untitled

Similar documents
/22 R MCMC R R MCMC? 3. Gibbs sampler : kubo/

12/1 ( ) GLM, R MCMC, WinBUGS 12/2 ( ) WinBUGS WinBUGS 12/2 ( ) : 12/3 ( ) :? ( :51 ) 2/ 71

kubo2015ngt6 p.2 ( ( (MLE 8 y i L(q q log L(q q 0 ˆq log L(q / q = 0 q ˆq = = = * ˆq = 0.46 ( 8 y 0.46 y y y i kubo (ht

/ *1 *1 c Mike Gonzalez, October 14, Wikimedia Commons.


X X X Y R Y R Y R MCAR MAR MNAR Figure 1: MCAR, MAR, MNAR Y R X 1.2 Missing At Random (MAR) MAR MCAR MCAR Y X X Y MCAR 2 1 R X Y Table 1 3 IQ MCAR Y I


kubostat2017j p.2 CSV CSV (!) d2.csv d2.csv,, 286,0,A 85,0,B 378,1,A 148,1,B ( :27 ) 10/ 51 kubostat2017j (

DSGE Dynamic Stochastic General Equilibrium Model DSGE 5 2 DSGE DSGE ω 0 < ω < 1 1 DSGE Blanchard and Kahn VAR 3 MCMC

kubostat1g p. MCMC binomial distribution q MCMC : i N i y i p(y i q = ( Ni y i q y i (1 q N i y i, q {y i } q likelihood q L(q {y i } = i=1 p(y i q 1


自由集会時系列part2web.key

2301/1     目次・広告

60 (W30)? 1. ( ) 2. ( ) web site URL ( :41 ) 1/ 77


スライド 1

21世紀の統計科学 <Vol. III>

untitled

確率論と統計学の資料

& 3 3 ' ' (., (Pixel), (Light Intensity) (Random Variable). (Joint Probability). V., V = {,,, V }. i x i x = (x, x,, x V ) T. x i i (State Variable),

36

AMR日本語版書式

本文/020:デジタルデータ P78‐97

AR(1) y t = φy t 1 + ɛ t, ɛ t N(0, σ 2 ) 1. Mean of y t given y t 1, y t 2, E(y t y t 1, y t 2, ) = φy t 1 2. Variance of y t given y t 1, y t

80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = i=1 i=1 n λ x i e λ i=1 x i! = λ n i=1 x i e nλ n i=1 x

dプログラム_1

Microsoft PowerPoint - R-stat-intro_20.ppt [互換モード]

1 1 ( ) ( % mm % A B A B A 1

PR

【アフィリコード】総合マニュアル

【アフィリコードプラス】総合マニュアル

: (GLMM) (pseudo replication) ( ) ( ) & Markov Chain Monte Carlo (MCMC)? /30

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

2014ESJ.key

untitled

untitled

医薬品開発の意思決定における Bayesian Posterior Probability の適用例 ~ Random-Walk Metropolis vs. No-U-Turn Sampler ~ 作井将 清水康平 舟尾暢男 武田薬品工業株式会社日本開発センター生物統計室 Using Bayesi

今回 次回の要点 あぶない 時系列データ解析は やめましょう! 統計モデル のあてはめ Danger!! (危 1) 時系列データの GLM あてはめ (危 2) 時系列Yt 時系列 Xt 各時刻の個体数 気温 とか これは次回)

(interval estimation) 3 (confidence coefficient) µ σ/sqrt(n) 4 P ( (X - µ) / (σ sqrt N < a) = α a α X α µ a σ sqrt N X µ a σ sqrt N 2

Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestim

03.Œk’ì

基礎数学I

: Bradley-Terry Burczyk

Ł\”ƒ.dvi

Dirichlet process mixture Dirichlet process mixture 2 /40 MIRU2008 :


kubo2017sep16a p.1 ( 1 ) : : :55 kubo ( ( 1 ) / 10

aisatu.pdf

Sigma

Sigma

スライド 1

@i_kiwamu Bayes - -

28

(pdf) (cdf) Matlab χ ( ) F t

一般演題(ポスター)

