Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ

Similar documents
SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+

Morse ( ) 2014

Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

( ) ( ) 1729 (, 2016:17) = = (1) 1 1

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

λ n numbering Num(λ) Young numbering T i j T ij Young T (content) cont T (row word) word T µ n S n µ C(µ) 0.2. Young λ, µ n Kostka K µλ K µλ def = #{T

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1

1.2 (Kleppe, cf. [6]). C S 3 P 3 3 S 3. χ(p 3, I C (3)) 1 C, C P 3 ( ) 3 S 3( S 3 S 3 ). V 3 del Pezzo (cf. 2.1), S V, del Pezzo 1.1, V 3 del Pe

1

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

wiles05.dvi


d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

Dynkin Serre Weyl

2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 1, 2 1, 3? , 2 2, 3? k, l m, n k, l m, n kn > ml...? 2 m, n n m

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1,

Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara Sp(2, R) p

meiji_resume_1.PDF

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

D 24 D D D

untitled

Q p G Qp Q G Q p Ramanujan 12 q- (q) : (q) = q n=1 (1 qn ) 24 S 12 (SL 2 (Z))., p (ordinary) (, q- p a p ( ) p ). p = 11 a p ( ) p. p 11 p a p


1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

量子力学 問題

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona

非可換Lubin-Tate理論の一般化に向けて

17 Θ Hodge Θ Hodge Kummer Hodge Hodge

1 G K C 1.1. G K V ρ : G GL(V ) (ρ, V ) G V 1.2. G 2 (ρ, V ), (τ, W ) 2 V, W T : V W τ g T = T ρ g ( g G) V ρ g T W τ g V T W 1.3. G (ρ, V ) V W ρ g W

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F


,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

数学Ⅱ演習(足助・09夏)

2018/10/04 IV/ IV 2/12. A, f, g A. (1) D(0 A ) =, D(1 A ) = Spec(A), D(f) D(g) = D(fg). (2) {f l A l Λ} A I D(I) = l Λ D(f l ). (3) I, J A D(I) D(J) =

AI n Z f n : Z Z f n (k) = nk ( k Z) f n n 1.9 R R f : R R f 1 1 {a R f(a) = 0 R = {0 R 1.10 R R f : R R f 1 : R R 1.11 Z Z id Z 1.12 Q Q id

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2


. Mac Lane [ML98]. 1 2 (strict monoidal category) S 1 R 3 A S 1 [0, 1] C 2 C End C (1) C 4 1 U q (sl 2 ) Drinfeld double. 6 2


prime number theorem

2000年度『数学展望 I』講義録

( ) (, ) ( )


第5章 偏微分方程式の境界値問題

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

0. Intro ( K CohFT etc CohFT 5.IKKT 6.

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

chap1.dvi

( 3) b 1 b : b b f : a b 1 b f = f (2.7) g : b c g 1 b = g (2.8) 1 b b (identity arrow) id b f a b g f 1 b b c g (2.9) 3 C C C a, b a b Hom C (a, b) h

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

1 1.1 R (ring) R1 R4 R1 R (commutative [abelian] group) R2 a, b, c R (ab)c = a(bc) (associative law) R3 a, b, c R a(b + c) = ab + ac, (a + b)c = ac +

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

.5.1. G K O E, O E T, G K Aut OE (T ) (T, ρ). ρ, (T, ρ) T. Aut OE (T ), En OE (F ) p..5.. G K E, E V, G K GL E (V ) (V, ρ). ρ, (V, ρ) V. GL E (V ), En

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x

SO(3) 49 u = Ru (6.9), i u iv i = i u iv i (C ) π π : G Hom(V, V ) : g D(g). π : R 3 V : i 1. : u u = u 1 u 2 u 3 (6.10) 6.2 i R α (1) = 0 cos α


Chap9.dvi

koji07-01.dvi

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

SO(2)

keisoku01.dvi

TOP URL 1

62 Serre Abel-Jacob Serre Jacob Jacob Jacob k Jacob Jac(X) X g X (g) X (g) Zarsk [Wel] [Ml] [BLR] [Ser] Jacob ( ) 2 Jacob Pcard 2.1 X g ( C ) X n P P

