main.dvi

Similar documents
main.dvi

main.dvi

p03.dvi

main.dvi

power.tex

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

(5 B m e i 2π T mt m m B m e i 2π T mt m m B m e i 2π T mt B m (m < 0 C m m (6 (7 (5 g(t C 0 + m C m e i 2π T mt (7 C m e i 2π T mt + m m C m e i 2π T

main.dvi

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d


1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

dfilterh.dvi

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2


() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

[1.1] r 1 =10e j(ωt+π/4), r 2 =5e j(ωt+π/3), r 3 =3e j(ωt+π/6) ~r = ~r 1 + ~r 2 + ~r 3 = re j(ωt+φ) =(10e π 4 j +5e π 3 j +3e π 6 j )e jωt

[1] 1.1 x(t) t x(t + n ) = x(t) (n = 1,, 3, ) { x(t) : : 1 [ /, /] 1 x(t) = a + a 1 cos πt + a cos 4πt + + a n cos nπt + + b 1 sin πt + b sin 4πt = a

December 28, 2018

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1.

chap1.dvi


Part () () Γ Part ,

2011de.dvi

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google


振動と波動

pdf


<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63>

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

v_-3_+2_1.eps


1 1.1 Excel Excel Excel log 1, log 2, log 3,, log 10 e = ln 10 log cm 1mm 1 10 =0.1mm = f(x) f(x) = n

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

Microsoft Word - 信号処理3.doc

6. Euler x

Note.tex 2008/09/19( )


phs.dvi


A


x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

sp3.dvi


,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,


( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

数値計算:フーリエ変換

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

I 1


構造と連続体の力学基礎

Z: Q: R: C: sin 6 5 ζ a, b

( )

keisoku01.dvi

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

Fr

入試の軌跡

TOP URL 1

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

meiji_resume_1.PDF

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

曲面のパラメタ表示と接線ベクトル

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

1 yousuke.itoh/lecture-notes.html [0, π) f(x) = x π 2. [0, π) f(x) = x 2π 3. [0, π) f(x) = x 2π 1.2. Euler α

DVIOUT

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

OHP.dvi

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

30

2012 September 21, 2012, Rev.2.2

slide1.dvi

III Kepler ( )

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

Chap11.dvi

II Brown Brown

1 Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier analog digital Fourier Fourier Fourier Fourier Fourier Fourier Green Fourier

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

TSP信号を用いた音響系評価の研究

1.1 ft t 2 ft = t 2 ft+ t = t+ t d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α


Transcription:

3 Discrete Fourie Transform: DFT DFT 3.1 3.1.1 x(n) X(e jω ) X(e jω )= x(n)e jωnt (3.1) n= X(e jω ) N X(k) ωt f 2π f s N X(k) =X(e j2πk/n )= x(n)e j2πnk/n, k N 1 (3.2) n= X(k) δ X(e jω )= X(k)δ(ωT 2πk N ) (3.3) k= X(e jω ) X(e jω ) x(n)

x(n) = 1 2π 2π = 1 2π 2π 3.1 59 X(e jω )e jωnt dωt (3.4) [ ] 2πk X(k)δ(ωT N ) e jωnt dωt k= (3.5) ωt 2π k k = N 1 x(n) = 1 [ 2π ] X(k)δ(ωT 2πk 2π N ) e jωnt dωt = 1 2π k= = 1 2π k= k= 2π X(k) δ(ωt 2πk N )ejωnt dωt X(k)e j 2πnk N (3.6) 1 2π 1 N 1/2π 1/N x(n) = 1 N k= X(k)e j 2πnk N (3.7) X(e jω ) x(n) X(k),k = N 1 x(n) X(k) X(k) = n= x(n)e j2πnk/n (3.8) (3.7) X(k) x(n) x(n) = 1 N = 1 N k= k= X(k)e j 2πnk N [ m= x(m)e j2πmk/n ] e j 2πnk N

6 3. [ = m= x(m) 1 N k= e j2π(n m)k/n) ] = x(n) (3.9) [] m = n 1 m n m = n x(n) 3.1.2 X(k) = x(n) = 1 N n= x(n)e j2πnk/n, k N 1 (3.1) k= X(k)e j 2πnk N, n N 1 (3.11) 3.1.3 X(e jω ) x(n) (3.11) X(k) x(n) (3.11) X(k) (3.2) [ x(n) = 1 ] x(m)e j2πkm/n e j2πkn/n (3.12) N = k= k= m= m= x(m) 1 N k= 1 e j2πk(m n)/n = N x(n) = e j2πk(m n)/n (3.13) 1, m n = rn, r, m n rn (3.14) r= x(n + rn) (3.15)

