topology.dvi

Size: px
Start display at page:

Download "topology.dvi"

Transcription

1 LastUpdate: Kunneth Tor Ext Kunneth Mayers-Vietoris CW Cech ( ) ( ) ( ) ( ) ( ) Euler Lefschetz RP n

2 Lie Lie Manifolds h Poincare Rokhlin Donaldson K Chern Clifford Dirac R n Atiyah-Singer

3 Poincaré-Hopf Euler Thom Z 2 -Euler Thom Stiefel-Whitney Chern Pontrjagin Knots and Links (linking number) (bridge index) (braid index) (unknoting number) Seifert (genus) (signature) Alexander-Conway Skein Jones Skein State Homfly Skein Q Skein Kauffman

4 Skein Yang-Baxter

5 1 [LastUpdate: ] ( ) R C =(C j ) =( j ), j+2 Cj+1 j+1 Cj j Cj 1 j 1 2 =0 C =(C j, ) R φ : C D φ = φ φ 1.2 ( ) C,D f,g : C D R Φ n : C n C n+1 f g = n+1 Φ n +Φ n 1 n Φ f g f = g : H (C ) H (D ) 1.3 ( ) C H (C )=Z (C )/B (C ); Z (C )=Ker, B (C )=Im R H (C )=(H j (C )),Z (C )=(Z j (C )),B (C )= (B j (C )) H (C ) C Z B φ : C D R φ : H (C ) H (D ) φ ([c]) = [φ(c)] R R H 5

6 1.4 ( ) 1) 3 (A, ), (X, ), (Y, ) 0 A f X y Z n (Y ) g Y 0 [y] =[f 1 g 1 (y)] R- : H n (Y ) H n 1 (A) Hn (A) f Hn (X) 2) g Hn (Y ) 0 A X Y 0 φ ψ 0 A X Y 0 Hn 1 (A) ψ = φ : H (Y ) H (A) f ( ) R C =(C j ) δ =(δ j ), δ j 2 C j 1 δ j 1 C j δ j C j+1 δ j+1 δ 2 =0 C =(C j,δ) R φ : C D δφ = φδ φ 6

7 1.6 ( ) C H (C )=Z (C )/B (C ); Z (C )=Kerδ, B (C )=Imδ R H (C )=(H j (C )),Z (C )=(Z j (C )),B (C )= (B j (C )) H (C ) C Z B φ : C D φ [u] =[φ(u)] R φ : H (C ) H (D ) R R H 1.7 ( ) 1) 3 (Y,δ ), (X, δ), (A, δ ) 0 Y f X g A 0 a Z n (A) δ [a] =[f 1 δ g 1 (a)] R- δ : H n (A) H n+1 (Y ) δ H n (Y ) f H n (X) 2) g H n (A) 0 Y X A 0 φ ψ 0 Y X A 0 δ H n+1 (Y ) δ ψ = φ δ : H (A) H (Y ) f 7

8 1.2 Kunneth Tor Ext 1.8 ( ) R 1) R- A R- F 0,F 1 R d : F 1 F 0,ɛ: F 0 A 0 F 1 d F 0 ɛ A 0 A 2) R A, B A 1) 0 F 1 R B d 1 F 0 R B 0 A B Tor R (A, B) Tor R (A, B) =kerd 1 0 Tor R (A, B) F 1 R B F 0 R B A R B ( ) i) C R Tor C C C ii) Tor(A, B) =Tor(B, A). iii) Tor(A B,C) =Tor(A, C) Tor(B,C). iv) A Tor Z (A, B) =0. v) K 0 A Tor Z (K, A) =0. 8

9 vi) Tor Z (Z m, Z n ) = Z d (m, n > 0, d =GCD(m, n)). vii) K Tor K (A, B) = (Ext) A R A, B R 0 F 1 d F 0 0 Hom R (F 0,B) ɛ A 0 d T Hom R (F 1,B) 0 Ext R (A, B) Ext R (A, B) =Hom R (F 1,B)/Im d T. 0 Hom R (A, B) Hom R (F 0,B) Hom R (F 1,B) Ext R (A, B). Ext R (A, B) A 1.11 (Ext ) Ext i) C R Ext C C C ii) R A, B, C iii) A Ext R (A B,C) = Ext R (A, C) Ext R (B,C), Ext R (A, B C) = Ext R (A, B) Ext R (A, C). Ext Z (Z,B)=0, Ext Z (Z m,b) = B/mB (m >0). 9

10 ( ( )) R C R G R 0 H n (C ) G H n (C G) Tor R (H n 1 (C ),G) ( ( )) R C R G R 0 Ext R (H n 1 (C ),G) H n (Hom R (C,G)) Hom R (H n (C ),G) Kunneth 1.14 (Künneth ( )) R C R D R 0 p+q=n H p(c ) R H q (D ) H n (C R D ) p+q=n 1 TorR (H p (C ),H q (D )) 0 D R 1.15 (Künneth ( )) R C R D R 0 p+q=n Hp (C ) R H q (D ) H n (C R D ) p+q=n+1 TorR (H p (C ),H q (D )) 0 D R 10

11 ( ) 1) K Σ (K, Σ) i) s Σ s s(s ) s Σ. ii) v K {v} Σ Σ. s Σ K (n +1) s n( ) 0 K 2) (K, Σ), (K 0, Σ 0 ) K 0 K Σ 0 Σ K 0 K 3) K, L φ : K L K s = {v 0,,v n } {φ(v 0 ),,φ(v n )} L φ K, L φ φ φ 1 K L 3) K q s s s q q σ s {v 0,,v q } σ =[v 0,,v q ] 1.17 ( ) 11

12 1) K q Abel C q (K) q : C q (K) C q 1 (K) q q ([v 0,,v q ]) = ( 1) k [v 0,,v k 1,v k+1,,v q ] k=0 σ q σ q C =(C q, q ) H q (K) K R G R C Z G H (K; G) K G R C =Hom Z (C,G) H (K; G) G 2) X K H (K; G),H (K; G) K H (K; G) H (K; G) X ( ) 1) X R n+1 Δ n X σ :Δ n X X n- S n (X) S (X) = (S n (X)) n <0 S n (X) =0 n : S n (X) S n 1 (X) n n (σ) = ( 1) j σ ɛ j, σ S n (X) j=0 12

13 ɛ j Δ n 1 e k (k =0,n 1) Δ n e k (k j) e k+1 (k>j) Δ n 1 Δ n S (X) =(S j (X), ) 2) (X, A) A X S (X) S (A) S (X, A) :=S (X)/S (A) Z- S R G C C G Hom Z (C,G) R- G R- Hom(,G) H G S G (X, A) H (X, A; G) (X, A) G H Hom(,G) S G (X, A) H (X, A; G) (X, A) G H (X, A; G) =H ((S (X)/S (A)) G), H (X, A; G) =H (Hom(S (X)/S (A),G)) S (X, A; G) =(S (X)/S (A)) G, S (X, A; G) =Hom(S (X)/S (A),G) R = G = Z G c S n (X) [c] Z n (X, A) c S n (A) [c] B n (X, A) c S n+1 (X) s.t. c c S n (A) 13

14 2. R 0 A B C Hom(C, G) Hom(B,G) Hom(A, G) 0 S n (X, A; G) u Hom(S n (X),G) u Sn(A) =0 < δ[u], [c] >=< u, c> [u] Z n (X, A; G) <u, c>=0 c S n+1 (X) [u] B n (X, A; G) [u ] Hom(S n 1 (X),G) s.t. <u,c>=< u, c> c S n 1 (X) (( ) ) G (X, A) 1) 0 H n (X, A; Z) G H n (X, A; G) Tor Z (H n 1 (X, A; Z),G) 0 2) 0 Ext Z (H n 1 (X, A; Z),G) H n (X, A; G) Hom(H n (X, A; Z),G) ( ) 14

15 1. (X, A) H n+1 (X, A; G) j Hn (X, A; G) Hn (A; G). A H n+1 (X, A; G) j Hn (X, A; G) Hn (A; G). i Hn (X; G) i Hn (X; G) 2. B A X H n+1 (X, A; G) j Hn (X, A; G) Hn (A, B; G). i Hn (X, B; G) 1.22 ( ) 1. (X, A) H n 1 (A; G) i H n (A; G) δ H n (X, A; G) δ. A H n 1 (A; G) i H n (A; G) δ H n (X, A; G) δ. j H n (X; G) j H n (X; G) 15

16 2. B A X H n 1 (A, B; G) δ H n (X, A; G) j H n (X, B; G) i H n (A, B; G) δ Mayers-Vietoris 1.23 ( ) X X 1,X 2 S(X 1 )+S(X 2 ) S(X 1 X 2 ) {X 1,X 2 } Y = X 1 X 2 X i int Y X i Y =int Y X 1 int Y X 2 {X 1,X 2 } 1.24 (Mayers-Vietoris ) X {X 1,X 2 } X Δ H n (X 1 X 2 ; G) i 1 ( i 2 ) H n (X 1 ; G) H n (X 2 ; G) j 1 +j 2 Hn (X 1 X 2 ; G) Δ H n (X 1 X 2 ; G) i 1 i 2 H n (X 1 X 2 ; G) Δ H n 1 (X 1 X 2 ; G), j 1 (j 2 ) H n (X 1 ; G) H n (X 2 ; G) Δ H n 1 (X 1 X 2 ; G) X 1 X 2 H q (H q ) H q ( H q ) 16

