III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T

Similar documents
B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

untitled

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

I (Analysis I) Lebesgue (Lebesgue Integral Theory) 1 (Seiji HIRABA) 1 ( ),,, ( )

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi



³ÎΨÏÀ

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

untitled

II Brown Brown

untitled

Grushin 2MA16039T

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

Lebesgue Fubini L p Banach, Hilbert Höld

Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

数理統計学Iノート

数学概論I

( ) Loewner SLE 13 February


2000年度『数学展望 I』講義録

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ

B2 ( 19 ) Lebesgue ( ) ( ) 0 This note is c 2007 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercia

1 a b = max{a, b}, a b = mi{a, b} a 1 a 2 a a 1 a = max{a 1,... a }, a 1 a = mi{a 1,... a }. A sup A, if A A A A A sup A sup A = + A if A = ± y = arct

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

201711grade1ouyou.pdf

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V

No.004 [1] J. ( ) ( ) (1968) [2] Morse (1997) [3] (1988) 1

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

I

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

,.,, L p L p loc,, 3., L p L p loc, Lp L p loc.,.,,.,.,.,, L p, 1 p, L p,. d 1, R d d. E R d. (E, M E, µ)., L p = L p (E). 1 p, E f(x), f(x) p d


newmain.dvi

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25

DVIOUT

Part () () Γ Part ,

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

i


Wide Scanner TWAIN Source ユーザーズガイド

I II III IV V

−g”U›ß™ö‡Æ…X…y…N…g…‰

¿ô³Ø³Ø½øÏÀ¥Î¡¼¥È

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )


9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%


) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

基礎数学I

BayesfiI‡É“ÅfiK‡È−w‘K‡Ì‡½‡ß‡ÌChow-Liu…A…‰…S…−…Y…•


6.1 (P (P (P (P (P (P (, P (, P.

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980


1.500 m X Y m m m m m m m m m m m m N/ N/ ( ) qa N/ N/ 2 2

Chap11.dvi

実解析的方法とはどのようなものか

Microsoft Word - 信号処理3.doc

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (


DVIOUT-fujin

?

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N.


π, R { 2, 0, 3} , ( R),. R, [ 1, 1] = {x R 1 x 1} 1 0 1, [ 1, 1],, 1 0 1,, ( 1, 1) = {x R 1 < x < 1} [ 1, 1] 1 1, ( 1, 1), 1, 1, R A 1

ohpr.dvi

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

応用数学III-4.ppt

all.dvi


1 I

i 18 2H 2 + O 2 2H 2 + ( ) 3K

6.1 (P (P (P (P (P (P (, P (, P.101

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

ii

App. of Leb. Integral Theory (S. Hiraba) Lebesgue (X, F, µ) (measure space)., X, 2 X, F 2 X σ (σ-field), i.e., (1) F, (2) A F = A c F, (3)

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

Lecture 12. Properties of Expanders

tnbp59-21_Web:P2/ky132379509610002944

tokei01.dvi

Transcription:

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). Theorem 1.3 (Lebesgue ) lim n f n = f µ-a.e. g L 1 (µ) such that n N, x M, f n (x) g(x) ( ) (1.1), lim n f n = f in L 1 (µ). Proposition 1.4 µ,. Example 1.5 Example 1.6 µ Proposition 1.4.,. Proposition 1.4.,. Proposition 1.7. Proposition 1.8 (Borel Cantelli ) n=1 ( µ(a n ) < µ n=1 k=n ) A k = 0. Proposition 1.9,. Lemma 1.10 {x n } x, {x n } {x nk } x {x nkl }. Proposition 1.11 (Lebesgue ) Theorem 1.3, µ-a.e. in µ OK. Proposition 1.12 µ, lim n f n = f in µ (1.1) lim sup f n (x) µ(dx) = 0 (1.2) a n N {x M f n(x) >a}, lim n f n = f in L 1 (µ). 1

Definition 1.13 µ, L 0 (M, F, µ): d(f, g) = φ( f(x) g(x) )µ(dx) M (φ R 0, 0, φ(0) = 0, φ(x)/x R 0 ). Proposition 1.14 (1) d. (2), d. Remark 1.15. 2,,. A, A ( ) σ[a] Definition 2.1 M P (i) M P (ii) A, B P = A B P, P., D (I) M D (II) A, B D, A B = B \ A D (III) A n D (n N), A n A ( A n A n+1 A = n=1 A n) = A D, D Dynkin. A Dynkin δ[a]. Lemma 2.2 M B, Dynkin. Theorem 2.3 (Dynkin ) Corollary 2.4 P, P Dynkin σ[p]. δ[p] = σ[p]. Theorem 2.5 (Carathéodory ) A 2 M (M ) ν(a) [0, ] (i) ν( ) = 0 (ii) A 1 A 2 = ν(a 1 ) ν(a 2 ) (iii) ν( k=1 A k) k=1 ν(a k), ν B, ν B., B ν ν(b A) + ν(b c A) = ν(a), A M. Theorem 2.6 (Hopf ) M A µ. ( ) B = σ[a] µ ( ) k=1 A k = A A 1 A 2 lim k µ(a k ) = 0., B d(b 1, B 2 ) = µ(b 1 B 2 ) A, µ B. 2