スポーツ科学 20年度/01 目次



スライド 1

日本糖尿病学会誌第58巻第1号


日本呼吸器学会雑誌第49巻第4号


CSR レポート 2009

規定/規定

2 3


2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003)

チュートリアル:ノンパラメトリックベイズ

(2012) (2013) ( (2009) Angrist and Pischke (2009))

カルマンフィルターによるベータ推定( )

1 Stata SEM LightStone 4 SEM 4.. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press 3.

4.9 Hausman Test Time Fixed Effects Model vs Time Random Effects Model Two-way Fixed Effects Model

untitled

Microsoft Word - 計量研修テキスト_第5版).doc

Kobe University Repository : Kernel タイトル Title 著者 Author(s) 掲載誌 巻号 ページ Citation 刊行日 Issue date 資源タイプ Resource Type 版区分 Resource Version 権利 Rights DOI

01.Œk’ì/“²fi¡*


< C93878CBB926E8C9F93A289EF8E9197BF2E786264>

2 A A 3 A 2. A [2] A A A A 4 [3]

Temple (1999) Barro and Sala-i-Martin (1992) β σ β σ Togo (2002) Quah (1993) 1) 2 Kakamu and Fukushige (2006) Barro and Sala-i-Martin (1

untitled

σ t σ t σt nikkei HP nikkei4csv H R nikkei4<-readcsv("h:=y=ynikkei4csv",header=t) (1) nikkei header=t nikkei4csv 4 4 nikkei nikkei4<-dataframe(n

1 I EViews View Proc Freeze

1


ω ω

横組/中高 技術科問題           ●

2日目 10月31日(金曜日)プログラム

本文/本文


小塚匡文.indd

1 Stata SEM LightStone 3 2 SEM. 2., 2,. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press.

一般化線形 (混合) モデル (2) - ロジスティック回帰と GLMM

kubostat2015e p.2 how to specify Poisson regression model, a GLM GLM how to specify model, a GLM GLM logistic probability distribution Poisson distrib

II

最小2乗法


5 Armitage x 1,, x n y i = 10x i + 3 y i = log x i {x i } {y i } 1.2 n i i x ij i j y ij, z ij i j 2 1 y = a x + b ( cm) x ij (i j )

Microsoft PowerPoint - s-plus.ppt

Transcription:

MCMC 2004 23 1

I. MCMC 1. 2. 3. 4. MH 5. 6. MCMC 2

II. 1. 2. 3. 4. 5. 3

I. MCMC 1. 2. 3. 4. MH 5. 4

1. MCMC 5

2. A P (A) : P (A)=0.02 A B A B Pr B A) Pr B A c Pr B A)=0.8, Pr B A c =0.1 6

B A 7

8

A, : B x, x ( ) 9

10

( ) 11

1. N( 0, 02 ) ( 0, 02 ) 12

, 13

2. 2 IG (n 0 /2, n 0 S 0 /2) 14

,, 2 IG (n 1 /2, n 1 S 1 /2) 15

. 2 N( 0, 2 /m 0 ). 2 IG (n 0 /2, n 0 S 0 /2) 16

, 17

18

19

3.. (, 2 x) ( ) 1. (0), 2(0). 2. (1), 2(1). 20

3. ( 3. i=1,2, (i+1), 2(i+1). 4. (i), 2(i) (i=n,n+1, N ) (, 2 x). 21

3. ( WinBUGS model{ #, 2 ) = - 2 for (i in 1:N) { x[i] ~ dnorm(mu,tau) # x ~N(, 2 ) } # (, 2 ) tau~dgamma(1.0e-3,1.0e-3) # 2 ~IG(0.001,0.001) mu ~ dnorm(0.0,1.0e-3) # ~N(0,1000) var <- 1/tau } http://www.mrc-bsu.cam.ac.uk/bugs/ 22