17 1.25 ( ) U A X X V VA X V X U r t r t (A V ) A V i :(X U, A U) (X, A) G i : H n (X U, A U; G) = i : H n (X, A; G) = H n (X, A; G), H n (X U, A U; G) CW 1.26 (CW ) 1) Hausdorff e φ :(D n,s n 1 ) (ē, ė) e n( ) φ 2) Hausdorff X {e λ λ Λ} X i) e μ e ν = (μ ν). ii) X = λ Λ e λ. iii) X q := μ:dim eµ qe μ dim e μ = q+1 ė μ X q. 3) Hausdorff X X q q X A X e ē A A A A X X x X x inta A X 4) X Y f f(x q ) Y q 17

18 5) X CW C) X e e W) X U X e U ē ē 1.27 (CW ) CW 1) CW 2) CW X A CW 3) CW 4) ( ) CW 5) CW 6) CW 7) CW X, Y X Y X Y CW 8) CW X, Y X Y CW 9) K (ē q = D q ) CW CW 18

19 1.28 CW X A (X, A) X q = X q A G H q ( X n, X n 1 ; G) =0(q n), φ λ : H n (Dλ n,sn 1 λ ; G) = H n ( X n, X n 1 ; G) λ Λ n λ Λ n H n ( X n, X n 1 ) 1.29 (CW ) 1) C n (X, A) C n (X, A) :=H n ( X n, X n 1 ) : C n (X, A) C n 1 (X, A) ( X n, X n 1 ) j : H n ( X n, X n 1 ) H n 1 ( X n 1 ) j H n 1 ( X n 1, X n 2 ) (C (X, A), ) CW (X, A) 2) CW (X, A) C (X, A) H (C (X, A) G) H (Hom(C (X, A),G) CW Cech ( ) 1.30 (Čech ) X U U n n U K(U ) X A (K(U ),L(U )) H (K(U ),L(U ); G) 19

20 H (K(U ),L(U ); G) X (X, A) Čech Ȟ (X, A; G) = lim H (K(U ),L(U ); G), Ȟ (X, A; G) = lim H (K(U ),L(U ); G) ( ) 1.31 (Eilenberg-Steenrod ) 1) H i) (X, A) q Abel H q (X, A) ii) f :(X, A) (Y,B) q f : H q (Y,B) H q (X, A) iii) (X, A) q δ : H q H q+1 (X, A) H H I) 1 =1 II) f :(X, A) (Y,B) g :(Y,B) (Z, C) (g f) = f g III) ( ) f g :(X, A) (Y,B) f = g 20

21 IV) ( δ H q (X, A) δ H q+1 (X, A) j H q (X) j. i : A X j :(X, φ) (X, A) i H q (A) V) f :(X, A) (Y,B) f δ = δ (f A ) VI) ( X U Ū inta i : H q (X, A) = H q (X U, A U). VII) ( H q (pt) = 0 (q 0) Hausdorff 2) CW VI) X 1,X 2 CW i : H q (X 1 X 2,X 2 ) = H q (X 1,X 1 X 2 ) ) CW Čeck CW 2) G 3) G Čeck Čeck Hausdorff 21

22 4) G Čeck CW ( ( ) 1.33 ( ) 1) X X x y Ω(X; x, y) M(y, x) X M(y, x) X Π(X) 2) X Π(X) C S C X 3) C S γ M(x, x) S (γ) Aut(S x ) S x : π 1 (X, x) Aut(S x ) S x ) X x 0 X, C C X π 1 (X, x 0 ) Aut(A)(A C ) 2) X X C S S x 22

23 1.35 ( ) X S S (γ) :S (y) S (x) γ M(y, x) 1.36 (n ) X {π n (X, x); x X} X n X S R X X S q Šq(X; S ) Š(X; S )=(Šq(X; S ), ) X Ȟ (X; S ) X X S {K} {S (X, X K; S )} Š (X; S ) := lim K S (X, X K; S ) Ȟ (X; S ) 1.39 X S Ȟ (X; S ) = lim K H (X, X K; S ) 23

24 Ȟ (X; S ) H (X; S ) X 1.4 ( ) ( ) 1.40 ( ) X X 1,X 2 S(X 1 )+S(X 2 ) S(X 1 X 2 ) (X 1,X 2 ) 1.41 ( ) 1) X Y n (σ, τ) ρ(σ, τ)= n i+1 n σ 0 i 1 τ i=0 ρ : S(X Y ) S(X) S(Y ) Alexander-Whitney ρ κ : S(X) S(Y ) S(X Y ) 2) (X, A), (Y,B) : H p (X, A; G 1 ) H q (Y,B; G 2 ) H p+q (S(X, A; G 1 ) S(Y,B; G 2 )) κ Hp+q (S((X, A) (Y,B); G 1 G 2 )) {A Y,X B} (X, A), (Y,B) CW κ 24

25 3) (X, A), (Y,B) {A Y,X B} (X, A), (Y,B) CW q : H p (X, A; G 1 ) H q (Y,B; G 2 ) H p+q (S (X, A; G 1 ) S (Y,B; G 2 )) ρ H p+q (S ((X, A) (Y,B); G 1 G 2 )) 1.42 (( ) Künneth ) R 1) (X, A), (Y,B) {A Y,X B} 0 p+q=n H p(x, A; R) R H q (Y,B; R) H n ((X, A) (Y,B); R) p+q=n 1 TorR (H p (X, A; R),H q (Y,B; R)) 0 2) (X, A), (Y,B) CW X CW 0 p+q=n Hp (X, A) Z H q (Y,B) H n ((X, A) (Y,B)) p+q=n+1 TorZ (H p (X, A),H q (Y,B)) ( ) X A 1,A 2 {A 1 X, X A 2 } X X {A 1,A 2 } X Δ:X X X : H p (X, A 1 ; G 1 ) H q (X, A 2 ; G 2 ) H p+q ((X, A 1 ) (X, A 2 ); G 1 G 2 ) Δ H p+q (X, A 1 A 2 ; G 1 G 2 ) 25

26 u S p (X; G 1 ),u 2 S q (X; G 2 ) σ S p+q (X) σ, u v := p+1 p+q σ, u 0 p 1 σ, v G 1 G 2 δ(u v) =(δu) v +( 1) p u (δv), [u] [v] =[u v] 1.44 ( ) u H p (X, A 1 ; R),v H q (X, A 2 ; R),w H r (X, A 3 ; R) u v 1) f : Y X f(b i ) A i (i =1, 2) f u f v f (u v) =f (u) f (v) H p+q (Y,B 1 B 2 ; R) 2) ( ) (u v) w = u (v w) 3) R 1 H 0 (X; R) u 1=1 u = u H 0 (X, A 1 ; R) 4) R v u =( 1) pq u v H p+q (X, A 1 A 2 ; R) 1.45 ( ) G 1,G 2 c = i σ i g i S n (X; G 1 ),u S p (X; G 2 ) c u S n p (X; G 1 G 2 ) c u = i 0 p 1 σ i (g i p+1 n σ i,u ) 26

27 (c u) =( 1) p ( c u c δu) A, B X : H n (X, A B; G 1 ) H p (X, A; G 2 ) H n p (X, B; G 1 G 2 ) [c] [u] =[c u] 1.46 ( ) R X, Y A, A i X B i Y 1) {A 1,A 2 } X {B 1,B 2 } Y f : X Y f(a i ) B i (i =1, 2) c H n (X, A 1 A 2 ; R),v H p (Y,B 1 ; R) f (c f v)=f (c) v H n p (Y,B 2 ; R) 2) c H n (X, A 1 A 2 A 3 ; R),u H p (X, A 1 ; R),v H q (X, A 2 ; R) c u (c u) v = c (u v) H n p q (X, A 3 ; R) 3) 1 H 0 (X; R) c H n (X, A; R) c 1=c. 4) c H n (X, A; R),u H n (X, A; R) ɛ (c u) = c, u R ɛ ɛ : S 0 (X) Z H 0 (X; R) R 27

28 Euler Lefschetz 1.47 ( ) (X, A) n H n (X, A) =0 (X, A) H n (X, A) T n H n (X, A) =H n (X, A)/T n f :(X, A) (X, A) f (n) : Hn (X, A) H n (X, A) L(f) := n=0 ( 1) n trf (0) f Lefschetz L(1) χ(x, A) := ( 1) n b n n=0 (X, A) Euler 1.48 (Hopf) (X, A) CW f :(X, A) (X, A) C n (X, A) f (n) n L(f) = n=0 trf (0) f =id X n A c n χ(x, A) = n ( 1) n c n ( ) X {X 1,X 2 } X 1,X 2 A = X 1 X 2 X = X 1 X 2 f : X X f(x i ) X i L(f)+L(f A) =L(f X 1 )+L(f X 2 ) 28

29 χ(x)+χ(a) =χ(x 1 )+χ(x 2 ) ( ) X, Y X Y f : X X, g : Y Y L(f g) =L(f)L(g) χ(x Y )=χ(x)χ(y ) X H q (X I,X I) = H q 1 (X), H q (X I,X I) = H q 1 (X) ( ) X, Y n n 3 H q (X Y ) = H q (X) H q (Y ); 1 q n 2 X, Y H n 1 (X Y ) = H n 1 (X) H n 1 (Y ) 29

30 1.53 (Euler ) X, Y n χ(x)+χ(y ) 1 ( 1) n ; X, Y compact, χ(x Y )= χ(x)+χ(y ) 1+( 1) n ; X, Y noncompact, χ(x)+χ(y ) 1 ; the other cases RP n 1 S n CW CW D k R k u k :Δ k =(0, 1,,k) (v 1,,v k, 0) D k H k (D k,d k (v v k )/k) = H k (D k,d k 0) v j j R n 1 R n S n R n+1 k ē k ± = S n R k ± (k =0, 1,,n) S n = e 0 + e0 en + en. j : R k+1 R k j(x 1,,x k+1 )=(x 1,,x k ) e k ± j [ē k ±, ēk ± ]=±[Dk, D k ] D± k ± (v 1,,v k 1, ±v k, 0) ±( 1) k 1 (v 1,,v k 1, 0) ± ( 1) k (v 1,,v k 1, ±v k )+ j (v 1,,v k 1, ±v k )=(v 1,,v k 1, 0) D k 1 30

