; FILE *outfile; car filename[0]; =.0/N_ma; /* bin widt range=0 */ /* set output file */ printf"output file?"; scanf"%s", &filename; outfile = fopenfilename, "w"; /* calculation */ for iter=0; iter<0000; iter++{ errorma = 0; forj=; j<=n_ma ; j++{ fori=; i<=n_ma ; i++{ corr = U[i][j] 0.5*U[i+][j]+U[i ][j]+u[i][j+]+u[i][j ] ro[i][j]**/e0; U[i][j] = 0.5*U[i+][j]+U[i ][j]+u[i][j+]+u[i][j ]+ro[i][j]**/e0; iffabscorr>errorma errorma = fabscorr; printf"iter=%d errorma=%e n", iter, errorma; /* convergence cec */ iferrorma < e 5 brea; fori=0; i<=n_ma; i++{ forj=0; j<=n_ma; j++{ fprintfoutfile, "%f %f %f n", i*, j*, U[i][j]; /* Initialize and boundary condition */ forj=0; j<=n_ma; j++{ fori=; i<=n_ma; i++{ U[i][j]=0; ro[i][j]=0.0; ro[n_ma/][n_ma/]=q;

7 課題 4 4 /* y[i][j] : i= 座標, j= 時刻 =0,, */ /* 初期変位 y[i][0], y[i][] を代入 */ fori=0; i<8; i++{ y[i][0] = 0.005*i; /* i=80 */ fori=8; i<0; i++{ y[i][0] = *i 80; /* i=80 */ fori=0; i<00; i++{ y[i][] = y[i][0] + 0.5*63.0/00*63.0/00* y[i+][0]+y[i ][0] *y[i][0]; if%3==0{ fori=0; i<0; i++{ fprintfoutfile, "%d %d %f n",, i, y[i][]; if==75 fprintfoutfile, "%d %f n", i, y[i][]; /* 最初のつの時刻は初期値として書き出せる */ fori=0; i<00; i++ fprintfoutfile, "0 %d %f n", i, y[i][0]; fori=0; i<00; i++ fprintfoutfile, " %d %f n", i, y[i][]; /* 次々と時刻を進めて変位を計算していく */ for=; <ma; ++{ fori=; i<00; i++{ y[i][] =.0*y[i][] y[i][0]+63.0/00*63.0/00* y[i+][]+y[i ][].0*y[i][]; /* 最新の y[i][] が計算されたので y[i][] を y[i][0] に y[i][] を y[i][] に代入し直す 次のループで y[i][] を再び計算する */ fori=; i<00; i++{ y[i][0] = y[i][]; y[i][] = y[i][];

8 量子力学における数値計算 ; 次元井戸型ポテンシャル問題 原子レベルまたはそれ以下のサイズでの世界を扱う理論 特殊な系ではマクロサイズもあり得る 物理量について確率的に記述されるある粒子が ~ +d の間に発見される確率は粒子の状態 波動関数 ψ を用いて と表せる P d 粒子が定常状態であるとき 波動関数は時間に依存しない たとえば 中心にある原子核からのクーロンポテンシャル内に束縛された電子 原子核の一体場ポテンシャルに束縛された陽子 中性子 光電場にトラップされたイオンこのとき閉じ込められた粒子の波動関数は Scrodinger 方程式に従う : m d V E d ここで m は粒子の質量 V はポテンシャル E は粒子のエネルギー ある与えられた V のもとで 許される ψ と E を求めるのが解くべき課題である 粒子のエネルギーが量子化されているかを確認する ここでは粒子が井戸型ポテンシャルに存在するとする 陽子や中性子が原子核内に束縛されている場合等 d m d d d : E V0 a V0 a m V E a 0 a a V V 0 a

9 ポテンシャルの井戸の端, =±a において 粒子を発見する確率が連続で 粒子の流れも連続 である 波動関数とその微分が連続 である必要がある 接続条件 従って Ce a B cos a a と仮定して Ce a B cosa Ce a Bsina Ce a が必要となる tana 0 a, a とおくと tan 0 この両辺の比をとれば ここで 一方 ξ と η は を解くことに帰着する mv0a a V 0 m 83 MeV 940MeV 97MeVfm MeV - fm - ξ, η 平面上で この つのグラフを描いて交点を求めれば良い おおまかに求めると :,.5, 3.80, 3.60, 解が つ存在する 反対称な波動関数は考慮していない tan

10 数値計算で解く ; ヌメロフ法微分方程式の数値解は 4 次のルンゲクッタ法が推奨できるが Srodinger 方程式のように 次導関数項を含まない方程式の場合 方程式そのものを利用して極めて高精度に計算することができる ヌメロフ法と呼ばれ 実際に幅広く使われている Numerov 法の他に Fo Goodwin 法と呼ばれることもある 0 d d a a E m a a V E m, 0 まず Scrodinger 方程式を変形 : 4! 3!! 波動関数をテーラー展開する この式について つの微小区間 + について積分を行う際にポテンシャルを一定とみなす 4! 3!! O の周りでの展開も考える両者を足すと奇数次の項がキャンセルされる : : : 数値的に Scrodinger 方程式を解く ; ヌメロフ法 : :

11 これから 次の導関数は 4 4 O 階微分を中心差分で表現誤差 :~ 4 0 に上式を代入すると O しかし 4 階微分項はどう表せるのか? 0 4 d d そこで Srodinger 方程式に 階微分を作用させる : 4 d d もとの方程式 :

12 0 4 O 0 6 O 6 6 O O 5 6 O この 4 階微分の表現を先ほどの Scrodinger 方程式に代入すると + での ψ を計算するのに と - での値を使えば良い 前 ステップでの ψ の値 プログラムでは 離散的な空間座標 = i を使って = 刻み幅, i=0,,, 計算を進めていけば良い ルンゲクッタに比べても精度良く計算できる しかも式の数も少なく ψ+/ は計算不要 適用できる方程式の形が限定されているとはいえ 量子力学等において重要な計算方法である

13 5 この式は漸化式と見なせるので Runge=Kutta 法と同様に 変数領域の一方の端点で与えられた初期値から次々と方程式を積分していって解を求めることができる 実際の量子力学の固有値問題では 無限遠で波動関数が 0 に収束するような漸近条件が課されることが多い このような場合は まず適当なエネルギー固有値を与え 一方の端点から波動関数を計算していき 他方の端点での値が条件を満たすように エネルギー固有値を調整して再び波動関数を計算し直す というプロセスを繰り返す方法が良く使われる 0 において Numerov 法において波動関数の満たすべき関係式

14 井戸型ポテンシャル問題のヌメロフ法での解き方 解析的な手法では : ポテンシャル内とポテンシャル外との関数形を仮定して 接続条件を課してパラメータを決定する 数値的な解法では : 解析的手法と同様に上記の条件を利用する エネルギー E を推定してある値に仮定する 大きな正の で ψ= ep β であるとして出発し 中心に向かって だけステップを進めてヌメロフ法で波動関数を計算する 3 と並行して同じ微分方程式を 今度は大きな負の において ψ= epβ として出発し 中心に向かって だけステップを進める 4, 3 を交互に繰り返して進めていけば適当な位置 接続条件を判断する位置 において 左から来た解と右から来た解に整合性があるかどうかを判断する 4 整合性が悪ければ 分法を適用して整合性を満たす E の値を追い詰めていく からやり直す 5 左からの解と右からの解の値と傾きが許容範囲内で一致する場合に そのときの E の値が解 固有値 となり ただし今の場合 値が等しいという条件だけで十分 main 関数 : 分法 後述 により推定 E 値を追跡していく 計算が終わったら E と波動関数を出力する diff 関数 : main 関数から受け取った E を用いて 波動関数を左右両側からヌメロフ法により計算していき 整合性のチェックを行う 計算に出てくる は 関数から持ってくるのが便利 関数 : diff 関数内の計算から呼び出される の値に応じて 種類の値を返す plot 関数 : 固有値 E が決定されたらその E を使って全領域の波動関数を計算しなおしてファイル出力 main 関数の最後で呼び出す

15 例題 : 実際にプログラムを作成する 波動関数 のひとつ データを作成せよ 固有エネルギーのひとつを求めよ V V min = 000 ~ ma = 000 の区間 000 ステップ を考える 従って波動関数は 000 個の数値の並びとして表わされる i=0,,, と左から出発して波動関数 ψ left を計算する ヌメロフ法では 左から ψ の値を one, two, tree とおき one, two から tree を求める one, two には初期値が必要 例えば one = 0.0; two = とおいて良い 同様に右から i=0,, と波動関数 ψ rigt を計算する こちらも one, two, tree を今度は右から定義する ポテンシャルの深さは V 0 = 0.00 とする 整合性の良さを確認するための関数を用意する f E E E left rigt 右側 プラス側 のポテンシャル壁の位置で整合性のチェックを行うことにする 左側から = 0,,, 500. 右側から = 0,,, 500. と計算していき 重なる位置での両者の違い f を見る ここでは f が e 8 以下かどうかで判別する まずは E = と仮定して 波動関数を計算してみる 両側からの波動関数が接続しないことを確認する V 0 = 0.00 としたので エネルギー固有値の推定値として E min = 0.00 と E ma = を 分法の両端の初期値とし 整合性チェック時に左右の波動関数の差が e 8 以下になるまで 分法を繰り返す i= 0 i= 500 i= 500 m 簡単のため d 0 d E V E 0 a a, a a i= 0

