CP2.dvi

Size: px
Start display at page:

Download "CP2.dvi"

Transcription

1 1 1/2 NMR 1.1 ( 10 7 ) 1 H 1/ C 1/ N O 5/ e 1/ NMR rad/ts 1T NMR (MHz) 1

2 S z= γhb S = 1 z B=0 B 1.1 B γhb +> -> 1.2 ± 1/2 0 1/

3 ESR NMR NMR 1 H 1.2 1/2 NMR 1 H 1 ESR 1/2 ±1/2 x ψ(x) dxψ (x)ψ(x) ±1/2 [ ] [ ] 1 0 +,, (1.1) [1 0], [0 1] (1.2) [ 1 0 I = 0 1 ] (1.3) 1/2 2 s, t = c + (t) + + c (t) (1.4) [ ] S z = (1.5) S z + = 1 2 +, S z = 1 (1.6) 2 *1 H + NMR 1 H 1.2 1/2 3

4 1.3 NMR NMR 1.4 NMR (1) (2) (3) (4) (5) [ 0 1 ] [ 0 0 ] σ + = 0 0, σ = 1 0 (1.7) σ + = +, σ + = (1.8) S z I σ + σ σ + σ [ ] [ ] i σ 1 =, σ 2 = (1.9) 1 0 i 0 4 1

5 hω + σ σ 1.5 σ + = σ 1 + iσ 2,σ = σ 1 iσ 2 (1.10) S z [ ] 1 0 σ 3 = (1.11) 0 1 σ 1 σ 2 σ 3 [σ j,σ k ]=iɛ jkl σ l (j, k, l =1, 2, 3) (1.12) ɛ 123 =1 1 ɛ 132 = ɛ 321 = 1 σ 1 σ 2 σ 3 hs µ µ = γ hs (1.13) γ B E E = µ B (1.14) z B = B z z E = µ z B z = γ hb z S z (1.15) 1.1. z 1.2 1/2 5

6 1.3 x h (t)/2 =γb x (t) hω 0 γ hb z Ĥ = 1 2 hω 0σ h (t)(σ+ + σ ) = 1 2 hω 0σ h (t)σ 1 (1.16). 2 2 [ ] Ĥ = 1 2 h ω0 (t) (1.17) (t) ω 0 [ c+ (t) s, t = c (t) ] (1.18) ī s, t = t (1.19) t hĥ s, [ ] [ ][ ] c+ (t) = i ω0 (t) c+ (t) (1.20) t c (t) 2 (t) hω 0 c (t) (t) t  A(t) s, t  s, t (1.21) Z j=± j exp[ βĥ] j (1.22) 6 1

7 1 2 1 i 2 1 i β =1/k B T 1.3 A(t) = s, t j j  s, t = t s, t j j=± j=± j  s, = tr{âˆρ(t)} (1.23) ˆρ(t) s, t s, t (1.24) tr ˆB tr{ ˆB} j=± j ˆB j (1.25) tr{â ˆBĈ} = tr{ ˆBĈÂ} = tr{ĉâ ˆB} (1.26) ρ jk (t) = j ˆρ(t) k ˆρ(t) j ρ jk (t) k (1.27) j=± k=±  A jk j  k 1.3 7

8 4 Z FU 3 2 S C T Z F E S C T. hω k B.  j=± j A jk k (1.28) k=± tr{âˆρ(t)} = A jk ρ kj (t) (1.29) j=± k=± A(q) t ρ(t)  [ ] c+ (t) ˆρ(t) = s, t s, t = [c + c (t) (t),c (t)] [ ] c+ (t)c +(t) c +(t)c (t) = c (t)c +(t) c (t)c +(t) [ ] ρ++ (t) ρ + (t) (1.30) ρ + (t) ρ (t) Ĥ T Z = tr{e βĥ } (1.31) β =1/k B T k B 8 1

9 S S S S 1.8 S ˆρ eq = e βĥ Z (1.32). ˆρ eq = 1 j j e βĥ k k Z = j=± j=± k=± k=± j ρ eq jk k (1.33) ρ eq jk 1 Z j e βĥ k (1.34) β =1/k B T A < Â> eq tr{âˆρ eq } = j=± k=± A jk ρ eq kj (1.35) + ρ eq jk (1.16) (t) = 1.3 9

10 [ 1 2 hω 0 s h h 1 2 hω 0 s ] = 0 (1.36) s 2 ( h ) 2 ( 1 2 hω 0) 2 = 0 (1.37) s = ± h ( ) 2 +( 1 2 ω 0) 2 (1.38) E = ± 1 2 h 2 + ω0 2 ± hω /2 1 = [ ] 1 ω0, 2 + ω0 2 (1.39) 2 = [ ] ω0 2 ω 0 (1.40) Z Z = ( ) β hω n e βĥ n = 2cosh 2 n (1.41) ˆρ eq jk 1 ) ( 1 e Z j j β hω / e β hω /2 2 k k (1.42) Z [ ( )] β hω F = k B T ln Z = k B T ln 2 cosh 2 ( = β hω + k B T ln 1+e β hω ) (1.43) 2 E = ( ) β hω ln Z = β hω tanh β 2 2 S = F [ ( )] T = β hω β hω + k B ln 2 cosh 2 2 C = E T = 10 1 k B ( ) β hω 2 2 cosh 2 (β hω over2) (1.44) (1.45) (1.46)

11 (a) S (b) S S S S Ω 1.9 Ω S S ω 0 γb S 3 Ω + Ω S ˆρ(t) 1.19 t ˆρ(t) = ī h [Ĥ, ˆρ(t)] (1.47) quantal Liouville equation [ ] ([ ][ ] ρ++ (t) ρ + (t) = i ω0 (t) ρ++ (t) ρ + (t) t ρ + (t) ρ (t) 2 (t) ω 0 ρ + (t) ρ (t) [ ][ ]) ρ++ (t) ρ + (t) ω0 (t) ρ + (t) ρ (t) (t) ω 0 (1.48). ρ ++ (t) 0 0 (t) (t) ρ ++ (t) ρ (t) = i 0 0 (t) (t) ρ (t) t ρ + (t) 2 (t) (t) ω 0 0 ρ + (t) ρ + (t) (t) (t) 0 ω 0 ρ + (t) (1.49)

12 (t). ρ = ρ + ρ ++ ρ ρ ++ +ρ =1 (positivity condition) ρ ++ > 0 ρ > 0 (1.16) ρ(t) =S 0 I + S 1 (t)σ 1 + S 2 (t)σ 2 + S 3 (t)σ 3 (1.50) S1 2 + S2 2 + S3 2 =1 (1.16) σ i Ṡ 0 = 0 (1.51) Ṡ 1 = ω 0 S 2 (1.52) Ṡ 2 = ω 0 S 1 + (t)s 3 (1.53) Ṡ 3 = (t)s 2 (1.54) (1.51) S 0 ρ ++ + ρ = S 0 S 1 0 ω 0 (t) S 1 d dt S 2 = ω 0 0 (t) S 2 (1.55) (t) (t) 0 S 3 S (S 1,S 2,S 3 ) (1.52)-(1.54) ds dt =ΩF S (1.56) 12 1 Ω F =( (t), 0,ω 0 ) (1.57) M B dm = γb M (1.58) dt 1/2 i =1, 2, 3 S 3

13 w ' u ' Ω v S π 3π 4π γβ t 1.11 S 3 = 0, 0.5, 1. x y z 1.5 (t) =2γB 1 cos ωt (1.59) Ω F Ω F =Ω + (t)+ω (t)+ω 0 (1.60) Ω 0 =(0, 0,ω 0 )

14 w u Ω v 1.12 π Ω + =( γb 1 cos ωt, γb 1 sin ωt, 0) (1.61) Ω =( γb 1 cos ωt, γb 1 sin ωt, 0) ω 0 γb Ω F z S z 1.9(a) S Ω + Ω F Ω F =Ω + (t)+ω 0 (1.62) (1.52)-(1.54) d dt S 1 S 2 S 3 = 0 ω 0 γb 1 sin ωt ω 0 0 γb 1 cos ωt γb 1 sin ωt γb 1 cos ωt 0 S 1 S 2 S 3 (1.63) z 1.9(a) u v w 14 1

