2 0 B B B B - B B - B - - B (1.0.6) 0 1 p /p p {0} (1.0.7) B m n ϕ : B ϕ(m) n ϕ 1 (n) = m /m B/n 1.1. (1.1.1) a a n > 0 x n a x r(a) a r(r(a)) = r(a)

Similar documents
τ τ



D 24 D D D

pdf

Note.tex 2008/09/19( )

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

プリント

Z: Q: R: C: sin 6 5 ζ a, b

December 28, 2018

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k


2000年度『数学展望 I』講義録

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0


TOP URL 1

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

A

201711grade1ouyou.pdf

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

2018/10/04 IV/ IV 2/12. A, f, g A. (1) D(0 A ) =, D(1 A ) = Spec(A), D(f) D(g) = D(fg). (2) {f l A l Λ} A I D(I) = l Λ D(f l ). (3) I, J A D(I) D(J) =

LLG-R8.Nisus.pdf

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

85 4

振動工学に基礎

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

,,..,. 1

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =



D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

prime number theorem

TOP URL 1

AI n Z f n : Z Z f n (k) = nk ( k Z) f n n 1.9 R R f : R R f 1 1 {a R f(a) = 0 R = {0 R 1.10 R R f : R R f 1 : R R 1.11 Z Z id Z 1.12 Q Q id


Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

[1.1] r 1 =10e j(ωt+π/4), r 2 =5e j(ωt+π/3), r 3 =3e j(ωt+π/6) ~r = ~r 1 + ~r 2 + ~r 3 = re j(ωt+φ) =(10e π 4 j +5e π 3 j +3e π 6 j )e jωt

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

TOP URL 1

untitled

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

I 1

( )

8 300 mm 2.50 m/s L/s ( ) 1.13 kg/m MPa 240 C 5.00mm 120 kpa ( ) kg/s c p = 1.02kJ/kgK, R = 287J/kgK kPa, 17.0 C 118 C 870m 3 R = 287J


Untitled

keisoku01.dvi

(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0


I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n



4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

NETES No.CG V

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

untitled


untitled

Ł½’¬24flNfix+3mm-‡½‡¹724

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc


2 Part A B C A > B > C (0) 90, 69, 61, 68, 6, 77, 75, 20, 41, 34 (1) 8, 56, 16, 50, 43, 66, 44, 77, 55, 48 (2) 92, 74, 56, 81, 84, 86, 1, 27,

2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 1, 2 1, 3? , 2 2, 3? k, l m, n k, l m, n kn > ml...? 2 m, n n m

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =

K 1 mk(

研修コーナー

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

tnbp59-21_Web:P2/ky132379509610002944

1 A A.1 G = A,B,C, A,B, (1) A,B AB (2) (AB)C = A(BC) (3) 1 A 1A = A1 = A (4) A A 1 A 1 A = AA 1 = 1 AB = BA ( ) AB BA ( ) 3 SU(N),N 2 (Lie) A(θ 1,θ 2,

meiji_resume_1.PDF

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

Part () () Γ Part ,

: , 2.0, 3.0, 2.0, (%) ( 2.

ac b 0 r = r a 0 b 0 y 0 cy 0 ac b 0 f(, y) = a + by + cy ac b = 0 1 ac b = 0 z = f(, y) f(, y) 1 a, b, c 0 a 0 f(, y) = a ( ( + b ) ) a y ac b + a y

λ n numbering Num(λ) Young numbering T i j T ij Young T (content) cont T (row word) word T µ n S n µ C(µ) 0.2. Young λ, µ n Kostka K µλ K µλ def = #{T

パーキンソン病治療ガイドライン2002


S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

untitled

日本内科学会雑誌第97巻第7号

構造と連続体の力学基礎

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

untitled

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

ver Web

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

( )

Transcription:

