Microsoft PowerPoint - 11JUN03
|
|
|
- そうりん ふじがわ
- 7 years ago
- Views:
Transcription
1 基礎量子化学 年 4 月 ~8 月 6 月 3 日第 7 回 章分子構造 担当教員 : 福井大学大学院工学研究科生物応用化学専攻准教授前田史郎 -ail:[email protected] URL: 教科書 : アトキンス物理化学 ( 第 8 版 ) 東京化学同人 章原子構造と原子スペクトル 章分子構造 分子軌道法 5 異核二原子分子 5 月 日, 学生番号, 氏名 () 自習問題 4 F と F のどちらの方が解離エネルギーが大きいと予想されるか. [ ヒント ]F の基底状態の電子配置は次の通りで, 結合次数 b である. F : σ g σ u σ g π u4 π g 4 () 変分原理とは何か, 簡単に説明せよ. (3) 変分法の解法のうち, 直接法とはどんな方法か簡単に説明せよ. (4) 直接法のうち, リッツの方法について簡単に説明せよ. (5) 本日の授業内容についての質問, 意見, 感想, 苦情, 改善提案などを書いてください.
2 () 自習問題 4 F と F のどちらの方が解離エネルギーが大きいと予想されるか. [ ヒント ]F の基底状態の電子配置は次の通りで, 結合次数 b である. F : σ g σ u σ g π u4 π g4 F : σ g σ u σ g π u4 π g3 ( は反結合分子オービタル ) 結合次数は次のようになる. F :(8-6)/ F :(8-5)/.5 F の方が結合次数が大きいので大きな解離エネルギーを持つと予想される. 反結合性分子オービタルの電子数が少ないほど結合次数が大きく 解離エネルギーも大きい 3 等核二原子分子 F の分子オービタルエネルギー準位図 基底状態の電子配置は反結合性オービタルに を付けると F : σ g σ u σ g π u4 π g4 8,6 であるから, 結合次数 b(8-6)/ であり, 一重結合となる. 一方,F では F : σ g σ u σ g π u4 π g3 8,5 であるから, 結合次数 b(8-5)/.5 であり,.5 重結合となる. 4
3 () 変分原理とは何か, 簡単に説明せよ. 変分原理とは,LCO-MOから分子オービタルを作るときの係数を求める方法. 任意の関数を使ってエネルギー計算すると, その計算値は真のエネルギーより決して小さくはならない. (3) 変分法の解法のうち, 直接法とはどんな方法か簡単に説明せよ. 適当なパラメータ ( 変分パラメータという ) を含む試行関数を設定することにより変分問題を解く手法を直接法という. (4) 直接法のうち, リッツの方法について簡単に説明せよ. 試行関数を選ぶ際に, 何か適当な関数系 {φ ()} を使って y φ とおく方法をリッツの方法という. 5 前回のポイント () 変分原理 LCO-MOから分子オービタルを作るときの係数を求める方法. 任意の関数を使ってエネルギー計算すると, その計算値は真のエネルギーより決して小さくはならない. これを, 変分原理という. 多原子分子の場合には, シュレディンガー方程式を厳密に解いて真の波動関数を求めることができないので, パラメータ ( 変数 ) を含むもっともらしい試行関数 ψ () を用いてエネルギー () を計算する ( 直接法という ). 変分原理により, () は真のエネルギー () よりも必ず高いことになる. ψ () のパラメータを変化させて () を計算しても, 必ず () () である. そこで, () が最小になるようにパラメータを決めたときの () がもっとも真のエネルギー () に近い値となる. 6
4 前回のポイント () 試行関数は何でも良いのであるが, 実際には, () 真の波動関数に近い形であること. () ハミルトニアンの期待値 ˆ を求める積分計算が容易に行えること. が望ましい. 適当なパラメータ ( 変分パラメータという ) を含む試行関数を設定することにより変分問題を解く手法を直接法という. 試行関数の選び方は決まった方法があるわけではなく, いちいちの問題ごとに適切な形を考えてやる必要がある. 7 PR 年度授業内容. 水素型原子の構造とスペクトル. 原子オービタルとそのエネルギー 3. スペクトル遷移と選択律 4. 多電子原子の構造 5. 一重項状態と三重項状態 6. ボルン オッペンハイマー近似 7. 原子価結合法 8. 水素分子 9. 等核ニ原子分子. 異核二原子分子 多原子分子. 混成オービタル. 分子軌道法 3. 変分原理 4. ヒュッケル分子軌道法 () 5. ヒュッケル分子軌道法 () 8
5 レーリー リッツの変分法 試行関数を, パラメータ ( 変分パラメータという ) を含む適当な関数系 {φ } を使って展開し, その係数を変分法で最適化する. Φ φ φ φ φ L φ () エネルギー の期待値を求めると, ˆ i i i Φ ˆ Φ i Φ Φ i i ( φ L) ˆ ( φ L) ( φ L) ( φ L) () ここで, i i φ φ φ φ i ˆ i 9 () を整理すると, i i i この を最小にするためには, 各変数 i について, i i または i i まず i で偏微分すると, i i i i i i i であるから, ( i i ) (3) i (3) (4)
6 ( i i ) (,, L, ) (5) (5) を永年方程式という. 永年方程式を行列式の形で書くと, O L O (6) i, i の値が計算できればこの永年方程式 を解くことができる. i i φ φ φ φ i ˆ i 9 箱の中の粒子 図 9 のようなポテンシャルにしたがう自由粒子 すなわち 次元の箱の中の粒子の問題を量子力学的に取り扱う 87 復習 と L の間は V とする. 質量 の粒子は と L にある つの無限の高さを持つ壁の間に閉じ 込められている 簡単のために この 間のポテンシャルエネルギーはゼロと する 図 9 通り抜けることができない壁のある 次元領域にある粒子 と L の間でポテンシャルエネルギーはゼロとする
7 (a) 許される解 復習 壁の間の領域でポテンシャルエネルギーはゼロであるので シュレディンガー方程式は 自由粒子 のものと同じになり 一般解も同じである ハミルトニアン h シュレディンガー方程式 h 3 89 復習 h 8L / π si,,, L L L 図 9 箱の中の粒子に対して許されるエネルギー準位 エネルギー準位が の形で増加するから 準位間隔が量子数の増加とともに増加することに注意せよ 4
8 () 解の性質波動関数 ψ は () 定在波である 量子化 ()- 個の節 (oe) を持つ h (3) ゼロ点エネルギー を持つ 8L ( 粒子のとり得る最低エネルギーはゼロではない ) 復習 89 図 9 3 箱の中の粒子の最初の 5 つの規格化した波動関数の例 各波動関数は定在波である 5 [ 例題 ] 次元の箱の中に閉じ込められた粒子の問題において, シュレディンガー方程式を解いて得られる基底状態 ( 最もエネルギーが低い状態 ) の厳密解は, h 8L L である. 試行関数として 次関数 / π h L π si L ( L) を用いて 得られるエネルギーが厳密解のエネルギーとどのくらい差があるか求めよ. φ 6
9 7 /, si L L L true h π π 厳密解試行関数 L φ [ 手順 ] 試行関数を規格化する L L L L L φ 8 [ 手順 ] 永年方程式を解く. h であるから, 5 L L L L L L φ φ φ h h 永年方程式は以下のようになる. 5 L h 5 L h
10 誤差を求めると, true true 5h L true L π h π h L h L h π 5 L π π 5 5 π.3 π 真の解 si ではなく, L L 試行関数 φ ( L) / を用いることによって, エネルギーを.3% 過大評価したことになる. 真の波動関数が分からなくても, 真のエネルギー に非常に近い値 [ φ] [φ] を求めることができる. ここで, である. 9 変分原理 [ φ] 任意の関数 φを用いてエネルギー期待値 [φ] を計算すると, 必ず基底状態エネルギー よりも, 大きいか等しい. したがって, パラメータを含む関数 φを用いて, φ ˆ φ を計算し, 最小値をとる条件でパラメータを決めれば良い. 試行関数として, 積分の計算が解析的に行える関数 φを用いるのが望ましい.
