Drift Chamber

Similar documents

Mott散乱によるParity対称性の破れを検証

soturon.dvi

Muon Muon Muon lif

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge

Coulomb potential

25 3 4

Donald Carl J. Choi, β ( )

1 1 (proton, p) (neutron, n) (uud), (udd) u ( ) d ( ) u d ( ) 1: 2: /2 1 0 ( ) ( 2) 0 (γ) 0 (g) ( fm) W Z 0 0 β( )

Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE

[ ] [ ] [ ] [ ] [ ] [ ] ADC


Techniques for Nuclear and Particle Physics Experiments Energy Loss by Radiation : Bremsstrahlung 制動放射によるエネルギー損失は σ r 2 e = (e 2 mc 2 ) 2 で表される為

untitled

thesis.dvi

main.dvi

untitled

CdTe γ 02cb059e :

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

SPECT(Single Photon Emission Computer Tomography ) SPECT FWHM 3 4mm [] MPPC SPECT MPPC LSO 6mm 67.5 photo electron 78% kev γ 4.6 photo electron SPECT

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

放射線化学, 92, 39 (2011)

untitled

Thick-GEM 06S2026A 22 3

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

FPWS2018講義千代

LEPS

main.dvi

抄録/抄録1    (1)V

BESS Introduction Detector BESS (BESS-TeVspectrometer) Experimetns Data analysis (1) (2) Results Summary

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

( ) ,

From Evans Application Notes

untitled

news

MEG μ + e + γ ( ) ( MEGA) = (BSM) MEG μ + e + γ ( : a few ) 180 γ μ + e +


untitled

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

Canvas-tr01(title).cv3

Operation_test_of_SOFIST


untitled

The Physics of Atmospheres CAPTER :

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

概況

2.1: n = N/V ( ) k F = ( 3π 2 N ) 1/3 = ( 3π 2 n ) 1/3 V (2.5) [ ] a = h2 2m k2 F h2 2ma (1 27 ) (1 8 ) erg, (2.6) /k B 1 11 / K

TOP URL 1

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

4‐E ) キュリー温度を利用した消磁:熱消磁

Contents 1 Jeans (

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

PET. PET, PET., PET 1, TPC 3.,. TPC,,.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

d > 2 α B(y) y (5.1) s 2 = c z = x d 1+α dx ln u 1 ] 2u ψ(u) c z y 1 d 2 + α c z y t y y t- s 2 2 s 2 > d > 2 T c y T c y = T t c = T c /T 1 (3.

大面積Micro Pixel Chamberの開発 9

gr09.dvi

Report10.dvi

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

第90回日本感染症学会学術講演会抄録(I)

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III.

Ł\”ƒ-2005

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

1 2 1 a(=,incident particle A(target nucleus) b (projectile B( product nucleus, residual nucleus, ) ; a + A B + b a A B b 1: A(a,b)B A=B,a=b 2 1. ( 10

Q = va = kia (1.2) 1.2 ( ) 2 ( 1.2) 1.2(a) (1.2) k = Q/iA = Q L/h A (1.3) 1.2(b) t 1 t 2 h 1 h 2 a


i 18 2H 2 + O 2 2H 2 + ( ) 3K

MPGD GEM

総研大恒星進化概要.dvi

JPS2016_Aut_Takahashi_ver4

STB-Ring(Stretcher-Booster Ring) 1.2 GeV Tagging System Tagging System Efficiency rate rate rate Efficiency 1 STB-Ring 2 rate Efficiency 3 Efficiency

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

2011de.dvi

2301/1     目次・広告


05Mar2001_tune.dvi

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

基礎数学I

PDF

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

- γ 1929 γ - SI γ 137 Cs 662 kev γ NaI active target NaI γ NaI 2 NaI γ NaI(Tl) γ 2 NaI γ γ γ

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

ATLAS 2011/3/25-26

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

素粒子物理学2 素粒子物理学序論B 2010年度講義第2回

0.1 I I : 0.2 I

Transcription:

Quench Gas Drift Chamber 23 25

1 2 5 2.1 Drift Chamber.............................................. 5 2.2.............................................. 6 2.2.1.............................................. 6 2.2.2...................................... 6 2.3.................................................. 7 2. Gas.................................................. 8 2.5 (efficiency)........................................... 8 2.6................................................ 9 3 1 3.1.................................................... 1 3.2.................................................. 11 12.1 Drift Chamber Pulse Height (efficiency)........................ 12.1.1.............................................. 12.1.2.............................................. 13.1.3................................................ 1.2 (efficiency)........................................ 16.2.1.............................................. 16.2.2.............................................. 16.2.3................................................ 21.3 ( )....................................... 22.3.1.............................................. 22.3.2.............................................. 22.3.3................................................ 36 5 6 1 6.1.................................................. 1 6.2............................................. 2 3 1

2.1 Drift Chamber.......................................... 5 2.2 Anode Wire................................... 7 2.3 x t................................................ 9 3.1................................................... 1 3.2.................................................. 11.1 X PreAmp HV............................... 13.2 C 2 H 6, i C H 1 β HV................ 13.3 C 2 H 6, i C H 1 efficiency curve.................................. 16. i C H 1 TDC (Cathode HV=2V).......................... 17.5.......................................... 17.6 i C H 1 TDC (Cathode HV=21V).......................... 18.7.6.......................................... 18.8 C 2 H 6 TDC (Cathode HV=18V)............................ 19.9.8.......................................... 19.1 C 2 H 6 TDC (Cathode HV=19V)............................ 2.11.1......................................... 2.12 1................................................. 23.13 2................................................. 23.1 i C H 1 V c = 2V V = V.................................. 2.15 i C H 1 V c = 2V V = 2V................................. 2.16 i C H 1 V c = 2V V = V................................. 2.17 i C H 1 V c = 21V V = V.................................. 25.18 i C H 1 V c = 21V V = 2V................................. 25.19 i C H 1 V c = 21V V = V................................. 25.2 C 2 H 6 V c = 18V V = V..................................... 26.21 C 2 H 6 V c = 18V V = 2V................................... 26.22 C 2 H 6 V c = 18V V = V................................... 26.23 C 2 H 6 V c = 19V V = V..................................... 27.2 C 2 H 6 V c = 19V V = 2V................................... 27.25 C 2 H 6 V c = 19V V = V................................... 27.26 i C H 1 V c = 185V V = V efficiency = 9.9 %.................... 28.27 i C H 1 V c = 185V V = 2V efficiency = 97.81 %................... 28.28 C 2 H 6 V c = 165V V = V efficiency = 88.67 %....................... 29.29 C 2 H 6 V c = 165V V = 2V efficiency = 97.59 %...................... 29.3 i C H 1 V c = 18V V = V efficiency = 61.13 %.................... 3.31 i C H 1 V c = 175V V = 2V efficiency = 1.37 %................... 3 2

.32 C 2 H 6 V c = 16V V = V efficiency = 53.11 %....................... 31.33 C 2 H 6 V c = 155V V = 2V efficiency = 3.65 %...................... 31.3 i C H 1 V c = 2V V = V (µ ) σ R.............. 32.35 i C H 1 V c = 2V V = V (µ )................ 33.36 C 2 H 6 V c = 18V V = V (µ ).................... 3.37 C 2 H 6 V c = 18V V = V (µ )................... 35.38 V = V efficiency curve...................................... 37.39 V = V β σ R HV.............................. 37. V = 2V efficiency curve..................................... 38.1 V = 2V β σ R HV............................. 38 3

.1.............................................. 1.2.................................................... 1.3 i C H 1 C 2 H 6........................................ 15. i C H 1 C 2 H 6 HV 1(efficiency 1% )........... 36.5 i C H 1 C 2 H 6 HV 2(efficiency 1% )......... 36.6 i C H 1 C 2 H 6 V ( µ ).............. 36

1 Drift Chamber(DC) Ar He Xe (Quench Gas) CH C 2 H 6 i C H 1 DC DC DC DC DC Quench Gas Quench Gas1% DC 1atm Quench Gas1% DC 5