3. ( X 1,..,X 30 ~N(10,25) ) list(x=c(13.08, 2.44, 13.82, 14.14, 15.63, 18.99, 4.37, 11.41, 13.53, 9.43, 12.69, 5.30, 17.73, 4.31, 11.42, -2.72, 14.15, 9.56, 18.29, 12.09, 11.16, 8.93, 6.14, 4.72, 7.99, 7.80, 11.35, 11.76, 13.62, 14.47),N=30), list(mu=10 tau=1/25) 1000 (burn-in period), 10000 23

3. ( mu 15.0 12.5 10.0 7.5 5.0 1001 2500 5000 7500 10000 iteration var 80.0 60.0 40.0 20.0 0.0 1001 2500 5000 7500 10000 iteration 24

3. ( mu sample: 10000 5.0 7.5 10.0 12.5 15.0 17.5 var sample: 10000 0.0 25.0 50.0 75.0 100.0 25

3. ( MC error 2.5 97.5 % 10.56 0.918 0.0093 8.76 10.56 12.38 2 26.40 7.415 0.0681 15.62 25.22 42.26 26

3. ( X X new (i) ~ N( (i), 2(i) ) xnew sample: 10000-20.0 0.0 20.0 40.0 27

3. ( ( 1,, m x). 1. (0) =( (0) 1,, (0) m ). 2. i=0,1,2,. a. (i+1) 1 ~ ( 1 (i) 2,, (i) m x) b. (i+1) 2 ~ ( 2 (i+1) 1, (i), 3, (i) m x) c. d. (i+1) m ~ ( m (i+1) 2,, (i+1) m-1 x) 3. i>n ) (i). (i) (i=1,2, ) (. MH 28

4.MH MH( target distribution proposal distribution) MH 29

4.MH ( ( 1,, m x). 1. (0) =( 1 (0),, m (0) ). 2. i=0,1,2,. 1. (i) =( 1 (i),, m (i) ) Q. Q ( ) q( (i), x) (q( (i), x) ). 2. ( x),, (i+1) =. (i+1) = (i). 3. i>n ) (i). 30

4.MH ( MH,.,. (detailed balance equation).. 31

4.MH ( 1. MH. (random walk) = (i) +z, z~f(z)., q( (i), x)=f( - (i) ). z 0 t,.,.,. (i) (i=1,2, ),. 32

4.MH ( 2. (independence) MH. q( (i), x)=f( x ) q (i). w q.. 33

4.MH (, * N(m,V), log ( x) * 2.. V, v_0. 34

4.MH ( 1 U 1, 1) 2 IG(n 0 /2,n 0 S 0 /2) 35

4.MH ( 2,y IG(n 1 /2,n 1 S 1 /2) 36

4.MH ( TN (-1,1) (, 2 ) 37

4.MH ( ~TN (-1,1) (, 2 ),. 38

4.MH ( 1. (0), 2(0) ). 2. i=0,1,2,. 2(i+1) (i),y IG(n 1 /2,n 1 S 1 /2) 2(i+1),y~TN (-1,1) (, 2 ), (i+1) =, (i+1) = (i). 3. i>n ) (i), 2(i) ). 39

4.MH ( Ox. ( http://www.e.u-tokyo.ac.jp/~omori ). for(i=0;i<10000;++i){ // 2 a=0.5*(0.001+nobs+1); b=0.5*(0.001+(1-phi^2)*y[0]+sumsqrc(y[1:nobs-1]-phi*y[0:nobs-2])); var_e=1/rangamma(1,1,a,b); // mu_phi=(y[0:nobs-2]'*y[1:nobs-1])/sumsqrc(y[1:nobs-2]); var_phi=var_e/sumsqrc(y[1:nobs-2]); // 2(i+1),y~TN (-1,1) (, 2 ) do{phi_n=mu_phi+rann(1,1)*sqrt(var_phi);}while(fabs(phi_n)>=1); //. if(ranu(1,1)<= (0.5*sqrt(1-phi_n^2))/(0.5*sqrt(1-phi^2))){phi=phi_n;} } 40

4.MH ( ( =0.9, 2 =1.0 y 0,,y 1000 ) 96.3%. 2.5 97.5% 0.899 0.014 0.873 0.927 2 0.976 0.044 0.892 1.065 41