II Time-stamp: <05/09/30 17:14:06 waki> ii

平成 15 年度 ( 第 25 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 15 月年 78 日開催月 4 日 ) X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = (

Jacobson Prime Avoidance

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

: : : : ) ) 1. d ij f i e i x i v j m a ij m f ij n x i =



1 R n (x (k) = (x (k) 1,, x(k) n )) k 1 lim k,l x(k) x (l) = 0 (x (k) ) 1.1. (i) R n U U, r > 0, r () U (ii) R n F F F (iii) R n S S S = { R n ; r > 0

四変数基本対称式の解放


ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.


m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

On a branched Zp-cover of Q-homology 3-spheres

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R

all.dvi

Transcription:

Galois ) 0 1 1 2 2 4 3 10 4 12 5 14 16 0 Galois Galois Galois TaylorWiles Fermat [W][TW] Galois Galois Galois 1 Noether 2 1

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ C Λ Λ Λ /m lim /a a a /a rtin /a C Λ Λ 2

Ob C Λ m /a rtin Ob C Λ n M M n n M M n G V n k ρ : G ut k V ) 1.1. ρ Ob C Λ n M G ρ : G ut M) k[g] ψ : M k V ρ, ψ ) D ρ : C Λ Sets Ob C Λ D ρ ) = { ρ } ρ, ψ ) ρ, ψ ) C Λ 1 2 1 2 D ρ 1 ) D ρ 2 ) ρ 1, ψ 1 ) D ρ 1 ) ρ 1 1 2, ψ 1 1 2 ) D ρ R ρ Ob C Λ R ρ ρ ρ R ρ ρ V V k ut k V ) = GL n k) G ρ ut k V ) = GL n k) ρ Ob C Λ p : k Hom ρ G, GLn ) ) = { ρ : G GL n ) ρ GLn p ) ρ = ρ } ρ Hom ρ G, GLn ) ) G ρ GL n ) = ut n ) n k = k n Hom ρ G, GLn ) ) D ρ ) 1.1) ρ, ρ Hom ρ G, GLn ) ) ρ, ρ 1.1) ρ = Hρ H 1 H Ker GL n p ) ρ ρ, ψ ) 1.1) ρ Hom ρ G, GLn ) ) ρ, ψ ) ρ ρ, ψ ) V k β 3

1.2. ρ Ob C Λ n M G ρ : G ut M) k[g] ψ : M k V ψ β M β ρ, ψ, β ) D ρ : C Λ Sets Ob C Λ D ρ ) = { ρ } D ρ R ρ Ob C Λ R ρ ρ ρ R ρ ρ V k β ut k V ) = GL n k) G ρ ut k V ) = GL n k) ρ Ob C Λ ρ Hom ρ G, GLn ) ) G ρ GL n ) = ut n ) n k = k n n Hom ρ G, GLn ) ) D ρ ) 1.2) 2 2.1. ρ : G ut k V ) V k[g] End k[g] V = k ρ R ρ 2.1 2.2. ρ R ρ. 1.2) ρ R ρ Ob C Λ ρ univ Hom ρ G, GLn R ρ ) ) Ob C Λ Hom CΛ R ρ, ) Hom ρ G, GLn ) ) ; f f ρ univ) 2.1) f ρ univ) G ρ univ GL n R ρ ) GL nf) GL n ) 4