2 2.1 Drift Chamber Drift Chamber 2.1 Cathode Anode wire Potential wire Potential Wire Anode Wire Charged Particle Cathode 2.5mm Plane 1 2.5mm electron Cathode Cathode Plane 2 Cathode 2.1: Drift Chamber cathode potential wire anode wire DC anode wire anode wire ( ) 1 1 6 anode wire DC anode wire t anode wire t anode wire DC 6

2.2 2.2.1 g/cm 2 Bethe-Bloch D=.15[ MeV g β = P T +m e 1 β γ = 1 cm 3 ] de dx = D Z 1 A β 2 [ln m2 e(γ 1) 2 (γ + 1) 2I 2 + 1 (γ 1)2 { 1 + (2γ 1) ln 2}] (2.1) γ2 8 P : T : A : Z : m e : I : 2.2.2 de dx = (de dx ) coll + ( de dx ) rad (2.2) 7

2.3 ( ) ( ) anode Wire (Avalanche) anode Wire Cathode -HV + Avalanche + + + + + + + + + + + + + +++ + + + ++ + + ++++++++ ++ + ++++ Anode Wire + + 2.2: Anode Wire 8

2. Gas DC 2.1 DC 2.2 anode wire anode wire DC Gas DC anode wire (He,Ar ) i-c H 1,C 2 H 6 (Quench Gas) DC Quench Gas Quench Gas1% DC 1atm Quench Gas1% i C H 1 C 2 H 6 2.5 (efficiency) (efficiency) efficiency = hit event trigger event 1 = T DC event ADC gate event 1 [%] (2.3) S1 S2 β DC DC TDC event anode wire β anode efficiency wire 9

2.6 anode wire t Anode wire t t = t anode wire t 1 z z = t1 t v D (t)dt (2.) Particle 1 Particle 2 Scintillator Cathode Potential Anode electron Particle 1 t1 X1 X2 Particle 2 t2 Cathode 2.3: x t 1

3 3.1 X Pre-Amp Y-Y Potential 16 16 Y-Y X Pre-Amp Cathode X-X Cathde Y Pre-Amp X X Potential Y Pre-Amp 3.1: 16mm 16mm Anode Wire Au W/Re φ15 µm Potential Wire Au Al φ8 µm DC Y X ( X1 X2 X3 X ) 11

3.2 Beta-Source(Sr9/Y9) PreAmp PERIC PRV-1 PMT Drift Chamber PMT DIVER S 1 S 2 Discri (Threshold=7.5V) Amp-Discri. LeCroy 2735PC (Threshold=3mV) (Width=7nsec) LOGIC UNIT G/G 8ch TDC Common Stop 12ch ADC Gate TDC LeCroy 291B TDC Controller LeCroy 298 DATABUS Interface LeCroy 299 G/G STOP START 12ch ADC 8ch TDC OUTPUT RESISTER CAMAC Observer 3.2: Scintillator : Plastic S1 : 5mm 5mm, 1mm S2 : 5mm 5mm, 5mm Photomultiplier : R1398 (HAMAMATSU) S1,S2 and DC TDC 12

.1 Drift Chamber Pulse Height (efficiency).1.1 i C H 1 C 2 H 6 β straggling (6.1 ) X X 55 F e X DC 55 F e X 5.9keV cathode potential wire HV HV cathode HV V c (< ) potential wire HV V p (< ) V p = V c V (V = V, 2V, V ) (.1) V DC 5.9keVX Pulse Height HV DC Pulse Height efficiency S1 β anode wire TDC DC β 9 Sr/ 9 Y.1 HV V (efficiency) 13

.1.2 1 Pulse Height [mv] 1 CH1 V=V CH1 V=2V CH1 V=V C2H6 V=V C2H6 V=2V C2H6 V=V 1 12 1 16 18 2 22 2 26 28 Cathode s H V [V].1: X PreAmp HV 1 9 8 7 CH1 V=V CH1 V=2V CH1 V=V C2H6 V=V C2H6 V=2V C2H6 V=V efficiency [%] 6 5 3 2 1 1 12 1 16 18 2 22 Cathode H V [V].2: C 2 H 6, i C H 1 β HV 1