15 u v w = cos ωt sin ωt 0 sin ωt cos ωt S 1 S 2 S 3 (1.64) u 0 (ω 0 ω) 0 d dt v = (ω 0 ω) 0 γb 1 w 0 γb 1 0 u v w (1.65) ρ (u, v, w) T Ω ( γb 1, 0,ω 0 ω) T d dt ρ = Ω ρ (1.66) v tan χ = ω 0 ω γb 1 (1.67) u v w = cos χ 0 sin χ sin χ 0 cos χ u v w (1.68) (u,v,w ) u u d dt v = 0 0 Ω( ) v (1.69) 0 Ω( ) 0 w Ω(δ) = δ 2 +(γb 1 ) 2 δ = ω 0 ω Ω 1.10 u u 0 v = 0 cos Ωt sin Ωt v 0 (1.70) 0 sin Ωt cos Ωt w (u 0,v 0,w 0) T (u 0,v 0,w 0 ) T u 0 cos χ 0 sin χ u 0 v 0 = v 0 (1.71) sin χ 0 cos χ w 0 z 0 z 0 w

16 (u, v, w) T u cos χ 0 sin χ cos χ 0 sin χ v = cos Ωt sin Ωt w sin χ 0 cos χ 0 sin Ωt cos Ωt sin χ 0 cos χ (γb 1) 2 +δ 2 cos Ωt δ δγb1 sin Ωt (1 cos Ωt) u Ω 2 Ω Ω 2 0 = δ Ω sin Ωt cos Ωt γb 1 sin Ωt Ω v 0 δγb1 Ω (1 cos Ωt) γb1 2 Ω sin Ωt δ 2 +(γb 1) 2 cos Ωt Ω w 2 0 w δγb 1 w = u 0 δ 2 +(γb 1 ) (1 cos Ωt) v γb sin Ωt δ2 +(γb 1 ) 2 + w 0 δ 2 +(γb 1 ) 2 cos Ωt δ 2 +(γb 1 ) 2 (1.73) u 0 v 0 w 0 (1.72) u 0 = v 0 =0,w 0 = 1 w = 1+ 2(γB 1) 2 ( ) Ωt δ 2 +(γb 1 ) 2 sin2 2 (1.74) S 3 = w 1.11 σ ± H rot = hω 0 2 σ 3 + hγb ( e iωt σ + + e iωt ) σ (1.75) e iωt σ + e iωt σ e iωt σ + e iωt σ Π Π/2 δ =0 π/2γb 1 w w 0 = 1 π/2 w =0 (u, v, w) u v 1.13 π/γb 1 π w =

17 w u- v u 1.13 v u- v S 3 π/2 u v H = 1 2 hω 0σ h σ 1 (1.76) H = 1 2 hω 0σ h σ 2 (1.77)

18

19 2 1/ (1.56) ds dt = Ω S (2.1)?? z z T 1 ds 3 dt = Seq z S 3 T 1 (2.2) z?? x Bloch ds 1 dt ds 2 dt ds 3 dt =(S Ω) 1 S 1 T 2 =(S Ω) 2 S 2 T 2 (2.3) =(S Ω) 3 + Seq z S 3 T 1 19

20 z y B 0 x 2.1 T 2 T Bloch x, y, z Bloch (2.3) (A) (B = B 0 ẑ) ω 0 = γb 0 Bloch ds 1 dt ds 2 dt ds 3 dt = ω 0 S 2 S 1 T 2 = ω 0 S 1 S 2 T 2 (2.4) =0 20 2

21 2.2 S 1 = me t/τ cos φt S 2 = me t/τ sin φt (2.4) φ sin φt 1 τ cos φt = ω 0 sin φt 1 cos φt (2.5) T 2 φ = ω 0 τ = T 2 S 1 = me t/t2 cos ω 0 t (2.6) S 2 = me t/t2 sin ω 0 t (2.7) (B) B =(B 1 cos ωt, B 1 sin ωt, B z ) ω 0 = γb 0 Bloch ds 1 dt ds 2 dt = 1 T 2 S 1 ω 0 S 2 γb 1 sin ωts 3 = ω 0 S 1 1 T 2 S 2 + γb 1 cos ωts 3 (2.8) 2.2 Bloch 21

22 ( ) ( ) ds 3 dt = γb 1 sin ωts 1 γb 1 cos ωts 2 + Seq z S 3 T 1 S 1 = u(t) cos ωt v(t) sin ωt S 2 = u(t) sin ωt + v(t) cos ωt (2.8) u + a 2 u + bv =0 v + a 2 v bu + S 3 = 0 (2.9) S 3 + a 1 S 3 v = a 1 Sz eq a 1 = 1/γB 1 T 1 a 2 = 1/γB 1 T 2 b = (ω 0 ω)/γb 1

23 u = v = S 3 =0 (2.9) γb 1 T 2 δt 2 u = 1+(δT 2 ) 2 +(γb 1 ) 2 Sz eq T 1 T 2 γb 1 T 2 v = 1+(δT 2 ) 2 +(γb 1 ) 2 Sz eq (2.10) T 1 T 2 S 3 = 1+(δT 2 ) 2 S 1+(δT 2 ) 2 +(γb 1 ) 2 z eq T 1 T 2 δ = ω 0 ω χ S = χb (S 1 + is 2 )=(χ iχ )(B x + ib y ) (2.11) u = χ B 1 v = χ B 1 χ γt 2 (δt 2 )χ 0 B 0 = 1+(T 2 δ) 2 +(γb 1 ) 2 T 1 T 2 (2.12) χ γt 2 χ 0 B 0 = 1+(T 2 δ) 2 +(γb 1 ) 2 T 1 T 2 (2.13) χ 0 = Sz eq /B 0 γb 1 χ χ γb 1 χ χ Bloch 23

24

25 3 3.1 T 1 T 2 ρ = i/ h[h, ρ]+γρ ψ A+B > ψ A > A B ρ A+B (t) ρ A+B (t) = ψ A+B (t) ψ A+B (t) (3.1) X A (t) <X A (t) >= tr A tr B {X A ρ A+B (t)} (3.2) tr B {ρ A+B (t)} = ρ A (t) (3.3) B ρ A <X A (t) >= tr A {X A ρ A (t)} (3.4) ρ A 25

26 3.1 A < ˆµ ( t) > K H A H I H B H H = H A + H I + H B (3.5) H A (t) = hω 0 2 σ 3 + hkɛ(e iωt σ + + e iωt σ ) (3.6) H B [b q,b q ]=δ qq H B = q ω q b qb q (3.7) H I H I = i q (g q σ + b q g qσ b q) (3.8) H I b q σ

27 σ x H = H + H + H A I B 3.2 A B σ b q b q σ + σ b q d dt ψ A+B >= ī h H ψ A+B > (3.9) ρ A+B (t) d dt ρ A+B(t) = ī h [H, ρ A+B(t)] ī h Lρ A+B(t) (3.10) H I H I H 0 (t) H I H(t) =H 0 (t)+h I ρ(t) = ī h [(H 0(t)+H I ),ρ] ī L(t)ρ(t) (3.11) h U 0 + (t) 1 *1 U + 0 (t) = i/ hh 0(t)U + 0 (t)

28 U + 0 (t) = exp ī h t 0 [ ī h t 0 ] dτ H 0 (τ) dτ H 0 (τ) 1 h 2 t 0 dτ τ 0 dτ H 0 (τ)h 0 (τ )+ (3.12) exp τ >τ >τ > U 0 + (t) ρ I (t) U 0 (t)ρ(t)u + 0 (t) (3.13) H I (t) U 0 + (t)h IU0 (t) (3.14) U 0 + (t) U 0 (t) ρ I (t) = ī h [H I(t),ρ I (t)] ī h L I(t)ρ I (t) (3.15) ρ I (t) H I (t) ) ρ I (t) =ρ I (t 0 ) ī h t t 0 dt 1 L I (t 1 )ρ I (t 1 ) (3.16) ρ I (t 1 ) t ρ I (t) =ρ I (t 0 ) ī dt 1 L I (t 1 )ρ I (t 0 ) h t 0 1 t t h 2 dt 1 dt 2 L I (t 1 )L I (t 2 )ρ 2 (t 0 )+ (3.17) t 0 t 0 L I (t 1 )L I (t 2 )ρ I (t 0 )=[H I (t 1 ), [H I (t 2 ),ρ I (t 0 )]] (3.18) H 0 = H A + H B ρ I (t) =ρ I (t + t) ρ I (t) (3.19) t 0 t t t + t ρ I (t) = ī h 1 h 2 t+ t t t dt 1 L I (t 1 )ρ I (t) t+ dt 1 dt 2 L I (t 1 ){L I (t 2 )ρ I (t)} + (3.20) t