3.1 61 x(n) x(n) N x(n) N T L = NT fhz N = f s / f T L = NT = N f s = 1 f (3.16) x(n) ( ) f 1/ f x(n) x(n) 3.1 x(n) T (= MT) M M<N M>N x(n + rn) x(n) ~ x ( n ) T = MT M M > N n T L = NT M N N + M M < N n 3.1 3.1 3.1.4

62 3. 3.1 (DFT) = T =1/ f =1/T (= f s )Hz = fhz (3.15) x(n + rn) 3.1 N x(n) T L = NT x(n) n M T = MT T = MT < T L = NT (3.17) T L =1/ f f < 1 T (3.18) M<N (3.19) 3.1.5 x(t) t T X(jω) f f c f s f s > 2f c (3.2) T =1/f s T T = 1 < 1 (3.21) f s 2f c t T x(t)

3.1 63 x(),x(t ) M +1 T = MT M M = T T > 2T f c (3.22) f f < 1 T (3.23) 1 N N>M (3.24) (3.21) (3.23) 3.2 3.2 (DFT) T<1/2f c = T =2f c Hz f <1/T Hz T =.1 f c =3kHz f s > 2f c =6kHz T <1/2f c =.166msec f <1/T =1Hz M >2T f c = 6 N >M

64 3. 3.1.6 3.2 (a) x(t) X(jω) Fourier Transform: FT (b) x(n) X(e jω ) Fourier Transform: FT (c) x(t) X(k) Fourier Series: FS (d) x(n) X(k) Discrete Fourier Series: DFS (e) x(n) X(k) (d) Discrete Fourier Transform: DFT

3.1 65 3.2

66 3. 3.2 x(n) X(k) n N 1 k N 1 x(n) X(k) X(k) = n= x(n) = 1 N x(n)e j2πnk/n, k N 1 (3.25) k= X(k)e j 2πnk N, n N 1 (3.26) 3.2.1 1 x 3 (n) = ax 1 (n)+bx 2 (n) (3.27) X 3 (k) =ax 1 (k)+bx 2 (k) (3.28) 2 x(n) n N 1 N y(n) =x((n k)) N, n N 1 (3.29) ((n)) N N N =5,k =3y(n) =x((n 3)) 5 y() = x(( 3)) 5 = x(2) y(1) = x((1 3)) 5 = x(3) y(2) = x((2 3)) 5 = x(4) y(3) = x((3 3)) 5 = x() y(4) = x((4 3)) 5 = x(1)

3.2 67 3.3?? 3.3 y(n) =x((n 3)) 5 3 N 3.4??? 3.4 4 x(n) DFT X(k) x(n m) DFT e j2πkm/n X(k) X(k + l) DFT e j2πln/n x(n)

68 3. 3.2.2 DFT y 3 (n) = m= x 1 ((m)) N x 2 ((n m)) N, n N 1 (3.3) Y 3 (k) =X 1 (k)x 2 (k), k N 1 (3.31) y 3 (n) =x 1 (n)x 2 (n), n N 1 (3.32) Y 3 (k) = l= X 1 ((l)) N X 2 ((k l)) N, k N 1 (3.33) 1.2 N =4 y() x 2 () x 2 (3) x 2 (2) x 2 (1) x 1 () y(1) x = 2 (1) x 2 () x 2 (3) x 2 (2) x 1 (1) y(2) x 2 (2) x 2 (1) x 2 () x 2 (3) x 1 (2) y(3) x 2 (3) x 2 (2) x 2 (1) x 2 () x 1 (3) (3.34) 3.3 3.3.1 y(n) = m= h(m)x(n m) (3.35) 3.5 N =3

y() y(1) y(2) y(3) y(4). = 3.3 69 h() x() h(1) h() x(1) h(2) h(1) h() x(2) (3.36) h(2) h(1) h() x(3) h(2) h(1) h() x(4)..... 3.5 FIR DFT DFT DFT 3.6 DFT N 3.6 DFT