16 分法によるゼロ点の探索 ある関数 fξ がゼロになる点 ξ = ξ 0 を効率的に探したい f ここを効率的に見つけたい 例えば f tan 0となるを探す ある区間 ξ - < ξ < ξ + において関数 fξ が符号を変えた場合 f f 0 f 区間 この条件を満たしながら ξ - と ξ + を徐々に接近させる c ξ と ξ+ の差がある許容限界 ε 以下になったとき 解に到達したとする 実際に行う作業は 各区間の中間点を考える c f c f 0 なら c そうでないなら c 区間 区間 3 c 区間 としてあらたな区間 [ξ, ξ+] を設定する このように区間次々と半分にし その都度どちらの側に解が含まれるかを調べ ξ - - ξ + < ε となるまで繰り返す

17 波動関数の計算 整合点 ポテンシャルから十分遠方では粒子に力が働かず 束縛状態においては の増加に伴い波動関数は ep β に従って減少する 大きな正の では Ψ = ep β であるとして中心に向 かって 左向きに だけステップを進める 大きな負の では Ψ = epβ として出発して中心に 向けて 右向き だけステップを進める 上記のつのステップを繰り返していけば いづれは 適当な位置で左から来た解と右から来た解に整合性 があるかを確かめられる 整合性が悪ければ 分法によりやり直し 整合性が十分 i= 0 i= 500 良ければそれを解とする 波動関数およびβ つまりE 今 波動関数の大きさは問題にしてないので 満たす逆べき整合条件はただ一つで良い 波動関数の値自体の連続性 i= 500 i= 0 [tree] [two] [one] i 0 i i 5 tree left one two rigt i i i 整合性のある解を探してエネルギー固有値を求めるだけならばわざわざ波動関数の値を配列にに記憶する必要はない しかし整合点での Ψleft と Ψrigt はそれぞれ独立に記憶させる必要はある

18 量子力学固有値問題計算プログラムの大枠 ; E を固定バージョン #define error e 8 #define V #define Emin #define Ema main{ E= ; まず E を固定してテストプログラム その E を使って波動関数を計算 ファイル出力 ; 関数 plot /* 波動関数計算中に ^ を代入するのに分かりやすくここで場合分けて計算する */ double int i, double E{ if i<500 return なんたら ; /* ポテンシャル外側 */ if i>=500 return なんたら ; /* ポテンシャル内側 */ V0 の符号に注意 /* 左からと右からの ψ を計算し 接続の良さを計算 */ double diffdouble E{ /* 左からの計算 */ fori=; i<=500; i++{ 波動関数の計算 ; tree = *****; 関数 の呼び出し i= 500 での値が決まる ; /* 右からの計算 */ fori=; i<=500; i++{ 波動関数の計算 ; tree = *****; 関数 の呼び出し i= 500 での値が決まる ; の値を main へ返す /* 正解の E で波動関数をファイル出力 */ void plotdouble E{ rigtfile = fopen rigt.dat, w ; leftfile = fopen left.dat, w ; /* 左からの計算 */ fori=; i<=500; i++{ 波動関数の計算 行ごとに fprintfleftfile, ; 座標に気を付ける /* 右からの計算 */ fori=; i<=500; i++{ 波動関数の計算 行ごとに fprintfleftfile, ; 座標に気を付ける

19 量子力学固有値問題計算プログラムの大枠 #define error e 8 #define V #define Emin #define Ema main{ do{ 分法で E の範囲を狭めていく関数 diff を呼び出して波動関数計算接続性が良くなるまで再トライ wile エネルギー E での接続が良いか?; 接続性が合格したらその時の E を printf. その E を使って波動関数を最後に計算 ファイル出力 ; 関数 plot /* 左からと右からの ψ を計算し 接続の良さを計算 */ double diffdouble E{ /* 左からの計算 */ fori=; i<=500; i++{ 波動関数の計算 ; tree = *****; 関数 の呼び出し i= 500 での値が決まる ; /* 右からの計算 */ fori=; i<=500; i++{ 波動関数の計算 ; tree = *****; 関数 の呼び出し i= 500 での値が決まる ; の値を main へ返す /* 波動関数計算中に ^ を代入するのに分かりやすくここで場合分けて計算する */ double int i, double E{ if i<500 return なんたら ; /* ポテンシャル外側 */ if i>=500 return なんたら ; /* ポテンシャル内側 */ V0 の符号に注意 /* 正解の E で波動関数をファイル出力 */ void plotdouble E{ rigtfile = fopen rigt.dat, w ; leftfile = fopen left.dat, w ; /* 左からの計算 */ fori=; i<=500; i++{ 波動関数の計算 行ごとに fprintfleftfile, ; 座標に気を付ける /* 右からの計算 */ fori=; i<=500; i++{ 波動関数の計算 行ごとに fprintfleftfile, ; 座標に気を付ける

20 整合性のテスト ポテンシャルの井戸の深さは 0.00 なので 基底状態のエネルギー固有値は 0.00~ の間にある可能性が大きい.. ということで 粗っぽく E= と E= を仮定したときの波動関数を計算してみると E= での Ψ E= での Ψ left rigt left rigt left rigt 両方とも整合条件とれてないが 固有 E 値はこの両者の間にあると思われる 今の問題では 左右の初期値の大きさを同じにとっているので 整合点でΨleft とΨrigt の値が同じになればその微分も同じになる left rigt

パソコンシミュレータの現状

パソコンシミュレータの現状 第 2 章微分 偏微分, 写像 豊橋技術科学大学森謙一郎 2. 連続関数と微分 工学において物理現象を支配する方程式は微分方程式で表されていることが多く, 有限要素法も微分方程式を解く数値解析法であり, 定式化においては微分 積分が一般的に用いられており. 数学の基礎知識が必要になる. 図 2. に示すように, 微分は連続な関数 f() の傾きを求めることであり, 微小な に対して傾きを表し, を無限に

More information

Microsoft Word - NumericalComputation.docx

Microsoft Word - NumericalComputation.docx 数値計算入門 武尾英哉. 離散数学と数値計算 数学的解法の中には理論計算では求められないものもある. 例えば, 定積分は, まずは積分 ( 被積分関数の原始関数をみつけること できなければ値を得ることはできない. また, ある関数の所定の値における微分値を得るには, まずその関数の微分ができなければならない. さらに代数方程式の解を得るためには, 解析的に代数方程式を解く必要がある. ところが, これらは必ずしも解析的に導けるとは限らない.

More information

DVIOUT-SS_Ma

DVIOUT-SS_Ma 第 章 微分方程式 ニュートンはリンゴが落ちるのを見て万有引力を発見した という有名な逸話があります 無重力の宇宙船の中ではリンゴは落ちないで静止していることを考えると 重力が働くと始め静止しているものが動き出して そのスピードはどんどん大きくなる つまり速度の変化が現れることがわかります 速度は一般に時間と共に変化します 速度の瞬間的変化の割合を加速度といい で定義しましょう 速度が変化する, つまり加速度がでなくなるためにはその原因があり

More information

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ 数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュレーションによって計算してみる 4.1 放物運動一様な重力場における放物運動を考える 一般に質量の物体に作用する力をとすると運動方程式は

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション コンピュータ物理学 2 第 2 回 (2016.10.11) 第 1 回 10/ 4( 火 ) ガイダンス 第 2 回 10/11( 火 ) 数値表現と誤差 第 3 回 10/18( 火 ) 第 4 回 10/25( 火 ) 数値微分 積分 第 5 回 11/ 1( 火 ) 第 6 回 11/ 8( 火 ) 第 7 回 11/15( 火 ) 常微分方程式 第 8 回 11/22( 火 ) 第 9 回

More information

ハートレー近似(Hartree aproximation)

ハートレー近似(Hartree aproximation) ハートリー近似 ( 量子多体系の平均場近似 1) 0. ハミルトニアンの期待値の変分がシュレディンガー方程式と等価であること 1. 独立粒子近似という考え方. 電子系におけるハートリー近似 3.3 電子系におけるハートリー近似 Mde by R. Okmoto (Kyushu Institute of Technology) filenme=rtree080609.ppt (0) ハミルトニアンの期待値の変分と

More information

解析力学B - 第11回: 正準変換

解析力学B - 第11回: 正準変換 解析力学 B 第 11 回 : 正準変換 神戸大 : 陰山聡 ホームページ ( 第 6 回から今回までの講義ノート ) http://tinyurl.com/kage2010 2011.01.27 正準変換 バネ問題 ( あえて下手に座標をとった ) ハミルトニアンを考える q 正準方程式は H = p2 2m + k 2 (q l 0) 2 q = H p = p m ṗ = H q = k(q

More information

Microsoft PowerPoint - 卒業論文 pptx

Microsoft PowerPoint - 卒業論文 pptx 時間に依存するポテンシャルによる 量子状態の変化 龍谷大学理工学部数理情報学科 T966 二正寺章指導教員飯田晋司 目次 はじめに 次元のシュレーディンガー方程式 3 井戸型ポテンシャルの固有エネルギーと固有関数 4 4 中央に障壁のある井戸型ポテンシャルの固有エネルギーと固有関数 3 5 障壁が時間によって変化する場合 7 6 まとめ 5 一次元のシュレディンガー方程式量子力学の基本方程式 ψ (

More information

喨微勃挹稉弑

喨微勃挹稉弑 == 全微分方程式 == 全微分とは 変数の関数 z=f(, ) について,, の増分を Δ, Δ とするとき, z の増分 Δz は Δz z Δ+ z Δ で表されます. この式において, Δ 0, Δ 0 となる極限を形式的に dz= z d+ z d (1) で表し, dz を z の全微分といいます. z は z の に関する偏導関数で, を定数と見なし て, で微分したものを表し, 方向の傾きに対応します.