G Λ[G, n] Λ X g ij g G, 1 i, j n. { 1 i = j Xij e = 0 i j n X gh ij = X g il Xh lj g, h G, 1 i, j n. e G Λ l=1 Hom Λ lg Λ[G, n], ) Hom G, GL n ) ) ; f ρ f 2.2) ρ f g G ρ f g) = fx g ij )) i,j 2.2) ρ : G GL n k) Λ Λ[G, n] k m ρ m ρ Λ[G, n] Λ[G, n] m ρ R ρ R ρ Noether C Λ 2.2) Λ[G, n] R ρ ρ univ : G GL n R ρ ) ρ univ Hom ρ G, GLn R ρ ) ) 2.1) 2.1) Ob C Λ ρ Hom ρ G, GLn ) ) 2.2) ρ f ρ Hom Λ lg Λ[G, n], ) ρ m ρ f ρ m ρ ) m /a rtin a Λ[G, n] f ρ R ρ f ρ,a /a Λ f ρ,a : R ρ /a a f ρ,a Λ ˆf ρ : R ρ Hom ρ G, GLn ) ) Hom CΛ R ρ, ); ρ ˆf ρ 2.1) G = lim H H G ρ GL n k) ρ H H 5

ρ H : H GL n k) G H H ρ H R ρ H Ob C Λ ρ H,univ Hom ρ H, GLn R ρ H ) ) G 2 G H H H H ρ H,univ GL n R ρ H ) C Λ R ρ H R ρ H C Λ R H ) H R ρ = lim H R ρ H G H ρ H,univ GL n R ρ H ) H ρ univ : G GL n R ρ ) R ρ H rtin R ρ H Λ[H, n] R ρ H R ρ H G 2 G H H Λ[H, n] R ρ H Λ[H, n] R ρ H Λ[H, n] R ρ H R ρ R ρ H R ρ H R ρ rtin R ρ rtin R ρ H rtin R ρ Ob C Λ C Λ rtin = i lim i Hom CΛ R ρ, ) = lim i Hom CΛ R ρ, i ) = lim i lim H Hom CΛ R ρ H, i ) = lim i lim Hom ρh H H, GLn i ) ) = lim i Hom ρ G, GLn i ) ) = Hom ρ G, GLn ) ) 2.1) 2.1 End k[g] V = k 2.1 V k ut k V ) = GL n k) G ρ ut k V ) = GL n k) ρ G g 1,..., g r ρg i ) M n k) ρg i ) E i M n Λ) 6

C Λ M n Λ) M n ) E i E i M n ) M 0 n) = M n )/ i : M 0 n) M n ) r ; M mod ME i E i M) r i=1 π Λ i Λ = id M 0 n ) Λ π Λ : M n Λ) r M 0 nλ) π : M n ) r M 0 n) M n ) r = Mn Λ) r Λ π Λ id M 0 n λ) Λ = M 0 n) Ob C Λ Hom ρ G,GLn ) ) M n ) r π M 0 n ) 2.3) ρ ρg i ) ) r i=1 ρ Hom ρ G, GLn ) ) π E 1,..., E r ) ρ Hom ρ G, GLn ) ) Hom ρ,well G, GLn ) ) 2.3. Ob C Λ ρ Hom ρ G, GLn ) ) m GL n k) H GL n ) Hρ H 1 H GL n ) 1 + m. m m m = 0 m m = 1 m 2 m m 1 M0 n) L m m 1 M n) L mod m m 1 L mod m m 1 m m 1 M0 n) Hom ρ G, GLn ) ) Hom ρ G, GLn ) ) Hom ρ G, GLn ) ) ; ρ 1 + L)ρ 1 + L) 1 L ρ m m 1 1 + L)ρ 1 + L) 1 L mod m m 1 m m 1 M0 n) L mod m m 1 M 0 n) M 0 n) M 0 n); M mod M + L mod m m 1 M0 n) 2.3) m m 1 M0 n) m m = /m m ρ m m ρ m : G GL n m ) 7