31 [D k ±, D k ±]= ( 1) k D k 1 +( 1) k e k 1 ± e k ± = ± [Dk, D k 1 ]=±( 1) k (e k ek 1 2) T : R n+1 R n+1 T (x) = x π : S n RP n = S n / {1,T}. )(k =1,,n). RP n e k = π (e k + ) e 0,,e n RP n RP n = e 0 e 1 e n. π (e k )=( 1) k+1 e k e k =(1+( 1) k )e k 1. 0 C n (1+( 1) n ) C n 1 C 2 2 C 1 0 C 0 0. H 0 (RP n )=Z, H 2k (RP n )=0(k>0), H 2k 1 (RP n )=Z 2 (2k 1 <n), H 2k 1 (RP n )=Z (2k 1=n). 2 [LastUpdate: ] 31

32 2.1 Lie Lie 2.1 ( ) n k Lie G n k 2 π k (U) = π k (U(n)) = π k (SU(n)), n (k +1)/2, (1) π k (O) = π k (SO(n)), n k +2, (2) π k (Sp) = π k (Sp(n)), n (k 1)/4. (3) 2.2 (Bott ) { π k (U) ; k 1(mod2), = 0 ;k 0(mod2). ; k 3, 7(mod8), π k (O) = π k (O) = 2 ;k 0, 1(mod8), 0 ;k 2, 4, 5, 6(mod8). ; k 3, 7(mod8), 2 ;k 4, 5(mod8), 0 ;k 0, 1, 2, 6(mod8). (4) (5) (6) 2.3 ( ) G Lie G =SO(n)(n 2), Spin(n)(n 3), U(n)(n 1), SU(n)(n 2), Sp(n)(n 1), G 2,F 4,E 2,E 6,E 8. 1) π 1 (G): ; G =U(n)(n 1), SO(2), π 1 (G) = 2 ;G =SO(n)(n 3), 0 ; (7) 32

33 2) π 2 (G): π 2 (G) =0. (8) 3) π 3 (G): 0 ;G = U (1) = SO(2) π 3 (G) = + ; G = SO(4) Spin(4) ; (9) 4) π 4 (G): 2+2 ;G = SO(4) Spin(4) π 4 (G) = 2 ;G = Sp(n), SU(2), SO(3), SO(5), Spin(3), Spin(5) 0 ;G =SU(n) (n 3), SO(n)(n 6),G 2,F 4,E 6,E 7,E 8 (10) 5) π 5 (G): π 5 (G) = 2+2 ;G = SO(4) Spin(4), 2 ;G = Sp(n), SU(2), SO(3), SO(5), Spin(3), Spin(5) ; G =SU(n) (n 3), SO(6), Spin(6) 0 ;G =SO(n), Spin(n) (n 7),G 2,F 4,E 6,E 7,E 8 (11) 3 Manifolds [LastUpdate: ] ( ) n Euclide R n {x =(x 1,,x n ) R n x n 0} H n {x H n x n =0} H n i) Hausdorff M p H n U(p) M n 33

34 ii) n M U U H n ψ (U, ψ) S = {U α,ψ α } α A {U α } α A M iii) n M S = {U α,ψ α } α A M = α A ψα 1 ( H n ) M 4 [LastUpdate: ] Morse [Morse M. (1934)] [Cairns SS (1935), Whitehead JHC (1940)] 1944 Whitney Whitney : n C R 2n 1 R 2n [Whitney H(1944)] 1952 Rokhlin [Rokhlin (1952)] 1954 Thom [Thom R (1954)] 1960 Stiefe-Whitney Pontryagin [Wall CTC (1960)] 1961 Morse [Smale S (1961), Thom R, Wallace, Morse M] n 5 Poincare [Smale S (1961)] 1962 h- : 5 C h- [Smale S(1962)] 34

35 [Smale S (1962)] 2 C [Smale S (1962)] 1963 n 1 2n [Wall CTC (1962)] n 1 2n +1 [Tamura I(1963), Wall CTC (1963)] [Kervaire MA and Milnor JW (1963)] Atiyah-Singer [Atiyah and Singer (1963)] Poincare [Freedman MH(1982)] 1982 R 4 [Donaldson SK (1983)] 1985 Donaldson [Donaldson SK] h [Donaldson SK] ( ) M n C 1. C 1 f df p =0 p M f 2. p M C 2 f H μν (p) =( μ ν f)(p) p Hesse 3. p M C 2 f Hesse p Hesse 4. M C f M M f Morse 35

36 4.2 M n C M Morse 4.3 ( ) 1. W C W V 0,V 1 W = V 0 V 1,V 0 V 1 =. (W ; V 0,V 1 ) C 2. C (W ; V 0,V 1 ) Morse f (W ; V 0,V 1 ) Morse i) f(w )=[a, b] (a<b). ii) V 0 V 0 = f 1 (a) V 1 V 1 = f 1 (b) 4.4 C (W ; V 0,V 1 ) Morse h 4.5 (h ) W n n C (W n ; V 0,V 1 ) C W n = V 0 I V 0 = V 1 36

37 i) W n,v 0,V 1 ii) n 6. iii) H q (W n,v 0 )=0(q =0, 1, 2, ). 4.6 (h ) n V,V V V = W n+1 V W n+1 V W n+1 V V h H (W n+1,v)=0 4.7 (Smale: h ) V,V n C n 5 V V h V V C [Smale, S.: On the structure of manifolds, Amer. J. Math. 8, (1962); Smale, S.: Lectures on h-cobordism theorem,princeton Univ. Press (1965)] [ ] 4.8 (Kirby-Siebenmann: h ) V,V n n 5 V V h V V [Kirby, R.C. and Siebenmann, L.C.: Foundational Essays on Topological Manifolds, Smoothings, and Triangulations, Ann. Math. Studies 88, Princeton (1977)] Poincare 4.9 (Stallings 1960; Zeeman 1961) M n n 5 S n Euclid PL M n S n PL [Stallings J 1960[Sta60]; Zeeman CW 1961[?,?]] 37

38 4.10 (Smale 1960) W n n C W n n D n C i) n 6. ii) W n H q (W n )=H q (D n )(q =0, 1, ). iii) W n 4.11 M n S n n C n =5 6 n +1 C W n+1 W n+1 = M n 4.12 (n 5 Poincare [Smale]) M n n C S n n 5 M n S n C 0 n =5, 6 M n S n C [Smale S 1960, 1961[Sma60, Sma61]] 4.13 W 5 5 C W 5 5 D 5 C i) W 5 H q (W 5 )=H q (D 5 )(q =0, 1, ). ii) W 5 S 4 C 4.14 (Schoenflies ) f : S n 1 S n C f(s n 1 ) S n S n f(s n 1 )=A 1 A 2 n 5 M 1 = A 1 f(s n 1 ) M 2 f(s n 1 ) D n C 38

39 ( ) Q : Z m Z m Z 1) v Z m Q(v, v) 0(mod2) Q II II I 2) Q (signature) 4.16 ( ) Q 1) Q II 2) Q II Q (1) ( 1) 3) Q I Q E 8 ( ) 4) Rokhlin 4.17 ( Rokhlin ) 4 C E 8 C 39

40 ( [Milnor (1956)]) M,N 4.20 ([Wall(1964)]) M,N h M N h k M k (S 2 S 2 ) N k (S 2 S 2 ) 4.21 (Freedman [Freedman (1982)]) D 2 R 2 Casson 4.22 ( h [Freedman]) N 5 N = M + M M + M = M ± H (M ; Z) H (N; Z) N M [0, 1] [Freedman, M.H.: The topology of 4-dimensional manifolds, J. Diff. Geom. 17 (1982), ] 4.23 ( h [Freedman(1982)]) C M,N h 4.24 ( Poincare [Freedman (1982)) ] S 4 S 4 [Freedman, M.H.: The topology of 4-dimensional manifolds, J. Diff. Geom. 17 (1982), ] 4.25 ( ) (Freedman-Quinn [Freedman (1982), Quinn (1982)]) X ks(x) H 4 (X; Z 2 ) Kirby Siebenmann 40

41 i) ks(x) ii) ks(x) =0 X S 1 iii) I ks(x) =0, 1 iv) II ks(x) 1/8 [Freedman, M.H. and Quinn, F.: Topology of 4-manifolds, Princeton Math. Ser. 39, Princeton, 1990] Donaldson 4.27 (Donaldson [Donaldson(1983,1987)]) C b b = ( 1) ( 1) ( 1). b 4.28 (Donaldson(1983), Taubes(1986)) R 4 C [Kirby and Siebermann (1977), Moise(1952)] ( ) i) ( ) M 1,M 2 (M 1 M 2 = ) M 1 M 2 M 1 + M 2 ii) ( ) M M 41

42 iii) n M n,v n n +1 W n+1 W n+1 = M n +( V n ) M n V n (oriented cobordant) W n+1 W n+1 iv) M n n Ω n Ω n (n =0, 1, ) Ω = Ω n 4.30 i) Ω n {M n 1 }, {M n 2 } {M n 1 } + {M n 2 } := {M n 1 + M n 2 } Ω n { } ii) Ω {M n }, {N m } {M n } {N m } := {M n N m } Ω 4.31 (Thom) Ω n, i) n 0mod4 42

