PowerPoint プレゼンテーション

Similar documents
MOSFET HiSIM HiSIM2 1

untitled

untitled

スライド 1

untitled

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

note2.dvi

( ) : 1997

Mott散乱によるParity対称性の破れを検証

untitled

untitled

MOSFET 6-2 CMOS 6-2 TTL Transistor Transistor Logic ECL Emitter Coupled Logic I2L Integrated

PDF

devicemondai

MOS FET c /(17)

Donald Carl J. Choi, β ( )

2

03_委託テーマ発表資料(その2)(p.89-p.134).pdf

jse2000.dvi

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III.

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge

Muon Muon Muon lif

ELECTRONIC IMAGING IN ASTRONOMY Detectors and Instrumentation 5 Instrumentation and detectors

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

Drift Chamber

B1 Ver ( ), SPICE.,,,,. * : student : jikken. [ ] ( TarouOsaka). (, ) 1 SPICE ( SPICE. *1 OrCAD

13 2 9


Frontier Simulation Software for Industrial Science

QMI_10.dvi

スライド 1

PowerPoint Presentation


Activation and Control of Electron-Transfer Reactions by Noncovalent Bond

Microsoft Word - 章末問題

( ) ,

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef

untitled

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

4_Laser.dvi


4 1 Ampère 4 2 Ampere 31

untitled

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

(4.15a) Hurwitz (4.15a) {a j } (s ) {a j } n n Hurwitz a n 1 a n 3 a n 5 a n a n 2 a n 4 a n 1 a n 3 H = a n a n 2. (4.16)..... a Hurwitz H i H i i H

Acrobat Distiller, Job 2

untitled

untitled

pdf

note4.dvi

放射線化学, 92, 39 (2011)

J-PARC E15 K K-pp Missing mass Invariant mass K - 3 He Formation K - pp cluster neutron Mode to decay charged particles p Λ π - Decay p Decay E15 dete

原子・分子架橋系の量子輸送の理論 現状と展望

OPA134/2134/4134('98.03)

I ( ) 2019

25 3 4

卒業論文.PDF


23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

電子回路I_4.ppt

Report10.dvi

09_organal2

Microsoft PowerPoint - 発表スライド-Web公開用01.pptx

i

untitled

untitled

スライド 1

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

QMII_10.dvi

4‐E ) キュリー温度を利用した消磁:熱消磁

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C602E646F63>

Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE

untitled

text_0821.dvi

10 nm SThM Fig.1 AFM 6) AFM 7) Fig.1 AFM 0.1 N/m 100 pn 10 nn 8) SThM STM AFM RTD Resistance Temperature Device SNOM Scanning Near-field Optical Micro

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

From Evans Application Notes

CdTe γ 02cb059e :

news

Microsoft Word - sp8m4-j.doc

untitled


4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz


物理化学I-第12回(13).ppt

1-2 原子層制御量子ナノ構造のコヒーレント量子効果 Coherent Quantum Effects in Quantum Nano-structure with Atomic Layer Precision Mutsuo Ogura, Research Director of CREST Pho

PowerPoint プレゼンテーション

2 3 v v S i i L L S i i E i v L E i v 3. L urren (A) approx. 60% E = V = 0 Ω L = 00 mh urren (A) app

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

fma20.PDF

A 99% MS-Free Presentation

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

PowerPoint Presentation

1 1.1,,,.. (, ),..,. (Fig. 1.1). Macro theory (e.g. Continuum mechanics) Consideration under the simple concept (e.g. ionic radius, bond valence) Stru

SPring8菅野印刷.PDF

COE

IA

( )

untitled

Transcription:

Drain Voltage (mv) 4 2 0-2 -4 0.0 0.2 0.4 0.6 0.8 1.0 Gate Voltage (V)

Vds [V] 0.2 0.1 0.0-0.1-0.2-10 -8-6 -4-2 0 Vgs [V]

10 1000 1000 1000 1000 (LSI)

Fe Catalyst Fe Catalyst Carbon nanotube 1~2 nm

~10nm 0.34nm

Scanning Tunneling Microscope (STM) A IBM

A E I II III U U = 0 x 1 x 2 x h2 2m d 2 ϕ +U(x) = Eϕ T 2 dx exp 2 h x 2 x 1 2m(E U)dx

I II III U ϕ = Aexp ±i h x x 0 2m(E U) dx T = ϕ(iii) ϕ(i) 2 E U = 0 x 1 x 2 x T exp 2 h x 2 x 1 2m(E U)dx L 1 >L 2 T 1 << T 2 STM L 1A T 10 L 1 L 2