More information

Microsoft PowerPoint - H21生物計算化学2.ppt

Microsoft PowerPoint - H21生物計算化学2.ppt 演算子の行列表現 > L いま 次元ベクトル空間の基底をケットと書くことにする この基底は完全系を成すとすると 空間内の任意のケットベクトルは > > > これより 一度基底を与えてしまえば 任意のベクトルはその基底についての成分で完全に記述することができる これらの成分を列行列の形に書くと M これをベクトル の基底 { >} による行列表現という ところで 行列 A の共役 dont 行列は A

More information

偏微分方程式、連立1次方程式、乱数

偏微分方程式、連立1次方程式、乱数 数値計算法 011/6/8 林田清 大阪大学大学院理学研究科 常微分方程式の応用例 1 Rutherford 散乱 ( 原子核同士の散乱 ; 金の薄膜に α 粒子をあてる ) 1 クーロン力 f= 4 0 r r r Ze y からf cos, si f f f y f f 粒子の 方向 y方向の速度と座標について dv Ze dvy Ze y, 3 3 dt 40m r dt 40m r d dy

More information

今後の予定 6/29 パターン形成第 11 回 7/6 データ解析第 12 回 7/13 群れ行動 ( 久保先生 ) 第 13 回 7/17 ( 金 ) 休講 7/20 まとめ第 14 回 7/27 休講?

今後の予定 6/29 パターン形成第 11 回 7/6 データ解析第 12 回 7/13 群れ行動 ( 久保先生 ) 第 13 回 7/17 ( 金 ) 休講 7/20 まとめ第 14 回 7/27 休講? 今後の予定 6/29 パターン形成第 11 回 7/6 データ解析第 12 回 7/13 群れ行動 ( 久保先生 ) 第 13 回 7/17 ( 金 ) 休講 7/20 まとめ第 14 回 7/27 休講? 数理生物学演習 第 11 回パターン形成 本日の目標 2 次元配列 分子の拡散 反応拡散モデル チューリングパタン 拡散方程式 拡散方程式 u t = D 2 u 拡散が生じる分子などの挙動を記述する.

More information

C プログラミング演習 1( 再 ) 2 講義では C プログラミングの基本を学び 演習では やや実践的なプログラミングを通して学ぶ

C プログラミング演習 1( 再 ) 2 講義では C プログラミングの基本を学び 演習では やや実践的なプログラミングを通して学ぶ C プログラミング演習 1( 再 ) 2 講義では C プログラミングの基本を学び 演習では やや実践的なプログラミングを通して学ぶ 今回のプログラミングの課題 次のステップによって 徐々に難易度の高いプログラムを作成する ( 参照用の番号は よくわかる C 言語 のページ番号 ) 1. キーボード入力された整数 10 個の中から最大のものを答える 2. 整数を要素とする配列 (p.57-59) に初期値を与えておき

More information

Microsoft PowerPoint コンピュータ物理2_第2回.pptx

Microsoft PowerPoint コンピュータ物理2_第2回.pptx コンピュータ物理学 2 第 2 回 (2015.10.9) 第 1 回 10/ 2( 金 ) ガイダンス 第 2 回 10/ 9( 金 ) 数値表現と誤差 第 3 回 10/16( 金 ) 第 4 回 10/23( 金 ) 数値微分 積分 第 5 回 10/30( 木 ) 第 6 回 11/13( 金 ) 第 7 回 11/20( 金 ) 常微分方程式 第 8 回 11/27( 金 ) 第 9 回

More information

計算機シミュレーション

計算機シミュレーション . 運動方程式の数値解法.. ニュートン方程式の近似速度は, 位置座標 の時間微分で, d と定義されます. これを成分で書くと, d d li li とかけます. 本来は が の極限をとらなければいけませんが, 有限の小さな値とすると 秒後の位置座標は速度を用いて, と近似できます. 同様にして, 加速度は, 速度 の時間微分で, d と定義されます. これを成分で書くと, d d li li とかけます.

More information

<4D F736F F D2094F795AA95FB92F68EAE82CC89F082AB95FB E646F63>

<4D F736F F D2094F795AA95FB92F68EAE82CC89F082AB95FB E646F63> 力学 A 金曜 限 : 松田 微分方程式の解き方 微分方程式の解き方のところが分からなかったという声が多いので プリントにまとめます 数学的に厳密な話はしていないので 詳しくは数学の常微分方程式を扱っているテキストを参照してください また os s は既知とします. 微分方程式の分類 常微分方程式とは 独立変数 と その関数 その有限次の導関数 がみたす方程式 F,,, = のことです 次までの導関数を含む方程式を

More information

NumericalProg09

NumericalProg09 数値解析および プログラミング演習 [08 第 9 回目 ] の解法 - 4. Ruge-Kua( ルンゲ クッタ 法 Ruge-Kua-Gill( ルンゲ クッタ ジル / ギル 法 5. 多段解法 解法の対象 常微分方程式 d( d 初期値条件 (, の変化に応じて変化する の値を求める. ( 0 ( 0 と 0 は,give 0 常微分方程式の初期値問題 と言う. 3 Ruge-Kua 法の導出

More information

FEM原理講座 (サンプルテキスト)

FEM原理講座 (サンプルテキスト) サンプルテキスト FEM 原理講座 サイバネットシステム株式会社 8 年 月 9 日作成 サンプルテキストについて 各講師が 講義の内容が伝わりやすいページ を選びました テキストのページは必ずしも連続していません 一部を抜粋しています 幾何光学講座については 実物のテキストではなくガイダンスを掲載いたします 対象とする構造系 物理モデル 連続体 固体 弾性体 / 弾塑性体 / 粘弾性体 / 固体

More information

以下 変数の上のドットは時間に関する微分を表わしている (ex. 2 dx d x x, x 2 dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-1) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( x や x, x などがすべて 1 次で なおかつ

以下 変数の上のドットは時間に関する微分を表わしている (ex. 2 dx d x x, x 2 dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-1) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( x や x, x などがすべて 1 次で なおかつ 以下 変数の上のドットは時間に関する微分を表わしている (e. d d, dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( や, などがすべて 次で なおかつそれらの係数が定数であるような微分方程式 ) に対して安定性の解析を行ってきた しかしながら 実際には非線形の微分方程式で記述される現象も多く存在する

More information

Microsoft Word - 5章摂動法.doc

Microsoft Word - 5章摂動法.doc 5 章摂動法 ( 次の Moller-Plesset (MP) 法のために ) // 水素原子など 電子系を除いては 原子系の Schrödiger 方程式を解析的に解くことはできない 分子系の Schrödiger 方程式の正確な数値解を求めることも困難である そこで Hartree-Fock(H-F) 法を導入した H-F 法は Schrödiger 方程式が与える全エネルギーの 99% を再現することができる優れた近似方法である

More information

3 数値解の特性 3.1 CFL 条件 を 前の章では 波動方程式 f x= x0 = f x= x0 t f c x f =0 [1] c f 0 x= x 0 x 0 f x= x0 x 2 x 2 t [2] のように差分化して数値解を求めた ここでは このようにして得られた数値解の性質を 考

3 数値解の特性 3.1 CFL 条件 を 前の章では 波動方程式 f x= x0 = f x= x0 t f c x f =0 [1] c f 0 x= x 0 x 0 f x= x0 x 2 x 2 t [2] のように差分化して数値解を求めた ここでは このようにして得られた数値解の性質を 考 3 数値解の特性 3.1 CFL 条件 を 前の章では 波動方程式 f x= x = f x= x t f c x f = [1] c f x= x f x= x 2 2 t [2] のように差分化して数値解を求めた ここでは このようにして得られた数値解の性質を 考える まず 初期時刻 t=t に f =R f exp [ik x ] [3] のような波動を与えたとき どのように時間変化するか調べる

More information

微分方程式による現象記述と解きかた

微分方程式による現象記述と解きかた 微分方程式による現象記述と解きかた 土木工学 : 公共諸施設 構造物の有用目的にむけた合理的な実現をはかる方法 ( 技術 ) に関する学 橋梁 トンネル ダム 道路 港湾 治水利水施設 安全化 利便化 快適化 合法則的 経済的 自然および人口素材によって作られた 質量保存則 構造物の自然的な性質 作用 ( 外力による応答 ) エネルギー則 の解明 社会的諸現象のうち マスとしての移動 流通 運動量則

More information

DVIOUT

DVIOUT 最適レギュレータ 松尾研究室資料 第 最適レギュレータ 節時不変型無限時間最適レギュレータ 状態フィードバックの可能な場合の無限時間問題における最適レギュレータについて確定系について説明する. ここで, レギュレータとは状態量をゼロにするようなコントローラのことである. なぜ, 無限時間問題のみを述べるかという理由は以下のとおりである. 有限時間の最適レギュレータ問題の場合の最適フィードバックゲインは微分方程式の解から構成される時間関数として表現される.