43 ii) n =4m n [ ] 4.32 Ω Q CP 2, CP 4, Q [ ] 4.33 (Wall) n Pontrjagin Stiefel-Whitney Ω n Pontrjagin Z Stiefel-Whitney Z 2 [Wall, C.T.C: Determination of the cobordism ring, Ann. of Math. 72 (1960)] 5 [LastUpdate: ] K 5.1 (K ) X F - V F (X) Grothendiek K K F (X) K F (X) F = C F = R K F (X) K(X) KO(X) 5.2 X K K F (X) i) K F (X) K F 43

44 ii) K F (X) V N θf N (N 0) [V ] [θn F ] iii) K F (X) [V ] [W ]=0 θ N F V θn F = W θ N F 5.3 ( ) X pt K F (X) K F (pt) = Z K K F (X) 5.4 ( ) X V W θ m,θ n V θ m = W θ n V W 5.5 X K K F (X) i) K F (X) K F (X) K F ii) iii) K F (X) V V N θ N F (N 0) [V ] [θn F ] K F (X) [V ]=[W ] V W K F (X) X F ( K ) X Y K F (X, Y ) K F (X, Y ):= K F (X/Y ) X/Y Y Y = K F (X, ) :=K F (X) 44

45 5.7 (L ) (X, A)(A X ) X V 0,V 1 A σ : V 0 A V 1 A V =(V 0,V 1 ; σ) L (X, A) L (X, A) V, V φ i : V i V i φ 1 σ = σ φ 0 V = V L (X, A) L (X, A) E =(E 0,E 1 ; σ) E 0 = E 1 σ =id L (X, A) V, V E, E V E = V E L (X, A) [V 0,V 1 ; σ] L(X, A) L(X, A) 5.8 A = χ([v 0,V 1 ]) = [V 0 ] [V 1 ] χ : L(X, A) K(X, A) V =[V 0,V 1 ; σ] L(X, A) χ(v ) X 0 = X 0,X 1 = X 1 X [Ṽ ] [θn ]=[V 0 σ V 1 ] [V 1 id V 1 ] K(X 0 A X 1 ) X = X 0 K(X) Ṽ X 1 K(X/A) χ(v ) 5.9 X, Y p X : X Y X, p Y : X Y Y a b K(X) K(Y ) p X (a)p Y (b) K(X Y ) K(X) K(Y ) K(X Y ) K K K(X) K(Y ) K(X Y ) 5.10 X, Y X Y X Y 45

46 i) i : X Y X Y p : X Y X Y 0 K(X Y ) p K(X i Y ) K(X Y ) 0. ii) i K(X) K(Y ) K(X i Y ) K(X Y ) 5.11 (K ) K(X) K(Y ) K(X Y ) K (X, A) (Y,B) K K(X/A) K(Y/B) K((X/A) (Y/B)) = K((X Y )/(X B) (A Y )) K(X, A) K(Y,B) K(X Y,(X B) (A Y )) K 5.12 ( K ) X i K i (X) := K(S i X), (X, Y ) K i (X, Y ):= K i (X/Y ), X X + =(X, )( pt S i K i (X) K i (X, ) := K i (X + )=K(S i X, pt X) K i (pt) = K(S i ) 46

47 5.13 X, Y i, j K K(S i X) K(S j Y ) K((S i X) (S j Y )) K K i (X) K j (Y ) K i j (X Y ) K (pt) K (X) K (pt) (Bott K ) i) K (pt) ξ K 2 (pt) = K(S 2 ) K (pt) = Z[ξ]. ii) (X, A) Hausdorff ξ μ ξ : K i (X, A) K i 2 (X, A) i 5.15 (Bott K ) i) KO (pt) η KO 1 (pt), y KO 4 (pt), x KO 8 (pt), KO (pt) = Z[η, y, x]/ <2η, η 3,ηy,y 2 4x >. 47

48 ii) (X, A) Hausdorff x μ x : KO i (X, A) KO i 8 (X, A) i 5.16 ( K ) X X + X X + = X {pt} X K K cpt (X) := K(X + ), Kcpt i (X) :=K cpt(x R i ) (X, A)(A ) K K i cpt := K cpt((x A) R i ) 5.17 (K cpt Bott ) X K cpt (X) = K cpt (X C), KO cpt (X) = KO cpt (X R 8 ). ξ K cpt (C) = K(S 2 ) x KO cpt (R 8 ) = KO(S 8 ) 5.18 W = W 0 W 1 Z 2 C Cl n E k = D n W k n D n ( Cl n ) μ : E 0 S n 1 E 1 S n 1(S n 1 = D n ) μ(u, w) =(u, u w)( u =1) φ(w ):=[E 0,E 1 ; μ] K(D n,s n 1 ) 48

49 φ Z 2 C Cl n Grothendieck K φ : Mˆ n C K(D n,s n 1 ) i : R n R n+1 Grothendieck i : Mˆ n+1 C M ˆ n C i φ = 0 φ φ n : Mˆ n C /i Mˆ n+1 C K(Dn,S n 1 ) = K n (pt) Z 2 Clifford φ n : Mˆ n /i Mˆ n+1 KO(D n,s n 1 ) = KO n (pt) { Mˆ n C /i Mˆ n+1 C = Mn 1 C /i Mn C = Z n :even 0 n :odd Z n 0, 4(mod8) Mˆ n /i Mˆ n+1 = Mn 1 /i M n = Z 2 n 1, 2(mod8) (Atiyah-Bott-Shapiro ) φ : Mˆ C /i ˆ φ : Mˆ /i ˆ M C +1 M +1 = = K (pt), KO (pt) 49

50 5.1.2 Chern 5.20 (Splitting Principle) i) E X π : Y X a) π : H (X) H (Y ) b) π E π E = l 1 l n. X Y π ii) E X 2n π : Y X a) π : H (X) H (Y ) b) π E E k C = l k l k E k π E = E 1 E n. X Y π 5.21 ( ) Q f(0) = 1 f(x) Q[[x]] σ n x 1,,x n n f(x 1 ) f(x n )=1+F 1 (σ 1 )+F 2 (σ 1,σ 2 )+ F j (σ 1,,σ j )(x j j ) n n f(x) 50

51 5.22 A = {A k } a =1+ a 1 + a 2 + A {F k } F : A A F (a) =1+F 1 (a 1 )+F 2 (a 1,a 2 )+ F A F (ab) =F (a)f (b) ( Todd ) td(x) = x 1 e x =1+1 2 x x2 + Td Todd Chern c(e) Td C (E) =Td(c(E)) Todd n Td(X) :=Td n (TX)[X] X Todd 5.24 (  ) â(x) = x/2 sinh( x/2) = x x2 +   Pontrjagin c(e) Â(E) =Â(c(E))  a(x) =â(16x) A m =16 m  m A 5.25 E Td C (E C) =Â(E)2 51

52 5.26 ( L ) l(x) = x tanh( x) =1+1 3 x 1 45 x2 + ˆL HirzebruchL Pontrjagin c(e) ˆL(E) =ˆL(c(E)) L ˆl(x) =l(x/4) ˆL m =4 m L m ˆL 5.27 (Chern ) n E Chern c(e) Splitting Principle c(e) =1+c c n = n (1 + x k ) k=1 c j x j ch(e) =e x e xn = n + c 1 +(c 2 1 c 2)+ H 2 (X; Q) E Chern 5.28 Chern i) E,E X ch(e E )=ch(e)+ch(e ), ch(e E )=ch(e)ch(e ). ii) Hausdorff X Chern ch : K(X) H 2 (X; Q). 52

53 5.1.3 Clifford 5.29 X n E T (E) = r=0 j E I (E) v v+ <v,v>(v E x ) Cl(E) :=T (E)/I (E) E Clifford X Riemann T (X) Clifford X Clifford Cl(X) 5.30 E (p, q) P O (E) E O p,q - cl(ρ p,q ) O p,q R p,q ρ p,q Cl(R p,q ) cl(ρ p,q ):O p,q Cl(R p,q ) Cl(E) =P O (E) cl(ρp,q) Cl(R p,q ). E P SO (E) SO p,q - Cl(E) =P SO (E) cl(ρp,q) Cl(R p,q ) i) Clifford Cl(E) X Clifford a, b Cl(E x ) ab Cl(E x ) v, w E x Cl(E x ) vw + wv = 2 <v,w> 53

54 ii) Clifford Clifford α :Cl(E) Cl(E) α(v) = v(v E Cl(E)) α +1 1 Cl(E) Cl(E) =Cl 0 (E) Cl 1 (E) iii) e 1,,e n E x (< e i,e j >= η ij ) φ Cl(E x ) n L(φ) = e i φe j η ij i,j=1 Cl(E) L :Cl(E) Cl(E) iv) v 1 v k Λ k E x 1 sign(σ)v σ(1) v σ(k) k! σ S k E Clifford λ :Λ (E) = Cl(E) λ(λ even E)=Cl 0 (E), λ(λ odd E)=Cl 1 (E), λ(λ p E)={φ Cl(E) α L(φ) =(n 2p)φ} p =0,,n 54

55 5.32 X Riemann E Riemann Clifford Cl(E) Riemann Γ(Cl(E)) (φ ψ) =( φ) ψ + φ ( ψ). E e 1,,e n n e i = ω j i e j j=1 R(V,W) :Cl(E x ) Cl(E x ) R(V,W) R(V,W)(φ ψ) =(R(V,W)φ) ψ + φ (R(V,W)ψ) ( ) E X Riemann P SO (E) E SO n P SO (E) ξ : P Spin (E) P SO (E) P Spin (E) E P Spin (E) Spin n ξ(ug) =uξ 0 (g) u P Spin (E), g Spin n ξ 0 : Spin n SO n 55