11 [ 変分法の証明 ] 系のハミルトニアンを とし, その固有値を, 固有関数を ψ とする. ハミルトニアン の固有関数 ψ は完全系 {ψ} を作るので, 任意の規格化された関数 φ は, この固有関数の線形結合で表すことができる. φ ψ,, δ ψ ψ ψ ψ φ φ 任意の規格化された関数 φ を, この関数系 {ψ} の線形結合で表す. for for δ クロネッカーのデルタ記号
12 完全系とは? 正確な定義は数学のテキストに譲るとして, 大雑把にいうと, 次のような規格直交関数系 φ() があるとき, { φ, φ, φ, K, φ }, φ φ δ 任意の関数 f() をこの関数系 φ() の無限級数で展開できるならば, この関数系 φ() を完全系という. f a φ a φ a φ L a φ a φ L 完全直交関数系の例としては, 任意の波形のフーリエ級数による展開などがある. この関数 φ に対して, そのエネルギー期待値を [φ] とする. φ [ φ ] φ φ φ φ φ 3 を 3 に代入する. [] φ ψ ψ 4 ψ は系のハミルトニアン の固有関数であるからシュレディンガー方程式を満足する. ψ ψ 5 4
13 5 5 を 4 に代入する. [],, δ ψ ψ ψ ψ ψ ψ φ 6 for for δ ψ ψ 6 6 の両辺から を引く. [ ] φ 7 式から, ここで, は基底状態のエネルギーである. そして, は励起状態のエネルギーであるから, > である. したがって, [] [] φ φ したがって,
14 変分原理 [ φ] 任意の関数 φを用いてエネルギー期待値 [φ] を計算すると, 必ず基底状態エネルギー よりも, 大きいか等しい. したがって, パラメータを含む関数 φを用いて, φ ˆ φ を計算し, 最小値をとる条件でパラメータを決めれば良い. 試行関数として, 積分の微分が解析的に行える関数 φを用いるのが望ましい. 7 根拠 3 変分原理を異核二原子分子に当てはめること 二原子分子 の分子オービタルとして LCO-MO を用いる. 4 ψ ここで,およびは, それぞれ原子 およびのOである. このLCO-MOを試行関数としてエネルギー が最小となるように係数 および を選べば良い. ここで,ψは規格化されているが,Oである とも規格化されているとする. この試行関数のエネルギーはハミルトニアンの期待値である. ˆ ˆ 8
15 9 分母ここで, は重なり積分である. ˆ ˆ 4 3 ˆ ˆ ˆ ˆ ˆ 分子 ˆ ˆ ˆ, ˆ, クーロン積分クーロン積分共鳴積分重なり積分ここで, 4
16 3 したがって, エネルギー期待値 は, ( 8) エネルギー の極小値は, 係数 および で微分した導関数 から求められる. (7) 式を書き直すと,, 4 3 式を で偏微分し, をゼロとする. 式を で偏微分し, をゼロとする. 4
17 33 したがって, 次の連立方程式 ( 永年方程式 ) を解けばよい. 行列の形に書くと, この方程式が意味のある解を持つためには, 係数である行列式 でなければならない ( は ψ となるので無意味である ). 展開すると, ( 5) ( 9) 4 34 数値例 変分原理の応用 () 式 ( 9) を解くことにより, 等核二原子分子の結合オービタルと反結合オービタルのエネルギー を求めることができる. 等核二原子分子であるので, と書くことができる. ふつう,< であるから, < - である. 4
18 35 数値例 変分原理の応用 () [ 別解 ] [ 別解 ] 各要素を - で割りとおく. 36 { } { } () () [ 別解 3]
19 37 一次結合の係数 i の値を求めるには, 永年方程式から求めた つのエネルギー を用いて永年方程式を解く. 低い方のエネルギー - 結合分子オービタルの係数 i 高い方のエネルギー 反結合オービタルの係数 i 永年方程式からは係数の比を求める式しか得られないので, 各々の値を決めるためにはもう つの式が必要である. この式を得るには, 最良の波動関数も規格化されていなければならないという条件を課す. この条件は, この計算の最終段階で, が成り立たなければならない, ということである. 38 ふつう,< であるから, < - である. 数値例 3 変分原理の応用 () 等核二原子分子ならば とすると,
20 39 結合性オービタル ( ) では, 永年方程式 4 反結合性オービタル ( - ) では, 永年方程式
21 4,, 規格化を行うと, 4,, したがって, - 図 6 水素分子イオンの分子ポテンシャルエネルギー曲線の計算結果と実験結果実験計算
22 () 二つの簡単な場合 () 等核二原子分子の場合, 数値例 3に示したとおりである. () 異核二原子分子の場合, 永年方程式 ( )( ) ( ) 重なり積分 とすると,( 等核二原子分子のときは とした ) ( )( ) ( ) 43 osζ siζ, siζ osζ, otζ otζ ( 34) ここで, ζ arta otζ ζ arta ta ( ζ ) otζ 大岩正芳, 初等量子化学 ( 第 版 ), 化学同人 (988) p
23 - >>, すなわち つのオービタルのエネルギー差が非常に大きいとき, ta << ( ζ ) << のとき,ta であることを使うと, ζ ( ) と書ける. したがって (ta であるから ), taζ otζ taζ ( ) 45 根拠 4 結合性と反結合性の効果 ふつう<であるから, したがって, ( ) ( ) - ( ) ( ) このように, エネルギー差が大きいときには, 分子オービタルは原子オービタルと少ししか違わない. したがって, 結合効果や反結合効果はいずれも小さいと考えてよい. つまり, 結合と反結合の効果が最大になるのは, 寄与する つのオービ タルが非常に似たエネルギーを持つときである. 46
24 ( 34) 式は次のようになる.,, エネルギー差が大きいとき, 分子オービタルはそれぞれの原子オービタルとほとんど同じである. Fの場合, 近似的に次のように表わせる. ( F ), ( F ) p ( ), ( ) s p s 図 36 F の分子オービタル 47 例題 3 F の分子オービタル -3.6eV, Fp -7.4eV とすると, -.ev のとき ta ( ζ) したがって, F. 53 ζ (34) 式に代入すると 7. 6eV, 3. 4eV, ta χ. 97χ 7. 9 結合オービタルにある 個の電子はほとんど ψ(fp) に見い出される つまり,-F の結合は, ほぼイオン結合 ( :F ー ) と考えて良い. o. 97χ. 4χ ( 第 8 版では Fp の値が図 36 と違っている. 第 9 版は同じ ) F F 48
25 6 月 3 日, 番号, 氏名 () 自習問題 6 Clのイオン化エネルギーは3.eVである.Cl 分子におけるσオービタルのエネルギーを求めよ. [ 解答 ] ev, ψ - -.6ψ.79ψ Cl -4.4 ev, ψ.79ψ.6ψ Cl [ ヒント ] とする. Cl -3.eV, -3.6eV,-.eVとすると,ta であり ζ38., osζ.79, siζ.6,otζ.8 となる. ( 第 8 版の解答は誤りと思われる. 第 9 版では は求めていない.) () 質問, 感想, 意見など. 49
26
27
28 6 月 5 日自習問題 6 Cl のイオン化エネルギーは 3.eV である. Cl 分子におけるシグマオービタルのエネルギーを求めよ. Cl3p -3.eV.79.6 Cl,.6.79 Cl, イオン化極限 -.3eV -4.4eV -3.6eV eV eV Clの場合,sとCl3pのエネルギー準位がほぼ等しいので, 分子オービタルへの寄与がほぼ等しい. したがって,Clはほぼ共有 s 結合であるといえる. 55
Microsoft PowerPoint - H21生物計算化学2.ppt
演算子の行列表現 > L いま 次元ベクトル空間の基底をケットと書くことにする この基底は完全系を成すとすると 空間内の任意のケットベクトルは > > > これより 一度基底を与えてしまえば 任意のベクトルはその基底についての成分で完全に記述することができる これらの成分を列行列の形に書くと M これをベクトル の基底 { >} による行列表現という ところで 行列 A の共役 dont 行列は A
ハートレー近似(Hartree aproximation)
ハートリー近似 ( 量子多体系の平均場近似 1) 0. ハミルトニアンの期待値の変分がシュレディンガー方程式と等価であること 1. 独立粒子近似という考え方. 電子系におけるハートリー近似 3.3 電子系におけるハートリー近似 Mde by R. Okmoto (Kyushu Institute of Technology) filenme=rtree080609.ppt (0) ハミルトニアンの期待値の変分と
Microsoft Word - 5章摂動法.doc