More information

<4D F736F F D FCD B90DB93AE96402E646F63>

<4D F736F F D FCD B90DB93AE96402E646F63> 7 章摂動法講義のメモ 式が複雑なので 黒板を何度も修正したし 間違ったことも書いたので メモを置きます 摂動論の式の導出無摂動系 先ず 厳密に解けている Schrödiger 方程式を考える,,,3,... 3,,,3,... は状態を区別する整数であり 状態 はエネルギー順に並んでいる 即ち は基底状態 は励起状態である { m } は相互に規格直交条件が成立する k m k mdx km k

More information

関数の呼び出し ( 選択ソート ) 選択ソートのプログラム (findminvalue, findandreplace ができているとする ) #include <stdio.h> #define InFile "data.txt" #define OutFile "sorted.txt" #def

関数の呼び出し ( 選択ソート ) 選択ソートのプログラム (findminvalue, findandreplace ができているとする ) #include <stdio.h> #define InFile data.txt #define OutFile sorted.txt #def C プログラミング演習 1( 再 ) 6 講義では C プログラミングの基本を学び 演習では やや実践的なプログラミングを通して学ぶ 関数の呼び出し ( 選択ソート ) 選択ソートのプログラム (findminvalue, findandreplace ができているとする ) #include #define InFile "data.txt" #define OutFile "sorted.txt"

More information

関数の呼び出し ( 選択ソート ) 選択ソートのプログラム (findminvalue, findandreplace ができているとする ) #include <stdiu.h> #define InFile "data.txt" #define OutFile "surted.txt" #def

関数の呼び出し ( 選択ソート ) 選択ソートのプログラム (findminvalue, findandreplace ができているとする ) #include <stdiu.h> #define InFile data.txt #define OutFile surted.txt #def C プログラミング演習 1( 再 ) 6 講義では C プログラミングの基本を学び 演習では やや実践的なプログラミングを通して学ぶ 関数の呼び出し ( 選択ソート ) 選択ソートのプログラム (findminvalue, findandreplace ができているとする ) #include #define InFile "data.txt" #define OutFile "surted.txt"

More information

PowerPoint Presentation

PowerPoint Presentation Non-linea factue mechanics き裂先端付近の塑性変形 塑性域 R 破壊進行領域応カ特異場 Ω R R Hutchinson, Rice and Rosengen 全ひずみ塑性理論に基づいた解析 現段階のひずみは 除荷がないとすると現段階の応力で一義的に決まる 単純引張り時の応カーひずみ関係 ( 構成方程式 ): ( ) ( ) n () y y y ここで α,n 定数, /

More information

Microsoft PowerPoint - 4.pptx

Microsoft PowerPoint - 4.pptx while 文 (1) 繰り返しの必要性 while の形式と動作 繰り返しにより平 根を求める ( 演習 ) 繰り返しにより 程式の解を求める ( 課題 ) Hello. をたくさん表示しよう Hello. を画面に 3 回表示するには, 以下で OK. #include int main() { printf("hello. n"); printf("hello. n");

More information

JavaプログラミングⅠ

JavaプログラミングⅠ Java プログラミング Ⅰ 8 回目 for 文 今日の講義で学ぶ内容 for 文 変数のスコープ for 文の入れ子 繰り返し文 1 for 文 for 文最初に一度だけ初期化の式を処理します条件が true の場合 文を実行し 更新の式を処理して繰り返します条件が false の場合 for 文を終了します 条件は boolean 型で 関係演算子で表現される式などを記述します for( 初期化の式

More information

Microsoft Word - 1B2011.doc

Microsoft Word - 1B2011.doc 第 14 回モールの定理 ( 単純梁の場合 ) ( モールの定理とは何か?p.11) 例題 下記に示す単純梁の C 点のたわみ角 θ C と, たわみ δ C を求めよ ただし, 部材の曲げ 剛性は材軸に沿って一様で とする C D kn B 1.5m 0.5m 1.0m 解答 1 曲げモーメント図を描く,B 点の反力を求める kn kn 4 kn 曲げモーメント図を描く knm 先に得られた曲げモーメントの値を

More information

"éı”ç·ıå½¢ 微勃挹稉弑

"éı”ç·ıå½¢ 微勃挹稉弑 == 1 階線形微分方程式 == 次の形の常微分方程式を1 階線形常微分方程式といいます. '+P()=Q() (1) 方程式 (1) の右辺 : Q() を 0 とおいてできる同次方程式 ( この同次方程式は, 変数分離形になり比較的容易に解けます ) '+P()=0 () の1つの解を とすると, 方程式 (1) の一般解は =( Q() +C) (3) で求められます. 参考書には 上記の の代わりに,

More information

多次元レーザー分光で探る凝縮分子系の超高速動力学

多次元レーザー分光で探る凝縮分子系の超高速動力学 波動方程式と量子力学 谷村吉隆 京都大学理学研究科化学専攻 http:theochem.kuchem.kyoto-u.ac.jp TA: 岩元佑樹 iwamoto.y@kuchem.kyoto-u.ac.jp ベクトルと行列の作法 A 列ベクトル c = c c 行ベクトル A = [ c c c ] 転置ベクトル T A = [ c c c ] AA 内積 c AA = [ c c c ] c =

More information

モデリングとは

モデリングとは コンピュータグラフィックス基礎 第 5 回曲線 曲面の表現 ベジェ曲線 金森由博 学習の目標 滑らかな曲線を扱う方法を学習する パラメトリック曲線について理解する 広く一般的に使われているベジェ曲線を理解する 制御点を入力することで ベジェ曲線を描画するアプリケーションの開発を行えるようになる C++ 言語の便利な機能を使えるようになる 要素数が可変な配列としての std::vector の活用 計算機による曲線の表現

More information

4STEP 数学 Ⅲ( 新課程 ) を解いてみた関数 1 微分法 1 微分係数と導関数微分法 2 導関数の計算 272 ポイント微分法の公式を利用 (1) ( )( )( ) { } ( ) ( )( ) ( )( ) ( ) ( )( )

4STEP 数学 Ⅲ( 新課程 ) を解いてみた関数   1 微分法 1 微分係数と導関数微分法 2 導関数の計算 272 ポイント微分法の公式を利用 (1) ( )( )( ) { } ( ) ( )( ) ( )( ) ( ) ( )( ) 微分法 微分係数と導関数微分法 導関数の計算 7 ポイント微分法の公式を利用 () 7 8 別解 [ ] [ ] [ ] 7 8 など () 6 6 など 7 ポイント微分法の公式を利用 () 6 6 6 など () 9 など () þ î ì など () þ î ì þ î ì þ î ì など 7 () () 左辺を で微分すると, 右辺を で微分すると, ( ) ( ) ( ) よって, (

More information

線積分.indd

線積分.indd 線積分 線積分 ( n, n, n ) (ξ n, η n, ζ n ) ( n-, n-, n- ) (ξ k, η k, ζ k ) ( k, k, k ) ( k-, k-, k- ) 物体に力 を作用させて位置ベクトル A の点 A から位置ベクトル の点 まで曲線 に沿って物体を移動させたときの仕事 W は 次式で計算された A, A, W : d 6 d+ d+ d@,,, d+ d+

More information

微分方程式 モデリングとシミュレーション

微分方程式 モデリングとシミュレーション 1 微分方程式モデリングとシミュレーション 2018 年度 2 質点の運動のモデル化 粒子と粒子に働く力 粒子の運動 粒子の位置の時間変化 粒子の位置の変化の割合 速度 速度の変化の割合 加速度 力と加速度の結び付け Newtonの運動方程式 : 微分方程式 解は 時間の関数としての位置 3 Newton の運動方程式 質点の運動は Newton の運動方程式で記述される 加速度は力に比例する 2

More information

数学 Ⅲ 微分法の応用 大学入試問題 ( 教科書程度 ) 1 問 1 (1) 次の各問に答えよ (ⅰ) 極限 を求めよ 年会津大学 ( 前期 ) (ⅱ) 極限値 を求めよ 年愛媛大学 ( 前期 ) (ⅲ) 無限等比級数 が収束するような実数 の範囲と そのときの和を求めよ 年広島市立大学 ( 前期

数学 Ⅲ 微分法の応用 大学入試問題 ( 教科書程度 ) 1 問 1 (1) 次の各問に答えよ (ⅰ) 極限 を求めよ 年会津大学 ( 前期 ) (ⅱ) 極限値 を求めよ 年愛媛大学 ( 前期 ) (ⅲ) 無限等比級数 が収束するような実数 の範囲と そのときの和を求めよ 年広島市立大学 ( 前期 数学 Ⅲ 微分法の応用 大学入試問題 ( 教科書程度 )1 問 1 (1) 次の各問に答えよ (ⅰ) 極限 を求めよ 年会津大学 ( 前期 ) (ⅱ) 極限値 を求めよ 年愛媛大学 ( 前期 ) (ⅲ) 無限等比級数 が収束するような実数 の範囲と そのときの和を求めよ 年広島市立大学 ( 前期 ) (2) 次の関数を微分せよ (ⅰ) を正の定数とする (ⅱ) (ⅳ) (ⅵ) ( 解答 )(1) 年群馬大学

More information

Microsoft Word - 微分入門.doc

Microsoft Word - 微分入門.doc 基本公式 例題 0 定義式 f( ) 数 Ⅲ 微分入門 = の導関数を定義式にもとづいて計算しなさい 基本事項 ( f( ), g( ) が微分可能ならば ) y= f( ) g( ) のとき, y = y= f( ) g( ) h( ) のとき, y = ( f( ), g( ) が微分可能で, g( ) 0 ならば ) f( ) y = のとき, y = g ( ) とくに, y = のとき,

More information

Chap2

Chap2 逆三角関数の微分 Arcsin の導関数を計算する Arcsin I. 初等関数の微積分 sin [, ], [π/, π/] cos sin / (Arcsin ) 計算力の体力をつけよう π/ π/ E. II- 次の関数の導関数を計算せよ () Arccos () Arctan E. I- の解答 不定積分あれこれ () Arccos n log C C (n ) n e e C log (log