7 3. DFT (3.36) (3.34) 3.3.2 x(n) n N 1 h(n) n M 1 y(n) n N + M 2 N + M 1 DFT x(n) =,N n N + M 2 (3.37) h(n) =,M n N + M 2 (3.38) 3.7 DFT 3.7 DFT X(k) = H(k) = N+M 2 n= N+M 2 n= x(n)e j2pikn N +M 1, k N + M 2 (3.39) h(n)e j2pikn N +M 1, k N + M 2 (3.4) Y (k) = H(k)X(k), k N + M 2 (3.41) y(n) = N+M 2 1 Y (k)e j2pikn N +M 1, n N + M 2(3.42) N + M 1 k=

3.3 71 N + M 1 3.3.3 DFT h(n) M 1 Overlap-add method x(n) N M 1 N + M 1 k x k (n) y k (n) x k (n) h(n) y k (n) x(n), kn n (k +1)N 1 x k (n) = (3.43), (k +1)N n (k +1)N + M 1 x(n) = x k (n) (3.44) y(n) = = = k= M 1 m= k= h(m) [ M 1 m= x k (n m) k= h(m)x k (n m) ] y k (n) (3.45) k= y k (n) y k+1 (n) (k +1)N n (k +1)N + M 1 3.8 2 Overlap-save method x(n) N + M 1 M 1 N +2(M 1) DFT

72 3. 3.8 DFT x(n), kn n (k +1)N + M 1 x k (n) =, (3.46) y k (kn + l) = M 1 m= x k (kn + l m)h(m), l N +2(M 1)(3.47) y k (kn + l) l M 1 N + M n N +2(M 1) y k (n),kn + M n (k +1)N + M 1 3.9 DFT N + M 1 N +2(M 1) 3.4 1. x(t) x(n) x(t) T x(n) f s = Hz x(t) x(n) X(jω) X(e jω ) X(e jω ) X(jω) Hz

3.4 73 3.9 DFT X(e jω ) Hz X(jω) f c Hz f c Hz X(jω) f s X(e jω ) fhz X(k) x(n) x(n) N = x(n) x(n) x(t) t = T x(),x(t ) f (1)T (2)1/T (3)f s (4)1/f s (5)2f c <f s (6)2f c >f s (7) + r= x(n + rn) (8) f (9)1/ f (1) f >1/T (11) f < 1/T (12) (13) (14) (15)f s / f (16) f/f s (17)NT (18)T/N

74 3. 2. DFT) x(t) T x(n) =x(nt ) x(n) X(e jω ) Hz f s T x(t) X(e jω ) fhz x(n) x(t) t = T x(),x(t ) f 1 f s N = M +1 M N (1)T (2)1/T (3)f s (4)f s /2 (5)2f s (6)f s / f (7) f/f s (8)T /T +1 (9)M <N (1)M >N (11) f (12)1/ f (13)T < 1/ f (14)T > 1/ f (15)T /T (16)T/T 3. DFT) x(t) t 1 x(),x(1 ) X(jω) 4kHz 4kHz X(jω) = x(t) f s x(n) X(e jω ) (a) (b) (c) f s f s =8kHz M +1 f 1 N f

3.4 75 (d) (e) (f) (g) x(n) X(e jω ) X(k) x(n) N f N 2 N x(n) x(n) x(n) x(n) x(n) 4. h(n),n = 3 x(n),n = 3 DFT H(k),k = 3 X(k),k = 3 Y (k) = H(k)X(k),k = 3 IDFT y(n),n= 3 y(n),n= 3 h(n),n= 3 x(n),n = 3 (3.34) 5. h(n),n = 2 x(n),n = 3 y(n) y(n) h(n) x(n) DFT H(k) X(k) Y (k) =H(k)X(k) Y (k) IDFT y(n) h(n) x(n) DFT 6. h(n),n= M 1 x(n),n= y(n) y(n) h(n) x(n) DFT H(k) X(k) Y (k) =H(k)X(k) Y (k) IDFT y(n) x(n) N DFT

76 3. 3.5 3.5.1 3.1 T x(t) x(t) 3.1 T x(t) =x(t + nt ), T >,n (3.48) T x(t) = a k e jkωt, ω = 2π (3.49) T k= kω a k a k = 1 T x(t)e jkωt dt (3.5) T (3.49) x(t) a k 1 T = T m= a m 1 T m= T a m e jmωt e jkωt dt (3.51) e j(m k)ωt dt

