Size: px
Start display at page:

Download ""

Transcription

1 (CRR ) Richardson

2 Crank-Nicolson : Black-Scholes Euler Milstein

3 0 3 0 Options, Futures, and Other Derivatives, John Hull, ( ) Investment Science, David G. Luenberger, Oxford Univ Pr, (, ) Stochastic Calculus for Finance I: The Binomial Asset Pricing Model, S.E.Shreve, Springer, ( I, ) Stochastic Calculus for Finance II: Continuous-Time Models, S.E.Shreve, Springer, ( II, ) Arbitrage Theory in Continuous Time,T. Bjork, Oxford Univ Pr.,, Dynamic Asset Pricing Theory J.Darrell Duffie Princeton Univ Pr..,,,,,,, Stochastic Differential Equations, An introduction with application, B.Øksendal, ( ) Brownian Motion and Stochastic Calculus, I.Karazats and S.E.Shreve, Springer, ( ), III, Implementing Derivatives Models, L. Clewlow and C. Strickland, Wiley&Sons Options, Futures, and Other Derivatives, John Hull, ( ) Dynamic Asset Pricing Theory J.Darrell Duffie Princeton Univ Pr Quantitative Methods in Derivatives Pricing, D. Tavella, John Wiley& Sons Monte Carlo Methods in Financial Engineering, P. Glasserman, Springer

4 0 4 Glasserman Glasserman Numerical Recipes in C H. P. William ( C ) (C++ ) Numerical Recipes R RjpWiki ( R R-Tips ( Web PDF R Rmetrics ( RQuantLib ( RQuantLib QuantLib C++ R QuantLib Frequently Asked Questions in Quantitative Finance P. Wilmott Wilmott Wilmott ( wilmott.com/)

5 ( ) ,2 p, q (p, q > 0, p + q = 1) , 2 5 ( (15, 5) ) , 2 9 (3, 2) 3 (3, 2) ? ,2 3 1 x 1 2 x 2 3 ( ) ( ) ( x 1 + x 5 2 = 10 2) x 1, x 2 (x 1, x 2 ) = (1/10, 3/20) (x 1, x 2 ) 3 1,2 (x 1, x 2 ) = (1/10, 3/20) x 1 + 9x 2 = = p, q

6 (us, ds), S 2 (1 + r, 1 + r), 1 2 r 0 < d < 1 + r < u (1.1) (V 1, V 2 ) 3 v 1,2 us 1 + r V 1 S 1 ds 1 + r V x 1, x 2 3 ( ) ( ) ( ) us 1 + r V1 x 1 + x ds 2 =. 1 + r V 2 x 1 = V 1 V 2 S(u d), x 2 = dv 1 + uv 2 (1 + r)(u d) 3 v v = x 1 S + x 2 = 1 + r d u d V r + 1 r + u u d V r (1.2) 3 p, q (1.2) p = 1 + r d u d, q = 1 r + u u d (1.3) (1.1) 0 < p, q < 1, p + q = 1 ( p, q) Ẽ[ ] (1.2) [ ] V v = Ẽ 1 + r V P (V = V 1 ) = p, P (V = V 2 ) = q ( p, q) 1 S 1 Ẽ[S 1 ] = pus + qds = (1 + r)s

7 1 7 ( p, q) 1 Ẽ[(S 1 S)/S] 2 r r 1 (Ẽ[S 1/(1 + r)] = S) ( p, q) nikkei_l nikkei_r Index Index 1.1 ( ) ( ) (Ω, P, F) Ω X(ω) (ω Ω) X t ( ) {X(t, ω) t T T T t ω ) X(t, ω) ω Ω t X(t, ω) t X(t, ω) X X {X(t) t 1 < t 2 < < t n (X(t 1 ), X(t 2 ),..., X(t n ))

8 {W (t) (1) W (0) = 0 (2) {W (t) ω Ω W (t, ω) t (3) 0 < t 1 < t 2 < < t n n W (t 1 ) W (t 0 ), W (t 2 ) W (t 1 ),..., W (t n ) W (t n 1 ) ( ) (4) s t W (t) W (s) 0, t s (1) (4) Wiener X(t) = µt + σw (t) (µ, σ)- X(t) (µ, σ)- X(t) BM(µ, σ 2 ) (1.4) (µ, σ)- S(t) = S exp {µt + σw (t), S S > dx(t) = µ(x(t))dt + σ(x(t))dw (t), X(0) = x. (1.5) (1.5) {X(t) (1.5) X(t) = x + t 0 µ(x(s))ds + 3 (1.5) σ 0 t dx(t) = µ(x(t))dt, X(0) = x 0 σ(x(s))dw (s) (1.6) d X(t) = µ(x(t)), X(0) = x (1.7) dt µ(x(t)) = µx(t) (µ ) X(t) = xe µt

9 1 9 W Index X (1.5) (1.7) σ(x(t))dw (t) (1.5) (1.5) dx(t) X(t) t dx(t) X(t + t) X(t) dw (t) (1.5) X X(t + t) X(t) = µ(x(t)) t + σ(x(t))(w (t + t) W (t)) (1.8) W (t + t) W (t)

10 1 10 0, t (1.8) X(0) = x X( t) = X(0) + µ(x(0)) t + σ(x(0)) tz 1 X(2 t) = X( t) + µ(x( t)) t + σ(x( t)) tz 2. (1.9) X(n t) = X((n 1) t) + µ(x((n 1) t)) t + σ(x((n 1) t)) tz n X( t), X(2 t),..., X(n t),... Z 1,..., Z n {X(k t) (k = 0, 1,... ) (1.5) X(0), X( t), X(2 t),... {X(t) (1.5) {X(t) 1.2 µ(x(t)) 0, σ(x(t)) 1 dx(t) = dw (t) 1.3 µ(x(t)) µ( ), σ(x(t)) σ( ) dx(t) = µdt + σdw (t) (1.10) (µ, σ)- σ = 0 X(t) = µt σdw (t) µt 1.4 µ(x(t)) = µx(t), σ(x(t)) = σx(t) (µ, σ ) dx(t) = µx(t)dt + σx(t)dw (t) (1.11) Black-Scholes - (1.11) dx(t) X(t) = µdt + σdw (t) X(t + t) X(t) X(t) = µ t + σ(w (t + t) W (t)) {X(t) (1.11) N(µ t, σ 2 t) (1.11) X(t) = x exp {(µ 12 ) σ2 t + σw (t)

11 dx(t) = λ( X X(t))dt + σdw (t) (Ornstein-Uhlenbeck ) (1.12) dx(t) = λ( X X(t)) + σ X(t)dW (t) (Feller ) (1.13) *1 (1.10) X(t) (1.10) X((n + 1) t) = X(n t) + µ t + σ(w ((n + 1) t) W (n t)) = X(n t) + µ t + σ tz n, n = 0, 1,... [0, 1] N t = 1/N X(n t) = X n X n+1 = X n + µ t + σ tz n, n = 0, 1,... Z 1,..., Z n R 1.2 Bmotion <- function(mu, sigma){ T <- 1 N <- 250 Delta <- 1/N X0 <- 0 # #[0,T] #1 # X <- numeric(n) X[1] <- X0 #X for (i in 1:(N-1)){ X[i+1] <- X[i] + mu*delta + sigma*sqrt(delta)*rnorm(1) plot(x, type="l") # X matplot() 1.3 Bmotion2 <- function(mu, sigma){ *1

12 1 12 T <- 1 # N <- 250 #[0,T] Delta <- 1/N #1 Npath <- 30 # X0 <- 0 # X <- matrix(0, nrow = N, ncol =Npath) #X for (j in 1:Npath) { X[1,j] <- X0 for (i in 1:(N-1)){ X[i+1,j] <- X[i,j] + mu*delta + sigma*sqrt(delta)*rnorm(1) matplot(x, type="l") # X x(t) f : R R d dt f(x(t)) = f (x(t)) dx(t) dt {X(t) f(x) {f(x(t)) (1) {X(t) : dx(t) = µ(x(t))dt + σ(x(t))dw (t), X(0) = x. f : R R {f(x(t)) df(x(t)) = f (X(t))dX(t) f (X(t))(dX(t)) 2 [ = µ(x(t))f (X(t)) + 1 ] 2 σ2 (X(t))f (X(t)) dt + σ(x(t))f (X(t))dW (t) (1.14) (1.14) (dx(t)) 2 dw (t) dt (1) dt dt = 0 (2) dt dw (t) = 0 (3) dw (t) dw (t) = dt

13 1 13 (dx(t)) 2 (dx(t)) 2 = [µ(x(t))dt + σ(x(t))dw (t)] 2 = µ 2 (X(t))(dt) 2 + 2µX(t)σ(X(t))dtdW (t) + σ 2 (X(t))(dW (t)) 2 = σ 2 (X(t))dt (1.15) (2) {X(t) 2 f(t, x) {f(t, X(t)) df(t, X(t)) = f t (t, X(t))dt + f x (t, X(t))dX(t) f xx(t, X(t))(dX(t)) 2 [ = f t (t, X(t)) + f x (t, X(t))µ(X(t)) + 1 ] 2 f xx(t, X(t))σ 2 (X(t)) dt (1.16) + f x (t, X(t))σ(X(t))dW (t). f t = f/ t, f x = f/ x, f xx = 2 f/ x 2 (1.16) (dt) 2 dt dx(t) Y (t) = y 0 exp{µt + σw (t) (µ, σ ) X(t) = µt + σw (t), f(x) = y 0 exp(x) dy (t) = df(x(t)) = f (X(t))dX(t) f (X(t))(dX(t)) 2 = y 0 exp(x(t))(µdt + σdw (t)) y 0 exp(x(t))(µdt + σdw (t)) 2 ( = Y (t) µdt + σdw (t) + 1 ) 2 σ2 dt = Y (t) [(µ + 12 ) ] σ2 dt + σdw (t) (1.17) {X(t) dy (t) = (µ + 12 σ2 ) Y (t)dt + σy (t)dw (t) ( 1.4 ) T ds(t) = µs(t)dt + σs(t)dw (t), S(0) = S 0 > 0 (1.18)

14 1 14 (µ, σ ( ) ) T, K T K (S(T ) K) + x + = max{0, x T, K T K (K S(T )) + f : R R f(s(t )) (1.18) db(t) = rb(t)dt, B(0) = 1 B(t) = e rt (r 0) 1.1 T (S(T ) K) + ϕ(t) η(t) V (t) V (t) = ϕ(t)s(t) + η(t)b(t) (1.19) ϕ(t), η(t) self-financing V (t) dv (t) = ϕ(t)ds(t) + η(t)db(t) = [µϕ(t)s(t) + rη(t)b(t)] dt + σϕ(t)s(t)dw (t) (1.20) V (T ) = (S(T ) K) + ϕ, η t [0, T ] C(t) C(T ) = (S(T ) K) + C(t) 2 f C(t) = f(t, S(t)) df(t, S(t)) = f t (t, S(t))dt + f s (t, S(t))dS(t) f ss(t, S(t))(dS(t)) 2 [ = f t (t, S(t)) + µs(t)f s (t, S(t)) + 1 ] 2 σ2 S 2 (t)f ss (t, S(t)) dt (1.21) + σf s (t, S(t))S(t)dW (t)

15 1 15 V (T ) = (S(T ) K) + (= C(T )) (ϕ, η) V (t) = C(t), t [0, T ] (1.22) (1.22) (ϕ, η) (1.21) (1.20) µϕ(t)s(t) + rη(t)b(t) = f t (t, S(t)) + µs(t)f s (t, S(t)) σ2 S 2 (t)f ss (t, S(t)) (1.23) σϕ(t) = σf s (t, S(t)) (1.24) (1.19), (1.23), (1.24) ϕ, η, f ϕ(t) = f s (t, S(t)) (1.25) η(t) = f(t, S(t)) f s(t, S(t))S(t) B(t) (1.26) f t (t, S(t)) + rs(t)f s (t, S(t)) σ2 S 2 (t)f ss (t, S(t)) rf(t, S(t)) = 0 (1.27) f t (t, s) + rsf s (t, s) σ2 s 2 f ss (t, s) rf(t, s) = 0, f(t, s) = (s K) +, s > 0 (1.28) {f(t, S(t)) (ϕ, η) V (0) = C(0) = f(0, S 0 ) (1.28) (1.28) f(t, s) = sn(d + (T t, s)) Ke r(t t) N(d (T t, s)) (1.29) N d ± (t, x) = 1 [log σ xk ) ] (r t + ± σ2 t. (1.30) 2 (1.30) R BScall <- function(r, sigma, T, K, S0){ f(0, S 0 ) = S 0 N(d + (T, S 0 )) Ke rt N(d (T, S 0 )) #r: #sigma: #t: #T: #K: #S0:

16 1 16 dplus <- 1/(sigma*sqrt(T))*(log(S0/K)+(r+0.5*sigma^2)*T) dminus <- 1/(sigma*sqrt(T))*(log(S0/K)+(r-0.5*sigma^2)*T) price <- S0*pnorm(dplus) - K*exp(-r*T)*pnorm(dminus) return(price) r = 0.1, S 0 = 62, K = 60, σ = 0.2, T = 5 > BScall(0.1,0.2,5/12,60,62) [1] > ( ) T (S(T ) K) + C(0) = E Q [ e rt (S(T ) K) +] (1.31) E Q [ ] Q {S(t) ds(t) = rs(t)dt + σs(t)dw Q (t), S(0) = S 0 > 0 (1.32) {W Q (t) Q (1.18) S(t)dt ( ) r {W (t) {S(T ) (1.31) (1.32) Girsanov-, Radon-Nikodým 0 t < T C(t) C(t, x) = e r(t t) E Q [ (S(T ) K) + S(t) = x ] C(t, x) (1.28) Feynman-Kac T F F = f(s(t )) F = g({s(t) 0 t T ) E Q [ e rt F ]

17 (1.18) 1 1 δ ds(t) = µs(t)dt + σs(t)dw (t) δs(t)dt = (µ δ)s(t)dt + σs(t)dw (t) (1.33) (1.20) dv (t) = ϕ(t)ds(t) + η(t)db(t) + ϕ(t)δs(t)dt = [µϕ(t)s(t) + rη(t)b(t)]dt + σϕ(t)s(t)dw (t). (1.34) (1.20) C(t) = f(t, S(t)) df(t, S(t)) = [ f t (t, S(t)) + (µ δ)s(t)f s (t, S(t)) + 1 ] 2 σ2 S 2 (t)f ss (t, S(t)) dt + σf s (t, S(t))S(t)dW (t) (1.35) f t (t, s) + (r δ)sf s (t, s) σ2 s 2 f ss (t, s) rf(t, s) = 0, f(t, s) = (s K) +, s > 0 (1.36) sf s r δ f(t, s) = se δ(t t) N(d + (T t, s)) Ke r(t t) N(d (T t, s)) (1.37) d ± (t, x) = 1 σ t [log xk ) ] (r + δ ± σ2 t. (1.38) 2 {S(t) ds(t) = (r δ)s(t)dt + σs(t)dw Q (t), S(0) = S 0 > 0 f(s(t )) E Q [e rt f(s(t ))] (1.39)

18 S(t) ds(t) = µs(t)dt + σs(t)dw (t), S(0) = s 0 > 0 S(t) 1 B d (t) db d (t) = r d B d (t)dt, B d (0) = 1 r d S(t) (S(T ) K) + S(t) B f (t) S(t)B f (t) B f (t) db f (t) = r f B d (t)dt, B f (0) = 1 r f B f (t) ϕ(t) B d (t) η(t) V (t) = ϕ(t)s(t)b f (t) + η(t)b d (t) f t (t, s) + (r d r f )sf s (t, s) σ2 s 2 f ss (t, s) r d f(t, s) = 0, f(t, s) = (s K) +, s > 0 (1.40) sf s r d r f f(t, s) = se rf (T t) N(d + (T t, s)) Ke rd (T t) N(d (T t, s)) d ± (t, x) = 1 σ t [log xk ) ] (r + d r f ± σ2 t. 2 {S(t) ds(t) = (r d r f )S(t)dt + σs(t)dw Q (t), S(0) = S 0 > 0 f(s(t )) E Q [e rdt f(s(t ))] (1.41)

19 T t > 0 τ {τ < t t τ τ t f(s(t)) τ f(s(τ )) f(s(τ )) [ ] E e rτ f(s(τ )) τ τ V 0 = sup E [ e rτ f(s(τ)) ] (1.42) τ T 0,T T 0,T [0, T ] (1.42) (1.42) Black-Scholes * f ( ) 1 T ( ) { S(t)dt, f max T S(t), f (S(T )) I max S(t) < B 0 0 t T 0 t T (1.43) f I *2

20 Black-Scholes Black-Scholes Heston ds(t) = µs(t)dt + Y (t)s(t)dw 1 (t) dy (t) = α(m Y (t))dt + β Y (t)dw 2 (t) dw 1 (t) dw 2 (t) = ρdt, 1 ρ (1) Tree models (2) Finite-difference methods (3) Monte Carlo methods (1) (2) Tree & FD MC

21 (CRR ) Cox-Ross-Rubinstein ( Option Pricing: A Simplified Approach, J.Financial Economics, 7(1979) ) 2 ds(t) = rs(t)dt + σs(t)dw (t) (2.1) u, d, p (2.1) Black-Scholes : db(t) = rb(t)dt, B(0) = 1 (B(t) = e rt ) : ds(t) = rs(t)dt + σs(t)dw (t), S(0) = S 0 (2.2) : T (S(T ) K) + E[e rt (S(T ) K) + ] 2 *3 [0, T ] N t := T/N t i = i t (i = 0, 1,..., N) t 0, t 1,..., t N *3 Black-Scholes

22 2 22 S(t 0 ), S(t i ),..., S(t N ) S(t i+1 ) = D i+1 S(ti ), i = 0,..., N (2.3) D i P (D i = u) = p, P (D i = d) = 1 p, 0 < p < 1 S i = S(t i ) S i i 1 i S i = D j S 0 j=1 S i u k d i j S 0, j = 0,..., i P (S i = u j d i j S 0 ) = ( i j) p j (1 p) i j {S i i=0,1,...,n (2.2) u, d, p (2.2) S(t + t) = S(t) exp {(r 12 ) σ2 t + σ(w (t + t) W (t)) (2.4) W (t + t) W (t) N(0, t) S(t) S(t + t) (2.4) u, d, p (2.4) u, d, p us i S i ds i t i t i + t 2 t i S i s S i+1 E[S i+1 S i = s ] = pus + (1 p)ds (2.5) (2.1) S(t i ) = s S(t i + t) [ E [S(t i + t) S(t i ) = s ] = se exp {(r 12 ) ] σ2 t + σ(w (t + t) W (t)) = se r t. (2.6)

23 2 23 *4 (2.5) (2.6) e r t = pu + (1 p)d p = er t d u d (2.7) (1.3) 2 V [S i+1 S i = s] = E[Si+1 S 2 i = s] (E[S i+1 S i = s]) 2 = p(us) 2 + (1 p)(ds) 2 (pus + (1 p)ds) 2 = s 2 ( pu 2 + (1 p)d 2 (pu + (1 p)d) 2) = s 2 ( pu 2 + (1 p)d 2 e 2r t) (2.1) V [S(t i + t) S i = s] = s 2 e 2r t (e σ2 t 1) (2.8) pu 2 + (1 p)d 2 e 2r t = e 2r t (e σ2 t 1) e (2r+σ2) t = pu 2 + (1 p)d 2 (2.9) u, d, p (2.7) (2.9) CRR ud = 1 (2.10) (2.7) (2.9) e r t ( ) d u d u2 + 1 er t d d 2 = e (2r+σ2) t e r t (u + d) ud = e (2r+σ2 ) t u d (2.11) u = 1/d d u 2 (e r + e (r+σ2) t )u + 1 = 0 u > d u = β + β 2 1 *4 Z N(µ, σ 2 ) e Z [ E e Z] ) = exp (µ + σ2 2 V E [(e Z ) 2] = exp ( 2µ + 2σ 2) [ e Z] [ = E (e Z ) 2] ( [ E e Z]) 2 = e 2µ+2σ 2 e 2µ+σ2 = e 2µ+σ2 (e σ2 1).

24 2 24 β = (e r t + e (r+σ2 ) t )/2 d, p (2.7) (2.10) u = β + β 2 1 d = β β 2 1 p = er t d u d u, d β = e r t + e (r+σ2 ) t. 2 u = e σ t, d = e σ t t 0 u, d (2.7),(2.9),(2.10) *5 (2.10) p = 1 2 (2.7),(2.9),(2.12) u, d, t 0 ( ) u = e r t 1 + e σ2 t 1 ( ) d = e r t 1 e σ2 t 1 u e (r 1 2 σ2 ) t+σ t, d e (r 1 2 σ2 ) t σ t, (2.12) T ( ) t i j (j i) ( (i, j) ) C i,j (i, j) S i,j = S 0 u j d i j C N,j = (S N,j K) +, j = 0, 1,..., N (2.13) N j=0 ( N j ) p j (1 p) N j e rt (S N,j K) + (2.14) *5 u 1 + σ δt σ2 t, d 1 σ δt σ2 t, e r t 1 + r t (2.11) t e r t (u + d) ud (1 + r t)(2 + σ 2 t) r t + σ 2 t (2.11) e (2r+σ2) t 1 + 2r t + σ 2 t

25 2 25 (5.15) i N 1 C i,j = e r t (pc i+1,j+1 + (1 p)c i+1,j ), i = N 1, N 2,..., 0, j = 0, 1,..., i C 0,0 *6 (1) u, d, p (i, j) S i,j S i,j = S 0 u j d i j (2) C N,j = (S N,j K) +, j = 0, 1,..., N (3) (5.16) C i,j = e r t (pc i+1,j+1 + (1 p)c i+1,j ), C 0,0 R 2 CRREcall <- function(r, sigma, T, K, S0, N) { S <- matrix(0, nrow=n+1, ncol=n+1) # C <- matrix(0, nrow=n+1, ncol=n+1) # delta <- T/N # u <- exp(sigma*sqrt(delta)) d <- exp(-sigma*sqrt(delta)) p <- (exp(r*delta) - d)/(u - d) # # # # for (i in 0:N){ for (j in 0:i){ S[i+1,j+1] <- S0*u^j*d^(i-j) *6 R 1

26 2 26 # for (j in 0:N){ C[N+1, j+1] <- max(s[n+1,j+1] - K, 0) # # for (i in N:1) { for (j in 1:i) { C[i,j] <- exp(-r*delta)*(p*c[i+1,j+1] + (1-p)*C[i+1,j]) return(c[1,1]) # ( ) S[i,j] (i N) r = 0.1, σ = 0.2, T = 5, S 0 = 62, K = 60, N = 300 > CRREcall(0.1,0.2,5/12,60,62,300) [1] > 2.2 (2.3) h(x) *7 V 0 V 0 = sup E[e rτ h(s τ )] τ T 0,N T 0,N {0,..., N {S 1,..., S N τ V i (x) = sup E[e r(τ ti) h(s τ ) S i = x] τ T i,n τ = min{i {0,..., N V i (S i ) h(s i ) V i (x) V i (x) = max{h(x), E[e r t V i+1 (D i+1 x)]. (2.15) E[e r t V i+1 (D i+1 x)] i (2.15) *7 K h(x) = (x K) +, h(x) = (K x) +

27 2 27 V 0 (S 0 ) 2 V i,j = max { h(s i,j ), e r t (pv i+1,j+1 + (1 p)v i+1,j ) R 2 CRRAput <- function(r, sigma, T, K, S0, N) { S <- matrix(0, nrow=n+1, ncol=n+1) V <- matrix(0, nrow=n+1, ncol=n+1) # # delta <- T/N # u <- exp(sigma*sqrt(delta)) d <- exp(-sigma*sqrt(delta)) p <- (exp(r*delta) - d)/(u - d) # # # # for (i in 0:N){ for (j in 0:i){ S[i+1,j+1] <- S0*u^j*d^(i-j) # for (j in 0:N){ V[N+1, j+1] <- max(k-s[n+1,j+1], 0) # # for (i in N:1) { for (j in 1:i) { V[i,j] <- max(k-s[i,j],exp(-r*delta)*(p*v[i+1,j+1] + (1-p)*V[i+1,j])) # return(v[1,1])

28 2 28 r = 0.1, σ = 0.2, T = 5, S 0 = 62, K = 60, N = 100 > CRRAput(0.1,0.2,5/12,60,62,100) [1] > N CRR C(N) Black-Scholes C BS ( ) 1 C(N) C BS = O N 1/N 1/N 2 L-B. Chang and K. Palmer, Smooth convergence in the binomial model, Finance and Stochastics (2007) 11, M. S. Joshi, Achieving higher order convergence for the prices of European options in binomial tress, Mathematical Finance (2010) 20, N C(N) C BS C(N) K 3 Clewlow and Strickland Hull 2.4 Y. S. Tian, A flexible binomial option pricing model The Journal of Futures Markets, 19(1999), u, d, p K CRR Tian u, d. u = e σ t+λσ 2 t, d = e σ t+λσ 2 t. λ t 0 u, d CRR u = e σ t, d = e σ t λ K