29 H I ρ I (t) ρ I (t) =ρ I A(t) 0 BB 0 (3.21) 0 BB 0 ρ I A (t) ρ I A (t) =tr B{ρ I (t)} (3.22) ρ I (t) tr B { ρ I A (t) = ī t+ t h tr B dt 1 L I (t 1 ) ( ρ I A (t) 0 BB 0 )} t { 1 t+ t1 h 2 tr B dt 1 dt 2 L I (t 1 ) ( L I (t 2 )ρ I A(t) 0 BB 0 )} t t + (3.23) H I (t) = i ( ) g q e ī h dth A(t) σ + e ī h dth A(t) e ī h HBt b q e ī h HBt q +c.c. (3.24) {[ tr B σ I + (t)b I q(t),ρ I A(t) 0 BB 0 ]} { = σ+(t)ρ I I A(t)tr B b I q (t) 0 BB 0 } ρ I A (t)σi + (t)tr { B 0 BB 0 b I q (t)} (3.25) 0 tr B {[H I (t 1 ), [H I (t 2 ),ρ I A (t) 0 BB 0 ]]} H I (t) tr B { bq (t 1 ) 0 BB 0 b + q (t 2) } 0 (3.26) tr B { bq (t 1 )b + q (t 2 ) 0 BB 0 } e iωq(t1 t2) (3.27) tr B { b + q (t 1 ) 0 BB 0 b q (t 2 ) } e iωq(t1 t2) (3.28) tr B { b + q (t 1 )b q (t 2 ) 0 BB 0 } 0 (3.29) ρ I A(t) = 1 t+ t t1 h 2 gqg q dt 1 dt 2 q t t [ e iωq(t1 t2) σ (t I 2 )ρ I A(t)σ+(t I 1 )

30 +e iωq(t1 t2) σ I (t 1 )ρ I A(t)σ I +(t 2 ) e iωq(t1 t2) σ+ I (t 1)σ I (t 2)ρ I A (t) ] e iωq(t1 t2) ρ I A(t)σ+(t I 2 )σ (t I 1 ) (3.30) σ + (t 1 )=e iω0t σ + σ (t 2 )=e iω0t σ t 1 t 2 e ±i(ωq ω0)(t1 t2) ( ) 3 L gq g q = dω dωω 2 gq 2πc g q = dωn (ω)g 2 (ω) (3.31) q ω2 N(ω) = 2πc 3 (3.32) g 2 (ω) = L3 4π 2 dωg q gq (3.33) eq.(3.30) t+ t1 dt 1 dt 2 dωn (ω)g 2 (ω)e i(ω ω0)(t1 t2) (3.34) t t N(ω)g 2 (ω) ω t 1 t 2 t+ t1 dt 1 dt 2 dωn (ω)g 2 (ω)e i(ω ω0)(t1 t2) t t dτ dωn (ω)g 2 (ω)e i(ω ω0)τ 0 0 dτ e i(ω ω0)τ = πδ(ω ω 0 ) P =(K + iδ) τ (3.35) 1 ω ω 0 (3.36) K = dωn (ω)g 2 (ω)πδ(ω ω 0 )=πn(ω 0 )g 2 (ω 0 ) (3.37) δ = P dω N(ω)g2 (ω) (3.38) ω ω 0 ρ I A (t) t =2Kσ ρ I A σ + (K + iδ)σ + σ ρ I A (t) (K iδ)ρ I A(t)σ + σ (3.39) 0 ρ I A (t)/ t ρi A (t) 30 3

31 ρ A (t) = ī h [H A(t),ρ A (t)] + 2Kσ ρ A (t)σ + Kσ + σ ρ A (t) Kρ A (t)σ + σ iδ [σ + σ,ρ A ] = ī h [H A(t) hσ σ +,ρ A ] Γρ A (t) (3.40) Γρ A 2Kσ ρ A σ + Kσ + σ ρ A ρ A σ + σ (3.41) [ hδσ + σ,ρ A ] ω 0 +δ ω 0 ω 0 ρ A (t) = ī h [H A(t),ρ A (t)] Γρ A (t) (3.42) Γρ A Γρ A 1/T 1 =2K 1/T 2 = K 0K 1/T 1 =2/T (0K) 1/T 1 =2/T 2 1/T 1 < 2/T 2 1/T 1 < 2/T 2 H A (t) H B H I H = H A (t)+h I + H B (3.43) H I = σ + σ c j (b j + b j ) (3.44) j H B = h ω j b j b j (3.45) j V = σ + σ H I B 0K H I

32 ρ A+B (t) ρ A (t)e βh B (3.46) β = 1/k B T tr B {b j (t 1)e βh B } tr B {b j (t 1 )e βh B } ( n n 0) tr B {b j (t 1)b j (t 2 )e βh B } X j b j + b j { tr B e βh B X j (t 2 )X j (t 1 ) } = n j e njβωn j nj n j X j n j +1 n j +1 X j n j e ωn j (t1 t2) n j + n j n j +1 e (nj+1)βωn j nj +1 n j +1 X j n j n j X j n j e iωn j (t1 t2) = 1 1 e βωn j 1 e njβωnj = n j 1 e βωn j [ e iωn j (t1 t2) + e βωn j e iω nj (t 1 t 2) ] (3.47) (3.48) Γρ = j { c 2 j 1 h 2 t+ t t1 dt 1 dt 2 e iωn j (t1 t2) t t 2 [ V I (t 1 ),V I (t 2 )ρ ] 2e βωn j 1 e βωn j 1 e βωn j [ V I (t 1 ),ρv I (t 2 ) ]} (3.49) V I (t) exp [ ī h t 0 ] [ ī dth A (t) (σ + σ )exp h t 0 ] dth A (t) (3.50) J(ω) = j c j δ(ω ω nj ) (3.51) 1 h 2 t+ t t dt 1 t1 t dt 2 dωj(ω) [ ( ) β hω coth cos (ω(t 1 t 2 )) [ V I (t 1 ), [ V I (t 2 ),ρ ]] 2 i sin ω(t 1 t 2 ) [ V I (t 1 ), {V I (t 2 ),ρ} ]] (3.52) 32 3

33 {, } [ ( ) ] β hω dωj(ω) coth cos ω(t 1 t 2 ) γδ(t 1 t 2 ) (3.53) 2 dωj(ω) sin ω(t 1 t 2 ) δ(t 1 t 2 ) (3.54) V σ + σ σ + σ = σ + σ Γ ρ = t [2γσ + σ ρσ + σ γ(σ + σ ρ ρσ + σ ) +iδ(σ + σ ρ + ρσ + σ )] (3.55) β h γ >>iδ iδ ρ = ρ z σ z + ρ I σ I + ρ + ρ + + ρ σ (3.56) Γ ρ = γ(σ + σ ρ ρσ + σ ) (3.57) B B ρ A = ī h [H A(t),ρ A (t)] Γρ A Γ ρ A (3.58) Γ tot =Γ+Γ Γ tot ρ =2Kσ + ρσ K (σ + σ ρ ρσ + σ ) (3.59) K = K + γ K <2K 1/T 1 < 2/T A ω j j a j â j H A (t) = j hω j 2 â jâj + he(t) jk µ jk (â jâk +â kâj) (3.60) H I H I = i g q A jk (b q + b q)(â jâk +â kâj) (3.61) q jk

34 (3.46) (3.52) [ V I (t) exp ī t ] dth A (t) h 0 jk â jâk [ ī exp h t 0 ] dth A (t) (3.62) (3.54) (3.55) (3.61) a 2â1ρa 1â2 J(ω) A (3.49) [ V I (t 1 ),V I (t 2 )ρ ] [ V I (t 1 ),ρv I (t 2 ) ] ( he(t) jk µ jk) H A (t) HA 0 = hω j j 2 â jâj A ρ lm l m l m j Γˆρlk Γ Γ jklm j [ V I (t 1 ),V I (t 2 ) l m ] lk j V I (t 1 )V I (t 2 ) l m k = α A jα A αl e iωjαt1 e iωαlt2 δ mk (3.63) j V I (t 1 ) l m V I (t 2 ) k = A jl A mk e iωjlt1 e iωmkt2 (3.64) j l m V I (t 2 )V I (t 1 ) l j V I (t 2 )l m V I (t 1 ) l (3.65)

35 Ω(t) t P(Ω;0) P(Ω;t 1) P(Ω;t ) 2 P(Ω;t) 3.3 Ω(t) P (Ω; t) Ω(t) H(t) =H + H I (Ω(t)) (3.66) H I (Ω(t)) z H I (Ω(t)) = Ω(t)σ Z (3.67) Ω(t) Ω(t)