5 章摂動法 ( 次の Moller-Plesset (MP) 法のために ) // 水素原子など 電子系を除いては 原子系の Schrödiger 方程式を解析的に解くことはできない 分子系の Schrödiger 方程式の正確な数値解を求めることも困難である そこで Hartree-Fock(H-F) 法を導入した H-F 法は Schrödiger 方程式が与える全エネルギーの 99% を再現することができる優れた近似方法である
三重大学工学部
反応理論化学 ( その 軌道相互作用 複数の原子が相互作用して分子が形成される複数の原子軌道 ( または混成軌道 が混合して分子軌道が形成される原子軌道 ( または混成軌道 が混合して分子軌道に変化すると軌道エネルギーも変化する. 原子軌道 原子軌道は3つの量子数 ( nlm,, の組合せにより指定される量子数の取り得る値の範囲 n の値が定まる l の範囲は n の値に依存して定まる m の範囲は
Microsoft PowerPoint - 第2回半導体工学
17 年 1 月 16 日 月 1 限 8:5~1:15 IB15 第 回半導体工学 * バンド構造と遷移確率 天野浩 項目 1 章量子論入門 何故 Si は光らず GN は良く光るのか? *MOSFET ゲート SiO / チャネル Si 界面の量子輸送過程 MOSFET には どのようなゲート材料が必要なのか? http://www.iue.tuwien.c.t/ph/vsicek/noe3.html
Microsoft PowerPoint - 11MAY06
基礎量子化学 年 4 月 ~8 月 5 月 6 日第 4 回 章原子構造と原子スペクトル 3 分光学的遷移と選択律 多電子原子の構造 4 オービタル近似 (b) パウリの排他原理 (c) 浸透と遮蔽 (d) 構成原理 (Aufbu pincipe) (f) イオン化エネルギーと電子親和力 担当教員 : 福井大学大学院工学研究科生物応用化学専攻准教授 前田史郎 E-mi:[email protected]
Microsoft Word - 8章(CI).doc
8 章配置間相互作用法 : Configuration Interaction () etho [] 化学的精度化学反応の精密な解析をするためには エネルギー誤差は数 ~ kcal/mol 程度に抑えたいものである この程度の誤差内に治まる精度を 化学的精度 と呼ぶことがある He 原子のエネルギーをシュレーディンガー方程式と分子軌道法で計算した結果を示そう He 原子のエネルギー Hartree-Fock
Microsoft Word - note02.doc
年度 物理化学 Ⅱ 講義ノート. 二原子分子の振動. 調和振動子近似 モデル 分子 = 理想的なバネでつながった原子 r : 核間距離, r e : 平衡核間距離, : 変位 ( = r r e ), k f : 力の定数ポテンシャルエネルギー ( ) k V = f (.) 古典運動方程式 [ 振動数 ] 3.3 d kf (.) dt μ : 換算質量 (m, m : 原子, の質量 ) mm
DVIOUT-SS_Ma
第 章 微分方程式 ニュートンはリンゴが落ちるのを見て万有引力を発見した という有名な逸話があります 無重力の宇宙船の中ではリンゴは落ちないで静止していることを考えると 重力が働くと始め静止しているものが動き出して そのスピードはどんどん大きくなる つまり速度の変化が現れることがわかります 速度は一般に時間と共に変化します 速度の瞬間的変化の割合を加速度といい で定義しましょう 速度が変化する, つまり加速度がでなくなるためにはその原因があり
三重大学工学部
量子化学 : 量子力学を化学の問題に適用分子に対する Schödige 方程式を解く ˆ Ψ x, x, x,, x EΨ x, x, x,, x 3 N 3 Ĥ :milto 演算子 Ψ x, x, x,, x : 多電子波動関数, 3 N 反応理論化学 ( その ) E : エネルギー一般の多原子分子に対して厳密に解くことはできない N x : 電子の座標 ( 空間座標とスピン座標 ) Schödige
2018/6/12 表面の電子状態 表面に局在する電子状態 表面電子状態表面準位 1. ショックレー状態 ( 準位 ) 2. タム状態 ( 準位 ) 3. 鏡像状態 ( 準位 ) 4. 表面バンドのナローイング 5. 吸着子の状態密度 鏡像力によるポテンシャル 表面からzの位置の電子に働く力とポテン
表面の電子状態 表面に局在する電子状態 表面電子状態表面準位. ショックレー状態 ( 準位. タム状態 ( 準位 3. 鏡像状態 ( 準位 4. 表面バンドのナローイング 5. 吸着子の状態密度 鏡像力によるポテンシャル 表面からzの位置の電子に働く力とポテンシャル e F z ( z z e V ( z ( Fz dz 4z e V ( z 4z ( z > ( z < のときの電子の運動を考える
2_分子軌道法解説
2. 分子軌道法解説 分子軌道法計算を行ってその結果を正しく理解するには, 計算の背景となる理論を勉強 する必要がある この演習では詳細を講義する時間的な余裕がないので, それはいろいろ な講義を通しておいおい学んで頂くこととして, ここではその概要をごく簡単に説明しよう 2.1 原子軌道原子はその質量のほとんどすべてを占める原子核と, その周囲をまわっている何個かの電子からなっている 原子核は最も軽い水素の場合でも電子の約
2012/10/17 第 3 章 Hückel 法 Schrödinger 方程式が提案された 1926 年から10 年を経た 1936 年に Hückel 法と呼ばれる分子軌道法が登場した 分子の化学的特徴を残しつつ 解法上で困難となる複雑な部分を最大限にカットした理論である Hückel 法は最
//7 第 3 章 ükel 法 Shrödnger 方程式が提案された 96 年から 年を経た 936 年に ükel 法と呼ばれる分子軌道法が登場した 分子の化学的特徴を残しつつ 解法上で困難となる複雑な部分を最大限にカットした理論である ükel 法は最も単純な分子軌道法だが それによって生まれた考え方は化学者の概念となって現在に生き続けている ükel 近似の前提 ükel 近似の前提となっている主要な近似を列挙する
Microsoft PowerPoint - 基礎化学4revPart2 [互換モード]
化学結合と分 の形 Part 2 軌道を使った考え方を学ぶ 3 原 価結合法 (V 法 ) 共有結合の本質は軌道の重なり軌道を意識した結合を簡単に理解する 共有結合の本質は軌道の重なり 原子価結合法 (V 法 ) Valance ond Method 原子価結合法 V 法で用いる原子価軌道とその重なり方 原子価軌道 Valence Orbital 軌道の重なり方から見た共有結合の種類 原子価結合法
多次元レーザー分光で探る凝縮分子系の超高速動力学
波動方程式と量子力学 谷村吉隆 京都大学理学研究科化学専攻 http:theochem.kuchem.kyoto-u.ac.jp TA: 岩元佑樹 [email protected] ベクトルと行列の作法 A 列ベクトル c = c c 行ベクトル A = [ c c c ] 転置ベクトル T A = [ c c c ] AA 内積 c AA = [ c c c ] c =
<4D F736F F D FCD B90DB93AE96402E646F63>
7 章摂動法講義のメモ 式が複雑なので 黒板を何度も修正したし 間違ったことも書いたので メモを置きます 摂動論の式の導出無摂動系 先ず 厳密に解けている Schrödiger 方程式を考える,,,3,... 3,,,3,... は状態を区別する整数であり 状態 はエネルギー順に並んでいる 即ち は基底状態 は励起状態である { m } は相互に規格直交条件が成立する k m k mdx km k
H AB φ A,1s (r r A )Hφ B,1s (r r B )dr (9) S AB φ A,1s (r r A )φ B,1s (r r B )dr (10) とした (S AA = S BB = 1). なお,H ij は共鳴積分 (resonance integra),s ij は重
半経験量子計算法 : Tight-binding( 強結合近似 ) 計算の基礎 1. 基礎 Tight-binding 近似 ( 強結合近似, TB 近似あるいは TB 法などとも呼ばれる ) とは, 電子が強く拘束されており隣り合う軌道へ自由に移動できない, とする近似であり, 自由電子近似とは対極にある. 但し, 軌道間はわずかに重なり合っているので, 全く飛び移れないわけではない. Tight-binding
Microsoft PowerPoint - 11MAY25
無機化学 0 年 月 ~0 年 8 月 第 5 回 5 月 5 日振動運動 : 調和振動子 担当教員 : 福井大学大学院工学研究科生物応用化学専攻准教授前田史郎 E-mail:[email protected] URL:http://acbio.acbio.u-fukui.ac.jp/phchem/maeda/kougi 教科書 : アトキンス物理化学 ( 第 8 版 ) 東京化学同人主に8
ハートリー・フォック(HF)法とは?