.1.3 (.1.3) 55 F e 5.9keVX HV β efficiency 1% HV DC 2.1 2.2.1.1: C H 1 C 2 H 6 3.2 [kev] 1.82 [kev].2: i C H 1 HV kv β 1% 5.9keVX 2mV β 3.2keV 5.9keVX (2mV) 1.8mV 3.2[keV ] : 5.9[keV ] = x[mv ] : 2.[mV ] x = 1.8[mV ] DC β efficiency 1.8[mV] efficiency 1% C 2 H 6 β 1.8mV efficiency 1% 5.9keVX 35.6mV.1 X 36mV HV 1.7kV β efficiency 1% 55 F e efficiency 1% HV Delay Pulse Delay 55 F e 9 Sr efficiency 1% HV DC.3 i C H1 C 2 H 6 efficiency 1% HV[V] i C H 1 C 2 H 6 i C H 1 C 2 H 6 15

.3: i C H 1 C 2 H 6 i C H1 C 2 H 6 g ρ [ cm ] 3 2.36 1 3 1.22 1 3 I[eV ] 1.8 11.5 energy loss[kev ] 3.2 1.82 [ ] 3 158 efficiency 1% HV[V] 2 18 i C H 1 C 2 H 6 ( ) CH C 3 H 8... F CF 16

.2 (efficiency).2.1.1 efficiency TDC V = V 2V V i C H 1 C 2 H 6.2.2 1 9 8 7 CH1 V=V CH1 V=2V CH1 V=V C2H6 V=V C2H6 V=2V C2H6 V=V efficiency [%] 6 5 3 2 1 1 12 1 16 18 2 22 Cathode H V [V].3: C 2 H 6, i C H 1 efficiency curve 17

HRBDC TDC HRBDC TDC HRBDC TDC HRBDC TDC.: i C H 1 TDC (Cathode HV=2V) HRBDC TDC.5:. 18

HRBDC TDC HRBDC TDC HRBDC TDC HRBDC TDC.6: i C H 1 TDC (Cathode HV=21V) HRBDC TDC.7:.6 19

HRBDC TDC HRBDC TDC HRBDC TDC HRBDC TDC.8: C 2 H 6 TDC (Cathode HV=18V) HRBDC TDC.9:.8 2

HRBDC TDC HRBDC TDC HRBDC TDC HRBDC TDC.1: C 2 H 6 TDC (Cathode HV=19V) HRBDC TDC.11:.1 21

.2.3 TDC V V 2V V efficiency 1% plateau HV TDC V DC TDC 22

.3 ( ).3.1 β.1.2 HV (1)efficiency1% Plateau (2)Plateau (3)efficiency 5% σ R σ R HV (6.2 ) (µ ) σ R.3.2 TDC σ R TDC DC TDC Anode wire x TDC dn dt dn dt = dn dx dx dt (.2) dn dx = const dn dt x = = const dx dt = const v D (.3) t1 t v D dt = 1 const t1 t dn dt (.) dt v D TDC TDC wire anode wire 2 fit fit χ 2 fit y i = a + bx i dχ i = y i a bx i x i ( anode wire ).12.13 i C H 1 V c = 2V V = V 23

2 1.5 23/3/13. i-ch1 Vc=2V V=V 1 ENTRIES 338256 11....167E+6.171E+6.. 12.. 1.5 -.5-1 -1.5-2.25.5.75 1 1.25 1.5 1.75 2 2.25 2.5 x cell (mm) xdx all 2 1.5.12: 1 23/3/13.5 i-ch1 Vc=2V V=V 2 ENTRIES 338256. 11....338E+6.. 12.. 1.5 -.5-1 -1.5-2 -2.5-2 -1.5-1 -.5.5 1 1.5 2 2.5 x cell (mm) xdx all.13: 2 2