m m GL n k) H m GL n m ) H m ρ Hm 1 H m 1 + m m m 1 > m 2 H m1 m m 2 H m2 H m m H m GL n ) H H GL n ) 1 + m Hom ρ,well G, GLn ) ) Hom ρ G, GLn ) ) 1.1) 2.3 Hom ρ,well G, GLn ) ) D ρ ) 2.4) 2.1. ρ ρ univ 2.3 H GL n Runiv) ρ well = Hρ univh 1 g G ρ well g) Runiv Λ R ρ R ρ C Λ ρ well Hom ρ,well G, GLn R ρ ) ) ρ univ 2.4) Ob C Λ Hom CΛ R ρ, ) Hom ρ,well G, GLn ) ) ; f f ρ univ ) 2.5) f ρ univ ) G ρ univ GL n R ρ ) GL nf) GL n ) 2.5) R ρ 2.5) ρ Hom ρ,well G, GLn ) ) 2.1) ρ f Hom CΛ R ρ, ) f R ρ f f ρ univ ) = f ρ well) = f Hρ univh 1 ) = GL n f)h)ρ GLn f)h) ) 1 f ρ univ ) ρ 2.3 f ρ univ ) = ρ n = 1 End k[g] V = k 1 2.4. n = 1 k p Λ m Λ Λ G ab,p G bel p ρ R ρ Λ G ab,p Λ[[G ab,p ]] 8

. ρ ut k V ) = k G ρ ut k V ) = k ρ ρg) k 0 k 0 k p k 0 Witt W k 0 ) Λ W k 0 ) Teichmüller k 0 W k 0 ) W k 0 ) Λ s Λ : k 0 Λ Ob C Λ GL 1 ) π : G G ab,p ρ univ : G GL 1 Λ[[G ab,p ]]); g s Λ ρg) ) πg) rtin Ob C Λ Hom CΛ Λ[[G ab,p ]], ) Hom ρ G, GL1 ) ) ; f f ρ univ ) 2.6) f ρ univ ) G ρ univ GL 1 Λ[[G ab,p ]]) GL 1f) GL 1 ) 2.6) rtin C Λ Λ s Λ : k Λ Λ s : k ρ Hom ρ G, GL1 ) ) h ρ : G ; g ρg)s ρg) ) 1 G h ρ π h ρ G ab,p h ρ : G ab,p Λ[G ab,p ] Λ G ab,p Λ f ρ : Λ[G ab,p ] g G ab,p Λ[G ab,p ] g h ρ g) f ρ Λ ˆf ρ : Λ[[G ab,p ]] Hom ρ G, GL1 ) ) Hom CΛ Λ[[G ab,p ]], ); ρ ˆf ρ 2.6) 9

3 k[ϵ] ϵ ϵ 2 = 0 k k[ϵ] k x, y x + yϵ k[ϵ] C Λ R C Λ R Zariski t R t R = Hom CΛ R, k[ϵ]) t R k k k[ϵ] k k[ϵ] k[ϵ] k k[ϵ] = { x + y 1 ϵ, x + y 2 ϵ) k[ϵ] k[ϵ] x, y1, y 2 k } h : Hom CΛ R, k[ϵ] k k[ϵ]) = Hom CΛ R, k[ϵ]) Hom CΛ R, k[ϵ]) = t R t R k f s : k[ϵ] k k[ϵ] k[ϵ]; x + y 1 ϵ, x + y 2 ϵ) x + y 1 + y 2 )ϵ t R t R t R h 1 Hom CΛ R, k[ϵ] k k[ϵ]) Hom C Λ R,f s ) Hom CΛ R, k[ϵ]) = t R a k k t R a m a : k[ϵ] k[ϵ]; x + yϵ x + ayϵ t R = Hom CΛ R, k[ϵ]) Hom C Λ R,m a) Hom CΛ R, k[ϵ]) = t R d ρ) End k V ) g G End k V ) End k V ); ϕ ρg)ϕ ρg) 1 G G d ρ) 3.1. End k[g] V = k R ρ ρ k t R ρ = H 1 G, d ρ) ). V k End k V ) M n k) ρ G GL n k) Hom ρ G, GLn k[ϵ]) ) D ρ k[ϵ]) = t R ρ 3.1) 10