29 log(error) 2 29 Price N logn 2.3 (error) log 10 ( ) 1

30 2 30 λ p = er t d u d 0 < p < 1, d < e r t < u λ r σ 2 1 σ t *8 λ λ (2.16) (1) CRR (λ = 0 ) K CRR S N,j = S 0 u j d N j j : S 0 u j d N j = K. j j = log (K/S 0) N log(d). (2.17) log (u/d) j j : [ ] log j (K/S0 ) N log(d) =. log (u/d) [x] x. j N (2) λ λ S 0 (u ) j (d ) N j = K λ = log (K/S 0) (2j N)σ t Nσ 2 t (2.17) log(k/s 0 ) (2.18) λ = 2(j j ) t σt j j 0.5 t 0 λ 0 t (2.16) u = e σ t+λσ 2 t, d = e σ t+λσ 2 t [ ] log j (K/S0 ) N log(d) = log (u/d) λ = log (K/S 0) (2j N)σ t Nσ 2 t *8 CRR CRR t

31 2 31 CRR Tian 2.4 Tian CRR N N price N 2.4 CRR Tian 2.1 Tian 2.5 V (t, S) t ( t S ) V S S f(x) (1 ) : : : : f(x + h) f(x) h f(x) f(x h) h f(x + h) f(x h) 2h

32 (0 ) V (S 0 ) ( ) h V (S 0 + h) V (S 0 ) = V (S 0 + h) V (S 0 ) (S 0 + h) S 0 h V (S 0 ) V (S 0 + h) (i, j) V i,j t V 1,1 V 1,0 S 1,1 S 1,0 V 0,1, V 0, 1, S 0,0, S 0,1, S 0, 1 ( 2.5 ) : V 0,1 V 0,0 S 0,1 S 0,0, : V 0,0 V 0, 1 S 0,0 S 0, 1, : V 0,1 V 0, 1 S 0,1 S 0, 1 2 V 0,1 S 0,1 S 1,2 S 1,1 S 1,1 S 2,0 S 0,0 S 1,0 S 1,0 S 0, 1 S 1, CRR S 0,1 = u d S 0, S 0, 1 = d u S 0, S 1,1 = 1 d S 0, S 1,0 = 1 u S 0, S 2,0 = 1 ud S 0 S 2,0 R 2 CRREcalldelta <- function(r, sigma, T, K, S0, N) { #

33 2 33 C <- matrix(0, nrow=n+1, ncol=n+3) # delta <- T/N # u <- exp(sigma*sqrt(delta)) d <- exp(-sigma*sqrt(delta)) p <- (exp(r*delta) - d)/(u - d) # # # # for (j in 0:N){ C[N+1, j+2] <- max(s0*u^j*d^(n-j) - K, 0) # C[N+1, N+3] <- max(s0*u^(n+1)/d -K, 0) C[N+1, 1] <- max(s0*d^(n+1)/u -K,0) # for (i in N:1) { for (j in 1:(i+2)) { C[i,j] <- exp(-r*delta)*(p*c[i+1,j+1] + (1-p)*C[i+1,j]) GreeksDelta <- (C[1,3]-C[1,1])/(S0*(u/d-d/u)) return(greeksdelta) # (1.29) V s = N(d +(T t, s)) r = 0.1, σ = 0.2, T = 5, S 0 = 62, K = > CRREcalldelta(0.1,0.2,5/12,60,62,100) [1] >

34 (2.2) S(t) = S(0) exp {(r 12 ) σ2 t + σw (t) (2.19) (5.8) {W (t) {W (t) {W i,j {S(t) {S i,j {W (t) {W i,j i=0,...,n,j=0,...,i CRR [0, T ] N t = T/N, t i = i t (i = 0, 1,..., N) W i,j = w W i+1,j+1 = w + u, W i+1,j = w + d (d < 0) W i,j w + u p w 1 p w + d W i+1,j+1, W i+1,j p, 1 p p u 1 p d ( d ) u, d, p 2 t i W i w W i+1 E[W i+1 W i = w] = p(w + u) + (1 p)(w + d) = w + pu + (1 p)d (2.20)

35 2 35 W (t i ) = w W (t i + t) E[W (t i + t) W (t i ) = w] = E[W (t i + t) W (t i ) + W (t i ) W (t i ) = w] = w + E[W (t i + t) W (t i )] = w (2.21) (5.9) (5.10) w + pu + (1 p)d = w pu + (1 p)d = 0 (2.22) 2 V [W i+1 W i = w] = p(w + u) 2 + (1 p)(w + d) 2 (p(w + u) + (1 p)(w + d)) 2 (2.23) = p(w + u) 2 + (1 p)(w + d) 2 w 2 V [W (t i + t) W (t i ) = w] = V [W (t i + t) W (t i ) + W (t i ) W (t i ) = w] = V [W (t i + t) W (t i )] = t (2.24) (5.12) (5.13) p(w + u) 2 + (1 p)(w + d) 2 w 2 = t (2.25) (5.11) (5.14) u, d, p 1 d = u (5.11) (5.14) pu + (1 p)( u) = 0, p(w + u) 2 + (1 p)(w u) 2 w 2 = t p = 1 2, u = t, d = t {W i,j S i,j = S(0) exp {(r 12 ) σ2 t i + σw i,j BtreeEcall <- function(r, sigma, T, K, S0, N) { W <- matrix(0, nrow=n+1, ncol=n+1) S <- matrix(0, nrow=n+1, ncol=n+1) C <- matrix(0, nrow=n+1, ncol=n+1) # # # delta <- T/N #

36 2 36 u <- sqrt(delta) d <- -sqrt(delta) p <- 0.5 # # # # mu <- r - 0.5*sigma^2 for (i in 0:N){ for (j in 0:i){ W[i+1,j+1] <- j*u + (i - j)*d #(2*j-i)*sqrt(delta) S[i+1,j+1] <- S0*exp(mu*i*delta + sigma*w[i+1,j+1]) # for (j in 0:N){ C[N+1, j+1] <- max(s[n+1,j+1] - K, 0) # for (i in N:1) { for (j in 1:i) { C[i,j] <- exp(-r*delta)*(p*c[i+1,j+1] + (1-p)*C[i+1,j]) return(c[1,1]) 2.7 Richardson [0, T ] N 1 h = T/N C(h) C(h), C(h/2), C(h/3),..., C(h/n) C(0) C(0) n i=1 ( 1) n i i n i!(n i)! C ( ) h i

37 2 37 n = 2 C(h), C(h/2) C(0) C( ) 2 C(0), C (0) C(h) C(0) + C (0)h ( ) h C C(0) + C (0) h 2 2 ( ) ( ) ( ) C(0) 1 2 C(h) C = (0) 2/h 2/h C(h/2) C(0) C(h) + 2C (h/2) (2.26) (2.26) C(0) = C(h) + ah + O(h 2 ) (2.27) h C(0) = C(h/2) + ah/2 + O(h 2 ) (2.28) (2.28) 2 (2.27) 2C(0) C(0) = 2C(h/2) C(h) + O(h 2 ) C(0) = C(h) + 2C(h/2) + O(h 2 ) h 2 C(h) + 2C(h/2) C(h) n = 3 C(0) 1 2 C(h) 4C (h/2) C (h/3) C(h) C(0) ( ) r = 0.1, S 0 = 62, K = 60, σ = 0.2, T = 5/12 Black-Scholes N = 300, 600 > CRREcallsmooth(0.1, 0.2, 5/12, 60, 62, 300) [1] > CRREcallsmooth(0.1, 0.2, 5/12, 60, 62, 600) [1] > (2.26) CRR ( )

38 Black-Scholes ,2 ds 1 (t) = rs 1 (t)dt + σ 1 S 1 (t)dw 1 (t) [ ds 2 (t) = rs 2 (t)dt + σ 2 S 2 (t)d ρw 1 (t) + ] 1 ρ 2 W 2 (t) 1 ρ 1, σ 1 > 0, σ 2 > 0 B(t) = e rt (r 0) (W 1, W 2 ) 2 S 2 W 3 = ρw ρ 2 W 2 W 1, W 3 ( ) ρ dw 1 dw 3 = dw 1 (ρdw ρ 2 dw 2 ) = ρdw 1 dw 1 = ρdt. d(w 1 (t)w 3 (t)) = W 3 (t)dw 1 (t) + W 1 (t)dw 3 (t) + dw 1 dw 3 (t) = W 3 (t)dw 1 (t) + W 1 (t)dw 3 (t) + ρdt. W 1 (t)w 3 (t) = ( 0 ) t 0 W 3 (u)dw 1 (u) + t E[W 1 (t)w 3 (t)] = ρt 0 W 1 (u)dw 3 (u) + ρt. W 1 (t), W 3 (t) t ρ W 1 (t), W 3 (t) E t [ (W 1 (t + t) W 1 (t))(w 3 (t + t) W 3 (t)) ] = ρ t ρw ρ 2 W 2 W 2 ds 1 (t) = rs 1 (t)dt + σ 1 S 1 (t)dw 1 (t) ds 2 (t) = rs 2 (t)dt + σ 2 S 2 (t)dw 2 (t) W 1, W 2 1 ρ 1 ( dw 1 dw 2 = ρdt ) (S 1, S 2 ) 2 [0, T ] N ρ W 1, W 2 2 {W 1 i,j j=0,1,...,i, i=0,1,...,n, {W 2 i,k k=0,1,...,i, i=0,1,...,n

39 2 39 Wi,j 1 i t j + 1 W i,k 2 Wi 1 = {Wi,j 1 j=0,...,i, Wi 2 = {Wi,k 2 k=0,...,i Wi,j 1 = w1, Wi,k 2 = w2 Wi+1,j+1 1 = w 1 + w 1, Wi+1,j 1 = w 1 w 1, Wi+1,k+1 2 = w 2 + w 2, Wi+1,k 2 = w 2 w 2 w 1, w 2 > 0 (w 1, w 2 ), (w 1 + w 1, w 2 + w 2 ) (w 1 w 1, w 2 + w 2 ) p uu p du (w 1, w 2 ) p dd pud (w 1 + w 1, w 2 w 2 ) (w 1 w 1, w 2 w 2 ) (w 1 + w 1, w 2 + w 2 ), (w 1 + w 1, w 2 w 2 ), (w 1 w 1, w 2 + w 2 ), (w 1 w 1, w 2 w 2 ) p uu, p ud, p du, p dd ( 2.7) w 1, w 2, p uu, p ud, p du, p dd 1 ( ) 2 ( ) 1 ( ) 2 2 Wi 1 = w 1 Wi+1 1 W i 1 E[Wi+1 1 Wi 1 Wi 1 = w 1 ] = p uu w 1 + p ud w 1 + p du ( w 1 ) + p dd ( w 1 ) = (p uu + p ud ) w 1 (p du + p dd ) w 1 W 1 (t i ) = w 1 W 1 (t i + t) W 1 (t i ) 0 p uu + p ud p du p dd = 0. (2.29) W 2 p uu p ud + p du p dd = 0. (2.30) 2 W 1 i = w 1 W 1 i+1 W 1 i 2 E[(W 1 i+1 W 1 i ) 2 W 1 i = w 1 ] = p uu ( w 1 ) 2 + p ud ( w 1 ) 2 + p du ( w 1 ) 2 + p dd ( w 1 ) 2 = (p uu + p ud + p du + p dd )( w 1 ) 2.