More information

Microsoft PowerPoint - NA03-09black.ppt

Microsoft PowerPoint - NA03-09black.ppt きょうの講義 数値 記号処理 2003.2.6 櫻井彰人 NumSymbol@soft.ae.keo.ac.jp http://www.sakura.comp.ae.keo.ac.jp/ 数値計算手法の定石 多項式近似 ( 復習 )» 誤差と手間の解析も 漸化式» 非線型方程式の求解 数値演算上の誤差 数値計算上の誤差 打ち切り誤差 (truncaton error)» 使う公式を有限項で打ち切る

More information

<4D F736F F D2097CD8A7793FC96E582BD82ED82DD8A E6318FCD2E646F63>

<4D F736F F D2097CD8A7793FC96E582BD82ED82DD8A E6318FCD2E646F63> - 第 章たわみ角法の基本式 ポイント : たわみ角法の基本式を理解する たわみ角法の基本式を梁の微分方程式より求める 本章では たわみ角法の基本式を導くことにする 基本式の誘導法は各種あるが ここでは 梁の微分方程式を解いて基本式を求める方法を採用する この本で使用する座標系は 右手 右ネジの法則に従った座標を用いる また ひとつの部材では 図 - に示すように部材の左端の 点を原点とし 軸線を

More information

数学 ⅡB < 公理 > 公理を論拠に定義を用いて定理を証明する 1 大小関係の公理 順序 (a > b, a = b, a > b 1 つ成立 a > b, b > c a > c 成立 ) 順序と演算 (a > b a + c > b + c (a > b, c > 0 ac > bc) 2 図

数学 ⅡB < 公理 > 公理を論拠に定義を用いて定理を証明する 1 大小関係の公理 順序 (a > b, a = b, a > b 1 つ成立 a > b, b > c a > c 成立 ) 順序と演算 (a > b a + c > b + c (a > b, c > 0 ac > bc) 2 図 数学 Ⅱ < 公理 > 公理を論拠に定義を用いて定理を証明する 大小関係の公理 順序 >, =, > つ成立 >, > > 成立 順序と演算 > + > + >, > > 図形の公理 平行線の性質 錯角 同位角 三角形の合同条件 三角形の合同相似 量の公理 角の大きさ 線分の長さ < 空間における座漂とベクトル > ベクトルの演算 和 差 実数倍については 文字の計算と同様 ベクトルの成分表示 平面ベクトル

More information

Laplace2.rtf

Laplace2.rtf =0 ラプラスの方程式は 階の微分方程式で, 一般的に3つの座標変数をもつ. ここでは, 直角座標系, 円筒座標系, 球座標系におけるラプラスの方程式の解き方を説明しよう. 座標変数ごとに方程式を分離し, それを解いていく方法は変数分離法と呼ばれる. 変数分離解と固有関数展開法. 直角座標系における 3 次元の偏微分方程式 = x + y + z =0 (.) を解くために,x, y, z について互いに独立な関数の積で成り立っていると考え,

More information

Microsoft PowerPoint - C言語の復習(配布用).ppt [互換モード]

Microsoft PowerPoint - C言語の復習(配布用).ppt [互換モード] if 文 (a と b の大きい方を表示 ) C 言語 Ⅰ の復習 条件判定 (if, 条件式 ) ループ (for[ 二重まで ], while, do) 配列 ( 次元 次元 ) トレース int a, b; printf( 整数 a: ); scanf( %d, &a); printf( 整数 b: ); scanf( %d, &b); //つのif 文で表現する場合間違えやすい どっちに =

More information

<4D F736F F D F2095A F795AA B B A815B837D839382CC95FB92F68EAE2E646F63>

<4D F736F F D F2095A F795AA B B A815B837D839382CC95FB92F68EAE2E646F63> 1/8 平成 3 年 3 月 4 日午後 6 時 11 分 10 複素微分 : コーシー リーマンの方程式 10 複素微分 : コーシー リーマンの方程式 9 複素微分 : 正則関数 で 正則性は複素数 z の関数 f ( z) の性質として導き出しまし た 複素数 z は つの実数, で表され z i 数 u, v で表され f ( z) u i 複素数 z と つの実数, : z + i + です

More information

memo

memo 数理情報工学特論第一 機械学習とデータマイニング 4 章 : 教師なし学習 3 かしまひさし 鹿島久嗣 ( 数理 6 研 ) kashima@mist.i.~ DEPARTMENT OF MATHEMATICAL INFORMATICS 1 グラフィカルモデルについて学びます グラフィカルモデル グラフィカルラッソ グラフィカルラッソの推定アルゴリズム 2 グラフィカルモデル 3 教師なし学習の主要タスクは

More information

Microsoft PowerPoint - 夏の学校(CFD).pptx

Microsoft PowerPoint - 夏の学校(CFD).pptx /9/5 FD( 計算流体力学 ) の基礎理論 性能 運動分野 夏の学校 神戸大学大学院海事科学研究科勝井辰博 流体の質量保存 流体要素内の質量の増加率 [ 単位時間当たりの増加量 ] 単位時間に流体要素に流入する質量 流体要素 Fl lm (orol olm) v ( ) ガウスの定理 v( ) /9/5 = =( ) b=b =(b b b ) b= b = b + b + b アインシュタイン表記

More information

kiso2-09.key

kiso2-09.key 座席指定はありません 計算機基礎実習II 2018 のウェブページか 第9回 ら 以下の課題に自力で取り組んで下さい 計算機基礎実習II 第7回の復習課題(rev07) 第9回の基本課題(base09) 第8回試験の結果 中間試験に関するコメント コンパイルできない不完全なプログラムなど プログラミングに慣れていない あるいは複雑な問題は 要件 をバラして段階的にプログラムを作成する exam08-2.c

More information

Microsoft Word - mathtext8.doc

Microsoft Word - mathtext8.doc 8 章偏微分と重積分 8. 偏微分とは これまで微分を考える際 関数は f という形で 関数値がつの変数 に依存している場合のみを扱ってきました しかし一般に変数はつとは決まっておらず f のように 複数の変数を持つ関数も考えなければなりません そ こでこの節では今まで学んできた微分を一般化させ 複数の変数に対応した偏微分と呼ばれるものについて説明します これまでの微分を偏微分と区別したいとき 常微分という呼び方を用います

More information

1/30 平成 29 年 3 月 24 日 ( 金 ) 午前 11 時 25 分第三章フェルミ量子場 : スピノール場 ( 次元あり ) 第三章フェルミ量子場 : スピノール場 フェルミ型 ボーズ量子場のエネルギーは 第二章ボーズ量子場 : スカラー場 の (2.18) より ˆ dp 1 1 =

1/30 平成 29 年 3 月 24 日 ( 金 ) 午前 11 時 25 分第三章フェルミ量子場 : スピノール場 ( 次元あり ) 第三章フェルミ量子場 : スピノール場 フェルミ型 ボーズ量子場のエネルギーは 第二章ボーズ量子場 : スカラー場 の (2.18) より ˆ dp 1 1 = / 平成 9 年 月 日 ( 金 午前 時 5 分第三章フェルミ量子場 : スピノール場 ( 次元あり 第三章フェルミ量子場 : スピノール場 フェルミ型 ボーズ量子場のエネルギーは 第二章ボーズ量子場 : スカラー場 の (.8 より ˆ ( ( ( q -, ( ( c ( H c c ë é ù û - Ü + c ( ( - に限る (. である 一方 フェルミ型は 成分をもち その成分を,,,,

More information

2018/6/12 表面の電子状態 表面に局在する電子状態 表面電子状態表面準位 1. ショックレー状態 ( 準位 ) 2. タム状態 ( 準位 ) 3. 鏡像状態 ( 準位 ) 4. 表面バンドのナローイング 5. 吸着子の状態密度 鏡像力によるポテンシャル 表面からzの位置の電子に働く力とポテン

2018/6/12 表面の電子状態 表面に局在する電子状態 表面電子状態表面準位 1. ショックレー状態 ( 準位 ) 2. タム状態 ( 準位 ) 3. 鏡像状態 ( 準位 ) 4. 表面バンドのナローイング 5. 吸着子の状態密度 鏡像力によるポテンシャル 表面からzの位置の電子に働く力とポテン 表面の電子状態 表面に局在する電子状態 表面電子状態表面準位. ショックレー状態 ( 準位. タム状態 ( 準位 3. 鏡像状態 ( 準位 4. 表面バンドのナローイング 5. 吸着子の状態密度 鏡像力によるポテンシャル 表面からzの位置の電子に働く力とポテンシャル e F z ( z z e V ( z ( Fz dz 4z e V ( z 4z ( z > ( z < のときの電子の運動を考える

More information

Microsoft Word - thesis.doc

Microsoft Word - thesis.doc 剛体の基礎理論 -. 剛体の基礎理論初めに本論文で大域的に使用する記号を定義する. 使用する記号トルク撃力力角運動量角速度姿勢対角化された慣性テンソル慣性テンソル運動量速度位置質量時間 J W f F P p .. 質点の並進運動 質点は位置 と速度 P を用いる. ニュートンの運動方程式 という状態を持つ. 但し ここでは速度ではなく運動量 F P F.... より質点の運動は既に明らかであり 質点の状態ベクトル

More information

ÿþŸb8bn0irt

ÿþŸb8bn0irt 折戸の物理 スペシャル補習 http://oritobuturi.co/ NO.5(009..16) 今日の目的 : 1 物理と微分 積分について 微分方程式について学ぶ 3 近似を学ぶ 10. 以下の文を読み,[ ア ]~[ ク ] の空欄に適当な式をいれよ 物体物体に一定の大きさの力を加えたときの, 物体の運動について考え よう 右図のように, なめらかな水平面上で質量 の物体に水平に一定の大きさ