1 0 1. 1.0. (1.0.1) - (1.0.2), B ϕ : B resp. B- M a m = ϕ(a) m (resp. m a = m ϕ(a)) resp. - M - B- resp. - M [ϕ] L - u : L M [ϕ] a x L u(a x) = ϕ(a) u(x) ϕ- L M (ϕ, u) u (, L) (B, M) - L (, L) (1.0.3) (1.0.2) J resp. ϕ(j) B resp. Bϕ(J)resp. ϕ(j)b BJresp. JB resp. B- B J Bresp. J B B (1.0.4) B B - ϕ : B ϕ() B J JB = BJ B B- M JM (BJ)M B- (1.0.5) - M p M 0 - M M p q p q M 0 - - B B B B -

2 0 B B B B - B B - B - - B (1.0.6) 0 1 p /p p {0} (1.0.7) B m n ϕ : B ϕ(m) n ϕ 1 (n) = m /m B/n 1.1. (1.1.1) a a n > 0 x n a x r(a) a r(r(a)) = r(a) a b r(a) r(b) ϕ a r(ϕ 1 (a)) = ϕ 1 (r(a)) a a (0) R R = (0) /R (1.1.2) R() /R() (0) 1.2. (1.2.1) S 1 S S S S

1. 3 1 f f n (n 0) S f 2 p p (1.2.2) S M - M S (m 1, s 1 ) (m 2, s 2 ) s(s 1 m 2 s 2 m 1 ) = 0 s S M S S 1 M (m, s) S 1 M m/s i S M : m m/1 is M S 1 M sm = 0 s S m M S 1 M S 1 M (m 1 /s 1 ) + (m 2 /s 2 ) = (s 2 m 1 + s 1 m 2 )/(s 1 s 2 ) S 1 (a 1 /s 1 )(a 2 /s 2 ) = (a 1 a 2 )/(s 1 s 2 ) (a/s)(m/s ) = (am)/(ss ) S 1 S 1 M S 1 S S 1 M S 1 - S s S s/1 S 1 1/s i S is M S 1 M i S : S 1 - (1.2.3) f S f = {f n } n0 S 1M S 1 f f M f f f = [1/f] f [T ]/(ft 1)[T ] f = 1 f M f M f f M f 0 p S = p S 1 S 1 M p M p p q i S (p) (i S ) 1 (q) = p i S /p p/q f p /q /p (1.2.4) S 1 i S B u u(s) B u : is S 1 u B u M - N B- v : M N - N u : B v v : M is M S 1 M v N

4 0 v S 1 - N S 1 - u (1.2.5) (a/s) m (am)/s S 1 - S 1 M S 1 M m/s (1/s) m (1.2.6) S 1 a a = (i S ) 1 (a ) a i S (a) S 1 S 1 a (1.3.2) p (i S ) 1 (p ) S 1 p S = p p (S 1 ) S 1 p (1.5.1) (1.2.7) K 0 S i S : S 1 S 1 K p p p p p p = p (1.2.8) S 1 x s S (x/s) n = 0 s x n = 0 s S (s x) n = 0 s x = 0 x/s = 0 1.3. (1.3.1) M N - u - M N S S 1 u S 1 - S 1 M S 1 N (S 1 u)(m/s) = u(m)/s S 1 M S 1 N S 1 M S 1 N (1.2.5) S 1 u 1 u P v - N P S 1 (v u) = (S 1 v) (S 1 u) S 1 M - S 1 - S M (1.3.2) S 1 M M u N v P S 1 M S 1u S 1 N S 1v S 1 P u : M N resp. S 1 u resp. N P M S 1 N S 1 P S 1 M S 1 (N + P) = S 1 N + S 1 P S 1 (N P) = (S 1 N) (S 1 P )