56 5.34 ( ) X E E Stiefel-Whitney w 1 (E) =w 2 (E) =0 E H 1 (X; Z 2 ) 5.35 (Riemann ) Riemann X T (X) X Riemann X 5.36 ( ) Stiefel K ( ) E Riemann ξ : P Spin (E) P SO (E) M Cl(R n ) Spin n Cl 0 (R n ) Cl(R n ) Spin n μ : Spin n SO(M) M P Spin (E) S(E) :P Spin (E) μ M E (real spinor bundle) Cl(C n ) M C S C (E) :P Spin (E) μ M C E (complex spinor bundle) 5.38 Riemann E Clifford Cl(E) =P Spin (E) Ad Cl(R n ) S(E) Cl(E) 56

57 5.39 ( Riemann ) Riemann E Riemann S(E) Riemann i) E [e 1,,e n ] e i = n ω ji e j j=1 [e j ] S(E) [σ α ] σ α = 1 ω ji e i e j σ α 2 R(V,W) :S(E x ) S(E x ) R(V,W)σ = 1 <R(V,W)e i,e j >e i e j σ 2 i<j i<j ii) S(E) Cl(E) (φ σ) =( φ) σ + φ ( σ). R(V,W) Cl(E) Dirac 5.40 X Riemann S Cl(X) X Riemann S Riemann Dσ := n e j ej σ j=1 57

58 Γ(S) D :Γ(S) Γ(S) Dirac e 1,,e n T (X) D 5.41 X E m D : Γ(E) Γ(E) x X x k A α (x) :E x E x D = A α (x) α x α α m ξ = k ξ kdx k Tx (X) σ ξ (D) :E x E x σ ξ (D) :=i m A α (x)ξ α α =m D ξ 0 σ ξ (D) D 5.42 Riemann X Cl(X)- S Riemann <, > S X Dirac i) T (X) e S <eσ 1,eσ 2 >=< σ 1,σ 2 > e T x (X)s.t. <e,e>=1, σ 1,σ 2 S x. ii) φ Γ(Cl(X)) σ Γ(S) (φ σ) =( φ) σ + φ ( σ) X Riemann D X Dirac S Dirac D L 2 (S)(S Ker D =KerD 2 X Ker D 58

59 5.1.6 R n 5.44 ( ) m R p(x, ξ) R n R n α, α Dx α Dα ξ p(x, ξ) C α,α (1 + ξ )m α C α,α p(x, ξ) m Sym m 5.45 ( ) p Sym m u(x) ( R n Frechet ) u(x) =(2π) n/2 e i<x,ξ> û(ξ)dξ, Pu(x) =(2π) n/2 e i<x,ξ> p(x, ξ)û(ξ)dξ, P : R n m ΨDO m p Sym m P ΨDO m σ(p )=[p] Sym m /Sym m 1 P 5.46 P ΨDO m,q ΨDO l i) P s R P : L 2 s L2 s m ii) U R n iv) Q P ΨDO m+l. u U C (U) Pu U C (U). v) σ(p ) R n T (R n ) 59

60 5.47 K R n P ΨDO m u C0 supp(pu) K suppu K = Pu=0 P K ΨDO K,m 5.48 φ : U V R n U, V K U (φ P )u = P (u φ) φ 1 φ :ΨDO K,m ΨDO φk,m 5.49 ( ) τ : s, m R τ : L 2 s L2 s+m P, Q P Q 5.50 ( ) P ΨDO m p c>0 ξ c ξ p(x, ξ) p(x, ξ) 1 c(1 + ξ ) m P 5.51 P ΨDO m i) P Q ΨDO m PQ =Id S, QP =Id S. S, S ii) u L 2 s Rn U Pu U C (U) u U C (U). m >0 Pu = λu λ C u C (R n ) 60

61 ( ) i) X n E,F X Γ(E), Γ(F ) L 2 s(e),l 2 s(f ) Sobolev P : Γ(E) Γ(F ) s, m R P : L m s (E) L 2 s+m(f ) P ii) P :Γ(E) Γ(F ) P α ΨDO m P m ΨDO m (E,F) 5.53 E,F,G X P ΨDO m (E,F),Q ΨDO l (F, G) i) P s R P : L 2 s(e) L 2 s m(f ) ii) U X iv) Q P ΨDO m+l (E,G). u U C (U) Pu U C (U). v) φ : X X φ [(φ P )u] =P (φ u) φ :ΨDO m (φ E,φ F ) ΨDO m (E,F) 61

62 5.54 π : T (X) X X E,F T (X) π E,π F p T (X) Hom(π E,π F ) p Sym m p m Sym m (E,F) 5.55 P ΨDO m (E,F) σ(p ) Sym m (E,F)/Sym m 1 (E,F) 5.56 ( ) P ΨDO m (E,F) σ(p ) T (X) X Riemann C p(ξ) 1 C(1 + ξ ) m P 5.57 (Fredholm ) T : H 1 H 2 ran T Ker T Coker T Fredholm T )=dim(kert ) dim(coker T ) 5.58 P ΨDO m (E,F) X i) Q ΨDO m (E,F) PQ =Id S, QP =Id S S, S ii) u L 2 s (E) X U Pu U C (U) u U C (U). 62

63 iii) s R P Fredholm P : L 2 s (E) L2 s m (E) s 5.59 P :Γ(E) Γ(E) Riemann X m i) Γ(E) L 2 (E) Γ(E) =KerP Im P ii) H :Γ(E) Ker P Green Q ΨDO m (E) PG = GP =Id H. iii) m>0 P λ E λ d(λ) := dim λ Λ E λ d(λ) cλ n(n+2m+2)/2m c {E λ } L 2 (E) Atiyah-Singer F = F (H 1,H 2 ) Fredholm F Z F π 0 (F ) Z 63

64 5.61 P P ) σ(p ) 5.62 ( ) X E F P :Γ(E) Γ(F ) TX DX σ(p ) DX = SX E F σ(p ) K cpt (TX) σ(p ):=[π E,π F ; σ(p )] K cpt (TX) = K(DX, SX). X f : X R N X R N N f : X N Thom K cpt (TX) K cpt (TN) i! : K cpt (TN) K cpt (T R N ) f! : K cpt (TX) K cpt (T R N ) T R N pt Thom q! : K cpt (KR n ) K(pt) = ZR P top index(p ) top index(p ):=q! f! σ(p ) Z ( Atiyah-Singer ) n X P i) ii) P )=top index(p ). P =( 1) n {ch(σ(p )) π Â(X) 2 }[TX]. 64

65 iii) X P =( 1) n(n+1)/2 {π! ch(σ(p )) Â(X)2 }[X] (Euler ) Clifford X Riemann S S =Cl(X) =Cl 0 (X) Cl 1 (X). Cl(X) Dirac D 0 :Γ(Cl 0 (X)) Γ(Cl 1 (X)) d + d :Γ(Λ even (X)) Γ(Λ odd (X)) H D 0 =dimh even dim H odd = χ(x) 5.65 ( ) X 4k Riemann Clifford ω C =( 1) k ω S =Cl(X) =Cl + (X) Cl (X) Dirac Cl(X) Dirac D + :Γ(Cl + (X)) Γ(Cl (X)) X H 2k (X; R) D + =dim(h 2k ) + dim(h 2k ) =sig(x). 65

66 Atiyah-Singer L L(X) =sig(x). E 2m X D + E :Γ(Cl+ (X) E) Γ(Cl (X) E) (D + E )={ch 2(E) L(X)}[X] ch 2 (E) := k 2 k ch k E (Atiyah-Singer  ) X 2m Riemann /S C Dirac D /S C /S C = /S + C /S C /D + :Γ(/S + C ) Γ( /S C ) X  ( /D + )=Â(X). E X /D + E :Γ(/S+ C (X) E) Γ( /S C (X) E) ( /D + E )={ch(e) Â(X)}[X]. 66

67 [1] D. Husemoller: Fibre Bundles, 3rd edition (Springer, 1993). [2] H.B. Lawson, Jr. and M-L. Michelsohn: Spin Geometry (Princeton Univ. Press, 1989). 6 [LastUpdate: ] ( Grassmann ) 1) R n+k n (n ) V n,k = V n (R n+k ) V n,k R n(n+k) V n,k R n(n+k) Stiefel V n,k C n(n+k) V n,k V k,n C 2) R n+k n G n,k = G n (R n+k ) π : V n,k G n,k G n,k nk Grassmann G n,k G k,n C 3) E(γ n k )={ (P, v) P G n,k,v P R n+k} π : E(γ n k ) (P, v) P G n,k γ n k =(E(γn k ),G n,k,π) G n,k n G n,k n 67

68 4) R n+k R n+k+1 G n,k G n,k+1 (G n,k ) k 0 G n = G n, = G n (R ) Grassmann γ n k γn k+1 γn E(γ n )={(P, v) P G n,v P R } G n R 6.2 ( Grassmann ) 1) R n+k n G n,k = G n (R n+k ) π : V n,k G n,k G n,k nk Grassmann G n,k G k,n C G n,k G n,k 2) E( γ k {(P, n )= v) P G } n,k,v P R n+k π : E( γ n k ) (P, v) P G n,k γ n k =(E( γn k ), G n,k,π) G n,k n G n,k n 3) ( G n,k ) k 0 G n = G n, = G n (R ) Grassmann γ k n γn k+1 γn { E( γ n )= (P, v) P G } n,v P R G n R 68

69 6.3 ( ) 1) ξ n =(E,B,π) Hausdorff B n f : B G n ξ n = f γ n B n B G n G n Hausdorff n γ n 2) G n Hausdorff n γ n ( Grassmann ) 1) C n+k n (n ) Vn,k C = V n (C n+k ) Vn,k C Cn(n+k) Vn,k C Cn(n+k) Stiefel V n,k C C 2n(n + k) Vn,k C V k,n C C 2) C n+k n G C n,k = G n(c n+k ) π : V C n,k GC n,k GC n,k 2nk Grassmann G C n,k GC k,n C 69