More information

差分スキーム 物理 化学 生物現象には微分方程式でモデル化される例が多い モデルを使って現実の現象をコンピュータ上で再現することをシミュレーション ( 数値シミュレーション コンピュータシミュレーション ) と呼ぶ そのためには 微分方程式をコンピュータ上で計算できる数値スキームで近似することが必要

差分スキーム 物理 化学 生物現象には微分方程式でモデル化される例が多い モデルを使って現実の現象をコンピュータ上で再現することをシミュレーション ( 数値シミュレーション コンピュータシミュレーション ) と呼ぶ そのためには 微分方程式をコンピュータ上で計算できる数値スキームで近似することが必要 差分スキーム 物理 化学 生物現象には微分方程式でモデル化される例が多い モデルを使って現実の現象をコンピュータ上で再現することをシミュレーション ( 数値シミュレーション コンピュータシミュレーション ) と呼ぶ そのためには 微分方程式をコンピュータ上で計算できる数値スキームで近似することが必要になる その一つの方法が微分方程式を差分方程式におき直すことである 微分方程式の差分化 次の 1 次元境界値問題を考える

More information

Microsoft PowerPoint - 11JUN03

Microsoft PowerPoint - 11JUN03 基礎量子化学 年 4 月 ~8 月 6 月 3 日第 7 回 章分子構造 担当教員 : 福井大学大学院工学研究科生物応用化学専攻准教授前田史郎 -ail:saea@u-fukui.a.p URL:http://abio.abio.u-fukui.a.p/phyhe/aea/kougi 教科書 : アトキンス物理化学 ( 第 8 版 ) 東京化学同人 章原子構造と原子スペクトル 章分子構造 分子軌道法

More information

Microsoft Word - 8章(CI).doc

Microsoft Word - 8章(CI).doc 8 章配置間相互作用法 : Configuration Interaction () etho [] 化学的精度化学反応の精密な解析をするためには エネルギー誤差は数 ~ kcal/mol 程度に抑えたいものである この程度の誤差内に治まる精度を 化学的精度 と呼ぶことがある He 原子のエネルギーをシュレーディンガー方程式と分子軌道法で計算した結果を示そう He 原子のエネルギー Hartree-Fock

More information

Microsoft PowerPoint - prog11.ppt

Microsoft PowerPoint - prog11.ppt プログラミング言語 第 回 (7 年 7 月 6 日 今日の配布物 片面の用紙 枚 今日の課題が書かれています 本日の出欠を兼ねています /33 今日やること http://www.tnlab.ice.uec.ac.jp/~s-okubo/class/language/ にアクセスすると 教材があります 7 年 7 月 6 日分と書いてある部分が 本日の教材です 本日の内容 前回の課題の解答 Romberg

More information

関数の動作 / printhw(); 7 printf(" n"); printhw(); printf("############ n"); 4 printhw(); 5 関数の作り方 ( 関数名 ) 戻り値 ( 後述 ) void である. 関数名 (

関数の動作 / printhw(); 7 printf( n); printhw(); printf(############ n); 4 printhw(); 5 関数の作り方 ( 関数名 ) 戻り値 ( 後述 ) void である. 関数名 ( 概要 プログラミング 関数 http://www.ns.kogakuin.ac.jp/~ct40/progc/ A- 関数の作り方を学ぶ 関数名, 引数, 戻り値 プログラミング で最も重要な事項 関数 プログラミング で最も重要な事項 制御 (for, if) プログラミング で最も重要な事項 ポインタ A- 関数名 引数 戻り値 E- E-4 関数の概要 0/ 関数とは, 複数の処理をひとまとめにしたもの.

More information

物性基礎

物性基礎 水素様原子 水素原子 水素様原子 エネルギー固有値 波動関数 主量子数 角運動量 方位量子数 磁気量子数 原子核 + 電子 個 F p F = V = 水素様原子 古典力学 水素様原子 量子力学 角運動量 L p F p L 運動方程式 d dt p = d d d p p = p + dt dt dt = p p = d dt L = 角運動量の保存則 ポテンシャルエネルギー V = 4πε =

More information

シミュレーション物理4

シミュレーション物理4 シミュレーション物理 4 運動方程式の方法 運動方程式 物理で最もよく出てくる そもそも物理はものの運動を議論する学問から出発 ( つり合いは運動を行わないという意味で含まれる ) 代表例 ニュートンの運動方程式 波動方程式 シュレーディンガー方程式 運動方程式 ( 微分方程式の解法 ) 高次の微分方程式を 1 階微分方程式に変形 N 変数の 階微分方程式 N 変数の 1 階微分方程式 dy/dt=f(t,y)

More information

様々なミクロ計量モデル†

様々なミクロ計量モデル† 担当 : 長倉大輔 ( ながくらだいすけ ) この資料は私の講義において使用するために作成した資料です WEB ページ上で公開しており 自由に参照して頂いて構いません ただし 内容について 一応検証してありますが もし間違いがあった場合でもそれによって生じるいかなる損害 不利益について責任を負いかねますのでご了承ください 間違いは発見次第 継続的に直していますが まだ存在する可能性があります 1 カウントデータモデル

More information

画像解析論(2) 講義内容

画像解析論(2) 講義内容 画像解析論 画像解析論 東京工業大学長橋宏 主な講義内容 信号処理と画像処理 二次元システムとその表現 二次元システムの特性解析 各種の画像フィルタ 信号処理と画像処理 画像解析論 処理の応答 記憶域 入出力の流れ 信号処理系 実時間性が求められる メモリ容量に対する制限が厳しい オンラインでの対応が厳しく求められる 画像処理系 ある程度の処理時間が許容される 大容量のメモリ使用が容認され易い オフラインでの対応が容認され易い

More information

Microsoft PowerPoint _量子力学短大.pptx

Microsoft PowerPoint _量子力学短大.pptx . エネルギーギャップとrllouゾーン ブリルアン領域,t_8.. 周期ポテンシャル中の電子とエネルギーギャップ 簡単のため 次元に間隔 で原子が並んでいる結晶を考える 右方向に進行している電子の波は 間隔 で規則正しく並んでいる原子が作る格子によって散乱され 左向きに進行する波となる 波長 λ が の時 r の反射条件 式を満たし 両者の波が互いに強め合い 定在波を作る つまり 式 式を満たす波は

More information

Microsoft PowerPoint コンピュータ物理2_第1回.pptx

Microsoft PowerPoint コンピュータ物理2_第1回.pptx コンピュータ物理学 2 第 1 回 (2016.10.4) 第 1 回 10/ 4( 火 ) ガイダンス 第 2 回 10/11( 火 ) 数値表現と誤差 第 3 回 10/18( 火 ) 第 4 回 10/25( 火 ) 数値微分 積分 第 5 回 11/ 1( 火 ) 第 6 回 11/ 8( 火 ) 第 7 回 11/15( 火 ) 常微分方程式 第 8 回 11/22( 火 ) 第 9 回

More information

社会保険料の賃金への影響について

社会保険料の賃金への影響について 社会保険料の賃金への影響について Borja,G. Labor economic, 3r e McGraw-Hill, Chapter, -3: Policy Application: payroll taxe an ubiie N グレゴリー マンキュー マンキュー経済学 Ⅰミクロ編 足立他訳 東洋経済新報社 2000 年 68-78 ページただし 保険料 ( 税金 ) のかかり方は 教科書のものと以下で扱うものとでは異なっていることに注意.

More information

Microsoft PowerPoint - lec4.ppt

Microsoft PowerPoint - lec4.ppt 本日の内容 繰り返し計算 while 文, for 文 例題 1. 最大公約数の計算例題 2. 自然数の和 while 文例題 3. フィボナッチ数列例題 4. 自然数の和 for 文例題 5. 九九の表繰り返しの入れ子 今日の到達目標 繰り返し (while 文, for 文 ) を使って, 繰り返し計算を行えるようになること ループカウンタとして, 整数の変数を使うこと 今回も, 見やすいプログラムを書くために,

More information

0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生

0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生 0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生まれ, コンピューテーショナルフォトグラフィ ( 計算フォトグラフィ ) と呼ばれている.3 次元画像認識技術の計算フォトグラフィへの応用として,

More information

ギリシャ文字の読み方を教えてください

ギリシャ文字の読み方を教えてください 埼玉工業大学機械工学学習支援セミナー ( 小西克享 ) 単振り子の振動の近似解と厳密解 -/ テーマ H: 単振り子の振動の近似解と厳密解. 運動方程式図 のように, 質量 m のおもりが糸で吊り下げられている時, おもりには重力 W と糸の張力 が作用しています. おもりは静止した状態なので,W と F は釣り合った状態注 ) になっています. すなわち, W です.W は質量 m と重力加速度

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 球面波 回折 (. グリーンの定理. キルヒホッフの積分定理 3. ホイヘンスの原理 4. キルヒホッフの回折公式 5. ゾンマーフェルトの放射条件 6. 補足 付録 (90~904 のアプローチ : 回折 (diffaction までの道標. 球面波 (pheical wave のみ対象 : スカラー表示. 虚数単位 i を使用する 3. お詫び : 自己流かつ説明が飛躍する場面があります

More information

Microsoft PowerPoint - ca ppt [互換モード]

Microsoft PowerPoint - ca ppt [互換モード] 大阪電気通信大学情報通信工学部光システム工学科 2 年次配当科目 コンピュータアルゴリズム 良いアルゴリズムとは 第 2 講 : 平成 20 年 10 月 10 日 ( 金 ) 4 限 E252 教室 中村嘉隆 ( なかむらよしたか ) 奈良先端科学技術大学院大学助教 y-nakamr@is.naist.jp http://narayama.naist.jp/~y-nakamr/ 第 1 講の復習