Z 1 G, d ρ) ) G d ρ) 1 Z 1 G, d ρ) ) c : G M n k) Z 1 G, d ρ) ) Hom ρ G, GLn k[ϵ]) ) ; c 3.2) 3.1) g 1 + cg)ϵ ) ρg) ) 3.2) Z 1 G, d ρ) ) t R ρ 3.3) k 3.3) 1 3.2. R C Λ k Hom k-cont mr /m 2 R + m Λ R), k ) = tr m R /m 2 R + m ΛR) k k m R /m 2 R + m ΛR) R. m 2 k[ϵ] = 0 Hom CΛ R/m 2 R + m Λ R), k[ϵ] ) Hom CΛ R, k[ϵ]) = t R k m R /m 2 R + m Λ R) R/m 2 R + m Λ R) m R /m 2 R + m ΛR) Hom CΛ R/m 2 R + m Λ R), k[ϵ] ) Hom k-cont mr /m 2 R + m Λ R), k ) R ρ Noether 3.3. End k[g] V = k R ρ ρ R ρ Noether H 1 G, d ρ) ) k. 3.1 H 1 G, d ρ) ) k t R ρ k R ρ rtin lim i R i 3.2 t R ρ = Hom CΛ R ρ, k[ϵ]) = lim i Hom CΛ R i, k[ϵ]) = lim i Hom k mri /m 2 R i + m Λ R i ), k ) 11

t R ρ k dim k mri /m 2 R i + m Λ R i ) ) i Λ Noether dim k m Λ /m 2 Λ ) dim k mri /m 2 R i + m Λ R i ) ) dim k m Ri /m 2 R i ) dim k m Λ /m 2 Λ ) dim k mri /m 2 R i +m Λ R i ) ) i dim k m Ri /m 2 R i ) i.2 3.4. H 1 G, d ρ) ) k 1. K p G = G K H 1 G, d ρ) ) k 2. K S K K G S K Galois H 1 G, d ρ) ) k 4 4.1. 0, 1 C Λ p 1,0 : 1 0 C Λ I = Ker p 1,0 Im 1 = 0 I k ρ 0, ψ 0 ) ρ 0 ρ 0, ψ 0 ) p 1,0 Oρ 0, ψ 0 ) H 2 G, d ρ) k I ) 1. Oρ 0, ψ 0 ) 2. ρ 1 ρ 1, ψ 1 )D ρ p 1,0 ) : D ρ 1 ) D ρ 0 )ρ 0, ψ 0 ). ρ 0, ψ 0 ) ρ 0 Hom ρ G, GLn 0 ) ) γ 1 : G GL n 1 ) GL n p 1,0 ) γ 1 = ρ 0 c : G G d ρ) k I g 1, g 2 G cg 1, g 2 ) = γ 1 g 1 g 2 )γ 1 g 2 )γ 1 g 1 ) 1 + M n k) k I = d ρ) k I c G d ρ) k I 2 c H 2 G, d ρ) k I ) Oρ 0, ψ 0 ) Oρ 0, ψ 0 ) ρ 0 γ 1 4.2. End k[g] V = k R ρ ρ i = 1, 2 d i = dim k H i G, d ρ) ) d 1 Krull dimr ρ /m Λ R ρ ) d 1 d 2 d 2 = 0 R ρ Λ d 1 12

. d 1 3.3 R ρ Noether Zariski k f 0 : k[[x 1,..., X d1 ]] R ρ /m Λ R ρ m k[[x 1,..., X d1 ]] J = Ker f 0 f 0 : k[[x 1,..., X d1 ]]/mj R ρ /m Λ R ρ f 0 k 0 J/mJ k[[x 1,..., X d1 ]]/mj f 0 R ρ /m Λ R ρ 0 ρ R ρ R ρ /m Λ R ρ ρ 0, ψ 0 ) f 0 ρ 0, ψ 0 ) Oρ 0, ψ 0 ) H 2 G, d ρ) k J/mJ ) rtin- Rees J/mJ f Hom k J/mJ, k) T f : d ρ) k J/mJ G id f d ρ) k k = d ρ) Φ : Hom k J/mJ, k) H 2 G, d ρ) ) ; f H 2 G, T f ) Oρ 0, ψ 0 ) ) Φ f Hom k J/mJ, k) Φf) = 0 f 0 k[[x 1,..., X d1 ]]/mj Ker f R f 0 : R R ρ /m Λ R ρ f 0 k 0 k R f 0 R ρ /m Λ R ρ 0 Φf) = 0 f 0 ρ 0, ψ 0 ) ρ R ρ, ψ ) D ρ f 0) ρ 0, ψ 0 ) R k ρ, ψ ) R ρ R g 0 : R ρ /m Λ R ρ R f 0 g 0 = id R ρ /m Λ R ρ g 0 Zariski g 0 f 0 Φ k[[x 1,..., X d1 ]] J dim k J/mJ Krull dimr ρ /m Λ R ρ ) d 1 dim k J/mJ Φ dim k J/mJ d 2 d 2 = 0 Φ J = 0 f 0 Krull dimr ρ /m Λ R ρ ) = d 1 Λ[[X 1,..., X d1 ]] f R ρ k[[x 1,..., X d1 ]] 13 f 0 R ρ /m Λ R ρ