大学院講義 電子相関編 阿部穣里 目的 電子相関法はハートリー フォック (F) 法に対してより良い電子状態の記述を行う理論です 主に量子化学で用いられるのが 配置換相互作用 (CI) 法多体摂動論 (PT) 法クラスター展開 (CC) 法です 電子相関法に慣れるために 最小基底を用いた 分子の Full CI 法と MP 法について 自ら導出を行い エクセルでポテンシャル曲線を求めます アウトライン
数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ
数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュレーションによって計算してみる 4.1 放物運動一様な重力場における放物運動を考える 一般に質量の物体に作用する力をとすると運動方程式は
パソコンシミュレータの現状
第 2 章微分 偏微分, 写像 豊橋技術科学大学森謙一郎 2. 連続関数と微分 工学において物理現象を支配する方程式は微分方程式で表されていることが多く, 有限要素法も微分方程式を解く数値解析法であり, 定式化においては微分 積分が一般的に用いられており. 数学の基礎知識が必要になる. 図 2. に示すように, 微分は連続な関数 f() の傾きを求めることであり, 微小な に対して傾きを表し, を無限に
Microsoft Word - 量子化学概論v1c.doc
この講義ノートは以下の URL から入手できます http://www.sbchem.kyoto-u.ac.p/matsuda-lab/hase_fles/educaton_jh.html 量子化学概論講義ノート 3 正準 HF(Canoncal HF) 方程式 制限 HF(RHF) 方程式 HF-Roothaan(HFR) 方程式 京都大学工学研究科合成 生物化学専攻長谷川淳也 HF 解の任意性について式
Microsoft PowerPoint _量子力学短大.pptx
. エネルギーギャップとrllouゾーン ブリルアン領域,t_8.. 周期ポテンシャル中の電子とエネルギーギャップ 簡単のため 次元に間隔 で原子が並んでいる結晶を考える 右方向に進行している電子の波は 間隔 で規則正しく並んでいる原子が作る格子によって散乱され 左向きに進行する波となる 波長 λ が の時 r の反射条件 式を満たし 両者の波が互いに強め合い 定在波を作る つまり 式 式を満たす波は
横浜市環境科学研究所
周期時系列の統計解析 単回帰分析 io 8 年 3 日 周期時系列に季節調整を行わないで単回帰分析を適用すると, 回帰係数には周期成分の影響が加わる. ここでは, 周期時系列をコサイン関数モデルで近似し単回帰分析によりモデルの回帰係数を求め, 周期成分の影響を検討した. また, その結果を気温時系列に当てはめ, 課題等について考察した. 気温時系列とコサイン関数モデル第 報の結果を利用するので, その一部を再掲する.
1 対 1 対応の演習例題を解いてみた 微分法とその応用 例題 1 極限 微分係数の定義 (2) 関数 f ( x) は任意の実数 x について微分可能なのは明らか f ( 1, f ( 1) ) と ( 1 + h, f ( 1 + h)
微分法とその応用 例題 1 極限 微分係数の定義 () 関数 ( x) は任意の実数 x について微分可能なのは明らか ( 1, ( 1) ) と ( 1 + h, ( 1 + h) ) の傾き= ( 1 + h ) - ( 1 ) ( 1 + ) - ( 1) = ( 1 + h) - 1 h ( 1) = lim h ( 1 + h) - ( 1) h ( 1, ( 1) ) と ( 1 - h,
例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X (
第 週ラプラス変換 教科書 p.34~ 目標ラプラス変換の定義と意味を理解する フーリエ変換や Z 変換と並ぶ 信号解析やシステム設計における重要なツール ラプラス変換は波動現象や電気回路など様々な分野で 微分方程式を解くために利用されてきた ラプラス変換を用いることで微分方程式は代数方程式に変換される また 工学上使われる主要な関数のラプラス変換は簡単な形の関数で表されるので これを ラプラス変換表
Microsoft PowerPoint - 卒業論文 pptx
時間に依存するポテンシャルによる 量子状態の変化 龍谷大学理工学部数理情報学科 T966 二正寺章指導教員飯田晋司 目次 はじめに 次元のシュレーディンガー方程式 3 井戸型ポテンシャルの固有エネルギーと固有関数 4 4 中央に障壁のある井戸型ポテンシャルの固有エネルギーと固有関数 3 5 障壁が時間によって変化する場合 7 6 まとめ 5 一次元のシュレディンガー方程式量子力学の基本方程式 ψ (
PowerPoint Presentation
付録 2 2 次元アフィン変換 直交変換 たたみ込み 1.2 次元のアフィン変換 座標 (x,y ) を (x,y) に移すことを 2 次元での変換. 特に, 変換が と書けるとき, アフィン変換, アフィン変換は, その 1 次の項による変換 と 0 次の項による変換 アフィン変換 0 次の項は平行移動 1 次の項は座標 (x, y ) をベクトルと考えて とすれば このようなもの 2 次元ベクトルの線形写像
カイ二乗フィット検定、パラメータの誤差
統計的データ解析 008 008.. 林田清 ( 大阪大学大学院理学研究科 ) 問題 C (, ) ( x xˆ) ( y yˆ) σ x πσ σ y y Pabx (, ;,,, ) ˆ y σx σ y = dx exp exp πσx ただし xy ˆ ˆ はyˆ = axˆ+ bであらわされる直線モデル上の点 ( ˆ) ( ˆ ) ( ) x x y ax b y ax b Pabx (,
微分方程式による現象記述と解きかた
微分方程式による現象記述と解きかた 土木工学 : 公共諸施設 構造物の有用目的にむけた合理的な実現をはかる方法 ( 技術 ) に関する学 橋梁 トンネル ダム 道路 港湾 治水利水施設 安全化 利便化 快適化 合法則的 経済的 自然および人口素材によって作られた 質量保存則 構造物の自然的な性質 作用 ( 外力による応答 ) エネルギー則 の解明 社会的諸現象のうち マスとしての移動 流通 運動量則
PowerPoint Presentation
応用数学 Ⅱ (7) 7 連立微分方程式の立て方と解法. 高階微分方程式による解法. ベクトル微分方程式による解法 3. 演算子による解法 連立微分方程式 未知数が複数個あり, 未知数の数だけ微分方程式が与えられている場合, これらを連立微分方程式という. d d 解法 () 高階微分方程式化による解法 つの方程式から つの未知数を消去して, 未知数が つの方程式に変換 のみの方程式にするために,
Microsoft Word - NumericalComputation.docx
数値計算入門 武尾英哉. 離散数学と数値計算 数学的解法の中には理論計算では求められないものもある. 例えば, 定積分は, まずは積分 ( 被積分関数の原始関数をみつけること できなければ値を得ることはできない. また, ある関数の所定の値における微分値を得るには, まずその関数の微分ができなければならない. さらに代数方程式の解を得るためには, 解析的に代数方程式を解く必要がある. ところが, これらは必ずしも解析的に導けるとは限らない.