1. 5 (1.3.3) (M α ϕ βα ) - (S 1 M α S 1 ϕ βα ) S 1 - S 1 M α S 1 ϕ βα (1.2.5 1.3.1) S 1 lim M α lim S 1 M α M S 1 M (1.3.4) M, N - M N (S 1 M) S 1 (S 1 N) S 1 (M N) (m/s) (n/t) (m n)/st (1.3.5) M N S 1 Hom (M, N) Hom S 1 (S 1 M, S 1 N) u/s m/t u(m)/st M M r p q 0 M S 1 M Hom (M, N) - M 1.4. (1.4.1) S T S T S 1 T 1 ρt,s S 1 a/s T 1 a/s i T = ρt,s is - M S 1 M T 1 MT 1 M S 1 - S 1 - T 1 M m/s S 1 M m/s ρt,s M i T M = ρt,s M is M (1.2.5) ρt,s M ρt,s 1 S 1 M T 1 M M u : M N S 1 M S 1u S 1 N M N T 1 M T 1u T 1 N T 1 u S 1 u m Mt S (T 1 u)(m/t) = (t/1) 1 ((S 1 u)(m/1))

6 0 (1.4.2) - MN (1.3.4) (1.3.5) (S 1 M) S 1 (S 1 N) S 1 (M N) (T 1 M) T 1 (T 1 N) T 1 (M N) S 1 Hom (M, N) Hom S 1 (S 1 M, S 1 N) T 1 Hom (M, N) Hom T 1 (T 1 M, T 1 N) (1.4.3) T S S 1 M T 1 M S S S S S T S S 1 M (1.4.4) S T U S T U ρ U,S = ρ U,T (1.4.5) (S α )S α S β α β S α S α α β ρ βα = ρ S β,s α (1.4.4) ρ βα (Sα 1, ρ βα ) ρ α Sα 1 ϕ α = ρ S,S α (1.4.4) α β ϕ α = ϕ β ρ βα ϕ : S 1 Sα 1 ρ βα ρ α ϕα S 1 β ρ β ϕβ ϕ S 1 (α β) ϕ ϕ ρ α (a/s α ) ϕ(ρ α (a/s α )) = 0 S 1 a/s α = 0 sa = 0 s S s S β β α ρ α (a/s α ) = ρ β (sa/ss α ) = 0 ϕ

1. 7 - M lim Sα 1 (lim S α ) 1, lim Sα 1 M (lim S α ) 1 M M (1.4.6) S 1 S 2 S 1 S 2 S1 1 S 2 S 2 S 2 S1 1 - M S 1 2 (S 1 1 M) (S 1 S 2 ) 1 M m/(s 1 s 2 ) (m/s 1 )/(s 2 /1) 1.5. (1.5.1), ϕ S, S ϕ(s ) S, ϕ S 1 (1.2.4) S 1 ϕs S 1 ϕ S (a /s ) = ϕ(a )/ϕ(s ) = ϕ( ) S = ϕ(s ) ϕ S = ϕ ϕ S (1.4.1) ρ S,S (1.5.2) (1.5.1) M - S 1 - σ : S 1 (M [ϕ] ) (S 1 M) [ϕ S ] (S 1 M) [ϕ S ] m/ϕ(s ) S 1 (M [ϕ] ) m/s S = ϕ(s ) σ = ϕ σ (1.4.1) ρ S,S M M = ϕ - S 1 ( [ϕ] ) (ϕ(s )) 1 σ : S 1 ( [ϕ] ) S 1 S 1 - (1.5.3) M N - (1.3.4) (1.5.2) (S 1 M S 1 S 1 N) [ϕ S ] S 1 ((M N) [ϕ] ) ϕ(s ) = S (1.3.5) (1.5.2) S 1 ((Hom (M, N)) [ϕ] ) (Hom S 1 (S 1 M, S 1 N)) [ϕ] S