f : Λ[[X 1,..., X d1 ]] R ρ f Zariski C Λ g 1 : R ρ R ρ /m Λ R ρ f 1 0 k[[x 1,..., X d1 ]] k[x 1,..., X d1 ]/X 1,..., X d1 ) 2 g 1 Zariski d 2 = 0 g 1 k[x 1,..., X d1 ]/X 1,..., X d1 ) 2 Λ[[X 1,..., X d1 ]]/m Λ, X 1,..., X d1 ) 2 k[x 1,..., X d1 ]/X 1,..., X d1 ) 2 g 1 g 2 : R ρ Λ[[X 1,..., X d1 ]]/m Λ, X 1,..., X d1 ) 2 m 2 g m : R ρ Λ[[X 1,..., X d1 ]]/m Λ, X 1,..., X d1 ) m g m+1 : R ρ Λ[[X 1,..., X d1 ]]/m Λ, X 1,..., X d1 ) m+1 g m ) m 2 g : R ρ Λ[[X 1,..., X d1 ]] g g 1 Zariki g f : Λ[[X 1,..., X d1 ]] Λ[[X 1,..., X d1 ]] Ker f 0 Kerg f) m) m 1 Λ[[X 1,..., X d1 ]] Λ[[X 1,..., X d1 ]] Noether f 4.3. 3.4 1 2 k 4.2 d 1 d 2 Euler-Poincaré 5 S D ρ S R) 1. Sk) = D ρ k). 2. ρ, ψ ) Ob C Λ ρ, ψ ) S) a a ρ /a, ψ /a) S/a) 14

3. ρ, ψ ) Ob C Λ a b a, b ρ /a, ψ /a) S/a)ρ /b, ψ /b) S/b) ρ /a b), ψ /a b) ) S /a b) ) 4. ρ, ψ ) Ob C Λ rtin C Λ Λ ρ, ψ ) S) ρ, ψ ) S ) 5.1. End k[g] V = k R ρ ρ D ρ S R) R ρ a S R ρ /a S Ob C Λ Ob C Λ Hom CΛ R ρ, ) D ρ ) Hom CΛ R ρ /a S, ) S). ρ R ρ, ψ R ρ ) R ρ X S ρ R ρ R ρ R ρ /a, ψ R ρ R ρ R ρ /a) SR ρ /a) R ρ a a S = a X S a.3 R ρ lim R ρ a XS /a R ρ /a S lim R ρ a XS /a a S C Λ n M G ρ : G ut M) ρ n G ut M) = det ρ δ : G Λ C Λ δ : G δ Λ Λ Λ D ρ D ρ,δ C Λ { } D ρ,δ ) = ρ : G ut M), ψ ) D ρ ) det ρ = δ 5.2. End k[g] V = k D ρ,δ k) = D ρ k) D ρ,δ R ρ,δ Ob C Λ. D ρ,δ R) 5.1 I G n = 2 C Λ ρ ρ : G ut M), ψ ) I M I M I M 1 I D ρ D ord ρ 15