.12 x 2.5mm TDC.13 y σ σ R ( )i C H 1,C 2 H 6 V =, 2, V efficiency1% plateau σ R 23/3/12 19.11 25 2 i-ch1 Vc=2V V=V 338233 Mean -.2659E-.2577.6273E+7/ 9 Constant.2267E+5 Mean.3188E-2 Sigma.2332 15 1 5-2 -1.5-1 -.5.5 1 1.5 2 projection to y axis.1: i C H 1 V c = 2V V = V 23/3/12 21.1 25 2 i-ch1 Vc=2V V=2V 5 3337 Mean.2938E-.2569.752E+7/ 91 Constant.2267E+5 Mean.392E-2 Sigma.229 15 1 5-2 -1.5-1 -.5.5 1 1.5 2 Projection to y axis.15: i C H 1 V c = 2V V = 2V 23/3/12 21.2 225 2 175 i-ch1 Vc=2V V=V 3213 Mean.27E-.257.518E+7/ 88 Constant.217E+5 Mean.3525E-2 Sigma.2297 15 125 1 75 5 25-2 -1.5-1 -.5.5 1 1.5 2 Projection to y axis.16: i C H 1 V c = 2V V = V 25

23/3/12 19.6 2 175 i-ch1 Vc=21V V=V 285872 Mean.1577E-.286.6275E+7/ 86 Constant.199E+5 Mean.351E-2 Sigma.2235 15 125 1 75 5 25-2 -1.5-1 -.5.5 1 1.5 2 Projection to y axis.17: i C H 1 V c = 21V V = V 23/3/12 21.13 2 175 i-ch1 Vc=21V V=2V 2873 Mean.87E-.28.559E+7/ 91 Constant.21E+5 Mean.352E-2 Sigma.222 15 125 1 75 5 25-2 -1.5-1 -.5.5 1 1.5 2 Projection to y axis.18: i C H 1 V c = 21V V = 2V 23/3/12 21.26 2 175 i-ch1 Vc=21V V=V 289229 Mean -.183E-3.2523.66E+7/ 89 Constant.1988E+5 Mean.3327E-2 Sigma.2269 15 125 1 75 5 25-2 -1.5-1 -.5.5 1 1.5 2 Projection to y axis.19: i C H 1 V c = 21V V = V 26

23/3/12 21.29 25 2 C2H6 Vc=18V V=V 35767 Mean.6218E-5.2611.8221E+7/ 91 Constant.235E+5 Mean.3138E-2 Sigma.2386 15 1 5-2 -1.5-1 -.5.5 1 1.5 2 Projection to y axis.2: C 2 H 6 V c = 18V V = V 23/3/12 23.7 25 2 C2H6 Vc=18V V=2V 3128 Mean.1567E-.2595.8855E+7/ 93 Constant.2279E+5 Mean.3328E-2 Sigma.2326 15 1 5-2 -1.5-1 -.5.5 1 1.5 2 Projection to y axis.21: C 2 H 6 V c = 18V V = 2V 23/3/12 21.38 25 2 C2H6 Vc=18V V=V 3311 Mean.255E-.251.7758E+7/ 9 Constant.2285E+5 Mean.3232E-2 Sigma.2258 15 1 5-2 -1.5-1 -.5.5 1 1.5 2 Projection to y axis.22: C 2 H 6 V c = 18V V = V 27

23/3/12 21.31 225 2 175 C2H6 Vc=19V V=V 311537 Mean -.2129E-.295.6813E+7/ 91 Constant.2156E+5 Mean.322E-2 Sigma.2252 15 125 1 75 5 25-2 -1.5-1 -.5.5 1 1.5 2 Projection to y axis.23: C 2 H 6 V c = 19V V = V 23/3/12 23.8 225 2 175 C2H6 Vc=19V V=2V 361 Mean.35E-.275.52E+7/ 93 Constant.211E+5 Mean.329E-2 Sigma.2231 15 125 1 75 5 25-2 -1.5-1 -.5.5 1 1.5 2 Projection to y axis.2: C 2 H 6 V c = 19V V = 2V 23/3/12 21. 225 2 175 C2H6 Vc=19V V=V 29682 Mean.81E-5.258.561E+7/ 9 Constant.299E+5 Mean.323E-2 Sigma.22 15 125 1 75 5 25-2 -1.5-1 -.5.5 1 1.5 2 Projection to y axis.25: C 2 H 6 V c = 19V V = V 28