36 Ω(t) Ω(t) (??) (Ω 1, Ω 2, Ω 3, ) Ω(t) Ω(t) Ω P (Ω,t) Ω(t) P (Ω,t) Ω t P (Ω,t)=ˆΓP (Ω,t) (3.68) ˆΓ Ω t P (Ω,t) P (Ω,t) t P (Ω,t)= Γ ΩP (Ω,t) (3.69) Γ Ω P (Ω,t) Ω Two-state jump model Ω(t) ± { t P (+,t)= γp(+,t)+γp(,t) t P (,t)=γp(+,t) γp(,t) (3.70) + (1, 0) T (0, 1) T P = ΓP (3.71) t ( ) P (+,t) P P (,t) ( ) 1 1 Γ γ 1 1 (3.72) (3.73) 36 3

37 Ω) t P (Ω,t)= (Ω ˆΓ Ω )P (Ω,t) (3.74) Ω Ω P (Ω,t)= γ(ω)p (Ω,t)+ t dω (Ω ˆΓ Ω )P (Ω,t) (3.75) dωp (Ω,t) = 1 (3.76) γ(ω) = dω (Ω Γ Ω ) (3.77) r = Ω Ω w(ω,r) = (Ω ˆΓ Ω ) Chapman- Kormogrov t P (Ω,t)= drw(ω,r)p (Ω,t)+ drw(ω r, r)p (Ω r, t)(3.78) e γ ( γ) n q f(q) = n! n=0 ( ) n f(q) =f(q r) (3.79) q Chapman-Kormogrov t P (Ω,t)= ( 1) n ( ) n drw(ω,r)p (Ω,t)+ dr r n w(ω,r)p (Ω,t) n! Ω n=0 ( 1) n ( ) n = drr n w(ω,r)p (Ω,t) (3.80) n! Ω n=1 n α n (Ω) α n (Ω) = drr n w(ω,r) (3.81) eq.(3.80) ( t P (Ω,t)= Ω α 1(Ω) ) 2 Ω 2 α 2(Ω) P (Ω,t) (3.82) P (Ω,t Ω 0,t 0 ) eq.(3.82) t = t + t dωωp (Ω,t) dωω 2 P (Ω,t) < Ω > t = α 1 (Ω 0 ) < ( Ω) 2 > t = α 2 (Ω 0 ) (3.83)

38 t < Ω(t) >= γ <Ω(t) > t < Ω2 (t) >= α<ω(t) > α 1 (Ω) = γω α 2 (Ω) = α γ 2 (3.84) eq.(3.82) t P (Ω,t)= γ ( 2 ) Ω Ω +Ω P (Ω,t) Γ Ω P (Ω,t) (3.85) t P (Ω,t)=0 Γ ΩP (Ω,t)=0 P eq (Ω) = 1 e Ω2 2 2 (3.86) 2π Ṡ = il(ω(t))s (3.87) P (S,t) P (S,t) P (S,t+ δt) =P (S il(ω(t))δt,t) (3.88) t P (S,t)= S ) (ṠP (S,t) = ( il(ω(t))p) (3.89) S Ω(t) P (S, Ω,t) Γ Ω P (S, Ω,t)=i t S ( il(ω)p (S, Ω,t)) Γ ΩP (S, Ω,t) (3.90) S(Ω,t)= dssp (S, Ω,t) (3.91) eq.(3.90) stochastic Liouville t S(Ω,t)= L(Ω)S(Ω,t)+Γ ΩS(Ω,t) (3.92) ω

39 H(t) =H A (t)+ hω(t)σ z (3.93) t ρ(t) = ī h [H A(t),ρ] iω(t)[σ z,ρ] = ī h L A(t)ρ iω(t)σz ρ (3.94) A ρ Aρ ρa P(t) = ilp(t) iω(t)vp (3.95) t Ω(t) Ω P(t) P(Ω,t) P(Ω,t)= i (L +ΩV) P(Ω,t)+ΓP(Ω,t) (3.96) t Γ= γ ( 2 ) Ω Ω +Ω (3.97) P(Ω,t 0 )=P(t 0 ) 0 0 = e Ω2 2 2 / 2π P (Ω,t)=e Ω2 4 2 P(Ω,t) b b t P(Ω,t)= i ( L +(b + b )V ) P(Ω,t) γb bp (Ω,t) (3.98) b b n > P(Ω,t)= P n (t) n > (3.99) eq.(3.98) Ṗ n (t) = i (L + nγ) P n (t) i 2 VP n+1 (t) i 2nVP n 1 (t)(3.100) P n (t) P 0 (t) < Ω(t)Ω(t ) >= 2 e γ(t t ) eq.(3.100) P n (t) P n (s) eq.(3.100) s + il i 2 V 0 0 P 0 (s) P 1 (s) i 2 V s + γ + il i 2 V 0 = P 2 (s) 0 i 2 2 V s +2γ + il i 2 V 0 0 i 3 2 V s +3γ + il.. P 0 (s) P 0 (0) P 1 (0) P 2 (0). (3.101)

40 P 0 (s) = s + il + V 2 s+γ+il+v s+2γ+il+v s+3γ+ 3 2 V V V P 0(0) 1 s + il +Γ(s) P 0(0) (3.102) il K 2K 0 0 il = 0 0 K iω K + iω 0 (3.103) (s + il +Γ(s)) 1 = 1/s /(s +2K) G + (s) G (s) (3.104) G ± (s) = 1 s + K ± iω s+γ±iω s+2γ±iω 0 + (3.105) [ 2 (s + K ± G ± (s) = exp iω0 ) 2 ] [ ] (s + K ± iω0 ) 2 2 Erfc 2 π [ (s + K ± iω0 ) 2 ] exp (3.106) (s ± iω 0 )/ 2 << 1 Erfc[(s + K ± iω 0 )/ 2 ] π/2 eq.(3.106) γ = 2 /γ γ >>ω 0 G ± (s) = 1 s + K + γ ± iω 0 (3.107) 3.4 I(ν) = G (iν) 2 ω

41 [h] ???? 2-2?? 2-3?? 2-4??

42

43 , 10, 10, 12, 6,9, 35, 7, 12, 5, 35, 35, 7, 5, 10, 6,8, 10, 35, 7, 11 29

3 - { } / f ( ) e nπ + f( ) = Cne n= nπ / Eucld r e (= N) j = j e e = δj, δj = 0 j r e ( =, < N) r r r { } ε ε = r r r = Ce = r r r e ε = = C = r C r e + CC e j e j e = = ε = r ( r e ) + r e C C 0 r e =

More information

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,, 2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).

More information

7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E

7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E B 8.9.4, : : MIT I,II A.P. E.F.,, 993 I,,, 999, 7 I,II, 95 A A........................... A........................... 3.3 A.............................. 4.4....................................... 5 6..............................

More information

5 36 5................................................... 36 5................................................... 36 5.3..............................

5 36 5................................................... 36 5................................................... 36 5.3.............................. 9 8 3............................................. 3.......................................... 4.3............................................ 4 5 3 6 3..................................................

More information

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 1 1 1.1 ɛ-n 1 ɛ-n lim n a n = α n a n α 2 lim a n = 1 n a k n n k=1 1.1.7 ɛ-n 1.1.1 a n α a n n α lim n a n = α ɛ N(ɛ) n > N(ɛ) a n α < ɛ

More information

(w) F (3) (4) (5)??? p8 p1w Aさんの 背 中 が 壁 を 押 す 力 垂 直 抗 力 重 力 静 止 摩 擦 力 p8 p

(w) F (3) (4) (5)??? p8 p1w Aさんの 背 中 が 壁 を 押 す 力 垂 直 抗 力 重 力 静 止 摩 擦 力 p8 p F 1-1................................... p38 p1w A A A 1-................................... p38 p1w 1-3................................... p38 p1w () (1) ()?? (w) F (3) (4) (5)??? -1...................................