8 0 ϕ(s ) = S M (1.5.4) - N N [ϕ] a (n b) = n (ab) - S 1 - τ : (S 1 N ) S 1 (S 1 ) [ϕ S ] S 1 (N [ϕ] ) (n a)/(ϕ(s )s) (n /s ) (a/s) n /s a/s (n a)/(ϕ(s )s) (n a)/s (n /1) (s/a) τ S 1 (N [ϕ] ) (N [ϕ] ) S 1 (1.2.5) N (S 1 ) [ψ] ψ S 1 a ϕ(a )/1 (1.5.5) M N - (1.3.4) (1.5.4) S 1 M S 1 S 1 N S 1 S 1 S 1 (M N ) M (1.3.5) (1.5.4) Hom S 1 (S 1 M, S 1 N ) S 1 S 1 S 1 (Hom (M, N ) ) (1.5.6) (1.5.1) T T S T S T ϕ(t ) T S 1 ϕ S S 1 ρ T,S T 1 T 1 ϕ T M - S 1 (M [ϕ] ) σ (S 1 M) [ϕ S ] ρ T,S T 1 (M [ϕ] ) σ (T 1 M) [ϕ S ] N - (S 1 N ) S 1 (S 1 ) [ϕ S ] τ S 1 (N [ϕ] ) (T 1 N ) T 1 (T 1 ) [ϕ T ] τ S 1 (N [ϕ] )

1. 9 ρ T,S N S 1 N S 1 (1.5.7) ϕ : S ϕ (S ) S ϕ = ϕ ϕ ϕ S = ϕ S ϕ S M - M [ϕ ] = (M [ϕ] ) [ϕ ] (1.5.2) σ ϕ σ σ ϕ ϕ σ = σ σ N - - N [ϕ ] (N [ϕ ]) [ϕ] S 1 - (S 1 N ) S 1 (S 1 ) [ϕ S ] (S 1 N ) S 1 (S 1 ) [ϕ S ] S 1 (S 1 ) [ϕ S ] τ (1.5.4) ϕ τ τ ϕ ϕ τ = τ (τ 1) (1.5.8) B p B q p = q p B p (1.3.2) p (1.2.6)B p 0 q q p = p B q 1 q q 1 = p q 1 B q q = p 1.6. M f (1.6.1) M - f - (M n ) M n M m n ϕ nm M m M n z f n m z ((M n ), (ϕ nm )) N = lim M n N M f - n θ n : z z/f n M = M n M f m n θ n θ nm = θ m - θ : N M f ϕ n M n N n θ n = θ ϕ n M f n z/f n θ θ(ϕ n (z)) = 0 z/f n = 0 f k z = 0 k > 0

10 0 ϕ n+k,n (z) = 0 ϕ n (z) = 0 θ M f lim n (1.6.2) M n ϕ nm ϕ n M f,n ϕ f nm ϕf n g f n f n g n ρ fg,f : M f M fg (1.4.1 1.4.3) M f M fg lim M f,n lim M fg,n ρ fg,f ρ n fg,f (z) = gn z ρ n fg,f (z) = gn z : M f,n M fg,n f,n ρ n fg,f fg,n ϕ f n ϕ fg n f ρ fg,f fg 1.7. (1.7.1) - M M p 0 M Supp(M) M = 0 Supp(M) = p M p x M (1.7.2) 0 N M P 0 - Supp(M) = Supp(N) Supp(P ) p 0 N p M p P p 0 (1.3.2) M p = 0 N p = P p = 0 (1.7.3) M (M λ ) M p (M λ ) p 1.3.3 1.3.2 Supp(M) = λ Supp(M λ) (1.7.4) M - Supp(M) M M x M p = 0 s x = 0 s p p x M (x i ) 1in x i a i (1.7.3) Supp(M) a i p M a = i a i p (1.7.5) MN - Supp(M N) = Supp(M) Supp(N) p M p p N p 0 (1.3.4) M p 0 N p 0 P Q 0

1. 11 B P B Q 0 m B P/mP Q/mQ 0 (P/mP ) B/m (Q/mQ) = (P B Q) B (B/m) 0 M - a Supp(M/aM) a M n a + n