70 3) E(γ n,c k )= { (P, v) P G C n,k,v P C n+k} π : E(γ n,c k ) (P, v) P G C n,k γ n,c k =(E(γ n,c k ),G C n,k,π) GC n,k n G C n,k n 4) C n+k C n+k+1 G C n,k GC n,k+1 (G C n,k ) k 0 G C n = G C n, = G n (C ) Grassmann γ n,c k γ n,c k+1 γn,c E(γ n,c )= { (P, v) P G C n,v P C } G C n C 6.5 ( ) ω n =(E,B,π) Hausdorff B n f : B G C n ωn = f γ n,c B n B G C n G C n Hausdorff n γ n,c ( ) 70

71 1) c 1,,c n Grassmann G n (C ) Chern H (BU(n)) = H (BGL(n, C)) = Z[c 1,,c n ], (12) H (BSU(n)) = H (BSL(n, C)) = Z[c 2,,c n ]. (13) 2) q 1,,q n Pontryagin H (BSp(n)) = Z[q 1,,q n ]. (14) 3) w 1,,w n Stiefel-Whitney p 1,,p n Pontryagin e Euler K 2 2 K 2 H (BO(n); K 2 )=H (BGL(n, R); Z 2 )=K 2 [w 1,,w n ],(15) H (BSO(n); K 2 )=H (BSL(n, R); Z 2 )=K 2 [w 2,,w n (16) ], H (BSO(2m +1);K) =K[p 1,,p m ], (17) H (BSO(2m); K) =K[p 1,,p m 1,e]. (18) Poincaré-Hopf 6.7 ( ) X n C M C 1) X U p U e a =(e 1,,e n ) e a M T (M) U (π, π ):T (U) U T p (M) p D n V ( U) X V T (M) π g :(V,V p) (T p (M),T p (M) p) p M T p (M) g g : H n (V,V p) H n (T p (M),T p (M) p) 71

72 e a V H n (V,V p) = H n 1 ( V ) = Z u n U H n (T p (M),T p (M) p) = Z u n T p(m) X p Ind(X, p) g u n = Ind(X, p) u n 2) X M p 1,,p k X Ind(X) k Ind(X) = Ind(X, p j ) j=1 6.8 (Poincaé-Hopf) M n C X M C M i) X M M ii) X M Ind(X) =χ(m). Proof. [ ( 1992)] 1) M R n n U U W Gauss g : U p W p / W p S n 1 g : H n 1 ( U) H n 1 (S n 1 ) g [ U] =Ind(X)[S n 1 ] Ind(X) U 72

73 2) M M R m M R m N(M) Y i) Y M X N(M) M ii) Y N(M) iii) X p j Ind(X, p j ) = Ind(Y,p j ) 3) (M;, M) Morse f Riemann f Ind( f) =χ(m) 4) 1) 2) Ind(X) = Ind(Y ) N(M) X 3) Ind(X) =χ(x) Euler Thom 6.9 ξ =(E,B,π) n B ξ E B ξ ξ 0 =(E 0,B,π) 6.10 (Thom Thom ) ξ =(E,B,π) n j b : F = R n F b = π 1 (b) E F F b U H n (F, F 0 ; Z) F H n (F, F 0 ; Z) (E,E 0 ) H (E,E 0 ; Z) : H (E; Z) H (E,E 0 ; Z) H (E,E 0 ; Z) 73

74 i) H i (E,E 0 ; Z) =0(i<n). ii) H n (E,E 0 ; Z) U(ξ) b B j b (U(ξ)) = U U(ξ) ξ Thom iii) φ : H i (B; Z) α φ(α) =π (α) U(ξ) H i+n (E,E 0 ; Z) Thom iv) Thom n ξ =(E,B,π),ξ = (E,B,π ) f : ξ ξ f : B B U(ξ) =U(f 1 ξ )= f (U(ξ )) 6.11 (Euler ) ξ =(E,B,π) n ξ Thom U(ξ) j :(E, ) (E,E 0 ) e(ξ) =(π ) 1 j (U(ξ)) H n (B; Z) ξ Euler 6.12 (Gysin ) ξ =(E,B,π) n (E,E 0 ) H q 1 (E 0 ) δ H q (E,E 0 ) j H q (E) i H q (E 0 ) Thom (Thom-)Gysin H q 1 (E 0 ; Z) φ 1 δ H q n (B; Z) e(ξ) H q (B; Z) (π E 0 ) H q (E 0 ; Z). 74

75 6.13 (Euler ) ξ =(E,B,π),ξ =(E,B,π ) n i) Euler f : B B f 1 ξ B ii) e(ξ) =φ 1 (U(ξ) U(ξ)). e(f 1 ξ)=f (e(ξ)). iii) ξ ξ e(ξ )= e(ξ). iv) n 2e(ξ) =0. v) ξ e(ξ) =0. vi) ξ ξ ξ ξ =(E E,B B,π π ) j b j b : F F π 1 (b) π 1 (b ) e(ξ ξ )=e(ξ) e(ξ ), e(ξ ξ )=e(ξ) e(ξ ) ( Euler ) M n n C M n Euler M n Euler e(m n )=e(τ(m n )). M n χ(m n ) M n Euler [M n ] M n χ(m n )= e(m n ), [M n ] 75

76 6.15 ( Euler ) n C M n n + k Euclid R n+k M n ν k e(ν k )= (CP n ) i) γ 1,C =(E(γ 1,C ), CP,π) Euler α H 2 (CP ; Z) ii) γ 1,C k H (CP ; Z) =Z[α]. γ 1,C ι : CP k CP H (CP k ; Z) =Z[ι (α)]/(ι (α) k+1 =0) Z 2 -Euler Thom 6.17 (Thom Thom ) ξ =(E,B,π) n j b : F = R n F b = π 1 (b) E U H n (F, F 0 ; Z 2 ) (E,E 0 ) Z 2 H (E,E 0 ; Z 2 ) : H (E; Z 2 ) H (E,E 0 ; Z 2 ) H (E,E 0 ; Z 2 ) i) H i (E,E 0 ; Z 2 )=0(i<n). ii) H n (E,E 0 ; Z 2 ) U (ξ) b B j b (U (ξ)) = U U (ξ) ξ Z 2 -Thom Z 2 76

77 iii) φ : H i (B; Z 2 ) α φ(α) =π (α) U (ξ) H i+n (E,E 0 ; Z 2 ) Z 2 -Thom iv) Z 2 -Thom n ξ =(E,B,π),ξ =(E,B,π ) f : ξ ξ f : B B U (ξ) =U (f 1 ξ )= f (U (ξ )) 6.18 (Z 2 -Euler ) ξ =(E,B,π) n ξ Z 2 -Thom U (ξ) j :(E, ) (E,E 0 ) e (ξ) =(π ) 1 j (U (ξ)) H n (B; Z 2 ) ξ Z 2 -Euler 6.19 (Gysin ) ξ =(E,B,π) n (E,E 0 ) H q 1 (E 0 ) δ H q (E,E 0 ) j H q (E) i H q (E 0 ) Thom (Thom-)Gysin H q 1 (E 0 ; Z 2 ) φ 1 δ H q n (B; Z 2 ) e (ξ) H q (B; Z 2 ) (π E 0 ) H q (E 0 ; Z 2 ) (Z 2 -Euler ) ξ =(E,B,π),ξ =(E,B,π ) n 77

78 i) Z 2 -Euler f : B B f 1 ξ B e (f 1 ξ)=f (e (ξ)). ii) e (ξ) =φ 1 (U (ξ) U (ξ)). iii) ξ e (ξ) =0. iv) e (ξ ξ )=e (ξ) e (ξ ), e (ξ ξ )=e (ξ) e (ξ ) ( Z 2 -Euler ) M n n C M n Z 2 -Euler M n Z 2 -Euler e (M n )=e (τ(m n )). M n χ(m n ) M n Euler [M n ] M n Z 2 χ(m n ) e (M n ), [M n ] mod (RP n Z 2 ) i) γ 1 =(E(γ 1 ), RP,π) Z 2 -Euler ˆα H 1 (RP ; Z 2 ) H (RP ; Z 2 )=Z 2 [ˆα]. ii) γ 1 k γ1 ι : RP k RP H (RP k ; Z 2 )=Z 2 [ι (ˆα)]/(ι (ˆα) k+1 =0). 78

79 6.23 ( Z 2 -Euler ) n C M n n + k Euclid R n+k M n ν k e (ν k )= Stiefel-Whitney 6.24 (Stiefel-Whitney ) Hausdorff Stiefel-Whitney (SW I) ξ =(E(ξ),B(ξ),π) w i (ξ) H i (B(ξ); Z 2 )(i =0, 1, 2, ) w 0 (ξ) =1 H 0 (B(ξ); Z 2 ) ξ n w i (ξ) =0(i>n) w i (ξ) ξ i Stiefel- Whitney w(ξ) =1+w 1 (ξ)+w 2 (ξ)+ H (B(ξ); Z 2 ) Stiefel-Whitney (SW II) ( f : ξ η f : B(ξ) B(η) f w(ξ) =f (w(η)). (SW III) (Whitney ξ ξ w(ξ ξ )=w(ξ) w(ξ ). (SW IV) G 1,1 = RP 1 γ 1 1 ˆα H1 (RP 1 ; Z 2 ) = Z 2 w 1 (γ 1 1 )=ˆα H1 (RP 1 ; Z 2 ). 79