More information

E B m e ( ) γma = F = e E + v B a m = 0.5MeV γ = E e m =957 E e GeV v β = v SPring-8 γ β γ E e [GeV] [ ] NewSUBARU.0 957 0.999999869 SPring-8 8.0 5656

E B m e ( ) γma = F = e E + v B a m = 0.5MeV γ = E e m =957 E e GeV v β = v SPring-8 γ β γ E e [GeV] [ ] NewSUBARU.0 957 0.999999869 SPring-8 8.0 5656 SPring-8 PF( ) ( ) UVSOR( HiSOR( SPring-8.. 3. 4. 5. 6. 7. E B m e ( ) γma = F = e E + v B a m = 0.5MeV γ = E e m =957 E e GeV v β = v SPring-8 γ β γ E e [GeV] [ ] NewSUBARU.0 957 0.999999869 SPring-8

More information

( ) 24 1 ( 26 8 19 ) i 0.1 1 (2012 05 30 ) 1 (), 2 () 1,,, III, C III, C, 1, 2,,, ( III, C ),, 1,,, http://ryuiki.agbi.tsukuba.ac.jp/lec/12-physics/ E104),,,,,, 75 3,,,, 0.2, 1,,,,,,,,,,, 2,,, 1000 ii,

More information

7) ẋt) =iaω expiωt) ibω exp iωt) 9) ẋ0) = iωa b) = 0 0) a = b a = b = A/ xt) = A expiωt) + exp iωt)) = A cosωt) ) ) vt) = Aω sinωt) ) ) 9) ) 9) E = mv

7) ẋt) =iaω expiωt) ibω exp iωt) 9) ẋ0) = iωa b) = 0 0) a = b a = b = A/ xt) = A expiωt) + exp iωt)) = A cosωt) ) ) vt) = Aω sinωt) ) ) 9) ) 9) E = mv - - m k F = kx ) kxt) =m d xt) dt ) ω = k/m ) ) d dt + ω xt) = 0 3) ) ) d d dt iω dt + iω xt) = 0 4) ω d/dt iω) d/dt + iω) 4) ) d dt iω xt) = 0 5) ) d dt + iω xt) = 0 6) 5) 6) a expiωt) b exp iωt) ) )

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

受賞講演要旨2012cs3

受賞講演要旨2012cs3 アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート α β α α α α α

More information

i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1...........................

i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1........................... 2008 II 21 1 31 i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1............................................. 2 0.2.2.............................................

More information

168 13 Maxwell ( H ds = C S rot H = j + D j + D ) ds (13.5) (13.6) Maxwell Ampère-Maxwell (3) Gauss S B 0 B ds = 0 (13.7) S div B = 0 (13.8) (4) Farad

168 13 Maxwell ( H ds = C S rot H = j + D j + D ) ds (13.5) (13.6) Maxwell Ampère-Maxwell (3) Gauss S B 0 B ds = 0 (13.7) S div B = 0 (13.8) (4) Farad 13 Maxwell Maxwell Ampère Maxwell 13.1 Maxwell Maxwell E D H B ε 0 µ 0 (1) Gauss D = ε 0 E (13.1) B = µ 0 H. (13.2) S D = εe S S D ds = ρ(r)dr (13.3) S V div D = ρ (13.4) ρ S V Coulomb (2) Ampère C H =

More information

1 n =3, 2 n 3 x n + y n = z n x, y, z 3 a, b b = aq q a b a b b a b a a b a, b a 0 b 0 a, b 2

1 n =3, 2 n 3 x n + y n = z n x, y, z 3 a, b b = aq q a b a b b a b a a b a, b a 0 b 0 a, b 2 n =3, 200 2 10 1 1 n =3, 2 n 3 x n + y n = z n x, y, z 3 a, b b = aq q a b a b b a b a a b a, b a 0 b 0 a, b 2 a, b (a, b) =1a b 1 x 2 + y 2 = z 2, (x, y) =1, x 0 (mod 2) (1.1) x =2ab, y = a 2 b 2, z =

More information

S = k B (N A n c A + N B n c B ) (83) [ ] B A (N A N B ) G = N B µ 0 B (T,P)+N Aψ(T,P)+N A k B T n N A en B (84) 2 A N A 3 (83) N A N B µ B = µ 0 B(T,

S = k B (N A n c A + N B n c B ) (83) [ ] B A (N A N B ) G = N B µ 0 B (T,P)+N Aψ(T,P)+N A k B T n N A en B (84) 2 A N A 3 (83) N A N B µ B = µ 0 B(T, 8.5 [ ] 2 A B Z(T,V,N) = d 3N A p N A!N B!(2π h) 3N A d 3N A q A d 3N B p B d 3N B q B e β(h A(p A,q A ;V )+H B (p B,q B ;V )) = Z A (T,V,N A )Z B (T,V,N B ) (74) F (T,V,N)=F A (T,V,N A )+F B (T,V,N

More information

第86回日本感染症学会総会学術集会後抄録(II)

第86回日本感染症学会総会学術集会後抄録(II) χ μ μ μ μ β β μ μ μ μ β μ μ μ β β β α β β β λ Ι β μ μ β Δ Δ Δ Δ Δ μ μ α φ φ φ α γ φ φ γ φ φ γ γδ φ γδ γ φ φ φ φ φ φ φ φ φ φ φ φ φ α γ γ γ α α α α α γ γ γ γ γ γ γ α γ α γ γ μ μ κ κ α α α β α

More information

untitled

untitled Global Quantitative Research / -2- -3- -4- -5- 35 35 SPC SPC REIT REIT -6- -7- -8- -9- -10- -11- -12- -13- -14- -15- -16- -17- 100m$110-18- Global Quantitative Research -19- -20- -21- -22- -23- -24- -25-

More information

1 180m g 10m/s 2 2 6 1 3 v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) 1.3 2 3 3 r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v =

1 180m g 10m/s 2 2 6 1 3 v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) 1.3 2 3 3 r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v = 1. 2. 3 3. 4. 5. 6. 7. 8. 9. I http://risu.lowtem.hokudai.ac.jp/ hidekazu/class.html 1 1.1 1 a = g, (1) v = g t + v 0, (2) z = 1 2 g t2 + v 0 t + z 0. (3) 1.2 v-t. z-t. z 1 z 0 = dz = v, t1 dv v(t), v

More information

34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2 ガウス 型 関 数 1.2 1 関 数 値 0.8 0.6 0.4 0.2 0 15 10 5 0 5 10

34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2 ガウス 型 関 数 1.2 1 関 数 値 0.8 0.6 0.4 0.2 0 15 10 5 0 5 10 33 2 2.1 2.1.1 x 1 T x T 0 F = ma T ψ) 1 x ψ(x) 2.1.2 1 1 h2 d 2 ψ(x) + V (x)ψ(x) = Eψ(x) (2.1) 2m dx 2 1 34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

A. Fresnel) 19 1900 (M. Planck) 1905 (A. Einstein) X (A. Ampère) (M. Faraday) 1864 (C. Maxwell) 1871 (H. R. Hertz) 1888 2.2 1 7 (G. Galilei) 1638 2

A. Fresnel) 19 1900 (M. Planck) 1905 (A. Einstein) X (A. Ampère) (M. Faraday) 1864 (C. Maxwell) 1871 (H. R. Hertz) 1888 2.2 1 7 (G. Galilei) 1638 2 1 2012.8 e-mail: tatekawa (at) akane.waseda.jp 1 2005-2006 2 2009 1-2 3 x t x t 2 2.1 17 (I. Newton) C. Huygens) 19 (T. Young) 1 A. Fresnel) 19 1900 (M. Planck) 1905 (A. Einstein) X (A. Ampère) (M. Faraday)

More information

untitled

untitled 10 log 10 W W 10 L W = 10 log 10 W 10 12 10 log 10 I I 0 I 0 =10 12 I = P2 ρc = ρcv2 L p = 10 log 10 p 2 p 0 2 = 20 log 10 p p = 20 log p 10 0 2 10 5 L 3 = 10 log 10 10 L 1 /10 +10 L 2 ( /10 ) L 1 =10

More information

Copyrght 7 Mzuho-DL Fnancal Technology Co., Ltd. All rghts reserved.