Chirality of Carbon Nanotube (n, 0) (0,0) (1,0) (2,0) (3,0) (4,0) (5,0) (6,0) (7,0) (1,1) (2,1) (3,1) (4,1) (5,1) (6,1) (7,1) (n,n) (2,2) (3,2) (4,2) (5,2) (6,2) armchair zigzag chiral Metal Metal Semi Con. Metal Semi Con. (3,3) (4,3) (5,3) (6,3) (4,4) (5,4)

Chemical Vapor Deposition (CVD) C Fe C 2 H 5 OH Fe

Fe Fe Particle TEM Image of SWCNT Fe CH 4 Gas C C Fe Fe Fe 900C/30min. (Fe)

Carbon Nanotube Growth from Fe Particles RT Heating CVD Fe Fe 3 O 4 Fe 2 O 3 Fe 3 O 4 Fe-C CNT FeO Fe 3 C Fe-C

Position Controlled Growth of Carbon Nanotube using Patterned Catalyst 1) Photo Resist Patterning P.R. Si Sub. 2) Fe Deposition Fe Si Sub. 3) Lift Off Fe Fe Catalyst Si Sub. 4) Carbon Nanotube Growth Carbon Nanotube CH 4 Gas Si Sub. 900C/30min. Fe Catalyst ~10%

Effect of Electric Field on Direction Control of Carbon Nanotube V A CH 4 Gas Catalyst Catalyst Fe Catalyst Fe Catalyst SiO 2 Si Sub. Carbon Nanotube Carbon nanotube Catalyst Catalyst ~20% SiO 2 Si Sub. Effect of Van der Waals Force between Carbon Nanotube & SiO 2 Sub.

Effect of Applied Field 0V +20V 0V Growth without Electric field 0V Electric field effect Growth Source 10V Drain -10V Gate -40V

+ - DC Bias Current Current Time C 2 H 5 OH H 2 CNT 900 Electrode Catalyst Time 900 Current Time

1nm

Peapod

Gd@C 82 peapod Gd +3 EELS Gd Gd 3+ @C 82 3- K.Hirahara et al., Phys.Rev.Lett. 85, 5384 (2000). K. Suenaga et al., Science 290, 2280 (2000). K.Hirahara et al., Phys.Rev.Lett. 85, 5384 (2000). Gd@C 82 +3 Dy@C 82 +3 Ti 2 @C 80 +4 Ce 2 @C 80 +6 Gd 2 @C 92 +6

STS - Gd@C 82 Peapod J. Lee et al. Nature 415 1005 (2002) Gd@C 82

Peapod FET FET C 60, C 78, C 90 Gd@C 82, Ti 2 @C 80, etc. Source Peapod Drain Ti/Au SiO 2 (100 nm) + p -Si sub. Hight / nm 2 1.5 1 0.5 0 0 100 200 Length / nm Gate Ti/Au

Various Type Peapod FET and its I D -V GS Characteristics I D (A) 10-8 10-9 10-10 10-11 10-12 Ce 2 C 80 -P GdC 82 -P Ti 2 C 80 -P C 60 -P 23 K V DS = 1 mv -40-30 -20-10 0 10 20 30 40 V GS (V) Ce 2 @C 80 +6 Ti 2 @C 80 +4 Gd@C 82 +3 C 60 +0 SWNT FET p Ti 2 @C 80 FET p / n

Various Organic Molecular Doping into Carbon Nanotube CNT CNT Structure was determined by Spring-8.

MOSFET Metal Oxide Silicon Field Effect Transistor I D : L : Ci : μ ν : Z V G1 Z I Dsat = μ n C i (V G -V T ) 2 2L g m = di Dsat dv G = Z μ n C i (V G -V T ) L V G2 V G3 V G4 L μ n C i Z V D I D I D p L Z p μ p C i p V T V G V T V G

Delft University

CNT (25,0): 1.99 nm Si GaAs InAs (19,0): 1.51 nm (13,0): 1.03 nm Eg (ev) 0.45 0.60 0.87 1.12 1.42 0.36 (cm 2 /Vs) 65,000 35,500 15,000 e: 1,500 h: 450 e: 8,500 h: 400 e: 33,000 h: 460 V. Perebeinos et al. (IBM) PRL 94, 086802 (2005) S. M. Sze, Physics of Semiconductor Devices 2nd Ed. Electron Drift Velocity (x10 7 cm/s) Carrier Velocity (10 7 cm/s) 4 CNT 3 2 GaAs Si 1 0 0 10 20 30 40 50 60 70 80 F (kv/cm) (G. Pennington et al. SISPAD 02, 279 (2002))

p type Al or Ti Ti SWNT SiO 2 (15nm) g m Si-MOSFET 2 CNT-FET Si-pMOS Lg nm 260 15 t ox nm 15 1.4 V th (V) -0.5-0.1 I on ma/mm) 2100 265 g m ( S/ m) 2321 975