5.3. End k[g] V = k D ord ρ k) = D ρ k) D ord ρ Ob C Λ R ord ρ. ρ : G ut M), ψ ) ρ C Λ ρ k I ρ, ψ ) I ψ x 1) 0 x M I V g 0 I [G] G g I M g 1) g 0 det ρ g 0 ) ) [G] C I ) ρ, ψ ) I C I ) C I ) y 0, g 0 det ρ g 0 ) ) y 0 ) k y 0 V ψ y 1) = y 0 y M x = g 0 det ρ g 0 ) ) y) x M I ψ x 1) 0 ρ, ψ ) I ρ, ψ ) I C I ) D ord ρ R) 5.1 n K p G = G K k p rtin C Λ ρ, ψ ) ρ O K G K C Λ ρ, ψ ) rtin ρ, ψ ) ρ, ψ ) D ρ Dfl ρ 5.4. End k[g] V = k D fl ρk) = D ρ k) D fl ρ Rfl ρ Ob C Λ. Dfl ρ R) 5.1.1. C Λ rtin lim i i 1 j 3 M j i ) i M j i M 1 i ) M 2 i ) M 3 i ).1) i ) i i 1 j 3 M j i M j i i.1) lim Mi 1 lim i Mi 2 lim i i M 3 i 16

. i 1 j 3 M j i rtin rtin Mittag-Leffler.2. C Λ rtin lim i i 1. Noether 2. dim k m i /m 2 i ) i m. 1 2 2 Noether m m m m lim i m m i m m = 0 m m m lim i m m i m m+1 lim i m m+1 i 0 m m+1 i m m i m m i /m m+1 i 0.2) N = i lim m m i /m m+1 i 2 dim k m m i /m m+1 i ) i i m m i+1 /m m+1 i+1 m m i /m m+1 i N k.2) i.1 0 lim i m m+1 i m m N 0.3) l = dim k N N k m m a 1,..., a l a j i a j,i i l i m m i ; x 1,... x l ) x 1 a 1,i + + x l a l,i i.1 m m a 1,..., a l l dim k m m /m m+1 ) dim kn) = l m m+1.3) m m N mm+1 lim i mm+1 i Noether m b 1,..., b h m Λ Λ[[X 1,..., X h ]] ; X j b j 17

Noether m m m m m m 0 m m i i i /m m i 0.1 m m = lim i mm i /m m = lim i i /m m i 2 ) dim k i /m m i i i i+1 /m m i+1 i /m m i i /m m i m m.3. Ob C Λ X F = a X a lim a X /a /F lim a X /a. a i a i a 0 a 0 i a 0,i a i aa 0,i a 0,i rtin i a 0,i lim a a a 0,i.1 a 0 = lim i a 0,i lim i lim a a 0,i = lim lim a a 0,i = lim a0 + a)/a ) i a a a 0 = lim a /a a 0 lim a /a lim a0 a + a)/a ).1 a 0 lim a0 + a)/a ) lim /a lim /a 0 + a) 0 a a lim a /a 0 + a) rtin lim a0 a + a)/a ) lim /a lim /a a a a [Ma1] [Ma2] B. Mazur, Deforming Galois representations, Galois groups over Q Berkeley, C, 1987), 385 437, Math. Sci. Res. Inst. Publ. 16, Springer, New York, 1989. B. Mazur, n introduction to the deformation theory of Galois representations, Modular forms and Fermat s last theorem Boston, M, 1995), 243 311, Springer, New York, 1997. [Sch] M. Schlessinger, Functors on rtin rings, Trans. mer. Math. Soc. 130 1968), 208 222. 18

[SL] [TW] [W] B. de Smit, H. W. Lenstra, Jr. Explicit construction of universal deformation rings, Modular forms and Fermat s last theorem Boston, M, 1995), 313 326, Springer, New York, 1997. R. Taylor,. Wiles, Ring-theoretic properties of certain Hecke algebras nn. of Math. 2) 141 1995), no. 3, 553 572.. Wiles, Modular elliptic curves and Fermat s last theorem nn. of Math. 2) 141 1995), no. 3, 443 551. [],,, 2009. 19