Copyrght 7 Mzuho-DL Fnancal Technology Co., Ltd. All rghts reserved. 766 Copyrght 7 Mzuho-DL Fnancal Technology Co., Ltd. All rghts reserved. Copyrght 7 Mzuho-DL Fnancal Technology Co., Ltd. All rghts reserved. 3 Copyrght 7 Mzuho-DL Fnancal Technology Co., Ltd. All rghts

More information

DGE DGE 2 2 1 1990 1 1 3 (1) ( 1

DGE DGE 2 2 1 1990 1 1 3 (1) ( 1 早 稲 田 大 学 現 代 政 治 経 済 研 究 所 ゼロ 金 利 下 で 量 的 緩 和 政 策 は 有 効 か? -ニューケインジアンDGEモデルによる 信 用 創 造 の 罠 の 分 析 - 井 上 智 洋 品 川 俊 介 都 築 栄 司 上 浦 基 No.J1403 Working Paper Series Institute for Research in Contemporary Political

More information

日本糖尿病学会誌第58巻第2号

日本糖尿病学会誌第58巻第2号 β γ Δ Δ β β β l l l l μ l l μ l l l l α l l l ω l Δ l l Δ Δ l l l l l l l l l l l l l l α α α α l l l l l l l l l l l μ l l μ l μ l l μ l l μ l l l μ l l l l l l l μ l β l l μ l l l l α l l μ l l

More information

Note5.dvi

Note5.dvi 12 2011 7 4 2.2.2 Feynman ( ) S M N S M + N S Ai Ao t ij (i Ai, j Ao) N M G = 2e2 t ij 2 (8.28) h i μ 1 μ 2 J 12 J 12 / μ 2 μ 1 (8.28) S S (8.28) (8.28) 2 ( ) (collapse) j 12-1 2.3 2.3.1 Onsager S B S(B)

More information

木オートマトン•トランスデューサによる 自然言語処理

木オートマトン•トランスデューサによる   自然言語処理 木オートマトン トランスデューサによる 自然言語処理 林 克彦 NTTコミュニケーション科学基礎研究所 hayashi.katsuhiko@lab.ntt.co.jp n I T 1 T 2 I T 1 Pro j(i T 1 T 2 ) (Σ,rk) Σ rk : Σ N {0} nσ (n) rk(σ) = n σ Σ n Σ (n) Σ (n)(σ,rk)σ Σ T Σ (A) A

More information

330

330 330 331 332 333 334 t t P 335 t R t t i R +(P P ) P =i t P = R + P 1+i t 336 uc R=uc P 337 338 339 340 341 342 343 π π β τ τ (1+π ) (1 βτ )(1 τ ) (1+π ) (1 βτ ) (1 τ ) (1+π ) (1 τ ) (1 τ ) 344 (1 βτ )(1

More information

DSGE Dynamic Stochastic General Equilibrium Model DSGE 5 2 DSGE DSGE ω 0 < ω < 1 1 DSGE Blanchard and Kahn VAR 3 MCMC 2 5 4 1 1 1.1 1. 2. 118

DSGE Dynamic Stochastic General Equilibrium Model DSGE 5 2 DSGE DSGE ω 0 < ω < 1 1 DSGE Blanchard and Kahn VAR 3 MCMC 2 5 4 1 1 1.1 1. 2. 118 7 DSGE 2013 3 7 1 118 1.1............................ 118 1.2................................... 123 1.3.............................. 125 1.4..................... 127 1.5...................... 128 1.6..............

More information

M ω f ω = df ω = i ω idx i f x i = ω i, i = 1,..., n f ω i f 2 f 2 f x i x j x j x i = ω i x j = ω j x i, 1 i, j n (3) (3) ω 1.4. R 2 ω(x, y) = a(x, y

M ω f ω = df ω = i ω idx i f x i = ω i, i = 1,..., n f ω i f 2 f 2 f x i x j x j x i = ω i x j = ω j x i, 1 i, j n (3) (3) ω 1.4. R 2 ω(x, y) = a(x, y 1 1.1 M n p M T p M Tp M p (x 1,..., x n ) x 1,..., x n T p M dx 1,..., dx n Tp M dx i dx i ( ) = δj i x j Tp M Tp M i a idx i 1.1. M x M ω(x) Tx M ω(x) = n ω i (x)dx i i=1 ω i C r ω M C r C ω( x i ) C

More information

一般演題(ポスター)

一般演題(ポスター) 6 5 13 : 00 14 : 00 A μ 13 : 00 14 : 00 A β β β 13 : 00 14 : 00 A 13 : 00 14 : 00 A 13 : 00 14 : 00 A β 13 : 00 14 : 00 A β 13 : 00 14 : 00 A 13 : 00 14 : 00 A β 13 : 00 14 : 00 A 13 : 00 14 : 00 A

More information

I.2 z x, y i z = x + iy. x, y z (real part), (imaginary part), x = Re(z), y = Im(z). () i. (2) 2 z = x + iy, z 2 = x 2 + iy 2,, z ± z 2 = (x ± x 2 ) +

I.2 z x, y i z = x + iy. x, y z (real part), (imaginary part), x = Re(z), y = Im(z). () i. (2) 2 z = x + iy, z 2 = x 2 + iy 2,, z ± z 2 = (x ± x 2 ) + I..... z 2 x, y z = x + iy (i ). 2 (x, y). 2.,,.,,. (), ( 2 ),,. II ( ).. z, w = f(z). z f(z), w. z = x + iy, f(z) 2 x, y. f(z) u(x, y), v(x, y), w = f(x + iy) = u(x, y) + iv(x, y).,. 2. z z, w w. D, D.

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

esba.dvi

esba.dvi Ehrenberg-Siday-Bohm-Aharonov 1. Aharonov Bohm 1) 0 A 0 A A = 0 Z ϕ = e A(r) dr C R C e I ϕ 1 ϕ 2 = e A dr = eφ H Φ Φ 1 Aharonov-Bohm Aharonov Bohm 10 Ehrenberg Siday 2) Ehrenberg-Siday-Bohm-Aharonov ESBA(

More information

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4 [2642 ] Yuji Chinone 1 1-1 ρ t + j = 1 1-1 V S ds ds Eq.1 ρ t + j dv = ρ t dv = t V V V ρdv = Q t Q V jdv = j ds V ds V I Q t + j ds = ; S S [ Q t ] + I = Eq.1 2 2 Kroneher Levi-Civita 1 i = j δ i j =

More information

4.2.................... 20 4.3.................. 21 4.4 ( )............... 22 4.5 ( )...... 24 4.6 ( )........ 25 4.7 ( )..... 26 5 28 5.1 PID........

4.2.................... 20 4.3.................. 21 4.4 ( )............... 22 4.5 ( )...... 24 4.6 ( )........ 25 4.7 ( )..... 26 5 28 5.1 PID........ version 0.01 : 2004/04/16 1 2 1.1................. 2 1.2.......................... 3 1.3................. 5 1.4............... 6 1.5.............. 7 2 9 2.1........................ 9 2.2......................

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

36

36 36 37 38 P r R P 39 (1+r ) P =R+P g P r g P = R r g r g == == 40 41 42 τ R P = r g+τ 43 τ (1+r ) P τ ( P P ) = R+P τ ( P P ) n P P r P P g P 44 R τ P P = (1 τ )(r g) (1 τ )P R τ 45 R R σ u R= R +u u~ (0,σ

More information

3 10 14 17 25 30 35 43 2

3 10 14 17 25 30 35 43 2 THE ASSOCIATION FOR REAL ESTATE SECURITIZATION 40 2009 July-August 3 10 14 17 25 30 35 43 2 ARES SPECIAL ARES July-August 2009 3 4 ARES July-August 2009 ARES SPECIAL 5 ARES July-August 2009 ARES SPECIAL

More information

E F = q b E (2) E q a r q a q b N/C q a (electric flux line) q a E r r r E 4πr 2 E 4πr 2 = k q a r 2 4πr2 = 4πkq a (3) 4πkq a 1835 4πk 1 ɛ 0 ɛ 0 (perm

E F = q b E (2) E q a r q a q b N/C q a (electric flux line) q a E r r r E 4πr 2 E 4πr 2 = k q a r 2 4πr2 = 4πkq a (3) 4πkq a 1835 4πk 1 ɛ 0 ɛ 0 (perm 1 1.1 18 (static electricity) 20 (electric charge) A,B q a, q b r F F = k q aq b r 2 (1) k q b F F q a r?? 18 (Coulomb) 1 N C r 1m 9 10 9 N 1C k 9 10 9 Nm 2 /C 2 1 k q a r 2 (Electric Field) 1 E F = q

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

Microsoft Word - Wordで楽に数式を作る.docx

Microsoft Word - Wordで楽に数式を作る.docx Ver. 3.1 2015/1/11 門 馬 英 一 郎 Word 1 する必要がある Alt+=の後に Ctrl+i とセットで覚えておく 1.4. 変換が出来ない場合 ごく稀に以下で説明する変換機能が無効になる場合がある その際は Word を再起動するとまた使えるようになる 1.5. 独立数式と文中数式 数式のスタイルは独立数式 文中数式(2 次元)と文中数式(線形)の 3 種類があ り 数式モードの右端の矢印を選ぶとメニューが出てくる

More information

「数列の和としての積分 入門」

「数列の和としての積分 入門」 7 I = 5. introduction.......................................... 5........................................... 7............................................. 9................................................................................................