3 Hahn, Jordan Definition 3.1 (M, F) (R-, ) Φ : F R Theorem 3.2 ( Hahn ) (M, F) Φ, Φ(A P ) 0, A F (P Φ ) Φ(A P c ) 0, A F (P c Φ ). P F. M = P P c Φ M Hahn. Φ (A) = sup { i Φ(A i) A = i A i ( ) }, A F Lemma 3.3 Φ Hahn M = P P c (1) Φ (A) = Φ(A P ) Φ(A P c ), A F. (2) Φ, Φ(A) Φ (A), A F. Φ Φ. Proposition 3.4 (Hahn ) Φ M Hahn M = P 1 P c 1 = P 2 P c 2 = Φ (P 1 P 2 ) = Φ (P c 1 P c 2 ) = 0., : A B = (A B c ) (A c B). Proposition 3.5 : Φ(P ) = sup{φ(a) A F}, Φ(P c ) = inf{φ(a) A F}. Definition 3.6 ( Jordan ) Φ Hahn P P c Φ + (B) = Φ(B P ), Φ (B) = Φ(B P c ), B F, Φ +, Φ, Φ = Φ + Φ, Φ = Φ + + Φ. Proposition 3.7 (Jordan ) Φ Hahn M = P 1 P1 c = P 2 P2 c Φ = Φ + 1 Φ 1 = Φ+ 2 Φ 2, Φ+ 1 = Φ+ 2, Φ 1 = Φ 2. 3

4 Radon Nikodym Definition 4.1 (ν µ), (ν µ), (ν µ). Φ µ (Φ µ). Lemma 4.2 µ ν ν = ν 1 + ν 2 where ν 1 µ, ν 2 µ (4.1). Lemma 4.3 ν, ν ν. Proposition 4.4 ν, ν (4.1). Lemma 4.5 µ f ν(b) = f(x)µ(dx), B F B, ν ν µ ( ν(dx) = f(x)µ(dx) ν = fµ ). : (gf)µ = g(fµ). Theorem 4.6 (Radon Nikodym ) µ, ν ν µ, ν(b) = f(x)µ(dx), B F B f µ-a.e.. f Radon Nikodym ( ). Lemma 4.7 Φ Jordan Φ = Φ + Φ, Φ µ Φ + µ Φ µ. Theorem 4.8 Φ µ Φ µ Radon Nikodym, Radon Nikodym L 1 (µ; R). Example 4.9 Radon Nikodym., 0. Remark 4.10. Remark 4.11 Radon Nikodym L p (1 p < ) Lebesgue 4

5 Riesz Markov Definition 5.1 E Borel B(E), (E, B(E)) E Borel. C(E) = C(E; C) : E C-, C(E; R) : E R-. C c (E) = {f C(E) suppf }, C c (E; R) = {f C(E; R) suppf } (E f : suppf = {x E f(x) 0}). C(E)( C(E; R)) ψ : ψ(αf + βg) = αψ(f) + βψ(g), α, β C ( R), : f 0 = ψ(f) 0. Definition 5.2 E µ, O, µ(o) = sup{µ(k) K O, K } Borel B, µ(b) = inf{µ(o) O B, O }. Borel Radon. Lemma 5.3 K Borel, Radon. Lemma 5.4 X, C O. (1) C G G O G G. (2) X f, 0 f 1, C f = 1, suppf O. Remark 5.5 X,. Theorem 5.6 (Riesz Markov ) K. C(K; R) ψ K Borel µ, : ψ(f) = f(x)µ(dx), f C(K; R). (5.1) K Remark 5.7,. Theorem 5.8 (Riesz Markov ) C c (R; R) ψ R Radon µ : ψ(f) = f(x)µ(dx), f C c (R; R). (5.2) R Remark 5.9 C-, ψ R- µ. f = Ref + iimf, Ref Imf (5.1) (5.2), f. 5

[1] R Borel. (1) M {f α } α A, f α M (, )., A. (2) R n R k f k : f k (x 1,, x n ) = x k., f k R n R n Borel. [2] M Borel.. [3],,,.. ( ). ( ). 6

PART II 6 Definition 6.1 (Ω, F, P ) X : Ω S, (S, S). X : Ω S P X P = P X X. X : Ω R F (x) = P X ((, x]) = P (X x) X : Ω R P X Lebesgue, Radon Nikodym f X X. X, Y : Ω S (X, Y ) P = P (X,Y ) (S S ). X : Ω R E[X]: E[X] = X(ω)P (dω) = xp X (dx). Ω R, X (E[ X ] < ). Theorem 6.2 (, ) X : Ω S, f : S R 0 E[f(X)] = f(x)p X (dx). Remark 6.3, f C-. S Proposition 6.4 Z E[Z] = 0 P (Z > t)dt. 7, Prokhorov Definition 7.1,,,, Lemma 7.2 R, R., (S, d), (S, d) (S, d) d. Lemma 7.3 K, Banach C(K). Lemma 7.4 (1 ) K K = U 1 U n, ϕ 1,, ϕ n C(K). (i) 0 ϕ k (x) 1, suppϕ k U k (k = 1,..., n), (ii) ϕ 1 (x) + + ϕ n (x) = 1 (x K). 7