4.MH ( 1 Sample ACF PHI 0 0 5 10 15 20 25 30 35 40 45 50 Sample Path 0.95 PHI 0.90 0.85 0 750 1500 2250 3000 3750 4500 5250 6000 6750 7500 8250 9000 9750 Posterior Density 30 PHI 20 10 0.85 0.86 0.87 0.88 0.89 0.90 0.91 0.92 0.93 0.94 0.95 42

4.MH ( 1 Sample ACF SIGMA2 0 0 5 10 15 20 25 30 35 40 45 50 Sample Path 1.2 SIGMA2 1.1 1.0 0.9 0 750 1500 2250 3000 3750 4500 5250 6000 6750 7500 8250 9000 9750 Posterior Density 10.0 SIGMA2 7.5 5.0 2.5 0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.975 1.000 1.025 1.050 1.075 1.100 1.125 1.150 1.175 43

4.MH ( WinBUGS ( WinBUGS Slice sampler ) # Model y 0,, y 999 1000 model{ # y, 2 ) = - 2 tau0 <-tau*(1-phi*phi) y[1]~dnorm(0,tau0) # y 0 ~N(0, 2 /(1-2 ) ) for( i in 2 : N ) { ymu[i] <-phi*y[i-1] # y t ~N( y t-1, 2 ) y[i] ~ dnorm(ymu[i],tau)} # (, 2 ) phi ~ dunif(-1,1) # ~U(-1,1) tau~dgamma(1.0e-3,1.0e-3) # 2 ~IG(0.001,0.001) var <- 1/tau } 44

4.MH ( =0.9, 2 =1.0 ) list(n=1000,y=c( -1.4958246547, -0.2742255020)) Fold, list(phi=0 tau=1) 1000 (burn-in period), 10000 45

4.MH ( phi 0.95 0.9 0.85 0.8 1001 2500 5000 7500 10000 iteration 1.2 1.1 1.0 0.9 0.8 var 1001 2500 5000 7500 10000 iteration 46

4.MH ( phi sample: 10000 0.8 0.85 0.9 0.95 1.0 var sample: 10000 0.6 0.8 1.0 1.2 1.4 47

4.MH ( MC error 2.5 97.5 % 0.899 0.014 0.0001 0.873 0.899 0.927 2 0.978 0.044 0.0004 0.895 0.977 1.068 48

.,, 49

. 3.. mu lag 0 20 40 var lag 0 20 40 50

. mu iteration 1401 5000 7500 10000 var iteration 1401 5000 7500 10000 51

. Geweke (1992) (10%) (50%) g( ). Gelfand and Smith (1990), Gelman and Rubin (1992), Liu and Liu (1993), Raftery and Lewis (1992) Heidelberger and Welch (1983) Mykland et al. (1995) 52

. Cowles and Carlin (1996) 13. Robert and Casella (1999) Mengersen, Robert and Guihenneuc-Jouyaux(1999). S-Plus R.. CODA(Convergence Diagnostic and Output Analysis Software) BOA (Bayesian Output Analysis) Geweke, Gelman and Rubin, Raftery and Lewis, Heidelberger and Welch,,,,, 95% 53

. BOA Geweke(1992) GEWEKE CONVERGENCE DIAGNOSTIC: ============================== Fraction in first window = 0.1 Fraction in last window = 0.5 Chain: sample1 -------------- mu var Z-Score 0.9682253-0.9140632 p-value 0.3329318 0.3606836 54

. Gibbs Sampler etc. 55

6.MCMC WinBUGS. BayesX TSP STATA. CODA, BOA (R Splus. ) http://www.public-health.uiowa.edu/boa/) Ox, Matlab, GAUSS, Ox C, Fortran 56