More information

ron04-02/ky768450316800035946

ron04-02/ky768450316800035946 β α β α β β β α α α Bugula neritina α β β β γ γ γ γ β β γ β β β β γ β β β β β β β β! ! β β β β μ β μ β β β! β β β β β μ! μ! μ! β β α!! β γ β β β β!! β β β β β β! β! β β β!! β β β β β β β β β β β β!

More information

46 Y 5.1.1 Y Y Y 3.1 R Y Figures 5-1 5-3 3.2mm Nylon Glass Y (X > X ) X Y X Figure 5-1 X min Y Y d Figure 5-3 X =X min Y X =10 Y Y Y 5.1.2 Y Figure 5-

46 Y 5.1.1 Y Y Y 3.1 R Y Figures 5-1 5-3 3.2mm Nylon Glass Y (X > X ) X Y X Figure 5-1 X min Y Y d Figure 5-3 X =X min Y X =10 Y Y Y 5.1.2 Y Figure 5- 45 5 5.1 Y 3.2 Eq. (3) 1 R [s -1 ] ideal [s -1 ] Y [-] Y [-] ideal * [-] S [-] 3 R * ( ω S ) = ω Y = ω 3-1a ideal ideal X X R X R (X > X ) ideal * X S Eq. (3-1a) ( X X ) = Y ( X ) R > > θ ω ideal X θ =

More information

2 (f4eki) ρ H A a g. v ( ) 2. H(t) ( ) Chapter 5 (f5meanfp) ( ( )? N [] σ e = 8π ( ) e mc 2 = cm 2 e m c (, Thomson cross secion). Cha

2 (f4eki) ρ H A a g. v ( ) 2. H(t) ( ) Chapter 5 (f5meanfp) ( ( )? N [] σ e = 8π ( ) e mc 2 = cm 2 e m c (, Thomson cross secion). Cha http://astr-www.kj.yamagata-u.ac.jp/~shibata P a θ T P M Chapter 4 (f4a). 2.. 2. (f4cone) ( θ) () g M θ (f4b) T M L 2 (f4eki) ρ H A a g. v ( ) 2. H(t) ( ) Chapter 5 (f5meanfp) ( ( )? N [] σ e = 8π ( )

More information

2 3 1 2 Fig.2.1. 2V 2.3.3

2 3 1 2 Fig.2.1. 2V 2.3.3 2 2 2.1 2000 1800 1 2.2 1 2 2.3 2.3.1 1 1 2 2.3.2 2 3 1 2 Fig.2.1. 2V 2.3.3 2 4 2.3.4 2 C CmAh = ImA th (2.1) 1000mAh 1A 1 2 1C C (Capacity) 1 3Ah 3A Rrate CAh = IA (2.2) 2.3.5 *1 2 2 2.3.6 2 2 *1 10 2

More information

54_2-05-地方会.indd

54_2-05-地方会.indd 82 58 59 21 83 84 2 9 4 85 86 1. 87 6 88 89 β 1 90 2 3 p 4 t 5 6 EQ 91 7 8 9 1 10 2 92 11 3 12 13 IT p 14 93 15 16 ACTIVE 17 18 94 p p p 19 20 21 22 95 23 24 25 2 26 β β 96 27 1 28 29 30 97 31 32 33 1

More information

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π 4 4.1 4.1.1 A = f() = f() = a f (a) = f() (a, f(a)) = f() (a, f(a)) f(a) = f 0 (a)( a) 4.1 (4, ) = f() = f () = 1 = f (4) = 1 4 4 (4, ) = 1 ( 4) 4 = 1 4 + 1 17 18 4 4.1 A (1) = 4 A( 1, 4) 1 A 4 () = tan

More information

C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0

C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0 1 2003 4 24 ( ) 1 1.1 q i (i 1,,N) N [ ] t t 0 q i (t 0 )q 0 i t 1 q i (t 1 )q 1 i t 0 t t 1 t t 0 q 0 i t 1 q 1 i S[q(t)] t1 t 0 L(q(t), q(t),t)dt (1) S[q(t)] L(q(t), q(t),t) q 1.,q N q 1,, q N t C :

More information

f (x) f (x) f (x) f (x) f (x) 2 f (x) f (x) f (x) f (x) 2 n f (x) n f (n) (x) dn f f (x) dx n dn dx n D n f (x) n C n C f (x) x = a 1 f (x) x = a x >

f (x) f (x) f (x) f (x) f (x) 2 f (x) f (x) f (x) f (x) 2 n f (x) n f (n) (x) dn f f (x) dx n dn dx n D n f (x) n C n C f (x) x = a 1 f (x) x = a x > 5.1 1. x = a f (x) a x h f (a + h) f (a) h (5.1) h 0 f (x) x = a f +(a) f (a + h) f (a) = lim h +0 h (5.2) x h h 0 f (a) f (a + h) f (a) f (a h) f (a) = lim = lim h 0 h h 0 h (5.3) f (x) x = a f (a) =

More information

Fourier (a) C, (b) C, (c) f 2 (a), (b) (c) (L 2 ) (a) C x : f(x) = a 0 2 + (a n cos nx + b n sin nx). ( N ) a 0 f(x) = lim N 2 + (a n cos nx + b n sin

Fourier (a) C, (b) C, (c) f 2 (a), (b) (c) (L 2 ) (a) C x : f(x) = a 0 2 + (a n cos nx + b n sin nx). ( N ) a 0 f(x) = lim N 2 + (a n cos nx + b n sin ( ) 205 6 Fourier f : R C () (2) f(x) = a 0 2 + (a n cos nx + b n sin nx), n= a n = f(x) cos nx dx, b n = π π f(x) sin nx dx a n, b n f Fourier, (3) f Fourier or No. ) 5, Fourier (3) (4) f(x) = c n = n=

More information

2 T(x - v τ) i ix T(x + v τ) i ix x T = ((dt/dx),, ) ( q = c T (x i ) v i ( ) ) dt v ix τ v i dx i i ( (dt = cτ ) ) v 2 dx ix,, () i x = const. FIG. 2

2 T(x - v τ) i ix T(x + v τ) i ix x T = ((dt/dx),, ) ( q = c T (x i ) v i ( ) ) dt v ix τ v i dx i i ( (dt = cτ ) ) v 2 dx ix,, () i x = const. FIG. 2 Y. Kondo Department of Physics, Kinki University, Higashi-Osaka, Japan (Dated: September 3, 27) [] PACS numbers: I. m cm 3 24 e =.62 9 As m = 9.7 3 kg A. Drude-orentz Drude orentz N. i v i j = N q i v

More information

,..,,.,,.,.,..,,.,,..,,,. 2

,..,,.,,.,.,..,,.,,..,,,. 2 A.A. (1906) (1907). 2008.7.4 1.,.,.,,.,,,.,..,,,.,,.,, R.J.,.,.,,,..,.,. 1 ,..,,.,,.,.,..,,.,,..,,,. 2 1, 2, 2., 1,,,.,, 2, n, n 2 (, n 2 0 ).,,.,, n ( 2, ), 2 n.,,,,.,,,,..,,. 3 x 1, x 2,..., x n,...,,

More information

i 1 1 1.1... 1 1.1.1... 2 1.1.2... 7 1.2... 9 1.3... 1 1.4... 12 1.4.1 s... 12 1.4.2... 12 1.5... 15 1.5.1... 15 1.5.2... 18 2 21 2.1... 21 2.2... 23

i 1 1 1.1... 1 1.1.1... 2 1.1.2... 7 1.2... 9 1.3... 1 1.4... 12 1.4.1 s... 12 1.4.2... 12 1.5... 15 1.5.1... 15 1.5.2... 18 2 21 2.1... 21 2.2... 23 2 III Copyright c 2 Kazunobu Yoshida. All rights reserved. i 1 1 1.1... 1 1.1.1... 2 1.1.2... 7 1.2... 9 1.3... 1 1.4... 12 1.4.1 s... 12 1.4.2... 12 1.5... 15 1.5.1... 15 1.5.2... 18 2 21 2.1... 21 2.2...