( )efficiency1% σ R 23/3/12 22.2 18 16 1 i-ch1 Vc=185V V=V efficiency=9.937% Mean 32272.132E-3.3168.6366E+7/ 97 Constant.171E+5 Mean.2639E-2 Sigma.2962 12 1 8 6 2-2 -1.5-1 -.5.5 1 1.5 2 Projection to y axis.26: i C H 1 V c = 185V V = V efficiency = 9.9 % 23/3/12 22.7 25 2 i-ch1 Vc=185V V=2V efficiency=97.888% 13577 Mean.817E-.2918.818E+7/ 96 Constant.2392E+5 Mean.351E-2 Sigma.2713 15 1 5-2 -1.5-1 -.5.5 1 1.5 2 Projection to y axis.27: i C H 1 V c = 185V V = 2V efficiency = 97.81 % 29

23/3/12 21.8 18 16 1 C2H6 Vc=165V V=V efficiency=88.675% Mean 3565.19E-3.3381.3955E+7/ 97 Constant.168E+5 Mean.26E-2 Sigma.325 12 1 8 6 2-2 -1.5-1 -.5.5 1 1.5 2 Projection to y axis.28: C 2 H 6 V c = 165V V = V efficiency = 88.67 % 23/3/12 21.51 25 2 C2H6 Vc=165V V=2V efficiency=97.589% 3881 Mean.8856E-.392.59E+7/ 93 Constant.231E+5 Mean.2562E-2 Sigma.291 15 1 5-2 -1.5-1 -.5.5 1 1.5 2 Projection to y axis.29: C 2 H 6 V c = 165V V = 2V efficiency = 97.59 % 3

( )efficiency 5% σ R 23/3/12 22.5 35 3 i-ch1 Vc=18V V=V efficiency=61.1336% 896 Mean.1977E-3.352.2581E+6/ 97 Constant 389. Mean.182E-2 Sigma.3331 25 2 15 1 5-2 -1.5-1 -.5.5 1 1.5 2 Projection to y axis.3: i C H 1 V c = 18V V = V efficiency = 61.13 % 23/3/12 22.9 8 7 6 i-ch1 Vc=175V V=2V efficiency=1.3698% 17936 Mean.2185E-5.3668.3137E+5/ 93 Constant 83.7 Mean.217E-2 Sigma.3553 5 3 2 1-2 -1.5-1 -.5.5 1 1.5 2 Projection to y axis.31: i C H 1 V c = 175V V = 2V efficiency = 1.37 % 31

23/3/12 21.6 3 25 C2H6 Vc=16V V=V efficiency=53.116% 6125 Mean -.258E-.3572.185E+6/ 95 Constant 286. Mean.1897E-2 Sigma.368 2 15 1 5-2 -1.5-1 -.5.5 1 1.5 2 Projection to y axis.32: C 2 H 6 V c = 16V V = V efficiency = 53.11 % 23/3/12 21.5 1 12 C2H6 Vc=155V V=2V efficiency=3.6521% Mean 315.66E-.36.2792E+5/ 87 Constant 137. Mean.99E-3 Sigma.356 1 8 6 2-2 -1.5-1 -.5.5 1 1.5 2 Projection to y axis.33: C 2 H 6 V c = 155V V = 2V efficiency = 3.65 % 32

(µ ) σ R.36.37 7 6 5 i-ch1 Vc=2V V=V muon 23/3/18 3.56 Mean 792 -.865E-.193.1565E+5/ 39 Constant 639.6 Mean.183E-2 Sigma.1736 3 2 1-2 -1.5-1 -.5.5 1 1.5 2 Projection to y axis.3: i C H 1 V c = 2V V = V (µ ) σ R 33

5 i-ch1 Vc=2V V=V muon 23/3/16 22.22 Mean 592 -.5831E-.1882 5775. / 39 Constant 52.7 Mean.68E-2 Sigma.178 3 2 1-2 -1.5-1 -.5.5 1 1.5 2 Projection to y axis.35: i C H 1 V c = 2V V = V (µ ) 3

6 5 C2H6 Vc=18V V=V muon 23/3/13 7.8 Mean 6188 -.669E-.295 66. / 1 Constant 513.1 Mean.51E-2 Sigma.1872 3 2 1-2 -1.5-1 -.5.5 1 1.5 2 Projection to y axis.36: C 2 H 6 V c = 18V V = V (µ ) 35