3.5 77 = a k 1 T e j(m k)ωt 1, m = k dt = T, m k (1) (3.52) (3.53) T x N (t) = x(t) 2 dt < (3.54) N k= N a k e jkωt (3.55) N E N = T x(t) x N (t) 2 dt (3.56) lim E N = (3.57) N (2) T x(t) dt < (3.58) t 3.11 [ T 1,T 1 ] x(t) [, ] x(t) x(t) (3.49) (3.5) x(t) = a k e jkωt (3.59) k= a k = 2 sin kω T 1 kω T (3.6)

78 3. 3.11 ω = 2π T T T 1 a k 3.12 T a k T /T 1 T x(t) x(t) 3.12 (a)t /T 1 =4 (b)t /T 1 =8 (c)t /T 1 =16 lim x(t) =x(t) (3.61) T

3.5 79 a k x(t) a k = 1 T T/2 T /2 = 1 T/2 x(t)e jkωt dt T T /2 x(t)e jkωt dt (3.62) = 1 x(t)e jkωt dt (3.63) T X(jω)= (3.63) x(t)e jωt dt (3.64) a k = 1 T X(jkω ) (3.65) (3.59) x(t) = 1 T k= X(jkω )e jkωt (3.66) ω =2π/T x(t) = 1 X(jkω )e jkωt ω (3.67) 2π k= 3.13 X(jω )e jωt ω T ω x(t) x(t) 3.13

8 3. x(t) = 1 X(jω)e jωt dω (3.68) 2π (3.64) (3.68) X(jω)= x(t) = 1 2π x(t)e jωt dt (3.69) X(jω)e jωt dω (3.7) 3.5.2 X a (s) = x(t)e st dt, s = σ + jω (3.71) σ+j x(t) = 1 X(s)e st ds (3.72) 2πj σ j x(t) x d (t) x d (t) (3.71) x d (t) = x(kt)δ(t kt) (3.73) X d (s) = = = k= k= k= δ(t) δ(t) =,t (3.74) x d (t)e st dt x(kt) δ(t kt)e st dt x(kt)e skt (3.74) δ(t)dt =1 (3.75) z = e st (3.76)

3.5 81 X d (s) = k= x(kt)z k (3.77) x(kt) T x(kt) = 1 2πj C z s (3.76) X(z)z k 1 dz (3.78) dz = Te st = Tz (3.79) ds z 1 dz = Tds (3.8) x(kt) = 1 2πj a(kt) = 1 2πj σ+jπ/t σ jπ/t σ+jπ/t σ jπ/t X(e st )e skt Tds (3.81) X(e st )e skt ds (3.82) X(e st )= Ta k (kt)e skt (3.83) k= Ta k (kt)e skt 3.14 lim T X(esT )= a(t)e st dt (3.84) X(e st )=X d (s) (3.85) X a (s) X d (s) 3.15

82 3. 3.14 3.15 X a(s) X d (s) lim T X(esT )=X a (s) (3.86) (3.84) (3.86) X a (s) = a(t)e st dt (3.87) (3.82), 1 σ+π/t lim a(kt) =a(t) = lim X(e st )s st dt (3.88) T T 2πj = 1 2πj (3.72) σ+ σ σ π/t X a (s)s st dt (3.89)

3.5 83 x(t) =a(t) (3.9) (3.87) (3.89) X a (s) = x(t) = 1 2πj x(t)e st dt (3.91) σ+ σ j X a (s)e st ds (3.92) X(jω) = x(t) = 1 2π x(t)e jωt dt (3.93) X(e jωt )= x(n) = 1 2π n= π π X(jω)e jωt dω (3.94) x(n)e jωnt (3.95) X(e jωt )e jωnt dωt (3.96) T X(s) = x(t) = 1 2πj X(z) = x(t)e st dt (3.97) σ+ n= x(n) = 1 2πj σ j X(s)e st ds (3.98) x(n)z n (3.99) C X(z)z n 1 dz (3.1)

84 3. T 3.5.3 x(t) X(s) dx(t) sx(s) (3.11) dt t x(τ)dτ 1 X(s)+x() (3.12) s ae s kt a s s k (3.13)