80 (SW V) ξ n w n (ξ) ξ Z 2 -Euler w n (ξ) =e (ξ) (Stiefel-Whiney ) (SW I)-(SW V) Stiefel-Whitney 6.26 ( ) n G n Z 2 H (G n ; Z 2 ) γ n Stiefel-Whitney Z 2 H (G n ; Z 2 ) = Z 2 [w 1 (γ n ),,w n (γ n )] 6.27 ( ) ξ Hausdorff ξ w 1 (ξ) = ( ) ξ Hausdorff n ξ q w n (ξ) =w n 1 (ξ) = = w n q+1 (ξ) = ( Stiefel-Whitney ) RP k γk 1 Z 2-Euler ˆα H 1 (RP k ; Z 2 ) w(rp k )=(1+ˆα) k+1. 80

81 6.2.5 Chern 6.30 (Chern ) Hausdorff Chern (C I) ω =(E(ω),B(ω),π) c i (ω) H 2i (B(ω); Z) (i =0, 1, 2, ) c 0 (ω) =1 H 0 (B(ω); Z) ω n c i (ω) =0(i>n) c i (ω) ω i Chern c(ω) =1+c 1 (ω)+c 2 (ω)+ H (B(ω); Z) Chern (C II)( f : ω θ f : B(ω) B(θ) f c(ω) =f (c(θ)). (C III) (Whitney ω ω c(ω ω )=c(ω) c(ω ). (C IV) G C 1,1 = CP 1 γ 1,C 1 α H 2 (CP 1 ; Z) = Z c 1 (γ 1,C 1 )=α H 2 (CP 1 ; Z). (C V) ω n c n (ω) ω ω R Euler c n (ω) =e(ω R ). 81

82 6.31 (Chern ) (C I)-(C V) Chern 6.32 ( ) n G C n H (G C n ; Z) γn,c Chern Z H (G C n ; Z) = Z[c 1 (γ n,c ),,c n (γ n,c )] 6.33 ( ) ω Hausdorff n ω q c n (ω) =c n 1 (ω) = = c n q+1 (ω) = ( Chern ) CP k γ 1,C k Euler α H 2 (CP k ; Z) c(cp k )=(1+α) k Pontrjagin 6.35 (Pontrjagin ) ξ = (E,B,π) Hausdorff B n ξ ξ C Chern c 2j (ξ C) ξ Pontrjagin p j (ξ) p j (ξ) =( 1) j c 2j (ξ C) H 4j (B; Z) (j =0, 1, 2, ). H (B; Z) p(ξ) p(ξ) =1+p 1 (ξ)+ ξ Pontrjagin 82

83 6.36 (Pontrjagin ) Pontrjagin (P I) ξ =(E(ξ),B(ξ),π) ξ Pontjagin P i (ξ) H 4i (B(ξ); Z) (i =0, 1, 2, ) p 0 (ξ) =1 H 0 (B(ξ); Z) ξ n i >[n/2] p i (ξ) =0 (P II)( f : ξ η f : B(ξ) B(η) f p(ξ) =f (p(η)). (P III) (Whitney ξ ξ p(ξ ξ )=p(ξ) p(ξ ) moda. A H (B(ξ); Z) 2 (P IV) ξ 2n p n (ξ) =e(ξ) ( ) Λ 1/2 i) 2n +1 G 2n+1 Λ H ( G 2n+1 ;Λ) γ 2n+1 Pontrjagin Λ H ( G 2n+1 ;Λ) = Λ[p 1 ( γ 2n+1 ),,p n ( γ 2n+1 )] 83

84 i) 2n G 2n Λ H ( G 2n ;Λ) γ 2n Pontrjagin Euler Λ H ( G 2n ;Λ) = Λ[p 1 ( γ 2n ),,p n 1 ( γ 2n ),e( γ 2n )] p n ( γ 2n )=e( γ 2n ) (Chern ) n ω Chern ω R Pontrjagin 1 p 1 (ω R )+p 2 (ω R ) +( 1) n p n (ω R )=c(ω)c( ω). ω ω c( ω) =1 c 1 (ω)+c 2 (ω) +( 1) n c n (ω) (Euler ) ξ CW B n ˆξ n B n 1 ˆξ n o(ˆξ) H n (B; Z) ξ Euler e(ξ) 6.40 (Stiefel-Whitney ) ξ CW B n B q 1 n q +1 q Z 2 - o q (ξ) H q (B; Z 2 ) ξ Stiefel-Whitney w q (ξ) 84

85 6.41 (Chern ) ω CW B n B 2q 1 n q +1 2q o q (ω) H 2q (B; Z) ω Chern c q (ω) 6.42 ( ) 1) ξ CW B ξ w 1 (ξ) =0 ( B Haussdorf ) ξ H 0 (X; Z 2 ) 2) ω CW n ω SU(n) c 1 (ω) =0 Proof. 1) P (G, B) P (H, B) P (G, B) (P/H,B,G/H) ξ ξ P (O(n),B) P (SO(n),B) P O(n) SO(n) O(n)/SO(n) = Z 2 Z 2 B 1 B B (1) ξ B B (1) ξ B (1) SO(n) SO(n) B (1) B (1) ξ n B (1) ξ n B (1) ξ o(ξ) H 1 (B;O(n)/SO(n)) = H 1 (B; Z 2 ) w 1 (ξ) B Z 2 85

86 B Z 2 H 0 (B; Z 2 ) 2) B (2) SU(n) π j (U(n)/SU(n)) = π j (S 1 )= 0(j 2) B B (2) B (2) SU(n) SU(n) π 1 (SU(n)) = 0 ω B (2) SU(n) B (2) ω P (U(n),B) o 1 (ξ) =c 1 (ξ) H 2 (B; Z) ( ) ξ CW X n ξ 3 i) ɛ X 1 X (j) X j ξ k ξ ɛ k X (1) σ X (2) ξ σ n 3 k =0 n =2 k =1 n =1 k =2 ii) ξ O(n) SO(n) P P Spin(n) P ξ p : P P Spin(n) Ẽ(P ) X λ SO(n) p E(P ) = X (19) 86

87 iii) ξ O(n) SO(n) P σ H 1 (E(P ); Z 2 ) H 1 (SO(n); Z 2 ) ξ σ ( ) ξ CW X n 1) ξ w 1 (ξ) =w 2 (ξ) =0 2) ξ σ H 1 (E(P ); Z 2 ) i (σ) =1 σ H 1 (X; Z 2 ) 0 H 1 (X; Z 2 ) π H 1 (E(P ); Z 2 ) i H 1 (SO(n); Z 2 ) = Z 2 0 (20) 7 Knots and Links [LastUpdate: ] ( ) c[l] def = 87

88 (linking number) 7.2 ( ) D c sign(c) =+1, sign(c) = ( ) K 1,K 2 Link(K 1,K 2 ) def = 1 sign(c). 2 c K 1 K (bridge index) 7.4 ( ) br def =height local maximum points br[l 1 L 2 ]=br[l 1 ]+br[l 2 ] Schubert S(α, β) S(α, β) : gcd(α, β) =1, α <β<α, β: 7.5 (i) 2- S(α, β) S(α,β ) α = α, β ±1 β (modα). (ii) 2- (i) α = α, β ±1 β (mod2α). 88

89 (braid index) 7.6 ( ) b[l] def =braid b[k 1 K 2 ]=b[k 1 ]+b[k 2 ] (unknoting number) 7.7 ( ) u[l] def = 7.2 Seifert 7.8 (Seifert ) S 3 L F F = L L Seifert 7.9 (Seifert ) L S 3 F L Seifert f : F [ 1, 1] S 3 S 3 F f + (x) =f(x, 1),f = f(x, 1) F c 1,c 2 c + 1 = f + (c 1 ) c 2 = f (c 2 ) S 3 L(c + 1,c 2 ) c 1,c 2 φ : H 1 (F ) H 1 (F ) Z L Seifert F Seifert H 1 (F ) φ Seifert 89

90 7.10 (S- ) V,W W = 1 x u 0 v V W V V W W T V T V T W T S L Seifert S (genus) 7.12 ( ) g[l] def = L Seifert (signature) L Seifert F, F Seifert M F 7.13 ( ) b : H H Z H = Z ( Z ) b 0 1 = ( ) (H, b), (H,b ) 90

91 7.15 L Seifert F M F + M T F 7.16 ( ) σ[l] def =sign(m F + M F T ). σ[l 1 L 2 ]=σ[l 1 ]+σ[l 2 ], σ[±l ]= σ[l]. K σ[k] 2u[K]. (21) 7.17 ( ) n[l] def =(dim rank)(m F + M F T ). n[l] r 1 (r = L ) ( ) G[L] :=π 1 (E); E := S 3 N(L). 91

92 7.19 ( ) γ : G = π 1 (E) H 1 (E) = Z r Hurwitz (r = L ) kernel Ker γ =[G, G] E p : E γ E H 1 (E) t 1,,t r ZH 1 (E) Laurent Λ=Z[t 1,,t r ] H 1 (E) = π 1 (E)/π 1 (E γ ) E γ H 1 (E γ ) Λ- (1) L =Λ- H 1 (E γ ). (2) L Alexander A[L] =Λ- H 1 (E γ,p 1 (e))(e E). 7.4 L D c L + (D, c) L (D, c) L 0 (D, c) Alexander-Conway Skein 7.21 (Alexander-Conway ) L L (z) Z[z] (AC0) L L L = L (AC1) =1. (AC2) L+ L = z L0. 92

93 : L = L 1 L 2,L 1 L 2 = L = (1 Alexander ) L Seifert F F Seifert M F Δ L (t) def = ±t m det(m F tm F T )=a 0 + a k t k (a 0 > 0) (22) F 1 Alexander Alexander-Conway Δ L (t). = L (t 1/2 t 1/2 ). M n L S 3 n 1 Alexander Δ L (t) 1 n ω n H 1 (M n ) = Δ L (ω k ). = 0 =0 k= (1) M Λ- m, n Λ m Λ n M 0 Λ m Λ n Λ (m, n) P M (2) d P (n d) Λ E d (M) M d Λ E d (M) Δ d (M) M d 93