FEM原理講座 (サンプルテキスト)
サンプルテキスト FEM 原理講座 サイバネットシステム株式会社 8 年 月 9 日作成 サンプルテキストについて 各講師が 講義の内容が伝わりやすいページ を選びました テキストのページは必ずしも連続していません 一部を抜粋しています 幾何光学講座については 実物のテキストではなくガイダンスを掲載いたします 対象とする構造系 物理モデル 連続体 固体 弾性体 / 弾塑性体 / 粘弾性体 / 固体
Microsoft PowerPoint - 第3回2.ppt
講義内容 講義内容 次元ベクトル 関数の直交性フーリエ級数 次元代表的な対の諸性質コンボリューション たたみこみ積分 サンプリング定理 次元離散 次元空間周波数の概念 次元代表的な 次元対 次元離散 次元ベクトル 関数の直交性フーリエ級数 次元代表的な対の諸性質コンボリューション たたみこみ積分 サンプリング定理 次元離散 次元空間周波数の概念 次元代表的な 次元対 次元離散 ベクトルの直交性 3
スライド 1
無機化学 II 第 3 回 化学結合 本日のポイント 分子軌道 原子が近づく 原子軌道が重なる 軌道が重なると, 原子軌道が組み合わさって 分子軌道 というものに変化 ( 分子に広がる ) 結合性軌道と反結合性軌道 軌道の重なりが大きい = エネルギー変化が大 分子軌道に電子が詰まった時に, 元の原子よりエネルギーが下がるなら結合を作る. 混成軌道と原子価結合法 ( もっと単純な考え方 ) わかりやすく,
データ解析
データ解析 ( 前期 ) 最小二乗法 向井厚志 005 年度テキスト 0 データ解析 - 最小二乗法 - 目次 第 回 Σ の計算 第 回ヒストグラム 第 3 回平均と標準偏差 6 第 回誤差の伝播 8 第 5 回正規分布 0 第 6 回最尤性原理 第 7 回正規分布の 分布の幅 第 8 回最小二乗法 6 第 9 回最小二乗法の練習 8 第 0 回最小二乗法の推定誤差 0 第 回推定誤差の計算 第
多体系の量子力学 ー同種の多体系ー
スピンに依存する有効相互作用の発現と化学結合のしくみ 巨視的な物体の構造にとって 基本的な単位になるのは原子または分子であり 物性の基礎にあるのは原子または分子の性質である. ボルン オッペンハイマー近似. He 原子中の 電子状態 ( 中心 電子系 ) 外場の中の同種 粒子系ー. 電子間相互作用のない場合. 電子間相互作用がある場合.3 電子系の波動関数は全反対称.4 電子系のスピン演算子の固有関数と対称性.5
OCW-iダランベールの原理
講義名連続体力学配布資料 OCW- 第 2 回ダランベールの原理 無機材料工学科准教授安田公一 1 はじめに今回の講義では, まず, 前半でダランベールの原理について説明する これを用いると, 動力学の問題を静力学の問題として解くことができ, さらに, 前回の仮想仕事の原理を適用すると動力学問題も簡単に解くことができるようになる また, 後半では, ダランベールの原理の応用として ラグランジュ方程式の導出を示す
Laplace2.rtf
=0 ラプラスの方程式は 階の微分方程式で, 一般的に3つの座標変数をもつ. ここでは, 直角座標系, 円筒座標系, 球座標系におけるラプラスの方程式の解き方を説明しよう. 座標変数ごとに方程式を分離し, それを解いていく方法は変数分離法と呼ばれる. 変数分離解と固有関数展開法. 直角座標系における 3 次元の偏微分方程式 = x + y + z =0 (.) を解くために,x, y, z について互いに独立な関数の積で成り立っていると考え,
第 5 章 構造振動学 棒の振動を縦振動, 捩り振動, 曲げ振動に分けて考える. 5.1 棒の縦振動と捩り振動 まっすぐな棒の縦振動の固有振動数 f[ Hz] f = l 2pL である. ただし, L [ 単位 m] は棒の長さ, [ 2 N / m ] 3 r[ 単位 Kg / m ] E r
第 5 章 構造振動学 棒の振動を縦振動, 捩り振動, 曲げ振動に分けて考える 5 棒の縦振動と捩り振動 まっすぐな棒の縦振動の固有振動数 f[ Hz] f l pl である ただし, L [ 単位 m] は棒の長さ, [ N / m ] [ 単位 Kg / m ] E は (5) E 単位は棒の材料の縦弾性係数 ( ヤング率 ) は棒の材料の単位体積当りの質量である l は境界条件と振動モードによって決まる無
3 数値解の特性 3.1 CFL 条件 を 前の章では 波動方程式 f x= x0 = f x= x0 t f c x f =0 [1] c f 0 x= x 0 x 0 f x= x0 x 2 x 2 t [2] のように差分化して数値解を求めた ここでは このようにして得られた数値解の性質を 考
3 数値解の特性 3.1 CFL 条件 を 前の章では 波動方程式 f x= x = f x= x t f c x f = [1] c f x= x f x= x 2 2 t [2] のように差分化して数値解を求めた ここでは このようにして得られた数値解の性質を 考える まず 初期時刻 t=t に f =R f exp [ik x ] [3] のような波動を与えたとき どのように時間変化するか調べる
理工学部無機化学ノート
5 混成軌道と多重結合 分子軌道法 ) 混成軌道 様々な幾何構造の分子の結合を説明するために考え出された 例えば sp 混成軌道の場合 右図のように s 軌道と p 軌道二つが混じり合って三つで 組の混成軌道を作ると考える 混成軌道の例 sp 直線型チオシアン酸イオン sp 平面三角形型 三フッ化ホウ素 dsp 平面四配位型四フッ化キセノン sp 四面体型アンモニウムイオン dsp 三方両錐型五フッ化リン
解析力学B - 第11回: 正準変換
解析力学 B 第 11 回 : 正準変換 神戸大 : 陰山聡 ホームページ ( 第 6 回から今回までの講義ノート ) http://tinyurl.com/kage2010 2011.01.27 正準変換 バネ問題 ( あえて下手に座標をとった ) ハミルトニアンを考える q 正準方程式は H = p2 2m + k 2 (q l 0) 2 q = H p = p m ṗ = H q = k(q
Microsoft Word - 1B2011.doc
第 14 回モールの定理 ( 単純梁の場合 ) ( モールの定理とは何か?p.11) 例題 下記に示す単純梁の C 点のたわみ角 θ C と, たわみ δ C を求めよ ただし, 部材の曲げ 剛性は材軸に沿って一様で とする C D kn B 1.5m 0.5m 1.0m 解答 1 曲げモーメント図を描く,B 点の反力を求める kn kn 4 kn 曲げモーメント図を描く knm 先に得られた曲げモーメントの値を
Microsoft PowerPoint - mp11-02.pptx
数理計画法第 2 回 塩浦昭義情報科学研究科准教授 [email protected] http://www.dais.is.tohoku.ac.jp/~shioura/teaching 前回の復習 数理計画とは? 数理計画 ( 復習 ) 数理計画問題とは? 狭義には : 数理 ( 数学 ) を使って計画を立てるための問題 広義には : 与えられた評価尺度に関して最も良い解を求める問題
物性基礎
水素様原子 水素原子 水素様原子 エネルギー固有値 波動関数 主量子数 角運動量 方位量子数 磁気量子数 原子核 + 電子 個 F p F = V = 水素様原子 古典力学 水素様原子 量子力学 角運動量 L p F p L 運動方程式 d dt p = d d d p p = p + dt dt dt = p p = d dt L = 角運動量の保存則 ポテンシャルエネルギー V = 4πε =