40 2 40 W 1 (t i ) = w 1 W 1 (t i + t) W 1 (t 1 ) 2 t W 2 p uu + p ud + p du + p dd = p uu + p ud + p du + p dd = ( ) W 1 i = w 1, W 2 i = w 2 E[(W 1 i+1 W 1 i )(W 2 i+1 W 2 i ) W 1 i = w 1, W 2 i = w 2 ] t ( w 1 ) 2. (2.31) t ( w 2 ) 2. (2.32) = p uu w 1 w 2 + p ud w 1 ( w 2 ) + p du ( w 1 ) w 2 + p dd ( w 1 )( w 2 ) = (p uu p ud p du + p dd ) w 1 w 2 E[(W 1 (t i + t) W 1 i )(W 2 (t i + t) W 2 i ) W 1 (t i ) = w 1, W 2 (t i ) = w 2 ] = ρ t (2.29)-(2.33) p uu p ud p du + p dd = p uu + p ud + p du + p dd = 1 ρ t w 1 w 2. (2.33) w 1 = w 2 = t, p uu = p dd = 1 4 (1 + ρ), p ud = p du = 1 (1 ρ) 4 h(s 1 (t), S 2 (t)) = (S 1 (t) S 2 (t) K) + (1) w 1, w 2, p uu, p ud, p du, p dd ρ 2 {W 1 i,j j=0,...,i,i=0,...,n, {W 2 i,k k=0,...,i,i=0,...,n W 1 i,j = (2j i) w 1, W 2 i,k = (2k i) w 2 {Si,j 1, {S2 i,k Si,j 1 = S 1 (0) exp {(r 12 ) (σ1 ) 2 i t + σ 1 Wi,j 1, Si,k 2 = S 2 (0) exp {(r 12 ) (σ2 ) 2 i t + σ 2 Wi,k 2 (2) V N,j,k = (S 1 N,j S 2 N,k K) +, j, k = 0, 1,..., N (3) V i,j,k = e r t (p uu V i+1,j+1,k+1 + p ud V i+1,j+1,k + p du V i+1,j,k+1 + p dd V i+1,j,k ) (4) V 0,0,0

41 dx(t) = µ(x(t))dt + σ(x(t))dw (t), X(0) = x 0. (2.34) [0, T ] N t = T/N t i = i t (i, j) (i = 0, 1,..., N, j = i, i + 1,..., 0, 1,..., i) X i,j X i = {X i,j i j i (2, 2) (1, 1) (2, 1) (0, 0) (1, 0) (2, 0) (1, 1) (2, 1) (2, 2) X i,j = x, X i+1,j+1 = x u, X i+1,j = x m, X i+1,j 1 = x d x x u, x m, x d p u, p m, p d (2.34) p u, p m, p d, x u, x m, x d i, x (2.34) X(t + t) X(t) = µ(x(t)) t + σ(x(t)) tz, z N(0, 1) X(t) = x X(t + t) X(t) E[X(t + t) X(t) X(t) = x] = µ(x) t, V [X(t + t) X(t) X(t) = x] = σ 2 (x) t (2.35)

42 2 42 p u x u x p m x m p d x d t i 2.9 t i + t 3 X i = x X i+1 X i E[X i+1 X i X i = x] = p u (x u x) + p m (x m x) + p d (x d x) = p u x u + p m x m + p d x d x. (2.35) E[X(t i + t) X(t i ) X(t i ) = x] = µ(x) t p u x u + p m x m + p d x d x = µ(x) t (2.36) 2 ( ) X i+1 X i X i = x 2 E [ (X i+1 X i ) 2 Xi = x] = p u (x u x) 2 + p m (x m x) 2 + p d (x d x) 2. (2.35) X(t i ) = x E [ (X(t i + t) X(t i )) 2 X(t i ) = x ] = V [X(t i + t) X(t i ) X(t i ) = x] + (E[X(t i + t) X(t i ) X(t i ) = x]) 2 = σ 2 (x) t + (µ(x) t) 2. p u (x u x) 2 + p m (x m x) 2 + p d (x d x) 2 = σ 2 (x) t + (µ(x) t) 2 (2.37) p u, p m, p d p u + p m + p d = 1 (2.38) (2.36), (2.37), (2.38) x u, x m, x u, p u, p m, p d 0 < p u, p m p d < 1 (2.39) p u, p m, p d (µ(x), σ(x) ) x (2.39)

43 (Black-Scholes ) ds(t) = rs(t)dt + σs(t)dw (t) (2.40) 3 2 (2.40) W (t) 3 {W i,j S i,j = S(0) exp {(r 12 ) σ2 t i + σw i,j (2.41) (2.36), (2.37) µ = 0, σ = 1 p u x u + p m x m + p d x d x = 0 p u (x u x) 2 + p m (x m x) 2 + p d (x d x) 2 = t (2.42) ( ) x (2.42) (2.38) (2.43) x u = x + x, x m = x, x d = x x p u x p d x = 0 p u = p d p u ( x) 2 + p d ( x) 2 = t p u + p d = p u = p d =, 0 < p u, p m, p d < 1 t 2( x) 2, p m = 1 t ( x) 2 0 < t ( x) 2 < 1 t (2.43) ( x) 2 x = 3 t p u = p d = 1 6, p m = 2 3 (1) x u = x + x, x m = x, x d = x x, p u = p d = 1 6, p m = {W i,j i=0,...,n,j= i,...,i W 0,0 = W (0) = 0 W i,j = j x ( i j i)

44 2 44 (2) {B i,j {S i,j S i,j = S(0) exp {(r 12 ) σ2 t i + σw i,j (3) V N,j = (S N,j K) +, j = N,..., 0,..., N (4) : V i,j = e r t (p u V i+1,j+1 + p m V i+1,j + p d V i+1,j 1 ). (5) V 0,0 3 TriEcall <- function(r, sigma, T, K, S0, N) { S <- matrix(0, nrow=n+1, ncol=2*n+1) V <- matrix(0, nrow=n+1, ncol=2*n+1) # # delta <- T/N # dx <- sqrt(3*delta) pu <- 1/6 pm <- 2/3 pd <- 1/6 # # # # # W <- matrix(0, nrow=n+1, ncol=2*n+1) W[1,1] <- 0 # S[1,1] <- S0 # # mu <- r - sigma^2/2 for (i in 2:(N+1)){ muti <- mu*delta*(i-1) W[i,i] <- 0 # S[i,i] <- S0*exp(muti + sigma*w[i,i]) # for (j in 1:(i-1)){

45 2 45 W[i,i+j] <- j*dx W[i,i-j] <- -j*dx # # S[i,i+j] <- S0*exp(muti + sigma*w[i,i+j]) # S[i,i-j] <- S0*exp(muti + sigma*w[i,i-j]) # # for (j in 1:(2*N+1)){ V[N+1, j] <- max(s[n+1,j] - K, 0) # # for (i in N:1) { for (j in 1:(2*i-1)) { V[i,j] <- exp(-r*delta)*(pu*v[i+1,j+2] + pm*v[i+1,j+1] + pd*v[i+1,j]) return(v[1,1]) > TriEcall(0.1,0.2,5/12,60,62,100) [1] > (CRR ) D. Brigo, F. Mercurio, Interest Rate Models Theory and Practice, Springer Finance ( ) dr(t) = (ϕ(t) a(t)r(t))dt + σ(r(t), t)dw (t) (2.44) Vasicek Ornstein-Uhlenbeck dr(t) = λ( r r(t))dt + σdw (t),

46 2 46 price N CIR Cox, Ingersoll, Ross Feller dr(t) = λ( r r(t)) + σ r(t)dw (t) ϕ(t), a(t), σ(r(t), t) (2.44) r(t + t) r(t) = (ϕ ar(t)) t + σ tz, z N(0, 1). t ϕ ar(t) > 0 r(t) < ϕ/a r(t + t) > r(t) r t ϕ ar(t) < 0 r(t) > ϕ/a r(t + t) < r(t) r r(t) ϕ/a ϕ/a (2.44) α(t) X(t) = r(t) α(t) X dx(t) = dr(t) α (t)dt = (ϕ(t) α (t) + a(t)r(t))dt + σ(r(t), t)dw (t) = (ϕ(t) α (t) a(t)α(t) a(t)x(t)) + σ(x(t) + α(t))dw (t) α α (t) = ϕ(t) a(t)α(t), α(0) = r(0) dx(t) = a(t)x(t) + ˆσ(X(t), t)dw (t), X(0) = 0 (2.45)

47 2 47 ˆα(X(t), t) = σ(x(t) + α(t)). (2.45) (2.44) r(t) = α(t) + X(t) α Hull-White dr(t) = ar(t)dt + σdw (t) (2.46) 3 (2.46) r(t) = r(0)e at + σ r(t) t 0 e a(t u) dw (u) E [r(t + t) r(t) = r] = re a t, V [r(t + t) r(t) = r] = σ2 ( 1 e 2a t ) 2a (2.46) E[r(t i + t) r(t i ) r(t i ) = r] = ar t E[(r(t i + t) r(t i )) 2 r(t i ) = r] = σ 2 t + ( ar t) 2 (2.47) r u = r + r, r m = r, r d = r r (2.47) 2 p u + p m + p d = 1 p u p d = ar t r p u + p d = σ2 t + (ar t) 2 ( r) 2 p u = σ2 t + (ar t) 2 ar t r 2( r) 2 p m = 1 σ2 t + (ar t) 2 ( r) 2 p d = σ2 t + (ar t) 2 + ar t r 2( r) 2 r = σ 3 t *9 r i,j = j r p u = σ2 j 2 ( t) 2 aj t 2 p m = 2 3 a2 j 2 ( t) 2 p d = σ2 j 2 ( t) 2 + aj t 2 * 10 0 < p u, p m, p d < a t < j < 3a t *9 0 < p u, p m, p d < 1 *10 p u, p m, p d j p u(j) p u

48 2 48 j j j (j < 6/(3a t)) 2.11 r u p u r m p m r p d r d t i 2.11 t i + t r u = r + 2 r, r m = r + r, r d = r 0 < p u, p m, p d < 1 p u = σ2 j 2 ( t) 2 + aj t 2 p m = 1 3 a2 j 2 ( t) 2 + 2aj t p d = σ2 j 2 ( t) 2 + 3aj t a t < j < 3 6 3a t j < 6/(3a t) ( j ) 2.12 r u = r, r m = r r, r d = r 2 r p u = σ2 j 2 ( t) 2 3aj t 2 p m = 1 3 a2 j 2 ( t) 2 + 2aj t p d = σ2 j 2 ( t) 2 aj t 2

49 2 49 r p u r u p m r m p d r d t i 2.12 t i + t 0 < p u, p m, p d < a t < j < a t j > 6/(3a t) ( j ) x, p u, p m, p d 3 (2.46) Vasicek Vasicek dr(t) = λ( r r(t))dt + σdw (t) (2.48) (2.48) r(t) = r + (r(0) r)e λt + σ t 0 e λ(t u) dw (u) E [r(t + t) r(t) = r] = r + (r r)e λ t, V [r(t + t) r(t) = r] = σ2 2λ (1 e 2λ t ) Hull-White α (t) = α(t) + λ r, α(0) = r(0) r(t) α(t) = e λt (λ r t 0 ) e λs ds + r(0) (2.49) dx(t) = λx(t) + σdw (t) r(t) = X(t) α(t) r(t)

50 CIR CIR dr(t) = λ( r r(t))dt + σ r(t)dw (t) (2.50) Nelson and Ramaswamy(1990) * 11 r(t) f(t, r(t)) f(t, r(t)) f f(t, r(t)) f r(t) f df(t, r(t)) = f f dt + t r dr(t) f [ 2 r 2 f = r λ( r r(t)) f r 2 σ2 r(t) + f t ] dt + f r σ r(t)dw (t) f r = 1 σr(t) r dr f(t, r) = 0 σ r (2.51) f(t, r(t)) 1 (2.51) f(t, r(t)) λ df(t, r(t)) = σ r(t) f(t, r) = 2 r σ ) ( r σ2 4λ r(t) dt + dw (t) f(t, r(t)) r(t) = σ 2 f(t, r(t)) 2 /4 r(t) /N (3 ) ( ) *11 Simple binomial processes as diffusion approximations in financial models, Review of Financial Studies 1990, vol.3,

51 Black-Scholes f (t, s) + rs f t s (t, s) σ2 s 2 2 f (t, s) rf(t, s) = 0, f(t, s) = h(s), s > 0 (3.1) s2 3.0 D. Tavella, Quantitative Methods in Derivatives Pricing, John Wiley& Sons D. Tavella, C. Randall, Pricing Financial Instruments: The Finite Difference Method, John Wiley& Sons R. Seydel, Tools for Computational Finance, Springer 3.1 (1) (3.1) f(t, s) (t, s) t [0, T ] M s s s max s min [s min, s max ] N N M (N + 1) (N + 1) (t i, s j ) (i, j) f i,j f(t i, s j ) (2) ( ) s = s max, s = s min, t = T f i,j f M,j = h(s j ) (j = 0, 1,..., N) (3) f(x) 1 2 : f(x + x) f(x) x : f(x) f(x x) x : f(x + x) f(x x) 2 x 2 f(x) x 2 = x ( ) f x