More information

<4D F736F F D208D5C91A297CD8A7793FC96E591E631308FCD2E646F63>

<4D F736F F D208D5C91A297CD8A7793FC96E591E631308FCD2E646F63> 第 1 章モールの定理による静定梁のたわみ 1-1 第 1 章モールの定理による静定梁のたわみ ポイント : モールの定理を用いて 静定梁のたわみを求める 断面力の釣合と梁の微分方程式は良く似ている 前章では 梁の微分方程式を直接積分する方法で 静定梁の断面力と変形状態を求めた 本章では 梁の微分方程式と断面力による力の釣合式が類似していることを利用して 微分方程式を直接解析的に解くのではなく 力の釣合より梁のたわみを求める方法を学ぶ

More information

2015-2017年度 2次数学セレクション(複素数)解答解説

2015-2017年度 2次数学セレクション(複素数)解答解説 05 次数学セレクション解答解説 [ 筑波大 ] ( + より, 0 となり, + から, ( (,, よって, の描く図形 C は, 点 を中心とし半径が の円である すなわち, 原 点を通る円となる ( は虚数, は正の実数より, である さて, w ( ( とおくと, ( ( ( w ( ( ( ここで, w は純虚数より, は純虚数となる すると, の描く図形 L は, 点 を通り, 点 と点

More information

板バネの元は固定にします x[0] は常に0です : > x[0]:=t->0; (1.2) 初期値の設定をします 以降 for 文処理のため 空集合を生成しておきます : > init:={}: 30 番目 ( 端 ) 以外については 初期高さおよび初速は全て 0 にします 初期高さを x[j]

板バネの元は固定にします x[0] は常に0です : > x[0]:=t->0; (1.2) 初期値の設定をします 以降 for 文処理のため 空集合を生成しておきます : > init:={}: 30 番目 ( 端 ) 以外については 初期高さおよび初速は全て 0 にします 初期高さを x[j] 機械振動論固有振動と振動モード 本事例では 板バネを解析対象として 数値計算 ( シミュレーション ) と固有値問題を解くことにより振動解析を行っています 実際の振動は振動モードと呼ばれる特定パターンが複数組み合わされますが 各振動モードによる振動に分けて解析を行うことでその現象を捉え易くすることが出来ます そこで 本事例では アニメーションを活用した解析結果の可視化も取り入れています 板バネの振動

More information

Microsoft Word - no202.docx

Microsoft Word - no202.docx 1.4 ポインタと配列 ポインタ変数は前回説明したように 値の入っているアドレスを示す変数です では 配列はどの ようにメモリ上に格納されるか調べてみましょう ex07.c /* ポインタと配列の関係 */ int a[3]={1, 2, 3; /* int 型の大きさ 3 の配列として宣言 */ int *i; /* int 型へのポインタとして宣言 */ double x[3] = {1.0,

More information

PowerPoint Presentation

PowerPoint Presentation 知能システム論 1 (11) 2012.6.20 情報システム学研究科情報メディアシステム学専攻知能システム学講座末廣尚士 13. ロボットアームの逆運動学 ( 幾何的解法 ) 何をしたいか 手首 手先 ツールの3 次元空間での位置や姿勢から それを実現する関節角度を計算する アームソリューション アームの解とも呼ぶ 何のために たとえばビジョンで認識された物をつかむ場合 物の位置 姿勢は3 次元空間で表現されることが普通である

More information

三重大学工学部

三重大学工学部 反応理論化学 ( その5 6 ポテンシャルエネルギー面と反応経路最も簡単な反応 X + Y X + Y 反応物 ( 生成物 (P X 結合が切断反応系全体のエネルギーは X と Y の Y 結合が形成原子間距離によって変化 r(x と r( Y に対してエネルギーを等高線で表す赤矢印 P:X 結合の切断と Y 結合の形成が同時進行青矢印 P: まず X 結合が切断し次いで Y 結合が形成 谷 X +

More information

Microsoft PowerPoint - 11.pptx

Microsoft PowerPoint - 11.pptx ポインタと配列 ポインタと配列 配列を関数に渡す 法 課題 : 配列によるスタックの実現 ポインタと配列 (1/2) a が配列であるとき, 変数の場合と同様に, &a[0] [] の値は配列要素 a[0] のアドレス. C 言語では, 配列は主記憶上の連続領域に割り当てられるようになっていて, 配列名 a はその配列に割り当てられた領域の先頭番地となる. したがって,&a[0] と a は同じ値.

More information

2018年度 2次数学セレクション(微分と積分)

2018年度 2次数学セレクション(微分と積分) 08 次数学セレクション問題 [ 東京大 ] > 0 とし, f = x - x とおく () x で f ( x ) が単調に増加するための, についての条件を求めよ () 次の 条件を満たす点 (, b) の動きうる範囲を求め, 座標平面上に図示せよ 条件 : 方程式 f = bは相異なる 実数解をもつ 条件 : さらに, 方程式 f = bの解を < < とすると > である -- 08 次数学セレクション問題

More information

次に示す数値の並びを昇順にソートするものとする このソートでは配列の末尾側から操作を行っていく まず 末尾の数値 9 と 8 に着目する 昇順にソートするので この値を交換すると以下の数値の並びになる 次に末尾側から 2 番目と 3 番目の 1

次に示す数値の並びを昇順にソートするものとする このソートでは配列の末尾側から操作を行っていく まず 末尾の数値 9 と 8 に着目する 昇順にソートするので この値を交換すると以下の数値の並びになる 次に末尾側から 2 番目と 3 番目の 1 4. ソート ( 教科書 p.205-p.273) 整列すなわちソートは アプリケーションを作成する際には良く使われる基本的な操作であり 今までに数多くのソートのアルゴリズムが考えられてきた 今回はこれらソートのアルゴリズムについて学習していく ソートとはソートとは与えられたデータの集合をキーとなる項目の値の大小関係に基づき 一定の順序で並べ替える操作である ソートには図 1 に示すように キーの値の小さいデータを先頭に並べる

More information

Taro-再帰関数Ⅱ(公開版).jtd

Taro-再帰関数Ⅱ(公開版).jtd 0. 目次 6. 2 項係数 7. 二分探索 8. 最大値探索 9. 集合 {1,2,,n} 上の部分集合生成 - 1 - 6. 2 項係数 再帰的定義 2 項係数 c(n,r) は つぎのように 定義される c(n,r) = c(n-1,r) + c(n-1,r-1) (n 2,1 r n-1) = 1 (n 0, r=0 ) = 1 (n 1, r=n ) c(n,r) 0 1 2 3 4 5

More information

Taro-再帰関数Ⅲ(公開版).jtd

Taro-再帰関数Ⅲ(公開版).jtd 0. 目次 1 1. ソート 1 1. 1 挿入ソート 1 1. 2 クイックソート 1 1. 3 マージソート - 1 - 1 1. ソート 1 1. 1 挿入ソート 挿入ソートを再帰関数 isort を用いて書く 整列しているデータ (a[1] から a[n-1] まで ) に a[n] を挿入する操作を繰り返す 再帰的定義 isort(a[1],,a[n]) = insert(isort(a[1],,a[n-1]),a[n])

More information

Microsoft Word - 1-4Wd

Microsoft Word - 1-4Wd 第 4 章運動範囲が制限された電子の Scrödinger 方程式の解とその解釈原子 分子の中の電子の運動は原子核の正の電荷によって制約を受けています. 運動範囲が制限された電子はどのような行動をとるか を Scrödinger 方程式を解いて調べましょう. 具体的には, 箱 に閉じ込められた電子の問題です ( 図 1-5). この問題は簡単な系についての Scrödinger 方程式のとき方の例であると同時に量子論の本質が含まれています.

More information

OCW-iダランベールの原理

OCW-iダランベールの原理 講義名連続体力学配布資料 OCW- 第 2 回ダランベールの原理 無機材料工学科准教授安田公一 1 はじめに今回の講義では, まず, 前半でダランベールの原理について説明する これを用いると, 動力学の問題を静力学の問題として解くことができ, さらに, 前回の仮想仕事の原理を適用すると動力学問題も簡単に解くことができるようになる また, 後半では, ダランベールの原理の応用として ラグランジュ方程式の導出を示す

More information

PowerPoint Presentation

PowerPoint Presentation 応用数学 Ⅱ (7) 7 連立微分方程式の立て方と解法. 高階微分方程式による解法. ベクトル微分方程式による解法 3. 演算子による解法 連立微分方程式 未知数が複数個あり, 未知数の数だけ微分方程式が与えられている場合, これらを連立微分方程式という. d d 解法 () 高階微分方程式化による解法 つの方程式から つの未知数を消去して, 未知数が つの方程式に変換 のみの方程式にするために,

More information

1/17 平成 29 年 3 月 25 日 ( 土 ) 午前 11 時 1 分量子力学とクライン ゴルドン方程式 ( 学部 3 年次秋学期向 ) 量子力学とクライン ゴルドン方程式 素粒子の満たす場 y ( x,t) の運動方程式 : クライン ゴルドン方程式 : æ 3 ö ç å è m= 0