2011年度 大阪大・理系数学
0 大阪大学 ( 理系 ) 前期日程問題 解答解説のページへ a a を自然数とする O を原点とする座標平面上で行列 A= a の表す 次変換 を f とする cosθ siθ () >0 および0θ
Microsoft PowerPoint - 16MAY12.ppt
無機化学 水曜日 時間目 M 講義室第 5 回 5 月 6 日 年 月 ~ 年 8 月 量子力学の基本原理 並進運動 : 箱の中の粒子 トンネル現象 振動運動 : 調和振動子 回転運動 : 球面調和関数 担当教員 : 福井大学大学院工学研究科生物応用化学専攻 教授前田史郎 -ail:[email protected] UR:ttp://acbio.acbio.u-fukui.ac.jp/pc/aa/kougi
構造力学Ⅰ第12回
第 回材の座屈 (0 章 ) p.5~ ( 復習 ) モールの定理 ( 手順 ) 座屈とは 荷重により梁に生じた曲げモーメントをで除して仮想荷重と考える 座屈荷重 偏心荷重 ( 曲げと軸力 ) 断面の核 この仮想荷重に対するある点でのせん断力 たわみ角に相当する曲げモーメント たわみに相当する ( 例 ) 単純梁の支点のたわみ角 : は 図 を仮想荷重と考えたときの 点の支点反力 B は 図 を仮想荷重と考えたときのB
数学 Ⅲ 微分法の応用 大学入試問題 ( 教科書程度 ) 1 問 1 (1) 次の各問に答えよ (ⅰ) 極限 を求めよ 年会津大学 ( 前期 ) (ⅱ) 極限値 を求めよ 年愛媛大学 ( 前期 ) (ⅲ) 無限等比級数 が収束するような実数 の範囲と そのときの和を求めよ 年広島市立大学 ( 前期
数学 Ⅲ 微分法の応用 大学入試問題 ( 教科書程度 )1 問 1 (1) 次の各問に答えよ (ⅰ) 極限 を求めよ 年会津大学 ( 前期 ) (ⅱ) 極限値 を求めよ 年愛媛大学 ( 前期 ) (ⅲ) 無限等比級数 が収束するような実数 の範囲と そのときの和を求めよ 年広島市立大学 ( 前期 ) (2) 次の関数を微分せよ (ⅰ) を正の定数とする (ⅱ) (ⅳ) (ⅵ) ( 解答 )(1) 年群馬大学
<4D F736F F D2094F795AA95FB92F68EAE82CC89F082AB95FB E646F63>
力学 A 金曜 限 : 松田 微分方程式の解き方 微分方程式の解き方のところが分からなかったという声が多いので プリントにまとめます 数学的に厳密な話はしていないので 詳しくは数学の常微分方程式を扱っているテキストを参照してください また os s は既知とします. 微分方程式の分類 常微分方程式とは 独立変数 と その関数 その有限次の導関数 がみたす方程式 F,,, = のことです 次までの導関数を含む方程式を
PowerPoint プレゼンテーション
量子化学 原田 講義概要 第 回 概論 量子化学の基礎 第 回 演習 第 3 回 分子の電子状態の計算法 (Hückel 法 ) 第 4 回 演習 第 5 回 近似を高めた理論化学計算法 第 6 回 演習 3 第 7 回 試験 準教科書 参考書 準教科書 入門分子軌道法 藤永茂著 ( 講談社サイエンティフィク 990) 参考書 三訂量子化学入門 ( 上 ) 米澤 永田 加藤 今村 諸熊 ( 化学同人
Microsoft Word - t30_西_修正__ doc
反応速度と化学平衡 金沢工業大学基礎教育部西誠 ねらい 化学反応とは分子を構成している原子が組み換り 新しい分子構造を持つことといえます この化学反応がどのように起こるのか どのような速さでどの程度の分子が組み換るのかは 反応の種類や 濃度 温度などの条件で決まってきます そして このような反応の進行方向や速度を正確に予測するために いろいろな数学 物理的な考え方を取り入れて化学反応の理論体系が作られています
(Microsoft Word - 10ta320a_\220U\223\256\212w\223\301\230__6\217\315\221O\224\274\203\214\203W\203\201.docx)
6 章スペクトルの平滑化 スペクトルの平滑化とはフーリエスペクトルやパワ スペクトルのギザギザを取り除き 滑らかにする操作のことをいう ただし 波のもっている本質的なものをゆがめてはいけない 図 6-7 パワ スペクトルの平滑化 6. 合積のフーリエ変換スペクトルの平滑化を学ぶ前に 合積とそのフーリエ変換について説明する 6. データ ウィンドウデータ ウィンドウの定義と特徴について説明する 6.3
工業数学F2-04(ウェブ用).pptx
工業数学 F2 #4 フーリエ級数を極める 京都大学加納学 京都大学大学院情報学研究科システム科学専攻 Human Systems Lab., Dept. of Systems Science Graduate School of Informatics, Kyoto University 復習 1: 複素フーリエ級数 2 周期 2π の周期関数 f(x) の複素フーリエ級数展開 複素フーリエ係数
線積分.indd
線積分 線積分 ( n, n, n ) (ξ n, η n, ζ n ) ( n-, n-, n- ) (ξ k, η k, ζ k ) ( k, k, k ) ( k-, k-, k- ) 物体に力 を作用させて位置ベクトル A の点 A から位置ベクトル の点 まで曲線 に沿って物体を移動させたときの仕事 W は 次式で計算された A, A, W : d 6 d+ d+ d@,,, d+ d+
Microsoft PowerPoint - 物情数学C(2012)(フーリエ前半)_up
年度物理情報工学科 年生秋学期 物理情報数学 C フーリエ解析 (Fourier lysis) 年 月 5 日 フーリエ ( フランス ) (768~83: ナポレオンの時代 ) 歳で Ecole Polyechique ( フランス国立理工科大学 ) の教授 ナポレオンのエジプト遠征に従軍 (798) 87: 任意の関数は三角関数によって級数展開できる という フーリエ級数 の概念を提唱 ( 論文を提出
ଗȨɍɫȮĘർǻ 図 : a)3 次元自由粒子の波数空間におけるエネルギー固有値の分布の様子 b) マクロなサイズの系 L ) における W E) と ΩE) の対応 として与えられる 周期境界条件を満たす波数 kn は kn = πn, L n = 0, ±, ±, 7) となる 長さ L の有限
: Email: [email protected], D38 0 08 5 S = k B ln W ) W n [] [] 5 N. 6 d h m dx ϕ nx) = E n ϕ n x) ) L 5 ϕ n x = 0) = ϕ n x = L) = 0, N k n ϕ n = N sink n x), E n = h k n m 3) k n = nπ, n =,,
Microsoft Word - 微分入門.doc
基本公式 例題 0 定義式 f( ) 数 Ⅲ 微分入門 = の導関数を定義式にもとづいて計算しなさい 基本事項 ( f( ), g( ) が微分可能ならば ) y= f( ) g( ) のとき, y = y= f( ) g( ) h( ) のとき, y = ( f( ), g( ) が微分可能で, g( ) 0 ならば ) f( ) y = のとき, y = g ( ) とくに, y = のとき,
Microsoft PowerPoint - 複素数.pptx