52 3 52 s max = s N s N 1. (t i, s j ) s 1 s min = s 0 0 = t 0 t 1... t M 1 T = t M 3.1 ( f(x + x) f(x) x ) f(x) f(x x) f(x + x) 2f(x) + f(x x) / x = x ( x) 2 (i, j) f/ t f i+1,j f i,j t t = T/M. f/ s f i,j+1 f i,j 1 2 s s = (s max s min )/N. t = t i t s f i,j+1 f i,j f i+1,j f i,j 1 {f i,j j=0,...,n t = t i+1 {f i+1,j j=0,...,n (4) ( ) 1 [0, T ], [s min, s max ] M, N t = T/M, s = (s max smin )/N t i = i t, s j = s min + j s (i = 0, 1,..., M, j = 0, 1,..., N)

53 3 53 s s min = t i+1 t i+1 t i+1 t i 1 s 1 s min = 0 (i + 1, j) f i+1,j f i,j t + rs j f i+1,j+1 f i+1,j 1 2 s σ2 s 2 f i+1,j+1 2f i+1,j + f i+1,j 1 j ( s) 2 rf i+1,j = 0. (3.2) f i,j = a j f i+1,j+1 + b j f i+1,j + c j f i+1,j 1 (3.3) a j = 1 2 (rj + (σj)2 ) t, b j = 1 ((σj) 2 + r) t, c j = 1 2 ( rj + (σj)2 ) t (3.4) f i+1,j+1 f i,j f i+1,j 3.2 f i+1,j 1 K f(t M, s j ) = { s j K, s j K 0, s j < K j = 0, 1,..., N 0 f(t i, s 0 ) = 0, i = 0, 1,..., N * 12 f(t, s) s e r(t t) K *12 t s p(s, t), c(s, t) c(t, s) p(t, s) = s e r(t t) K (p(t, s) = 0) c(t, s) = s e r(t t) K

54 3 54 f(t i, s N ) = s N e r(t ti) K, i = 0, 1,..., N. f(t, s) s * 13 R execall <- function(r, sigma, T, K, smax, M, N){ Deltat <- T/M Deltas <- smax/n # # f <- matrix(0, nrow=m+1, ncol=n+1) # # for (j in 1:(N+1)){ f[m+1, j] <- max((j-1)*deltas - K, 0) # # for (i in M:1){ f[i, 1] <- 0 # f[i, N+1] <- smax - exp(-r*(t - (i-1)*deltat))*k for (j in 2:N){ a <- (r*(j-1) + (sigma*(j-1))^2)*deltat/2 b <- 1 - ((sigma*(j-1))^2 + r)*deltat c <- (-r*(j-1) + (sigma*(j-1))^2)*deltat/2 f[i,j] <- a*f[i+1,j+1] + b*f[i+1,j] + c*f[i+1,j-1] return(f[1,]) r = 0.1, σ = 0.2, K = 60, S 0 = 62, T = 5 s max = 300, M = 5000, N = 300 > x <- execall(0.1,0.2,5/12,60,300,5000,300) > x[63] [1] *13 f(t, s)/ s = 1 s max

55 3 55 M = 300 > x <- execall(0.1,0.2,5/12,60,300,300,300) > x[63] [1] e t s ( ) (3.1) h(s) = (s K) + ( ) s = Ke x, t = T 2τ σ 2, q = 2r σ 2, (3.5) ( f(t, s) = f Ke x, T 2τ ) σ 2 = v(τ, x) (3.6) (3.7) g(τ, x) { v(τ, x) = K exp 1 ( ) 1 2 (q 1)x 2 (q 1)2 + q τ g(τ, x) (3.1) g τ = 2 g { x 2, y(0, x) = max e x 2 (q+1) e x 2 (q 1), 0. (3.8) t = 0 (3.8) y(τ, a) = y(τ, b) = 0 (a < b) (3.8) g i+1,j = λg i,j+1 + (1 2λ)g i,j + λg i,j 1, λ = τ ( x) 2 (3.9) g i,0 = g i,n = 0, 1 i M (3.9) g (i) = (g i,1, g i,2,..., g i,n 1 ) (i = 1,..., N) g (i+1) = Ag (i) 1 2λ λ 0 0 λ 1 2λ λ A = ((N 1) (N 1) ) λ 0 1 2λ

56 3 56 g (i) e (i) = ḡ (i) g (i) g (i) ḡ (i) ḡ (1) = Ag (0) + e (1) ḡ (2) = Aḡ (1) + e (2) = A(Ag (0) + e (1) ) + e (2) = A 2 g (0) + Ae (1) + e (2) ḡ (3) = Aḡ (2) + e (3) = = A 3 g (0) + A 2 e (1) + Ae (2) + e (3). ḡ (n) = A n g (0) + A n 1 e (1) + A n 2 e (2) + + e (n) n A n 1 e (1) 0 lim n An z = 0, z max µ A i < 1. i µ A i A A µ A i = 1 4λ sin 2 iπ 2N, i = 1,..., N 1 (Seydel Lemma 4.3 ) 0 0 < λ sin 2 iπ 2N < < λ < < τ ( x) 2 < 1 2 (3.10) 0 (3.10) τ, x t, s t, s 2 s t (3.2) f i+1,j f i,j f i+1,j f i,j t + rs j f i+1,j+1 f i+1,j 1 2 s σ2 s 2 j f i+1,j+1 2f i+1,j + f i+1,j 1 ( s) 2 rf i,j = 0

57 3 57 f i,j = r t (a jf i+1,j+1 + b j f i+1,j + c j f i+1,j 1 ) (3.11) a j = 1 2 (rj + (σj)2 ) t, b j = 1 (σj) 2 t, c j = 1 2 ( rj + (σj)2 ) t (3.12) * 14 a i + b i + c i = 1 0 < a i, b i, c i < 1 (3.13) a i, b i, c i (3.11) 1/(1 + r t) (3.11) 3 (3.13) s j = j s (3.14) (σj) 2 t < 1 (3.14) ( σ 2 s ) 2 j 1 t < 1 (j = 1,..., N) t < s (σn) 2 (3.15) (3.2) r = 0.1, σ = 0.2, K = 60, S 0 = 62, T = 5 s max = 300, N = 300 (3.15) M < 1 ( ) 2 M > 5 12 ( )2 = 1500 > x <- execall(0.1,0.2,5/12,60,300,1500,300) > x[63] [1] > > x <- execall(0.1,0.2,5/12,60,300,1000,300) > x[63] [1] e+68 > b j = 0 1 (σj) 2 t = 0 s = s j σ t (3.2) 2 (CRR ) *14

58 t i+1 t i t i t i+1 1 f i+1,j f i,j t + rs j f i,j+1 f i,j 1 2 s σ2 s 2 f i,j+1 2f i,j + f i,j 1 j ( s) 2 rf i,j = 0. (3.16) s min = 0 a j f i,j+1 + b j f i,j + c j f i,j 1 = f i+1,j (3.17) a j = 1 2 ( rj (σj)2 ) t, b j = 1 + ((σj) 2 + r) t, c j = 1 2 (rj (σj)2 ) t (3.18) (3.17) f i,j+1, f i,j, f i,j 1 f i+1,j (3.17) f i,j+1 f i,j f i+1,j f i,j a 1 f i,2 + b 1 f i,1 + c 1 f i,0 = f i+1,1 a 2 f i,3 + b 2 f i,2 + c 2 f i,1 = f i+1,2. (3.19) a N 2 f i,n 1 + b N 2 f i,n 2 + c N 2 f i,n 2 = f i+1,n 2 a N 1 f i,n + b M 1 f i,n 1 + c M 1 f i,n 2 = f i+1,n 1 b 1 a c 2 b 2 a c 3 b 3 a c N 2 b N 2 a N c N 1 b N 1 f i,1 f i,2 f i,3. f i,n 2 f i,n 1 = f i+1,1 c 1 f i,0 f i+1,2 f i+1,3. f i+1,n 2 f i+1,n 1 a N 1 f i,n. (3.20) {f i,j j=1,...,n R R Ax = y

59 3 59 solve(a,y) imecall <- function(r, sigma, T, K, smax, M, N){ Deltat <- T/M Deltas <- smax/n # # f <- matrix(0, nrow=m+1, ncol=n+1) # # A <- matrix(0, nrow=n-1, ncol=n-1) # a1 <- (-r - sigma^2)*deltat/2 b1 <- 1 + (sigma^2 + r)*deltat c1 <- (r - sigma^2)*deltat/2 A[1,1] <- b1 A[1,2] <- a1 #a_1 #b_1 #c_1 for (j in 2:(N-2)){ a <- (-r*j - (sigma*j)^2)*deltat/2 b <- 1 + ((sigma*j)^2 + r)*deltat c <- (r*j - (sigma*j)^2)*deltat/2 A[j,j+1] <- a A[j,j] <- b A[j,j-1] <- c anm1 <- (-r*(n-1) - (sigma*(n-1))^2)*deltat/2 #a_n - 1 bnm1 <- 1 + ((sigma*(n-1))^2+r)*deltat #b_n - 1 cnm1 <- (r*(n-1) - (sigma*(n-1))^2)*deltat/2 #c_n - 1 A[N-1,N-1] <- bnm1 A[N-1,N-2] <- cnm1 # for (j in 0:N){ f[m+1, j+1] <- max(j*deltas - K, 0) #

60 3 60 # x <- numeric(n-1) # y <- numeric(n-1) # for (i in M:1){ bl <- 0 # bu <- smax - exp(-r*(t - (i-1)*deltat))*k f[i,1] <- bl f[i,n+1] <- bu y[1:(n-1)] <- f[i+1,2:n] y[1] <- y[1] - c1*bl y[n-1] <- y[n-1] - anm1*bu x <- solve(a,y) # f[i,2:n] <- x return(f[1,]) > x <- imecall(0.1,0.2,5/12,60,300,300,300) > x[63] [1] s, t 3.4 Crank-Nicolson f(u) f(u ± u) = f(u) ± f u (u) u f 2 u 2 (u)( u)2 ± 1 3 f 6 u 3 (u)( u)3 + O ( ( u) 4). f f(u + u) f(u) (u) = + O ( u). u u

61 3 61 O( u) O( u) f(u + u) f(u u) 2 = f u (u) u + O ( ( u) 3) f f(u + u) f(u u) = + O ( ( u) 2). u 2 u O(( u) 2 ) f(u + u) + f(u u) = 2f(u) + 2 f u 2 (u)( u2 ) + O ( ( u) 4) 2 f f(u + u) 2f(u) + f(u ) = u2 ( u) 2 + O ( ( u) 2). 2 O(( u) 2 ) O ( t) + O ( ( s) 2) O(( t) 2 ) f i+1,j f i,j t + rs j f i+1,j+1 f i+1,j 1 2 s σ2 s 2 f i+1,j+1 2f i+1,j + f i+1,j 1 j ( s) 2 rf i+1,j = 0 (3.21) f i,j = a jf i+1,j+1 + b jf i+1,j + c jf i+1,j 1 (3.22) a j = 1 2 (rj + (σj)2 ) t, b j = 1 ((σj) 2 + r) t, c j = 1 2 ( rj + (σj)2 ) t. f i+1,j f i,j t + rs j f i,j+1 f i,j 1 2 s σ2 s 2 f i,j+1 2f i,j + f i,j 1 j ( s) 2 rf i,j = 0 (3.23) a j f i,j+1 + b j f i,j + c j f i,j 1 = f i+1,j (3.24) a j = 1 2 ( rj (σj)2 ) t, b j = 1 + ((σj) 2 + r) t, c j = 1 2 (rj (σj)2 ) t. (3.21) (3.23) 2 f i+1,j f i,j t σ2 s 2 j + 1 ( 2 rs fi+1,j+1 f i+1,j 1 j 2 s ( fi+1,j+1 2f i+1,j + f i+1,j 1 ( s) 2 + f ) i,j+1 f i,j 1 2 s + f i,j+1 2f i,j + f i,j 1 ( s) 2 ) 1 2 r(f i+1,j + f i,j ) = 0. (3.25) (3.25) t i+1 t i + t/2 (3.25) 1 f f (t + t/2 + t/2, s) f (t + t/2 t/2, s) f(t + t, s) f(t, s) (t + t/2, s) = t 2 t/2 t