High-k CNT-FET Stanford Univ. A. Javey et al. Nature Mat. 1, 241, 2002. ZrO 2 (k ~ 25) : 8 nm SiO 2 (k ~ 3): 0.9 nm p type C G I ON /I OFF ~ 10 4, g m = 6000 μs/μm, s-factor = 70 mv

n type Carbon Nanotube FET Logic n FET

I D I D p V T V G V T V G

FET IBM 52MHz Delft p 5 Hz Stanford 220Hz IBM 52MHz

IBM p type n type CNT φ=1.4nm

D IBM e h Drain Bias 0 10V(3 sec.) Repeat 190 sec. Integration S

D(E) D(E) D(E) E E 1 E 2 E 3 D(E) E E 1 E 2 E 3 D(E) E E 1 E 2 E 3 E

1 L x Ly D(E) = 2 dn x dn y dn z de 1 L x L y L z E = h 2 8π 2 m k 2 = h 2 8π 2 m (k 2 x + k 2 y + k 2 z ) L z D(E) = 2 dn x de 1 L x (1) E = h 2 2 k x 8π 2 m = h 2 n x π 8π 2 m L x 2 = n 2 xh 2 2 8mL x L x k x = n xπ L x n x = 2L x 2mE h dn x de = L x h 2m dn x de = L x E h (2) 2m E (1)(2) D(E) = 4 m h 2E 1 2

D(E) L x D(E) = 4 m h 2E 1 2 E 1, E 2 E 1 E D(E) D(E) = g s h m 2 E E n ( ) 1 2 E 1 E 2 E 3 E

Scanning Tunneling Spectroscopy (STS) J t J t A C B A V V dj t /dv D(E) C B A V

Scanning Tunneling Spectroscopy(STS) J t V C B A V Jt Tip E f C B A dj t /dv V J t E f 0 D(E) T(E,V )de D(E) : T(E,V): D(E) C B A V dj t dv D(E) T(E,V ) D(E)

STS J t A V

(0,0 ) (6,0 ) (5,0 ) (4,0 ) (3,0 ) (2,0 ) (1,0 ) (1,1 ) (7,0 ) (2,1 ) (3,1 ) (4,1 ) (6,1 ) (5,1 ) (7,1 ) (5,2 ) (6,2 ) (4,3 ) (4,4 ) (5,4 ) (5,3 ) (6,3 ) (5,5 ) (2,2 ) (3,2 ) (4,2 ) (3,3 ) Zigzag Type (n,0) Armchair Type (n,n) 1/3 Metalic 2/3 Semiconductor

I G 2e 2 h V V

E F D(E F ) = g s h m 2 E F E n ( ) 1 2 D(E) E = 1 2 mv 2 v(e F ) = v F = ( ) 2E m = 2 E E F n m 1 2 E 1 E 2 E E F 3 E n I = e D(E F ) v F ev = e g s h m 2 E F E n ( ) 1 2 2 E E F n m ( ) 1 2 g ev = s e 2 h V G = I V = g s e2 h = 2e2 h

n D(E) I = i= n i=1 2e 2 h V = n 2e2 h V 2e 2 G = I V = 2e2 h h G 3 2 E F E 1 E 2 E 3 E 1 E 1 E 2 E 3 V

1 R. M. Westervelt Science 2000 289 2323 Nature 410 183 2001

h2 2m d 2 ϕ +U(x)ϕ = Eϕ 2 dx U= = E 3 ϕ = Csin(kx) = Csin( nπ L x) E 2 k = nπ L = 0 L E 1 x E 3 = 9 8m h 2 L x 2 E n = h2 k 2 2m = h 2 nπ 8π 2 m L 2 = n 2 h 2 8mL 2 E 2 = 4 8m E 1 = 1 8m h 2 L x 2 h 2 L x 2

5nm E 3 e GaAs 0 L GaAs E 2 e E 1 GaAlAs GaAlAs x GaAs E 3 e E 2 GaAs A GaAs E 1 GaAs

Discrete Energy Level m ΔE Q m m Drain SiO 2 4μm Source

Discrete Energy Level 15 14 13 8.6K V G =0.98V ΔE Q Drain Source 12 11 V D =0.4mV SiO 2 4μm 10 9 3 3.5 4 4.5 5 Drain Voltage (mv) Drain 4.2 m Source

n n+1 ΔE ΔE L E n = hν n = hv F λ n E n +1 λ n +1 E n +1 = hν n +1 = hv F λ n +1 E n λ n ΔE ΔE = E n +1 E n = hv F λ n +1 hv F λ n L = hv F (n +1) 2L hv Fn 2L = hv F 2L