00 年 月 9 日 ( 金 第 時限 平成 年度物質科学解析第 7 回 複素数 冨田知志 0. なぜ複素数か?. 虚数単位. 複素数の計算. オイラーの公式. 複素平面 5. 級数での複素数 ( オイラーの公式 の活用 6. 量子力学で出てくる複素数の例 0. なぜ複素数か? 量子論 ( 量子力学 で不可欠だから参照 : 光ナノサイエンスコアI 古典論や電気回路でも複素数は使うただしそれはあくまでも数学的道具
<4D F736F F D20824F B CC92E8979D814696CA90CF95AA82C691CC90CF95AA2E646F63>
1/1 平成 23 年 3 月 24 日午後 6 時 52 分 6 ガウスの定理 : 面積分と体積分 6 ガウスの定理 : 面積分と体積分 Ⅰ. 直交座標系 ガウスの定理は 微分して すぐに積分すると元に戻るというルールを 3 次元積分に適用した定理になります よく知っているのは 簡単化のため 変数が1つの場合は dj ( d ( ににします全微分 = 偏微分 d = d = J ( + C d です
三重大学工学部
反応理論化学 ( その5 6 ポテンシャルエネルギー面と反応経路最も簡単な反応 X + Y X + Y 反応物 ( 生成物 (P X 結合が切断反応系全体のエネルギーは X と Y の Y 結合が形成原子間距離によって変化 r(x と r( Y に対してエネルギーを等高線で表す赤矢印 P:X 結合の切断と Y 結合の形成が同時進行青矢印 P: まず X 結合が切断し次いで Y 結合が形成 谷 X +
Microsoft Word - 漸化式の解法NEW.DOCX
閑話休題 漸化式の解法 基本形 ( 等差数列, 等比数列, 階差数列 ) 等差数列 : d 等比数列 : r の一般項を求めよ () 3, 5 () 3, () 5より数列 は, 初項 3, 公差の等差数列であるので 5 3 5 5 () 数列 は, 初項 3, 公比 の等比数列であるので 3 階差数列 : f の一般項を求めよ 3, より のとき k k 3 3 において, を代入すると 33 となるので,は
<4D F736F F D2097CD8A7793FC96E582BD82ED82DD8A E6318FCD2E646F63>
- 第 章たわみ角法の基本式 ポイント : たわみ角法の基本式を理解する たわみ角法の基本式を梁の微分方程式より求める 本章では たわみ角法の基本式を導くことにする 基本式の誘導法は各種あるが ここでは 梁の微分方程式を解いて基本式を求める方法を採用する この本で使用する座標系は 右手 右ネジの法則に従った座標を用いる また ひとつの部材では 図 - に示すように部材の左端の 点を原点とし 軸線を
数学の学び方のヒント
数学 Ⅱ における微分単元の 指導法の改善に関する研究 2017 年 10 月北数教旭川大会で発表した内容です 北海道札幌国際情報高等学校和田文興 1 Ⅰ. 研究の動機と背景 高校では極限を厳密に定義できず, 曖昧でわかりにくい. 私自身は, はじめて微分と出会ったとき, 極限の考え方等が納得できなかった. y () a h 接線 a 傾き (a) 2 Ⅰ. 研究の動機と背景 微分の指導改善に関する優れた先行研究がいくつかあるが,
<4D F736F F D E4F8E9F82C982A882AF82E98D7397F1>
3 三次における行列 要旨高校では ほとんど 2 2 の正方行列しか扱ってなく 三次の正方行列について考えてみたかったため 数 C で学んだ定理を三次の正方行列に応用して 自分たちで仮説を立てて求めていったら 空間における回転移動を表す行列 三次のケーリー ハミルトンの定理 三次における逆行列を求めたり 仮説をたてることができた. 目的 数 C で学んだ定理を三次の正方行列に応用する 2. 概要目的の到達点として
モジュール1のまとめ
数理統計学 第 0 回 復習 標本分散と ( 標本 ) 不偏分散両方とも 分散 というのが実情 二乗偏差計標本分散 = データ数 (0ページ) ( 標本 ) 不偏分散 = (03 ページ ) 二乗偏差計 データ数 - 分析ではこちらをとることが多い 復習 ここまで 実験結果 ( 万回 ) 平均 50Kg 標準偏差 0Kg 0 人 全体に小さすぎる > mea(jkke) [] 89.4373 標準偏差
DVIOUT
第 章 離散フーリエ変換 離散フーリエ変換 これまで 私たちは連続関数に対するフーリエ変換およびフーリエ積分 ( 逆フーリエ変換 ) について学んできました この節では フーリエ変換を離散化した離散フーリエ変換について学びましょう 自然現象 ( 音声 ) などを観測して得られる波 ( 信号値 ; 観測値 ) は 通常 電気信号による連続的な波として観測機器から出力されます しかしながら コンピュータはこの様な連続的な波を直接扱うことができないため
Microsoft Word - 非線形計画法 原稿
非線形計画法条件付き最適化問題は目的関数と制約条件で示すが この中に一つでも 次式でないものが含まれる問題を総称して非線形計画法いう 非線形計画問題は 多くの分野で研究されているが 複雑性により十分汎用的なものは確立されておらず 限定的なものに限り幾つかの提案がなされている ここでは簡単な解法について紹介する. 制約なし極値問題 単純問題の解法 変数で表される関数 の極値は を解くことによって求められる
Microsoft PowerPoint - 配布資料・演習18.pptx
学年学科学籍番号氏名 宿題 ( 複素正弦波 jω ) メディアと信号処理第 回 ( 金田 ). 複素数とは 実数部と虚数部を持った数である 例えば 虚数単位を j と表すと 4+ j は複素数で 実数部は 4 で 虚数部が である 一般的に 実数部を 虚数部を とすると 複素数 z は z = + j と表される 複素数の 大きさ は 絶対値 (r jθ の r ) で定義される z の絶対値は z
数学 t t t t t 加法定理 t t t 倍角公式加法定理で α=β と置く. 三角関数
. 三角関数 基本関係 t cot c sc c cot sc t 還元公式 t t t t t t cot t cot t 数学 数学 t t t t t 加法定理 t t t 倍角公式加法定理で α=β と置く. 三角関数 数学. 三角関数 5 積和公式 6 和積公式 数学. 三角関数 7 合成 t V v t V v t V V V V VV V V V t V v v 8 べき乗 5 6 6
( 慣性抵抗 ) 速度の 2 乗に比例流体中を進む物体は前面にある流体を押しのけて進む. 物 aaa 体の後面には流体が付き従う ( 渦を巻いて ). 前面にある速度 0 の流体が後面に移動して速度 vとなったと考えてよい. この流体の質量は単位時間内に物体が押しのける体積に比例するので,v に比例
空気抵抗があるときの自由落下 抵抗が速度に比例する場合 1. 絵を描く, 座標と情報, 記号を記入する x F0 v
14 化学実験法 II( 吉村 ( 洋 mmol/l の半分だったから さんの測定値は くんの測定値の 4 倍の重みがあり 推定値 としては 0.68 mmol/l その標準偏差は mmol/l 程度ということになる 測定値を 特徴づけるパラメータ t を推定するこの手
14 化学実験法 II( 吉村 ( 洋 014.6.1. 最小 乗法のはなし 014.6.1. 内容 最小 乗法のはなし...1 最小 乗法の考え方...1 最小 乗法によるパラメータの決定... パラメータの信頼区間...3 重みの異なるデータの取扱い...4 相関係数 決定係数 ( 最小 乗法を語るもう一つの立場...5 実験条件の誤差の影響...5 問題...6 最小 乗法の考え方 飲料水中のカルシウム濃度を