1/17 平成 29 年 3 月 25 日 ( 土 ) 午前 11 時 1 分量子力学とクライン ゴルドン方程式 ( 学部 3 年次秋学期向 ) 量子力学とクライン ゴルドン方程式 素粒子の満たす場 y ( x,t) の運動方程式 : クライン ゴルドン方程式 : æ 3 ö ç å è m= 0 /7 平成 9 年 月 5 日 ( 土 午前 時 分量子力学とクライン ゴルドン方程式 ( 学部 年次秋学期向 量子力学とクライン ゴルドン方程式 素粒子の満たす場 (,t の運動方程式 : クライン ゴルドン方程式 : æ ö ç å è = 0 c + ( t =, 0 (. = 0 ì æ = = = ö æ ö æ ö ç ì =,,,,,,, ç 0 = ç Ñ 0 = ç Ñ 0 Ñ Ñ

More information

構造力学Ⅰ第12回

構造力学Ⅰ第12回 第 回材の座屈 (0 章 ) p.5~ ( 復習 ) モールの定理 ( 手順 ) 座屈とは 荷重により梁に生じた曲げモーメントをで除して仮想荷重と考える 座屈荷重 偏心荷重 ( 曲げと軸力 ) 断面の核 この仮想荷重に対するある点でのせん断力 たわみ角に相当する曲げモーメント たわみに相当する ( 例 ) 単純梁の支点のたわみ角 : は 図 を仮想荷重と考えたときの 点の支点反力 B は 図 を仮想荷重と考えたときのB

More information

今回のプログラミングの課題 ( 前回の課題で取り上げた )data.txt の要素をソートして sorted.txt というファイルに書出す ソート (sort) とは : 数の場合 小さいものから大きなもの ( 昇順 ) もしくは 大きなものから小さなもの ( 降順 ) になるよう 並び替えること

今回のプログラミングの課題 ( 前回の課題で取り上げた )data.txt の要素をソートして sorted.txt というファイルに書出す ソート (sort) とは : 数の場合 小さいものから大きなもの ( 昇順 ) もしくは 大きなものから小さなもの ( 降順 ) になるよう 並び替えること C プログラミング演習 1( 再 ) 4 講義では C プログラミングの基本を学び 演習では やや実践的なプログラミングを通して学ぶ 今回のプログラミングの課題 ( 前回の課題で取り上げた )data.txt の要素をソートして sorted.txt というファイルに書出す ソート (sort) とは : 数の場合 小さいものから大きなもの ( 昇順 ) もしくは 大きなものから小さなもの ( 降順

More information

7 章問題解答 7-1 予習 1. 長方形断面であるため, 断面積 A と潤辺 S は, 水深 h, 水路幅 B を用い以下で表される A = Bh, S = B + 2h 径深 R の算定式に代入すると以下のようになる A Bh h R = = = S B + 2 h 1+ 2( h B) 分母の

7 章問題解答 7-1 予習 1. 長方形断面であるため, 断面積 A と潤辺 S は, 水深 h, 水路幅 B を用い以下で表される A = Bh, S = B + 2h 径深 R の算定式に代入すると以下のようになる A Bh h R = = = S B + 2 h 1+ 2( h B) 分母の 7 章問題解答 7- 予習. 長方形断面であるため, 断面積 と潤辺 S は, 水深, 水路幅 B を用い以下で表される B, S B + 径深 R の算定式に代入すると以下のようになる B R S B + ( B) 分母の /B は河幅が水深に対して十分に広ければ, 非常に小さな値となるため, 上式は R ( B) となり, 径深 R は水深 で近似できる. マニングの式の水深 を等流水深 0 と置き換えると,

More information

Microsoft PowerPoint - kougi11.ppt

Microsoft PowerPoint - kougi11.ppt C プログラミング演習 中間まとめ 2 1 ソフトウエア開発の流れ 機能設計 外部仕様 ( プログラムの入力と出力の取り決め ) 構成設計 詳細設計 論理試験 内部データ構造や関数呼び出し方法などに関する取り決めソースプログラムの記述正しい入力データから正しい結果が得られるかテスト関数単位からテストをおこなう 耐性試験 異常な入力データに対して, 異常を検出できるかテスト異常終了することはないかテスト

More information

プログラム例 /* ACM-ICPC2009 国内予選 Problem C */ // // filename = pc1.c // コンパイル

プログラム例 /* ACM-ICPC2009 国内予選 Problem C */ //   // filename = pc1.c // コンパイル [Problem C] 覆面計算 与えられた覆面計算に対して 等式を満たすような数字の割り当てが何通りあるか を求める問題であるので 各文字に対する数字の割り当てを順番に生成していき その割り当てが等式を満たすかどうかチェックすればよい 異なる文字には異なる数値 (0~9) が割り当てられるので 最大で 10! 約 360 万通りの組み合わせをチェックする必要がある (1 桁の場合を除いて最上位の桁は

More information

Microsoft PowerPoint - e-stat(OLS).pptx

Microsoft PowerPoint - e-stat(OLS).pptx 経済統計学 ( 補足 ) 最小二乗法について 担当 : 小塚匡文 2015 年 11 月 19 日 ( 改訂版 ) 神戸大学経済学部 2015 年度後期開講授業 補足 : 最小二乗法 ( 単回帰分析 ) 1.( 単純 ) 回帰分析とは? 標本サイズTの2 変数 ( ここではXとY) のデータが存在 YをXで説明する回帰方程式を推定するための方法 Y: 被説明変数 ( または従属変数 ) X: 説明変数

More information

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X (

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X ( 第 週ラプラス変換 教科書 p.34~ 目標ラプラス変換の定義と意味を理解する フーリエ変換や Z 変換と並ぶ 信号解析やシステム設計における重要なツール ラプラス変換は波動現象や電気回路など様々な分野で 微分方程式を解くために利用されてきた ラプラス変換を用いることで微分方程式は代数方程式に変換される また 工学上使われる主要な関数のラプラス変換は簡単な形の関数で表されるので これを ラプラス変換表

More information

講習No.9

講習No.9 日本語は通常 2 バイトの文字コード.JIS コード, シフト JIS コード, Unicode (UTF-8) 等の様々な文字コードがある. アスキーコード表 (ASCII code) アスキーコード ( 値 ) 漢字変換無しでキーボードから直接入力できる半角文字 32 48 0 64 @ 80 P 96 ` 112 p 33! 49 1 65 A 81 Q 97 a 113 q 34 " 50

More information

Microsoft Word - 漸化式の解法NEW.DOCX

Microsoft Word - 漸化式の解法NEW.DOCX 閑話休題 漸化式の解法 基本形 ( 等差数列, 等比数列, 階差数列 ) 等差数列 : d 等比数列 : r の一般項を求めよ () 3, 5 () 3, () 5より数列 は, 初項 3, 公差の等差数列であるので 5 3 5 5 () 数列 は, 初項 3, 公比 の等比数列であるので 3 階差数列 : f の一般項を求めよ 3, より のとき k k 3 3 において, を代入すると 33 となるので,は

More information

2011年度 大阪大・理系数学

2011年度 大阪大・理系数学 0 大阪大学 ( 理系 ) 前期日程問題 解答解説のページへ a a を自然数とする O を原点とする座標平面上で行列 A= a の表す 次変換 を f とする cosθ siθ () >0 および0θ

More information

Microsoft PowerPoint - 10.pptx

Microsoft PowerPoint - 10.pptx m u. 固有値とその応用 8/7/( 水 ). 固有値とその応用 固有値と固有ベクトル 行列による写像から固有ベクトルへ m m 行列 によって線形写像 f : R R が表せることを見てきた ここでは 次元平面の行列による写像を調べる とし 写像 f : を考える R R まず 単位ベクトルの像 u y y f : R R u u, u この事から 線形写像の性質を用いると 次の格子上の点全ての写像先が求まる

More information

Chap2.key

Chap2.key . f( ) V (V V ) V e + V e V V V V ( ) V V ( ) E. - () V (0 ) () V (0 ) () V (0 ) (4) V ( ) E. - () V (0 ) () V (0 ) O r θ ( ) ( ) : (r θ) : { r cos θ r sn θ { r + () V (0 ) (4) V ( ) θ θ arg( ) : π π

More information

物性物理学 I( 平山 ) 補足資料 No.6 ( 量子ポイントコンタクト ) 右図のように 2つ物質が非常に小さな接点を介して接触している状況を考えましょう 物質中の電子の平均自由行程に比べて 接点のサイズが非常に小さな場合 この接点を量子ポイントコンタクトと呼ぶことがあります この系で左右の2つ

物性物理学 I( 平山 ) 補足資料 No.6 ( 量子ポイントコンタクト ) 右図のように 2つ物質が非常に小さな接点を介して接触している状況を考えましょう 物質中の電子の平均自由行程に比べて 接点のサイズが非常に小さな場合 この接点を量子ポイントコンタクトと呼ぶことがあります この系で左右の2つ 物性物理学 I( 平山 ) 補足資料 No.6 ( 量子ポイントコンタクト ) 右図のように つ物質が非常に小さな接点を介して接触している状況を考えましょう 物質中の電子の平均自由行程に比べて 接点のサイズが非常に小さな場合 この接点を量子ポイントコンタクトと呼ぶことがあります この系で左右のつの物質の間に電位差を設けて左から右に向かって電流を流すことを行った場合に接点を通って流れる電流を求めるためには

More information

<4D F736F F D B4389F D985F F4B89DB91E88250>

<4D F736F F D B4389F D985F F4B89DB91E88250> 電気回路理論 II 演習課題 H30.0.5. 図 の回路で =0 で SW を on 接続 とする時 >0 での i, 並びに を求め 図示しなさい ただし 0 での i, 並びに を求めなさい ただし 0 とする 3. 図 3の回路で =0 で SW を下向きに瞬時に切り替える時 >0 での i,

More information