Resonant Tunneling of of Hole through Quantum Level in in Carbon Nanotube Negative Conductance Drain Current-Drain Voltage 15 14 13 12 11 10 8.6K V G =0.98V V D =0.4mV ΔE Q Discrete Energy Level Drain SiO 2 L 4μm Source ν 9 3 3.5 4 4.5 5 Drain Voltage (mv) h :Plank s Constant F :Fermi Velocity L :Length of CNT between Tunneling Barriers e :Elementary Charge ΔV D ΔE L = 4.2( μm) ΔE = hν F 2L 1.4μm L : 4.5μm 1 ΔΕ 3

35 30 Resonant Tunneling of 1.4μm CNT through Quantum Well 8.6K V G =-3.2V ΔE Q Discrete Energy Level L 25 Drain SiO 2 ΔV Δ 1.4μm D E Q Source 20 V D : V D =1.2mV 8 10 12 14 16 18 Drain Voltage (mv) 1.2mV 0.4mV = 3 L =1.4 μm ( ) ΔE ΔV D =1.2mV

W. Liang Harvard Univ. CNT 2LeV c /h ν F = 2 ΔE Q Discrete Energy Level L = 530nm Vg(V) Vg(V) T = 4K L = 200nm Drain SiO 2 4μm Source L = 220nm Vg(V)

Single Electron Transistor V G e - e - V D C t C G V G C t V D C Ec = e 2 / 2C E F e - X e/c E F ΔE = (Q-e) 2 /2C - Q 2 /2C = Ec ΔE > 0 Ec > ev e/2c > V Small V D e/2c > V > - e/2c

I D E F e - X e/c E F -e/2c e/2c V D Small V D e/2c > V > - e/2c e - I D E F e/c E F -e/2c e/2c V D e/2c < V Large V D V < - e/2c

V G e - I D E F e - X e/c E F -e/2c e/2c V D V D I D e/c G Small V D e - I D n = 0 n = 1 E F e/c E F -e/2c V G Gate V G e/2c V D Small V D

10K I D -e/2c e/2c V D 0 1 e/2c > V > - e/2c I D e/c G n = 0 n = 1 V G Tunnel Capacitance C 1 = C 2 = 4 x 10-19 F Gate Capacitance C G = 1 x 10-19 F

1) kt << Ec = e 2 /2C C 2) R T >> h / e 2 = R Q = 26k kt = 26meV at 300K Ec = e 2 /2C = 80meV at C = 10-18 F r = 10nm 800meV at C = 10-19 F r = 1nm r E F kt e - X e/c E F -e/2c I D e/2c V D

Simulated Charactersitics of Single Electron Tranasistor at 10K & 300K 10K 300K Tunnel Capacitance C 1 = C 2 = 4 x 10-19 F Gate Capacitance C G = 1 x 10-19 F C Σ = C 1 + C 2 + C G = 1.8 x 10-19 F Tunnel Capacitance C 1 = C 2 = 5 x 10-20 F Gate Capacitance C G = 8 x 10-20 F

4 8.6K Coulomb Diamond Characteristics of of Hole in in Entire Carbon Nanotube Island of of 4.5μm Drain Voltage (mv) 2 0-2 -4 n n-1 n-2 n-3 n-4 n-5 n-6 n-7 Drain Current (A) Drain h + Island Source 0.0 0.2 0.4 0.6 0.8 1.0 Gate Voltage (V)

3. Vds [V] SET AFM FIB Voltage pulse 0.2 0.1 0.0-0.1 Drain SiO 2 Si Sub. -0.2-10 -8-6 -4-2 0 Vgs [V] + Back Gate AFM CNT Metal coated AFM tip Source ΔV G [V] Ids1[A] 4.0n 3.0n 2.0n 1.0n l =22 nm 0.0-5.0n -10.0n -10-5 0 Vgs[V] 2.6 2.4 2.2 2.0 1.8 1.6 1.4 12 14 16 18 20 22 24 Dot length [nm] L = 15 nm CNT 20.0n 15.0n 10.0n 5.0n 0.0 22 nm/15nm nicks Ids2[A]

CNT Single Electron Transistor by AFM Nicking 20K Source e - Gate Drain I D e/c G Island V e 2C 1 n = 0 n = 1 n n -e 2 n 0 n n e 2 Q 0 =C g U g V G -e 2C1

CNT Single Electron Transistor by AFM Twisting Source e - Gate Drain 300K Island V e 2C 1 n n -e 2 n 0 n n e 2 Q 0 =C g U g -e 2C1

1.4 10-9 (A) 1.2 10-9 1 10-9 8 10-10 6 10-10 4 10-10 2 10-10 0 ~4V -2 10-10 0 1 2 3 4 5 6 7 8

Carbon Nanotube Rope

Lightbulbs with Carbon Nanotube Filaments

Vds [V] 0.2 0.1 0.0-0.1-0.2-10 -8-6 -4-2 0 Vgs [V]