II. 1. 2. 3. 4. 5. 57

1. y i, i=1,,n x i =(x i1,,x ik ) : =( 1,, K ) : i N(0, 2 ). 58

1. 59

1. 60

1. (Y) (X) 900 700 500 300 0 10 20 30 61

1. WinBUGS model{ #, 2 ) = - 2 for(i in 1:n){ #n mu[i] <-beta[1]+beta[2]*x[i] # i = 1 + 2 x i y[i]~dnorm(mu[i],tau) # y i ~N( i, 2 ) } # (, 2 ) for(i in 1:K){ #K =2 beta[i]~dnorm(0,1.0e-6)} # i ~N(0,10 6 ) tau~dgamma(1.0e-6,1.0e-6) sigma2 <-1/tau # 2 ~IG(10-6, 10-6 ) } 62

1. MC error 2.5 97.5 % 1 429.2 78.34 0.833 271.3 429.9 584.7 2 8.813 4.305 0.045 0.286 8.763 17.42 2 11760 6550 78.13 4593 10150 28860 63

1. beta[1] sample: 10000 beta[2] sample: 10000-250.0 0.0 250.0 500.0 750.0-20.0 0.0 20.0 40.0 sigma2 sample: 10000-5.0E+4 0.0 5.00E+4 1.00E+5 1.50E+5 64

1. y n+1, (, 2 ) y n+1, 2, x n+1 ~N(x n+1, 2 ). 65

1., i ~N(0, 2 )., t. 0 i 0. 66

1. 67

1. 68

2. y i,. 0, y i*, i=1,,n y i y i* >0,. x i =(x i1,,x ik ) : =( 1,, K ) : i N(0, 2 ). 69

2. 70

2. 71

2. 1 (y) 1. (x1), 2. (x2), 3. (x3), 4. (x4). 0 72

Ox 2. for(cn=-cburn;cn<crepeat;++cn){ mb1=invert((1/dsigma2)*mx *mx+invert(mb0)); # vb1=mb1*((1/dsigma2)*mx'*vystar+invert(mb0)*vb0); vb=vb1+choleski(mb1)*rann(cm,1); for(i=0;i<cnobs;++i){ #y* if(vy[i]==0){ do{vystar[i]=mx[i][]*vb+rann(1,1)*sqrt(dsigma2); }while(vystar[i] >=0); } else{vystar[i]=vy[i];}} 2 da=0.5*(0.002+cnobs);db=0.5*(0.002+(vystar-mx*vb)'*(vystar-mx*vb)); dsigma2=1/rangamma(1,1,da,db); } 73

2. 2.5 97.5% 1 0.56 12.49 18.77-24.03 49.01 2-6.15 3.53-13.38 3-0.95 0.35-1.66-0.30 4 3.46 1.45 0.70 6.38 5 1.57E-4 1.95E-4-2.31E-4 5.44E-4 2 679.6 215.5 369.3 1195.1 74

2. 75

3. y i 0 1. : (y i =1), (y i =0). (y i =1), (y i =0) 76

3. F( ) 0 1 F F y i * y*, 1. 77

3. 78

3. 79

3. :,. 95 Pindyck and Rubinfeld (1998),. Y: 1, 0 X_1: X_2: 1, 0 X_3: 1, 0 X_4: ( X_5: ( ) 80

3. Ox for(cn=-cburn;cn<crepeat;++cn){ # ~N(b 1,B 1 ) vb1=mb1*(mx'*vystar+invert(mb0)*vb0); vb=vb1+choleski(mb1)*rann(cm,1); # y* for(i=0;i<cnobs;++i){ if(vy[i]==0){do{vystar[i]=mx[i][]*vb+rann(1,1); }while(vystar[i] >=0);} else{do{vystar[i]=mx[i][]*vb+rann(1,1); }while(vystar[i] <0);} } } 81

3. 82

3. 83

3. 2.5 97.5% 1 0.48-4.91 3.73-12.3 2.43 2-0.39 0.44-1.23 3 2.05 0.89 0.55 4.00 4 1.44 0.45 0.62 2.36 5-1.33 0.60-2.55-0.18 84

4. 85

4. ( ) MH N(,V).,. 86

4. ( ), ( m,v),.. 87

4. ( ) WinBUGS model { for (i in 1:n) { y[i] ~ dbern(p[i]) logit(p[i]) <- b[1] + b[2]*x[i,1]+ b[3]*x[i,2] + b[4]*x[i,3] + b[5]*x[i,4] } #prior for (j in 1:K) {b[j] ~ dnorm(0,0.001)} } ( WinBUGS ) 88