More information

閨75, 縺5 [ ィ チ573, 縺 ィ ィ

閨75, 縺5 [ ィ チ573, 縺 ィ ィ 39ィ 8 998 3. 753 68, 7 86 タ7 9 9989769 438 縺48 縺55 3783645 タ5 縺473 タ7996495 ィ 59754 8554473 9 8984473 3553 7. 95457357, 4.3. 639745 5883597547 6755887 67996499 ィ 597545 4953473 9 857473 3553, 536583, 89573,

More information

note01

note01 γ 5 J, M α J, M α = c JM JM J, M c JM e ipr p / M p = 0 M J(J + 1) / Λ p / M J(J + 1) / Λ ~ 1 / m π m π ~ 138 MeV J P,I = 0,1 π 1, π, π 3 ( ) ( π +, π 0, π ) ( ), π 0 = π 3 π ± = m 1 π1 ± iπ ( ) π ±,

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

1 913 10301200 A B C D E F G H J K L M 1A1030 10 : 45 1A1045 11 : 00 1A1100 11 : 15 1A1115 11 : 30 1A1130 11 : 45 1A1145 12 : 00 1B1030 1B1045 1C1030

1 913 10301200 A B C D E F G H J K L M 1A1030 10 : 45 1A1045 11 : 00 1A1100 11 : 15 1A1115 11 : 30 1A1130 11 : 45 1A1145 12 : 00 1B1030 1B1045 1C1030 1 913 9001030 A B C D E F G H J K L M 9:00 1A0900 9:15 1A0915 9:30 1A0930 9:45 1A0945 10 : 00 1A1000 10 : 15 1B0900 1B0915 1B0930 1B0945 1B1000 1C0900 1C0915 1D0915 1C0930 1C0945 1C1000 1D0930 1D0945 1D1000

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

20_zairyou.pdf

20_zairyou.pdf 平 成 29 年 4 月 入 学 及 び 平 成 28 年 9 月 入 学 大 学 院 修 士 課 程 専 門 職 学 位 課 程 入 学 試 験 物 質 理 工 学 院 材 料 系 筆 答 専 門 試 験 科 目 想 定 問 題 平 成 28 年 1 月 東 京 工 業 大 学 出 題 される 分 野 問 題 数 等 本 想 定 問 題 の 内 容 は 実 際 の 試 験 問 題 とは 異 なる

More information

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0 A c 2008 by Kuniaki Nakamitsu 1 1.1 t 2 sin t, cos t t ft t t vt t xt t + t xt + t xt + t xt t vt = xt + t xt t t t vt xt + t xt vt = lim t 0 t lim t 0 t 0 vt = dxt ft dft dft ft + t ft = lim t 0 t 1.1

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46..

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46.. Cotets 6 6 : 6 6 6 6 6 6 7 7 7 Part. 8. 8.. 8.. 9..... 3. 3 3.. 3 3.. 7 3.3. 8 Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3.

More information

4 2 4.1: =, >, < π dθ = dφ = 0 3 4 K = 1/R 2 rdr + udu = 0 dr 2 + du 2 = dr 2 + r2 1 R 2 r 2 dr2 = 1 r 2 /R 2 = 1 1 Kr 2 (4.3) u iu,r ir K = 1/R 2 r R

4 2 4.1: =, >, < π dθ = dφ = 0 3 4 K = 1/R 2 rdr + udu = 0 dr 2 + du 2 = dr 2 + r2 1 R 2 r 2 dr2 = 1 r 2 /R 2 = 1 1 Kr 2 (4.3) u iu,r ir K = 1/R 2 r R 1 4 4.1 1922 1929 1947 1965 2.726 K WMAP 2003 1. > 100Mpc 2. 10 5 3. 1. : v = ȧ(t) = Ha [ ] dr 2. : ds 2 = c 2 dt 2 a(t) 2 2 1 kr 2 + r2 (dθ 2 + sin 2 θdφ 2 ) a(t) H k = +1 k *1) k = 0 k = 1 dl 2 = dx

More information

master.dvi

master.dvi 4 Maxwell- Boltzmann N 1 4.1 T R R 5 R (Heat Reservor) S E R 20 E 4.2 E E R E t = E + E R E R Ω R (E R ) S R (E R ) Ω R (E R ) = exp[s R (E R )/k] E, E E, E E t E E t E exps R (E t E) exp S R (E t E )

More information

3 3.3. I 3.3.2. [ ] N(µ, σ 2 ) σ 2 (X 1,..., X n ) X := 1 n (X 1 + + X n ): µ X N(µ, σ 2 /n) 1.8.4 Z = X µ σ/ n N(, 1) 1.8.2 < α < 1/2 Φ(z) =.5 α z α

3 3.3. I 3.3.2. [ ] N(µ, σ 2 ) σ 2 (X 1,..., X n ) X := 1 n (X 1 + + X n ): µ X N(µ, σ 2 /n) 1.8.4 Z = X µ σ/ n N(, 1) 1.8.2 < α < 1/2 Φ(z) =.5 α z α 2 2.1. : : 2 : ( ): : ( ): : : : ( ) ( ) ( ) : ( pp.53 6 2.3 2.4 ) : 2.2. ( ). i X i (i = 1, 2,..., n) X 1, X 2,..., X n X i (X 1, X 2,..., X n ) ( ) n (x 1, x 2,..., x n ) (X 1, X 2,..., X n ) : X 1,

More information

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t) 338 7 7.3 LCR 2.4.3 e ix LC AM 7.3.1 7.3.1.1 m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x k > 0 k 5.3.1.1 x = xt 7.3 339 m 2 x t 2 = k x 2 x t 2 = ω 2 0 x ω0 = k m ω 0 1.4.4.3 2 +α 14.9.3.1 5.3.2.1 2 x

More information

ボールねじ

ボールねじ A A 506J A15-6 A15-8 A15-8 A15-11 A15-11 A15-14 A15-19 A15-20 A15-24 A15-24 A15-26 A15-27 A15-28 A15-30 A15-32 A15-35 A15-35 A15-38 A15-38 A15-39 A15-40 A15-43 A15-43 A15-47 A15-47 A15-47 A15-47 A15-49

More information

第85 回日本感染症学会総会学術集会後抄録(III)

第85 回日本感染症学会総会学術集会後抄録(III) β β α α α µ µ µ µ α α α α γ αβ α γ α α γ α γ µ µ β β β β β β β β β µ β α µ µ µ β β µ µ µ µ µ µ γ γ γ γ γ γ µ α β γ β β µ µ µ µ µ β β µ β β µ α β β µ µµ β µ µ µ µ µ µ λ µ µ β µ µ µ µ µ µ µ µ

More information

12 2 E ds = 1 ρdv ε 1 µ D D S S D B d S = 36 E d B l = S d S B d l = S ε E + J d S 4 4 div E = 1 ε ρ div B = rot E = B 1 rot µ E B = ε + J 37 3.2 3.2.

12 2 E ds = 1 ρdv ε 1 µ D D S S D B d S = 36 E d B l = S d S B d l = S ε E + J d S 4 4 div E = 1 ε ρ div B = rot E = B 1 rot µ E B = ε + J 37 3.2 3.2. 213 12 1 21 5 524 3-5465-74 nkiyono@mail.ecc.u-tokyo.ac.jp http://lecture.ecc.u-tokyo.ac.jp/~nkiyono/index.html 3 2 1 3.1 ρp, t EP, t BP, t JP, t 35 P t xyz xyz t 4 ε µ D D S S 35 D H D = ε E B = µ H E

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

5989_4840JAJP.qxd

5989_4840JAJP.qxd Agilent Application Note 1287-11 2 3 4 5 Zc Z T 1+ G 1 e - γ 1+ G 2 G i G 1 G 2 0 0 G2 G 1 G T 1+ G 2 e - γ 1+ G 1 a b [ T XI ] [ T L ] [ T XO ] [ G L ] Zc Zr ZT Zr Γ1 = Γ2 = Γ1ΓT = (1.1) Zc+ Zr ZT + Zr

More information

平成18年度弁理士試験本試験問題とその傾向

平成18年度弁理士試験本試験問題とその傾向 CBA CBA CBA CBA CBA CBA Vol. No. CBA CBA CBA CBA a b a bm m swkmsms kgm NmPa WWmK σ x σ y τ xy θ σ θ τ θ m b t p A-A' σ τ A-A' θ B-B' σ τ B-B' A-A' B-B' B-B' pσ σ B-B' pτ τ l x x I E Vol. No. w x xl/ 3

More information

x : = : x x

x : = : x x x : = : x x x :1 = 1: x 1 x : = : x x : = : x x : = : x x ( x ) = x = x x = + x x = + + x x = + + + + x = + + + + +L x x :1 = 1: x 1 x ( x 1) = 1 x 2 x =1 x 2 x 1= 0 1± 1+ 4 x = 2 = 1 ± 5 2 x > 1

More information

2010 4 3 0 5 0.1......................................... 5 0.2...................................... 6 1 9 2 15 3 23 4 29 4.1............................................. 29 4.2..............................

More information