第1章 単 位
H. Hamano,. 長柱の座屈 - 長柱の座屈 長い柱は圧縮荷重によって折れてしまう場合がある. この現象を座屈といい, 座屈するときの荷重を座屈荷重という.. 換算長 長さ の柱に荷重が作用する場合, その支持方法によって, 柱の理論上の長さ L が異なる. 長柱の計算は, この L を用いて行うと都合がよい. この L を換算長 ( あるいは有効長さという ) という. 座屈荷重は一般に,
Microsoft PowerPoint - 04_28OCT2016間帅è³⁄挎.pptx
無機化学 Ⅰa 06 年 0 月 ~07 年 月 0 月 8 日第 4 回 担当教員 : 回 ~8 回福井大学学術研究院工学系部門生物応用化学分野前田史郎 E-mail:[email protected] 章分子の構造と結合 分子の対称性 対称性と対称操作, 対称要素 4. 分子の構造と結合 本講義は 0 月 0 日の補講です 9 回 ~6 回福井大学産学官連携本部米沢晋教科書 : 基礎無機化学下井守著
周期時系列の統計解析 (3) 移動平均とフーリエ変換 nino 2017 年 12 月 18 日 移動平均は, 周期時系列における特定の周期成分の消去や不規則変動 ( ノイズ ) の低減に汎用されている統計手法である. ここでは, 周期時系列をコサイン関数で近似し, その移動平均により周期成分の振幅
周期時系列の統計解析 3 移動平均とフーリエ変換 io 07 年 月 8 日 移動平均は, 周期時系列における特定の周期成分の消去や不規則変動 ノイズ の低減に汎用されている統計手法である. ここでは, 周期時系列をコサイン関数で近似し, その移動平均により周期成分のがどのように変化するのか等について検討する. また, 気温の実測値に移動平均を適用した結果についてフーリエ変換も併用して考察する. 単純移動平均の計算式移動平均には,
2011年度 筑波大・理系数学
0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ O を原点とするy 平面において, 直線 y= の を満たす部分をC とする () C 上に点 A( t, ) をとるとき, 線分 OA の垂直二等分線の方程式を求めよ () 点 A が C 全体を動くとき, 線分 OA の垂直二等分線が通過する範囲を求め, それ を図示せよ -- 0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ
ディジタル信号処理
ディジタルフィルタの設計法. 逆フィルター. 直線位相 FIR フィルタの設計. 窓関数法による FIR フィルタの設計.5 時間領域での FIR フィルタの設計 3. アナログフィルタを基にしたディジタル IIR フィルタの設計法 I 4. アナログフィルタを基にしたディジタル IIR フィルタの設計法 II 5. 双 次フィルタ LI 離散時間システムの基礎式の証明 [ ] 4. ] [ ]*
Microsoft PowerPoint - JUN09.ppt [互換モード]
無機化学 2010 年 4 月 ~2010 年 8 月 第 9 回 6 月 9 日水素原子の構造と原子スペクトル 多電子原子の構造 典型元素と遷移元素 担当教員 : 福井大学大学院工学研究科生物応用化学専攻 准教授前田史郎 E-mail:[email protected] URL:http://acbio2.acbio.u-fukui.ac.jp/phychem/maeda/kougi p 教科書
Microsoft PowerPoint - Statistics[B]
講義の目的 サンプルサイズの大きい標本比率の分布は正規分布で近似できることを理解します 科目コード 130509, 130609, 110225 統計学講義第 19/20 回 2019 年 6 月 25 日 ( 火 )6/7 限 担当教員 : 唐渡広志 ( からと こうじ ) 研究室 : email: website: 経済学研究棟 4 階 432 号室 [email protected]
4STEP 数学 Ⅲ( 新課程 ) を解いてみた関数 1 微分法 1 微分係数と導関数微分法 2 導関数の計算 272 ポイント微分法の公式を利用 (1) ( )( )( ) { } ( ) ( )( ) ( )( ) ( ) ( )( )
微分法 微分係数と導関数微分法 導関数の計算 7 ポイント微分法の公式を利用 () 7 8 別解 [ ] [ ] [ ] 7 8 など () 6 6 など 7 ポイント微分法の公式を利用 () 6 6 6 など () 9 など () þ î ì など () þ î ì þ î ì þ î ì など 7 () () 左辺を で微分すると, 右辺を で微分すると, ( ) ( ) ( ) よって, (
Microsoft PowerPoint - 10.pptx
m u. 固有値とその応用 8/7/( 水 ). 固有値とその応用 固有値と固有ベクトル 行列による写像から固有ベクトルへ m m 行列 によって線形写像 f : R R が表せることを見てきた ここでは 次元平面の行列による写像を調べる とし 写像 f : を考える R R まず 単位ベクトルの像 u y y f : R R u u, u この事から 線形写像の性質を用いると 次の格子上の点全ての写像先が求まる
<4D F736F F F696E74202D2091E688EA8CB4979D8C768E5A B8CDD8AB B83685D>
第一原理計算法の基礎 固体物理からのアプローチを中心に 第一原理計算法とは 原子レベルやナノスケールレベルにおける物質の基本法則である量子力学 ( 第一原理 ) に基づいて, 原子番号だけを入力パラメーターとして, 非経験的に物理機構の解明や物性予測を行う計算手法である. 計算可能な物性値 第一原理計算により, 計算セル ( 原子番号と空間座標既知の原子を含むモデル ) の全エネルギーと電子のエネルギーバンド構造が求まる.
スライド 1
基礎無機化学第 回 分子構造と結合 (IV) 原子価結合法 (II): 昇位と混成 本日のポイント 昇位と混成 s 軌道と p 軌道を混ぜて, 新しい軌道を作る sp 3 混成 : 正四面体型 sp 混成 : 三角形 (p 軌道が つ残る ) sp 混成 : 直線形 (p 軌道が つ残る ) 多重結合との関係炭素などでは以下が基本 ( たまに違う ) 二重結合 sp 混成三重結合 sp 混成 逆に,
平成20年度 神戸大学 大学院理学研究科 化学専攻 入学試験問題
化学 Ⅰ- 表紙 平成 31 年度神戸大学大学院理学研究科化学専攻入学試験 化学 Ⅰ 試験時間 10:30-11:30(60 分 ) 表紙を除いて 7 ページあります 問題 [Ⅰ]~ 問題 [Ⅵ] の中から 4 題を選択して 解答しなさい 各ページ下端にある 選択する 選択しない のうち 該当する方を丸で囲みなさい 各ページに ( 用紙上端 ) と ( 用紙下端 ) を記入しなさい を誤って記入すると採点の対象とならないことがあります
2010年度 筑波大・理系数学
00 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ f( x) x ax とおく ただしa>0 とする () f( ) f() となるa の範囲を求めよ () f(x) の極小値が f ( ) 以下になる a の範囲を求めよ () x における f(x) の最小値をa を用いて表せ -- 00 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ つの曲線 C : y six ( 0