62 3 62 f i,j+1 f i+1,j+1 f i,j f i+1,j f i,j t i t i + t 2 Crank-Nicolson t i+1 f i+1,j 1 t i + t/2 1 O(( t) 2 ). (3.25) 2 s 1 f s ( t + t 2 ± t 2, s ) ( f t + t ) s 2, s = f ( t + t ) s 2, s ± ( ( f t + t )) t t s 2, s 2 + O(( t)2 ) ( f t + t ) s 2, s = 1 ( ) f f (t + t, s) + (t, s) + O(( t) 2 ) 2 s s (3.25) O ( ( t) 2) + O ( ( s) 2) (3.25) ( (3.22) (3.24) 2 ) a j f i,j+1 + b j f i,j + c j f i,j 1 = a j f i+1,j+1 d j f i+1,j c j f i+1,j 1, j = 1, 2,..., N 1 a j = 1 4 ( rj (σj)2 ) t, b j = ((σj)2 + r) t, c j = 1 4 (rj (σj)2 ) t, d j = b j 2 b 1 a c 2 b 2 a c 3 b 3 a c N 2 b N 2 a N c N 1 b N 1 = f i,1 f i,2 f i,3. f i,n 2 f i,n 1 a 1 f i+1,2 d 1 f i+1,1 c 1 f i+1,0 c 1 f i,0 a 2 f i+1,3 d 2 f i+1,2 c 2 f i+1,1 a 3 f i+1,4 d 3 f i+1,3 c 3 f i+1,2. a N 2 f i+1,n 1 d N 2 f i+1,n 2 c N 2 f i+1,n 3 a N 1 f i+1,n d N 1 f i+1,n 1 c N 2 f i+1,n 2 a N 1 f i,n. (3.26)

63 3 63 R CrankNicolson <- function(r, sigma, T, K, smax, M, N){ Deltat <- T/M Deltas <- smax/n # # f <- matrix(0, nrow=m+1, ncol=n+1) # # a <- function(j){ return((-r*j - (sigma*j)^2)*deltat/4) b <- function(j){ return(1 + ((sigma*j)^2 + r)*deltat/2) c <- function(j){ return((r*j - (sigma*j)^2)*deltat/4) d <- function(j){ return(b(j)-2) # A <- matrix(0, nrow=n-1, ncol=n-1) # A[1,1] <- b(1) A[1,2] <- a(1) for (j in 2:(N-2)){ A[j,j+1] <- a(j) A[j,j] <- b(j) A[j,j-1] <- c(j) A[N-1,N-1] <- b(n-1) A[N-1,N-2] <- c(n-1) # for (j in 0:N){

64 3 64 f[m+1, j+1] <- max(j*deltas - K, 0) # # x <- numeric(n-1) # y <- numeric(n-1) # for (i in (M-1):0){ bl <- 0 # bu <- smax - exp(-r*(t - i*deltat))*k #---- y ---- for (j in 1:(N-1)){ y[j] <- -a(j)*f[i+2,j+2] - d(j)*f[i+2,j+1] - c(j)*f[i+2,j] y[1] <- y[1] - c(1)*bl y[n-1] <- y[n-1] - a(n-1)*bu # f[i+1,1] <- bl f[i+1,n+1] <- bu x <- solve(a,y) f[i+1,2:n] <- x return(f[1,]) # > x <- CrankNicolson(0.1,0.2,5/12,60,200,200,200) > x[63] [1] Crank-Nicolson 3.5 f/ S 0 f(s + s, t) f(s s, t) 2 s f 0,i f 0,i+1 f 0,i 1 2 s

65 3 65 Black-Scholes r = 0.1, σ = 0.2, T = 5, S 0 = 62, K = > x <- CrankNicolson(0.1,0.2,5/12,60,200,200,200) > x[63] [1] > (x[64]-x[62])/2 [1] > i <- 2:100 > delta <- (x[i+1] - x[i-1])/2 > plot(delta,type="l",xlab="stock Price", ylab="delta") 3.5 Crank-Nicolson 3.6 f(t, s) = [ ] sup E e r(τ t) h(s(τ)) S(t) = s τ T [t,t ] f f (t, s) + rs f t s (t, s) σ2 s 2 2 f (t, s) rf(t, s) 0, f(t, s) h(s), (t, s) [0, T ) [0, ) s2 ( f (t, s) + rs f t s (t, s) + 1 ) 2 σ2 s 2 2 f (t, s) rf(t, s) (f(t, s) h(s)) = 0, (t, s) [0, T ) [0, ) s2 f(t, s) = h(s) (3.27)

66 3 66 Lamberton and Lapeyre f i,j max(h(s j ), f i,j ) (3.28) R pmax(x,y) x, y max imaput <- function(r, sigma, T, K, smax, M, N){ Deltat <- T/M Deltas <- smax/n # # f <- matrix(0, nrow=m+1, ncol=n+1) # A <- matrix(0, nrow=n-1, ncol=n-1) # # a1 <- (-r - sigma^2)*deltat/2 b1 <- 1 + (sigma^2 + r)*deltat c1 <- (r - sigma^2)*deltat/2 A[1,1] <- b1 A[1,2] <- a1 #a_1 #b_1 #c_1 for (j in 2:(N-2)){ a <- (-r*j - (sigma*j)^2)*deltat/2 b <- 1 + ((sigma*j)^2 + r)*deltat c <- (r*j - (sigma*j)^2)*deltat/2 A[j,j+1] <- a A[j,j] <- b A[j,j-1] <- c anm1 <- (-r*(n-1) - (sigma*(n-1))^2)*deltat/2 #a_n - 1 bnm1 <- 1 + ((sigma*(n-1))^2+r)*deltat #b_n - 1 cnm1 <- (r*(n-1) - (sigma*(n-1))^2)*deltat/2 #c_n - 1 A[N-1,N-1] <- bnm1 A[N-1,N-2] <- cnm1 # for (j in 0:N){ f[m+1, j+1] <- max(k - j*deltas, 0) # #

67 3 67 x <- numeric(n-1) # y <- numeric(n-1) # payoff <- pmax(k - seq(0, N*Deltas, Deltas), 0) # for (i in (M-1):0){ bl <- exp(-r*(t - i*deltat))*k bu <- 0 # f[i+1,1] <- bl f[i+1,n+1] <- bu y[1:(n-1)] <- f[i+2,2:n] y[1] <- y[1] - c1*bl y[n-1] <- y[n-1] - anm1*bu x <- solve(a,y) f[i+1,2:n] <- x # f[i+1,] <- pmax(payoff, f[i+1,]) return(f[1,]) # > x <- imaput(0.1,0.2,5/12,60,100,100,100) > x[63] [1] > plot(x,type="l") > (3.28) (3.27) Lamberton and Lapeyre P. Jaillet, D Lamberton, and B Lapeyre, Variational Inequalities and the Pricing of American Options, Acta Aplicandae Mathematicae, 21(1990) (3.27) Tavella and Randall 3.7

68 3 68 Option Price Stock Price 3.6 h A h(s(t ))1 (,A) (max 0<t<T S(t)) h(s(t ))1 (A, ) (min 0<t<T S(t)) h(s(t ))1 (A, ) (max 0<t<T S(t)) h(s(t ))1 (,A) (min 0<t<T S(t)) (a, b) 1 (a,b) (x) := { 1, x (a, b) 0, x / (a, b) A 2 ( ) (S(T ) K) + 1 (,A) max S(t) 0<t<T ( )] V 0 = E [(S(T ) K) + 1 (,A) max S(t) 0<t<T (3.29) (3.29) ( ) (S(T ), max 0<t<T S(t)) (3.29) Shreve

69 3 69 f (t, s) + rs f t s (t, s) σ2 s 2 2 f (t, s) rf(t, s) = 0, (t, s) [0, T ) [0, A) (3.30) s2 v(t, A) = 0 t [0, T ) (3.31) v(t, s) = (s K) +. (3.32) Black-Scholes v(t, A) = 0 (3.7) (3.31) s min = 0, s max = A s max Dirichlet Neumann Dirichlet { V (t, S) = 0 S 0 r(t t) V (t, S) = S Ke S 2 V (t, S) = S Neumann { V S = 0 S 0 V S = 1 S 3.9 (3.1) x = log(s) g(t, x) = f(t, e x )(= f(t, s)) g ( g (t, x) + r 1 ) g t 2 σ2 x (t, x) σ2 2 g x 2 (t, x) rg(t, x) = 0, g(t, x) = (ex K) + (3.33) s x x

70 X E[X] ( ( ) ) X 1, X 2,... E[X 1 ] = µ(< ), V [X 1 ] < 1 n n X i µ a.s. as n. ( ) i=1 ( ) X 1, X 2,... E[X 1 ] = µ(< ), V [X 1 ] = σ 2 (< ) [ ( n ) ] 1 P σ X i nµ x N(x) as n. n i=1 N X 1, X 2,..., X n X ( X 1, X 2,..., X n X ) E[X] = µ X 1, X 2,..., X n µ ( ) X n = 1 n n X i (4.1) i=1 X n µ a.s. as n n X n E[X] (4.1) 1 E[ X n ] = 1 n n E[X i ] = µ i=1 n X n X n X n X n X n e 2 [ ] e 2 = E[( X n µ) 2 1 n ] = V X i = 1 n n n 2 V [X i ] = 1 n 2 nσ2 X = σ2 X (4.2) n i=1 i=1

71 4 71 σ X = V [X 1 ] e X n µ 2 e = σx n 2 O(1/ n) σ X σ X s n = 1 n (X i n 1 X n ) 2 X n i=1 s n n n [ ] Xn µ P s n / n < x N(x) N( x) P (1 δ) 1 N(z δ/2 ) = δ/2 ( X n s n n z δ/2, X n + s n n z δ/2 ) [ Xn µ ] s n < x N(x) N( x) n 95% X n µ 0.01 δ = 0.05(5%) z δ/ s n n n f(x)dx (4.3) X U(0, 1) (4.3) E[f(X)] d (d 2) f(x)dx (4.4) [0,1] d d U([0, 1] d ) X E[f(X)] d O(1/ n) (4.3) ( ) [0, 1] m 0 = x 0 < x 1 < < x m = 1 w 0, w 1,..., w m m w i f(x i ) i=0

72 O(1/m 2 ) d [0, 1] d m m 1/d m 1/d i 1=0 i 2=0 m 1/d i d =0 w i1 w i2... w id f(x i1, x i2,..., x ik ) O(1/m 2/d ) d m * X X 1, X 2,..., X n E[X] 1/n n i=1 X i X X dx(t) = µ(x(t))dt + σ(x(t))dw (t) (4.5) (4.5) Euler- X((j + 1) t) = X(j t) + µ(x(j t)) t + σ(x(j t)) tz j+1 t = T/N (N [0, T ] ) X(T ) X N (T ) X(T ) N X N (T ) E[X N (T )] X N 1, X N 2,..., X N n n XN (T ) X N n = 1 n i=1 X N i E[X N (T )] E[X(T )] E[X N (T )] X(T ) E[X(T )] S = 1 T T 0 S(t)dt (4.6) ( S K) + S(t 1 ), S(t 2 ),..., S(t n ) S (4.6) 0 = t 0 < t 1 < < t m = T S m = 1 m m S(t j ) j=0 *15 d 4

73 4 73 E[( S m K) + ] E[( S K) + ] X µ = E[X] 2 e 2 = E[( X µ) 2 ] = E[( X E[ X]) 2 ] + (E[ X] µ) 2 = V [ X] + ( X ) 2. X s 2 /n (s X ) X E[ X] E[X] (1998) * 16 (Mersenne Twister) R runif() X U[0, 1] F 1 (X) F P (F 1 (X) < x) = P (X < F (x)) = F (x) F 1 F 1 R rnorm() Glasserman ( ) ds(t) = S(t) [rdt + σdw (t)] (4.7) E[e rt (S(T ) K) + ] (4.7) S(T ) = S 0 exp {(r 12 ) σ2 T + σw (T ) = S 0 exp {(r 12 ) σ2 T + σ T Z S(T ) Z *16

74 4 74 (1) i = 1, 2,..., n (1)-(4) (2) Z i (3) S i (T ) = S 0 exp { (r 1 2 σ2) T + σ T Z i S i (T ) (4) V i = e rt (S i (T ) K) + (5) V = (V 1 + V V n )/n R MCBScall <- function(r, sigma, T, K, S0){ #r: #sigma: #T: #K: #S0: N < # value <- numeric(n) S <- numeric(n) # for (i in 1:N){ S[i] <- S0 * exp((r * sigma^2) * T + sigma * sqrt(t) * rnorm(1)) value[i] <- exp(-r*t)*max(s[i] - K, 0) return(mean(value)) r = 0.1, S 0 = 62, K = 60, σ = 0.2, T = 5 > MCBScall(0.1,0.2,5/12,60,62) [1] > Black-Scholes MCBScall2 <- function(r, sigma, T, K, S0){ N < rnd <- rnorm(n)