3. Ox for(cn=-cburn;cn<crepeat;++cn){ vb_o=vb;flk(vb_o,&dl_o,0,0); # dh_o=dlhat+vl1hat *(vb_o-vbhat) # +0.5*(vb_o-vbhat)'*ml2hat*(vb_o-vbhat); vb_n=vb1+mb1root*rann(cm,1); # flk(vb_n,&dl_n,0,0); # dh_n=dlhat+vl1hat *(vb_n-vbhat) # +0.5*(vb_n-vbhat)'*ml2hat*(vb_n-vbhat); dfrac=exp(dl_n+dh_o-dl_o-dh_n); # if(ranu(1,1)<=dfrac){vb=vb_n;} } MH 72.75% 89

4. ( ) 90

4. 2.5 97.5% 1 0.84-9.66 6.91-23.2 3.87 2-0.64 0.76-2.12 3 3.55 1.56 0.92 6.95 4 2.51 0.81 1.00 4.18 5-2.15 1.06-4.30-0.20 91

5. Seemingly Unrelated Model y i mx1, i=1,,n t m X i = mxk =( 1,, K ) : i N(0, ). 92

5.SUR 93

5.SUR 94

5.SUR :General Electric Westinghouse Gross investment (Y): Value of the Firm (V) Stock of plant and equipment(k) y i = 1 + 2 V i 3 K i i Grunfeld Investment Data, 100 yearly observations. 1935-1954. 95

5.SUR ( ) WinBUGS model { for (t in 1:T) { y[t,1:2] ~ dmnorm(mu[t,],omega[, ]); mu[t,1] <- beta[1,1]+beta[1,2]*v[t,1]+beta[1,3]*k[t,1] mu[t,2] <- beta[2,1]+beta[2,2]*v[t,2]+beta[2,3]*k[t,2] } # priors on regression coefficients for (i in 1:M) {for (j in 1:3) {beta[i,j] ~ dnorm(0,0.001)}} Omega[1 : M, 1 : M] ~ dwish(r[, ], 2) # cross-correlation matrix of dimension M=2 Sigma[1:M,1:M] <- inverse(omega[, ]) } 96

5.SUR ( ) beta[1,1] sample: 50000 beta[1,2] sample: 50000-200.0-100.0 0.0 100.0-0.05 0.0 0.05 0.1 beta[1,3] sample: 50000 rho sample: 50000-0.1 0.0 0.1 0.2 0.3-0.5 0.0 0.5 1.0 1.5 97

5.SUR ( ) beta[2,1] sample: 50000 beta[2,2] sample: 50000-50.0-25.0 0.0 25.0 50.0-0.05 0.0 0.05 0.1 0.15 beta[2,3] sample: 50000-0.4-0.2 0.0 0.2 0.4 0.6 98

5.SUR SUR MC rror 2.5 97.5% 11-14.21 20.78 0.65-54.88-14.05 26.65 12 0.03 0.01 3.7E-4 0.01 0.0.03 0.05 13 0.13 0.03 4.9E-4 0.08 0.14 0.18 1.13 6.67 0.21 21 0.08-11.71 1.03 14.33 22 23 0.05 0.01 4.8E-4 0.03 0.05 0.06 0.06 0.001-0.05 0.07 0.18 0.74 0.12 0.001 0.46 0.76 0.90 99

Chen, Shao and Ibrahim(2000) Monte Carlo Methods in Bayesian Computation. Springer. Gamerman, D. (1997) Markov Chain Monte Carlo. Chapman & Hall Gelman, Carlin, Stern and Rubin(1995) Bayesian Data Analysis. Chapman & Hall Ibrahim, Chen and Shinha (2001) Bayesian Survival Analysis. Springer. Koop, G. (2003) Bayesian Econometrics. Wiley., J.S. (2001) Monte Carlo Strategies in Scientific Computing. Springer. 100