6 5 C2H6 Vc=18V V=V muon 23/3/13.37 Mean 628 -.223E-3.22 8629. / 6 Constant 571.9 Mean.3369E-2 Sigma.1686 3 2 1-2 -1.5-1 -.5.5 1 1.5 2 Projection to y axis.37: C 2 H 6 V c = 18V V = V (µ ) 36

.3.3.: i C H 1 C 2 H 6 HV 1(efficiency 1% ) i C H 1 V c [V] V [V] σ R [µm] C 2 H 6 V c [V] V [V] σ R [µm] 2 233.2 18 238.6 2 229. 2 232.6 229.7 225.8 21 223.5 19 225.2 2 22.2 2 223.1 226.9 22..5: i C H 1 C 2 H 6 HV 2(efficiency 1% ) i C H 1 V c [V] V [V] σ R [µm] efficiency [%] C 2 H 6 V c [V] V [V] σ R [µm] efficiency [%] 185 296.2 9.9 165 325. 88.67 2 271.3 97.81 2 39.6 97.59 18 367.9 61.13 16 36.8 53.11 175 2 355.3 1.37 155 2 35.6 3.65.6: i C H 1 C 2 H 6 V ( µ ) i C H 1 V c [V] V [V] σ R [µm] C 2 H 6 V c [V] V [V] σ R [µm] 2 173.6 18 187.2 2 17.8 18 168.6 ( )( )( )..5.6..5 β σ R efficiency 1% plateau HV efficiency 1% HV σ R.38.39..1 37

1 9 C2H6 i-ch1 8 7 efficiency [%] 6 5 3 2 1 1 12 1 16 18 2 22 Cathode s HV [V].38: V = V efficiency curve..35 C2H6 i-ch1.3.25 Sigma [mm].2.15.1.5 12 1 16 18 2 22 Cathode s HV [V].39: V = V β σ R HV 38

1 9 C2H6 i-ch1 8 7 efficiency [%] 6 5 3 2 1 1 12 1 16 18 2 22 Cathode s HV [V].: V = 2V efficiency curve..35 C2H6 i-ch1.3.25 Sigma [mm].2.15.1.5 12 1 16 18 2 22 Cathode s HV [V].1: V = 2V β σ R HV DC σ R plateau HV plateau HV 5 1V HV 39

.6 µ σ R β σ R 6.2 6.2 P β µ θ P µ P e P µ P µ =.6 [ GeV c P e =.9 [ MeV c ] = 6 [ MeV c.9 ] (.5) ] (.6) µ 6 1.5 1 3 β σ R (µ ) σ R µ σ R σ R.6 i C H 1 C 2 H 6 V = V V = V σ R β potential wire cathode HV anode wire V potential wire cathode DC geometry Potential wire Cathode V V = V V = V σ R β

5 1 i C H 1 C 2 H 6 Drift Chamber 1%Quench Gas Drift Chamber (1atm) : C 2 H 6 i C H 1 C 2 H 6 i C H 1 Drift Chamber Pulse Height(analog signal) efficiency 1% cathode HV efficiency 1% Cathode HV C 2 H 6 18V i C H 1 19V σ R C 2 H 6 i C H 1 σ R = 168.6[µm] σ R = 17.8[µm] Drift Chamber 1

6 6.1 γ E γ hω I n T (1) (T = hω I n ) T = hω I n (6.1) (2) n X (hν = I n I m ) (T = I n 2I m ) (3) m... (2)(3)... X I n hω 2

6.2 Drift Chamber Gauss θ Z,P,β : ] L R : (radiation length) L : θ = 1.1 L P β Z (1 + 1 L R 9 log L 1 ) (6.2) L R [ MeV c θ : ( ) θ Drift Chamber 3

Reference [1] W.R.Leo : Techniques for Nuclear and Particle Physics Experiments -2nd Edition Springer-Verlag [2] W.Blum L.Rolandi : Particle Detection With Drift Chamber s [3] Glenn F.Knoll : Radiation Detection and Measurement Second Edit ion [] K.Kleinknecht : Detectoren Fur Teilchenstrahlung 15 3 5