75 4 75 S <- S0 * exp((r * sigma^2) * T + sigma * sqrt(t) * rnd) return(mean(exp(-r*t) * pmax(s - K, 0))) = t 0 < t 1 < < t m = T S = 1 m m S(t j ) j=1 ( S K) + E[e rt ( S K) + ] (S(t 1 ), S(t 2 ),..., S(t m )) (4.7) S(t j ) = S(t j 1 ) exp {(r 12 ) σ2 (t j t j 1 ) + σ t j t j 1 Z j {Z j (1) i = 1, 2,..., n (1)-(5) (2) Zj i (j = 1,..., m) (3) S i (t j ) = S i (t j 1 ) exp {( r 1 2 σ2) (t j t j 1 ) + σ t j t j 1 Zj i S i (t j ) (j = 1,..., m) (4) S i = (S i (t 1 ) + S i (t 2 ) + + S i (t m ))/m (5) V i = e rt ( S i K) + (6) V = (V 1 + V V n )/n AsianCall <- function(r, sigma, T, K, S0, M){ # M: [0,T] N < # Deltat <- T/M # value <- numeric(n) for (i in 1:N){ S <- numeric(m+1) S[1] <- S0 for (j in 1:M){

76 4 76 S[j+1] <- S[j]*exp((r-0.5*sigma^2)*Deltat + sigma*sqrt(deltat)*rnorm(1)) # SA <- mean(s) # value[i] <- exp(-r*t)*max(sa - K, 0) return(mean(value)) 4.2 Y E[Y ] σ Y n n, σ Y Y σ Y Y σ Y Glasserman Y E[Y ] X E[X] ( ) (X i, Y i ) (i = 1, 2,..., n) (X, Y ) b Y i (b) = Y i b(x i E[X i ]) Y i (b) (i = 1, 2,..., n) Ȳ (b) = 1 n n Y i (b) = 1 n i=1 n (Y i b(x i E[X])) = Ȳ b( X E[X]) i=1 Ȳ (b) E[Y ] E[Ȳ (b)] = E[Ȳ b( X E[X])] = E[Ȳ ] = E[Y ] Ȳ Y b Ȳ (b) Ȳ Y i(b) σ Y (b) σ 2 Y (b) = V [Y i (b)] = V [Y i b(x i E[X])] = V [Y i ] + V [b(x i E[X])] 2bCov(Y i, X i E[X]) = σ 2 Y + b 2 σ 2 X 2bσ X σ Y ρ XY (4.8) σx 2 = V [X], σ2 Y = V [Y ], ρ XY X, Y { b 2 σx 2 0 < b < σ Y 2σ 2bσ X σ Y ρ XY 0 X ρ XY, ρ XY > 0 σ Y 2σ X ρ XY < b < 0, ρ XY < 0 σ Y (b) < σ Y Ȳ Ȳ (b) b = b = σ Y Cov(X, Y) ρ XY = σ X V [X]

77 4 77 σ Y (b) V [Ȳ (b )] V [Ȳ ] V [Ȳ (b )] V [Ȳ ] = σ2 Y (1 ρ2 XY )/n σ 2 Y /n = 1 ρ 2 XY. X Y 1 1 X X Y b n i=1 b n = (X i X)(Y i Ȳ ) n i=1 (X i X) (4.9) 2 (4.9) (Y 1,..., Y n ) (X 1,..., X n ) Glasserman Black-Scholes E[e rt (S(T ) K) + ] S(T ) ( ) 1 n E[e rt S(T )] = S(0) E[S(T )] = e rt S(0) n [ e rt (S i (T ) K) + b (S i (T ) e rt S(0)) ] i=1 E[e rt (S(T ) K) + ] S i (T ) (i = 1, 2,..., n) S(T ) R CVEcall <- function(r, sigma, T, K, S0){ N < # S <- S0 * exp((r * sigma^2) * T + sigma * sqrt(t) * rnorm(n)) #S(T) Y <- exp(-r * T) * pmax(s - K,0) # b <- cov(s,y)/var(s) Yb <- Y - b * (S - exp(r * T) * S0) #Y return(mean(yb)) #mean() r = 0.1, σ = 0.2, T = 5, K = 60, S 0 = ( ) * 17 T = 1 n = 250, t i = i/m (i = 0, 1,..., M) *17 Jarrow and Protter A short history of stochastic integration adn mathematical finance. The early years, In The Herman Rubin Festschrift, IMS Lecture Notes 45, 2004 Samuelson Jarrow and Protter (2004) This is the paper that first coined the terms European and American options. According to a private commu-

78 4 78 Simple Monte Carlo Control Variate price price N N 4.1 ( ) ( ) N S A = 1 n S(t i ) (4.10) n i=0 (S(t i ) ) ( S A K) + ( ) ( ) e rt (S(T ) K) R BScall() AsianCallControlVariate <- function(r, sigma, K, S0){ N < # T <- 1 M <- 250 Deltat <- T/M # #[0,T] M # BScallprice <- BScall(r, sigma, T, K, S0) #BS nication with R.C. Merton, prior to writing the paper, P. Samuelson went to Wall Street to discuss options with industry professionals. His Wall Street contact explained that there were two types of options available, one more complex - that could be exercised any time prior to maturiy, and one more simple - that could be exercised only at the maturity date, and that only the more sophisticated European mind (as opposed to the American mind) could understand the former. In response, when Samuelson wrote the paper, he used these as prefixes and reversed the ordering.

79 4 79 Acall <- numeric(n) Ecall <- numeric(n) for (i in 1:N){ S <- numeric(m+1) S[1] <- S0 for (j in 1:M){ S[j+1] <- S[j]*exp((r-0.5*sigma^2)*Deltat + sigma*sqrt(deltat)*rnorm(1)) # SA <- mean(s) # Ecall[i] <- exp(-r*t)*max(s[m+1] - K,0) # Acall[i] <- exp(-r*t)*max(sa - K, 0) # b <- cov(acall,ecall)/var(ecall) Yb <- Acall - b * (Ecall - BScallprice) return(mean(yb)) (r = 0.1, σ = 0.2, T = 1, S 0 = 62, K = 60) >AsianCallControlVariate(0.1,0.2,60,62) [1] > S(T ) = S(0) exp{(r σ 2 /2)T + σw (T ) n Z 1, Z 2,..., Z n (4.11) S i = S(0) exp ) {(r σ2 T + σ T Z i 2 Z 1, Z 2,..., Z n (4.12)

untitled

untitled II(c) 1 October. 21, 2009 1 CS53 yamamoto@cs.kobe-u.ac.jp 3 1 7 1.1 : : : : : : : : : : : : : : : : : : : : : : 7 1.2 : : : : : : : : : : : : : : : : 8 1.2.1 : : : : : : : : : : : : : : : : : : : 8 1.2.2

More information

43433 8 3 . Stochastic exponentials...................................... 3. Girsanov s theorem......................................... 4 On the martingale property of stochastic exponentials 5. Gronwall

More information

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W 003 7 14 Black-Scholes [1] Nelson [] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-Wu Nelson e-mail: takatoshi-tasaki@nifty.com kabutaro@mocha.freemail.ne.jp

More information

mf.dvi

mf.dvi 21 9 29 1 2 3....................................... 3 :......................... 3....................................... 4................................ 4..................................... 5................................

More information

16 7 5

16 7 5 16 7 5 1 2 1.1.......................................... 2 1.2....................................... 5 1.2.1.................................... 5 1.2.2............................... 6 1.2.3...............................

More information

untitled

untitled 3 3. (stochastic differential equations) { dx(t) =f(t, X)dt + G(t, X)dW (t), t [,T], (3.) X( )=X X(t) : [,T] R d (d ) f(t, X) : [,T] R d R d (drift term) G(t, X) : [,T] R d R d m (diffusion term) W (t)

More information

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 14 5 1 ,,,17,,,194 1 4 ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 1 4 1.1........................................ 4 5.1........................................ 5.........................................

More information

2016 B S option) call option) put option) Chicago Board Option Exchange;CBOE) F.Black M.Scholes Option Pricing Model;OPM) B S 1

2016 B S option) call option) put option) Chicago Board Option Exchange;CBOE) F.Black M.Scholes Option Pricing Model;OPM) B S 1 206 B S option) call option) put option) 7 973 Chicago Board Option Exchange;CBOE) F.Black M.Scholes Option Pricing Model;OPM) B S 997 Robert Merton A 20 00 30 00 50 00 50 30 20 S, max(0, S-) C max(0,s

More information

( ) Loewner SLE 13 February

( ) Loewner SLE 13 February ( ) Loewner SLE 3 February 00 G. F. Lawler, Conformally Invariant Processes in the Plane, (American Mathematical Society, 005)., Summer School 009 (009 8 7-9 ) . d- (BES d ) d B t = (Bt, B t,, Bd t ) (d

More information

untitled

untitled 1 25/5/3-6/3 1 1 1.1.................................. 1 1.2.................................. 4 2 5 2.1.............................. 5 2.2.............................. 6 3 Black Scholes 7 3.1 BS............................

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

Grushin 2MA16039T

Grushin 2MA16039T Grushin 2MA1639T 3 2 2 R d Borel α i k (x, bi (x, 1 i d, 1 k N d N α R d b α = α(x := (αk(x i 1 i d, 1 k N b = b(x := (b i (x 1 i d X = (X t t x R d dx t = α(x t db t + b(x t dt ( 3 u t = Au + V u, u(,

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

( )/2   hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1 ( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

³ÎΨÏÀ

³ÎΨÏÀ 2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2 7 1995, 2017 7 21 1 2 2 3 3 4 4 6 (1).................................... 6 (2)..................................... 6 (3) t................. 9 5 11 (1)......................................... 11 (2)

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

chap9.dvi

chap9.dvi 9 AR (i) (ii) MA (iii) (iv) (v) 9.1 2 1 AR 1 9.1.1 S S y j = (α i + β i j) D ij + η j, η j = ρ S η j S + ε j (j =1,,T) (1) i=1 {ε j } i.i.d(,σ 2 ) η j (j ) D ij j i S 1 S =1 D ij =1 S>1 S =4 (1) y j =

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B 1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n

More information

chap10.dvi

chap10.dvi . q {y j } I( ( L y j =Δy j = u j = C l ε j l = C(L ε j, {ε j } i.i.d.(,i q ( l= y O p ( {u j } q {C l } A l C l

More information

main.dvi

main.dvi 3 Discrete Fourie Transform: DFT DFT 3.1 3.1.1 x(n) X(e jω ) X(e jω )= x(n)e jωnt (3.1) n= X(e jω ) N X(k) ωt f 2π f s N X(k) =X(e j2πk/n )= x(n)e j2πnk/n, k N 1 (3.2) n= X(k) δ X(e jω )= X(k)δ(ωT 2πk

More information

untitled

untitled 18 1 2,000,000 2,000,000 2007 2 2 2008 3 31 (1) 6 JCOSSAR 2007pp.57-642007.6. LCC (1) (2) 2 10mm 1020 14 12 10 8 6 4 40,50,60 2 0 1998 27.5 1995 1960 40 1) 2) 3) LCC LCC LCC 1 1) Vol.42No.5pp.29-322004.5.

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P 9 (Finite Element Method; FEM) 9. 9. P(0) P(x) u(x) (a) P(L) f P(0) P(x) (b) 9. P(L) 9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L)

More information

BIS CDO CDO CDO CDO Cifuentes and O Connor[1] Finger[6] Li[8] Duffie and Garleânu[4] CDO Merton[9] CDO 1 CDO CDO CDS CDO three jump model Longstaff an

BIS CDO CDO CDO CDO Cifuentes and O Connor[1] Finger[6] Li[8] Duffie and Garleânu[4] CDO Merton[9] CDO 1 CDO CDO CDS CDO three jump model Longstaff an CDO 2010 5 18 CDO(Collateralized Debt Obligation) Duffie and Garleânu[4] CDO CDS(Credit Default Swap) Duffie and Garleânu[4] 4 CDO CDS CDO CDS CDO 2007 CDO CDO CDS 1 1.1 2007 2008 9 15 ( ) CDO CDO 80 E-mail:taiji.ohka@gmail.com

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,. (1 C205) 4 10 (2 C206) 4 11 (2 B202) 4 12 25(2013) http://www.math.is.tohoku.ac.jp/~obata,.,,,..,,. 1. 2. 3. 4. 5. 6. 7. 8. 1., 2007 ( ).,. 2. P. G., 1995. 3. J. C., 1988. 1... 2.,,. ii 3.,. 4. F. ( ),..