Example 7.5 l sup-. Definition 7.6 S µ n µ (n ): f(x)µ n (dx) = f(x)µ(dx), f C b (S). lim n S S Theorem 7.7 K, (K, B(K)) P(K). Theorem 7.8 ( ) R, C b (R), C u (R). µ n, µ P(R). (i) lim n R f(x)µ n(dx) = R f(x)µ(dx), f C b(r). (ii) lim n R f(x)µ n(dx) = R f(x)µ(dx), f C b(r) C u (R). (iii) lim sup n µ n (F ) µ(f ), F : R. (iv) lim inf n µ n (O) µ(o), O : R. (v) lim n µ n (B) = µ(b), B B(R) : µ( B) = 0. (vi) lim n F n (x) = F (x), x R : F., F n, F µ n, µ. Remark 7.9 Theorem 7.8, (ii) R ( ). (ii), OK. Definition 7.10 Corollary 7.11,,,., =. Example 7.12 {x n } x, δ xn δ x., Theorem 7.8 (iii), (iv). Definition 7.13 S Ŝ,. Remark 7.14 P(R). R d ( R, d). Lemma 7.3 C u (R, d) = C( R, d) {f n } n N, τ(µ, ν) = n=1 1 ( 2 n R f n (x)µ(dx) R ) f n (x)ν(dx) 1, µ, ν P(R), Theorem 7.8, τ. Theorem 7.15 (Prokhorov ) (C) Q P(R). P(R) Q. (T) Q (tight), ɛ > 0, C : R, µ Q, µ(c) 1 ɛ. Remark 7.16. Brown, R C([0, ); R) Prokhorov 8

8 Definition 8.1 ( ), (Fubini ) Definition 8.2,, Theorem 8.3 (i) X, Y X, Y. (ii) E[f(X)g(Y )] = E[f(X)]E[g(Y )] ( f, g C b (R)) (iii) E[e i(sx+ty ) ] = E[e isx ]E[e ity ] ( s, t R) (iv) P (X,Y ) = P X P Y Theorem 8.4 (Ω n, F n ) µ n µ = n=1 µ n (Ω, F) = ( n=1 Ω n, n=1 F n). Remark 8.5, : (Ω, F, P ), (S, S), S- {X n } n N, F G = σ[x n n N], (S, S ) µ, n X n : S S. Theorem 8.6 (Borel Cantelli ( 2) ) {A n } n N, ( ) P (A n ) = = P A k = P ( A k i.o. ) = 1. Definition 8.7 n=1 n=1 k=n {X n } n N σ[x 1, X 2, ] (tail event) : T = n=1 σ[x n, X n+1, ] = X 1,, X n. (exchangeable event) : E = X 1,, X n. Remark 8.8. T E. E \ T, X 1 + + X n Theorem 8.9 (Kolmogorov 0-1 ) {X n } n N, A T = P (A) = 0 or 1. Theorem 8.10 (Hewitt Savage 0-1 ) 1. {X n } n N, A E = P (A) = 0 or Theorem 8.11 ( (dichotomy)) (Ω n, F n ) µ n ν n µ = n=1 µ n, ν = n=1 ν n, µ ν µ ν, ( dν ) n µ ν 1 dµ n <. dµ n n=1 Ω n 9

9, {X n } n N (Ω, F, P ), S n = X 1 + X 2 + + X n. Proposition 9.1 1 0. S n a.s. a.s.., S n Theorem 9.2 (Kolmogorov ) E[X n ] = 0, V (X n ) <, P ( max k=1,...n S k a ) 1 a 2 V (S n), n N, a > 0. Theorem 9.3 (Kolmogorov : strong Law of Large Numbers) (I) {X n } E[ X 1 ] <, (II) n=1 n 2 V (X n ) <, S n E[S n ] lim = 0 a.s. n n Remark 9.4 {X n } E[X 4 1 ] <, Borel Cantelli. Remark 9.5 {X n } E[X 2 1 ] <, (weak), Chebyshev. Theorem 9.6 ( : Central Limit Theorem) {X n } m = E[X 1 ], v = V (X 1 ), S n E[S n ] lim = Z ( ). n n, Z 0 v N(0, v). 10

[1] M Hausdorff Borel.. [2] (Corollary7.11). [3] X, Y ( ), ( ). ( ) E[f(X)g(Y )] = E[f(X)]E[g(Y )] ( f, g C b (R)) ( ) P (X,Y ) = P X P Y [4], A, B, C. ( ) A, B, C, A, B, C. [5],,,.. ( ) ( ). 11