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

2 A A 3 A 2. A [2] A A A A 4 [3]

2 A A 3 A 2. A [2] A A A A 4 [3] 1 2 A A 1. ([1]3 3[ ]) 2 A A 3 A 2. A [2] A A A A 4 [3] Xi 1 1 2 1 () () 1 n () 1 n 0 i i = 1 1 S = S +! X S ( ) 02 n 1 2 Xi 1 0 2 ( ) ( 2) n ( 2) n 0 i i = 1 2 S = S +! X 0 k Xip 1 (1-p) 1 ( ) n n k Pr

More information

chap1.dvi

chap1.dvi 1 1 007 1 e iθ = cos θ + isin θ 1) θ = π e iπ + 1 = 0 1 ) 3 11 f 0 r 1 1 ) k f k = 1 + r) k f 0 f k k = 01) f k+1 = 1 + r)f k ) f k+1 f k = rf k 3) 1 ) ) ) 1+r/)f 0 1 1 + r/) f 0 = 1 + r + r /4)f 0 1 f

More information

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v 12 -- 1 4 2009 9 4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 4-10 c 2011 1/(13) 4--1 2009 9 3 x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2

More information

「国債の金利推定モデルに関する研究会」報告書

「国債の金利推定モデルに関する研究会」報告書 : LG 19 7 26 2 LG Quadratic Gaussian 1 30 30 3 4 2,,, E-mail: kijima@center.tmu.ac.jp, E-mail: tanaka-keiichi@tmu.ac.jp 1 L G 2 1 L G r L t),r G t) L r L t) G r G t) r L t) h G t) =r G t) r L t) r L t)

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

2015/4/13 10: C C C C John C. Hull,, Steven E. Shreve, (1), Peter E. Kloeden, Eckhard Platen Num

2015/4/13 10: C C C C John C. Hull,, Steven E. Shreve, (1), Peter E. Kloeden, Eckhard Platen Num 2015/4/13 10:56 0 0.1 http://cm.hit-u.ac.jp/~kobayashi/lecture/ 0.2 C C C C John C. Hull,, Steven E. Shreve, (1, Peter E. Kloeden, Eckhard Platen Numerical Solution of Stochastic Differential Equations,

More information

II 1 II 2012 II Gauss-Bonnet II

II 1 II 2012 II Gauss-Bonnet II II 1 II 212 II Gauss-Bonnet II 1 1 1.1......................................... 1 1.2............................................ 2 1.3.................................. 3 1.4.............................................

More information

214 March 31, 214, Rev.2.1 4........................ 4........................ 5............................. 7............................... 7 1 8 1.1............................... 8 1.2.......................

More information

2014 S hara/lectures/lectures-j.html r 1 S phone: ,

2014 S hara/lectures/lectures-j.html r 1 S phone: , 14 S1-1+13 http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html r 1 S1-1+13 14.4.11. 19 phone: 9-8-4441, e-mail: hara@math.kyushu-u.ac.jp Office hours: 1 4/11 web download. I. 1. ϵ-δ 1. 3.1, 3..

More information

213 March 25, 213, Rev.1.5 4........................ 4........................ 6 1 8 1.1............................... 8 1.2....................... 9 2 14 2.1..................... 14 2.2............................

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

数値計算:有限要素法

数値計算:有限要素法 ( ) 1 / 61 1 2 3 4 ( ) 2 / 61 ( ) 3 / 61 P(0) P(x) u(x) P(L) f P(0) P(x) P(L) ( ) 4 / 61 L P(x) E(x) A(x) x P(x) P(x) u(x) P(x) u(x) (0 x L) ( ) 5 / 61 u(x) 0 L x ( ) 6 / 61 P(0) P(L) f d dx ( EA du dx

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

Black-Scholes 1 ( )

Black-Scholes 1 ( ) Black-Scholes Takaoka[T] Black- Scholes B S α B t = e rt S α t = S e αrt exp σw t + Ct } 2 σ2 t λdσ λ Λ 2 :=,, B, σ 2 λdσ < } W t } Ω, F, P; F t T > t [, T ], α R, r C, S F - S α dst α = αr+cφtst α dt+φtst

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V I (..2) (0 < d < + r < u) X 0, X X = 0 S + ( + r)(x 0 0 S 0 ) () X 0 = 0, P (X 0) =, P (X > 0) > 0 0 H, T () X 0 = 0, X (H) = 0 us 0 ( + r) 0 S 0 = 0 S 0 (u r) X (T ) = 0 ds 0 ( + r) 0 S 0 = 0 S 0 (d r)

More information

Green

Green 28 6/-3 2 ax, bx R, L = d2 ax 2 dx 2 + bx d dx 2 L X = {Xt, t }. σ y = inf{t > ; Xt = y} t Xt L y = sup{t > ; Xt = y} 2. Gauss Gamma 3. tree 4. t Black-Scholes Madan-Roynette-Yor [6] σ y E x [exp λσ y

More information

Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x

Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x University of Hyogo 8 8 1 d x(t) =f(t, x(t)), dt (1) x(t 0 ) =x 0 () t n = t 0 + n t x x n n x n x 0 x i i = 0,..., n 1 x n x(t) 1 1.1 1 1 1 0 θ 1 θ x n x n 1 t = θf(t n 1, x n 1 ) + (1 θ)f(t n, x n )

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P 1 1.1 (population) (sample) (event) (trial) Ω () 1 1 Ω 1.2 P 1. A A P (A) 0 1 0 P (A) 1 (1) 2. P 1 P 0 1 6 1 1 6 0 3. A B P (A B) = P (A) + P (B) (2) A B A B A 1 B 2 A B 1 2 1 2 1 1 2 2 3 1.3 A B P (A

More information

renshumondai-kaito.dvi

renshumondai-kaito.dvi 3 1 13 14 1.1 1 44.5 39.5 49.5 2 0.10 2 0.10 54.5 49.5 59.5 5 0.25 7 0.35 64.5 59.5 69.5 8 0.40 15 0.75 74.5 69.5 79.5 3 0.15 18 0.90 84.5 79.5 89.5 2 0.10 20 1.00 20 1.00 2 1.2 1 16.5 20.5 12.5 2 0.10

More information

Vol. 3 No (Mar. 2010) An Option Valuation Model Based on an Asset Pricing Model Incorporating Investors Beliefs Kentaro Tanaka, 1 Koich

Vol. 3 No (Mar. 2010) An Option Valuation Model Based on an Asset Pricing Model Incorporating Investors Beliefs Kentaro Tanaka, 1 Koich Vol. 3 No. 2 51 64 (Mar. 2010 1 1 1 An Option Valuation Model Based on an Asset Pricing Model Incorporating Investors Beliefs Kentaro Tanaka, 1 Koichi Miyazaki 1 and Koji Nishiki 1 Preceding researches

More information

II Brown Brown

II Brown Brown II 16 12 5 1 Brown 3 1.1..................................... 3 1.2 Brown............................... 5 1.3................................... 8 1.4 Markov.................................... 1 1.5

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

b3e2003.dvi

b3e2003.dvi 15 II 5 5.1 (1) p, q p = (x + 2y, xy, 1), q = (x 2 + 3y 2, xyz, ) (i) p rotq (ii) p gradq D (2) a, b rot(a b) div [11, p.75] (3) (i) f f grad f = 1 2 grad( f 2) (ii) f f gradf 1 2 grad ( f 2) rotf 5.2

More information

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n 1, R f : R R,.,, b R < b, f(x) [, b] f(x)dx,, [, b] f(x) x ( ) ( 1 ). y y f(x) f(x)dx b x 1: f(x)dx, [, b] f(x) x ( ).,,,,,., f(x)dx,,,, f(x)dx. 1.1 Riemnn,, [, b] f(x) x., x 0 < x 1 < x 2 < < x n 1

More information

6.1 (P (P (P (P (P (P (, P (, P.

6.1 (P (P (P (P (P (P (, P (, P. (011 30 7 0 ( ( 3 ( 010 1 (P.3 1 1.1 (P.4.................. 1 1. (P.4............... 1 (P.15.1 (P.16................. (P.0............3 (P.18 3.4 (P.3............... 4 3 (P.9 4 3.1 (P.30........... 4 3.

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

6.1 (P (P (P (P (P (P (, P (, P.101

6.1 (P (P (P (P (P (P (, P (, P.101 (008 0 3 7 ( ( ( 00 1 (P.3 1 1.1 (P.3.................. 1 1. (P.4............... 1 (P.15.1 (P.15................. (P.18............3 (P.17......... 3.4 (P................ 4 3 (P.7 4 3.1 ( P.7...........

More information

08-Note2-web

08-Note2-web r(t) t r(t) O v(t) = dr(t) dt a(t) = dv(t) dt = d2 r(t) dt 2 r(t), v(t), a(t) t dr(t) dt r(t) =(x(t),y(t),z(t)) = d 2 r(t) dt 2 = ( dx(t) dt ( d 2 x(t) dt 2, dy(t), dz(t) dt dt ), d2 y(t) dt 2, d2 z(t)

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

スプレッド・オプション評価公式を用いた裁定取引の可能性―電力市場のケース― 藤原 浩一,新関 三希代

スプレッド・オプション評価公式を用いた裁定取引の可能性―電力市場のケース― 藤原 浩一,新関 三希代 403 81 1 Black and Scholes 1973 Email:kfujiwar@mail.doshisha.ac.jp 82 404 58 3 1 2 Deng, Johnson and Sogomonian 1999 Margrabe 1978 2 Deng, Johnson and Sogomonian 1999 Margrabe 1978 Black and Scholes 1973

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

23 7 28 i i 1 1 1.1................................... 2 1.2............................... 3 1.2.1.................................... 3 1.2.2............................... 4 1.2.3 SI..............................

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

1 R n (x (k) = (x (k) 1,, x(k) n )) k 1 lim k,l x(k) x (l) = 0 (x (k) ) 1.1. (i) R n U U, r > 0, r () U (ii) R n F F F (iii) R n S S S = { R n ; r > 0

1 R n (x (k) = (x (k) 1,, x(k) n )) k 1 lim k,l x(k) x (l) = 0 (x (k) ) 1.1. (i) R n U U, r > 0, r () U (ii) R n F F F (iii) R n S S S = { R n ; r > 0 III 2018 11 7 1 2 2 3 3 6 4 8 5 10 ϵ-δ http://www.mth.ngoy-u.c.jp/ ymgmi/teching/set2018.pdf http://www.mth.ngoy-u.c.jp/ ymgmi/teching/rel2018.pdf n x = (x 1,, x n ) n R n x 0 = (0,, 0) x = (x 1 ) 2 +

More information

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds 127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 - M3............................................................................................ 3.3................................................... 3 6........................................... 6..........................................

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

OHP.dvi

OHP.dvi t 0, X X t x t 0 t u u = x X (1) t t 0 u X x O 1 1 t 0 =0 X X +dx t x(x,t) x(x +dx,t). dx dx = x(x +dx,t) x(x,t) (2) dx, dx = F dx (3). F (deformation gradient tensor) t F t 0 dx dx X x O 2 2 F. (det F

More information

tokei01.dvi

tokei01.dvi 2. :,,,. :.... Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 3. (probability),, 1. : : n, α A, A a/n. :, p, p Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2 (2018 ) ( -1) TA Email : ohki@i.kyoto-u.ac.jp, ske.ta@bode.amp.i.kyoto-u.ac.jp : 411 : 10 308 1 1 2 2 2.1............................................ 2 2.2..................................................

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b 1 Introduction 2 2.1 2.2 2.3 3 3.1 3.2 σ- 4 4.1 4.2 5 5.1 5.2 5.3 6 7 8. Fubini,,. 1 1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)?

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

03.Œk’ì

03.Œk’ì HRS KG NG-HRS NG-KG AIC Fama 1965 Mandelbrot Blattberg Gonedes t t Kariya, et. al. Nagahara ARCH EngleGARCH Bollerslev EGARCH Nelson GARCH Heynen, et. al. r n r n =σ n w n logσ n =α +βlogσ n 1 + v n w

More information

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0, .1.1 Y K L Y = K 1 3 L 3 L K K (K + ) 1 1 3 L 3 K 3 L 3 K 0 (K + K) 1 3 L 3 K 1 3 L 3 lim K 0 K = L (K + K) 1 3 K 1 3 3 lim K 0 K = 1 3 K 3 L 3 z = f(x, y) x y z x-y-z.1 z = e x +xy y 3 x-y ( ) z 0 f(x,

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information