94 7.24 ( Alexander ) L H 1 (E γ ) Alexander A(L) d Alexander : Δ (d) L Alexander : Δ L def =Δ (0) L def =Δ d+1 (A(L)) = Δ d (H 1 (E γ )), : r L = K 1 K r i) Δ L (t 1,,t r ) =Δ. L (t 1 1,,t 1 r ). ii) L = L K r, λ i =Link(K i,k r ) r =2 Δ L (t 1,,t r 1, 1) =. tλ t 1 1 Δ L (t 1), r>2 Δ L (t 1,,t r 1, 1). =(t λ 1 1 t λ r 1 r 1 1)Δ L (t 1,,t r 1 ).. = (mod ) 1 Alexander r >1 Δ L (t) =(t 1)Δ L (t,,t) Jones Skein 7.25 (Jones ) L 1 V L (t) Z[t 1/2,t 1/2 ] (J0) L L V L = V L (J1) V (t) =1. (J2) t 1 V L+ (t) tv L (t) =(t 1/2 t 1/2 )V L0 (t). 94

95 (L) L M n L S 3 n i) V L (1) = ( 2) (L) 1, ii) V L ( 1) = L (2i), iii) V L (e 2πi/3 )=1, { iv) V L (i) = 2 ( L 1)/2 ( 1) Arf(L) (Arf(L) ) 0 ( ) v) V L (e πi/3 )=±i (L) 1 ( 3i) rankh 1(M 2 (L);Z 3 )., L 1 K L λ =Link(K, L K) V L (t) =t 3λ V L (t) State L c c A B c A R + (c) B R (c) 7.26 (Kauffman ) A, B, d K = K (A, B, d) = σ L K σ d σ Kauffman σ L {+, } σ c R σ(c)(c)l 1 K σ (AR + (c)+br (c)) = K σ R σ(c) (c) c σ c A, B 95

96 7.27 L w(l) L L (A) :=( A 3 ) w(l) K (A, A 1, A 2 A 2 ) Laurent Jones V L (t) =L L (t 1/4 ) Homfly Skein 7.28 (Homfly ) L 2 P L (α, z) Z[α, α 1,z,z 1 ] (H0) L L P L = P L (H1) P =1. (H2) αp L+ α 1 P L = zp L0. L (z) =P L (1,z), V L (t) =P L (t, t 1/2 t 1/2 ). 96

97 L M n (L) Jones i) P L (a, z) =P L (a, z), ii) P L (a, z) =P L ( a 1,z), iii) P L1 L 2 (a, z) =P L1 (a, z)p L2 (a, z), iv) P L1 +L 2 (a, z) = a 1 a P L1 (a, z)p L2 (a, z), z v) P L (a, a 1 a) =1, vi) P L ( a, z) =P L (a, z), vii) P L (a, z) =P L ( a, z) =( 1) (L) 1 P L (a, z), viii) P L (i, i) =( 2i) rankh 1(M 3 (L);Z 2 ) Q Skein L L ± L ± 2 L 0 L (Q- ) L 1 Q L (x) Z[x, x 1 ] (Q0) L L Q L = Q L. (QI) Q (x) =1. (QII) Q L + (x)+q L (x) =x{q L 0 (x)+q L 1 (x)}. i) Q L (1) = 1, ii) Q L ( 1) = ( 3) rankh 1(M 2 (L);Z 3 ), iii) Q L (2) = L (2i) 2, iv) Q L ( 2) = ( 2) (L) 1. 97

98 7.4.5 Kauffman Skein 7.30 (Kauffman ) L 2 Λ L (a, x) Z[a, a 1,z,z 1 ] Λ L (K0) Λ Λ Λ L =Λ L. (K1) Λ (α, z) =1. (K2) Λ L + (α, z)+λ L (α, z) =z{λ L 0 (α, z)+λ L 1 (α, z)}. (K3) Λ T+ = αλ D, Λ T = α 1 Λ D. T ± L D L w(l) L F L (α, z) :=α w(l) Λ L (α, z) 2 F L Kauffman Q L (z) =F L (1,z), V L (t) =F L ( t 3/4,t 1/4 + t 1/4 ). 7.5 Yang-Baxter ( ) T i j k l δj i i j i j T k l 98

99 7.32 ( ) 7.33 L (+) ( ) L (+) a b c d = Rab ( ) a b c d = cd, ab R cd L T (L) T (L) R i) (channel unitarity) R ab ij Rij cd = δa c δb d. ii) (cross-channel unitarity) Rjb ia jd R ic = δa c δd b. iii) (Yang-Baxter ) R ab ij Rjc kf Rik de = Rbc ij Rai dk Rkj R ab ij R jc kf R ik de = R bc ij R ai dk ef, R kj ef. 99

100 7.35 R R ab cd = Aδa c δb d + A 1 δ ab δ cd, R ab cd = A 1 δ a c δb d + Aδab δ cd n A n = A 2 A 2 T (L) A Kauffman K 7.36 L M ab, M ab. R ab cd, R ab cd. δb a 7.37 L τ( L ) M ab,m ab,r, R τ( L ) i) ( M ai M ib = δ a b. ab ii) R cd = M cirdj iam jb. 100

101 ab iii) II R ij Rij cd = δa c δb d. iv) R, R Yang-Baxter 7.38 M =(M ab ),R ( ) 0 ia M = Aσ 2 =, ia 0 R = AM 1 M + A 1 I d =TrM(M T ) 1 = A 2 A 2 τ(l) Kauffman τ(l) =d K. Kauffman Yang-Baxter A = 1(d = 2) τ(l) Penrose 101

102 [Sma60] Smale, S.: Bull. Amer. Math. Soc. 66, (1960). [Sma61] Smale, S.: Generalized Poincaré conjecture in dimensions greater than four, Ann. Math. 74, (1961). [Sta60] Stallings, J.: Polyhedral homotopy spheres, Bull. Amer. Math. Soc. 66, (1960). 102

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1 E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1 (4/12) 1 1.. 2. F R C H P n F E n := {((x 0,..., x n ), [v 0 : : v n ]) F n+1 P n F n x i v i = 0 }. i=0 E n P n F P n

More information

2

2 III ( Dirac ) ( ) ( ) 2001. 9.22 2 1 2 1.1... 3 1.2... 3 1.3 G P... 5 2 5 2.1... 6 2.2... 6 2.3 G P... 7 2.4... 7 3 8 3.1... 8 3.2... 9 3.3... 10 3.4... 11 3.5... 12 4 Dirac 13 4.1 Spin... 13 4.2 Spin

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

Morse ( ) 2014

Morse ( ) 2014 Morse ( ) 2014 1 1 Morse 1 1.1 Morse................................ 1 1.2 Morse.............................. 7 2 12 2.1....................... 12 2.2.................. 13 2.3 Smale..............................

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc 013 6 30 BCS 1 1.1........................ 1................................ 3 1.3............................ 3 1.4............................... 5 1.5.................................... 5 6 3 7 4 8

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V I (..2) (0 < d < + r < u) X 0, X X = 0 S + ( + r)(x 0 0 S 0 ) () X 0 = 0, P (X 0) =, P (X > 0) > 0 0 H, T () X 0 = 0, X (H) = 0 us 0 ( + r) 0 S 0 = 0 S 0 (u r) X (T ) = 0 ds 0 ( + r) 0 S 0 = 0 S 0 (d r)

More information

16 B

16 B 16 B (1) 3 (2) (3) 5 ( ) 3 : 2 3 : 3 : () 3 19 ( ) 2 ax 2 + bx + c = 0 (a 0) x = b ± b 2 4ac 2a 3, 4 5 1824 5 Contents 1. 1 2. 7 3. 13 4. 18 5. 22 6. 25 7. 27 8. 31 9. 37 10. 46 11. 50 12. 56 i 1 1. 1.1..

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

2012 A, N, Z, Q, R, C

2012 A, N, Z, Q, R, C 2012 A, N, Z, Q, R, C 1 2009 9 2 2011 2 3 2012 9 1 2 2 5 3 11 4 16 5 22 6 25 7 29 8 32 1 1 1.1 3 1 1 1 1 1 1? 3 3 3 3 3 3 3 1 1, 1 1 + 1 1 1+1 2 2 1 2+1 3 2 N 1.2 N (i) 2 a b a 1 b a < b a b b a a b (ii)

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

Jacobi, Stieltjes, Gauss : :

Jacobi, Stieltjes, Gauss : : Jacobi, Stieltjes, Gauss : : 28 2 0 894 T. J. Stieltjes [St94a] Recherches sur les fractions continues Stieltjes 0 f(u)du, z + u f(u) > 0, z C z + + a a 2 z + a 3 +..., a p > 0 (a) Vitali (a) Stieltjes

More information

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi 1 Surveys in Geometry 1980 2 6, 7 Harmonic Map Plateau Eells-Sampson [5] Siu [19, 20] Kähler 6 Reports on Global Analysis [15] Sacks- Uhlenbeck [18] Siu-Yau [21] Frankel Siu Yau Frankel [13] 1 Surveys

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

I

I I 2008 I i 1 1 1.1.............................. 1 1.2................................. 7 1.3......................... 13 2 23 2.1......................... 23 2.2............................... 31 3 37

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x . P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji 8 4 2018 6 2018 6 7 1 (Contents) 1. 2 2. (1) 22 3. 31 1. Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji SETO 22 3. Editorial Comments Tadashi

More information

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx i B5 7.8. p89 4. ψ x, tψx, t = ψ R x, t iψ I x, t ψ R x, t + iψ I x, t = ψ R x, t + ψ I x, t p 5.8 π π π F e ix + F e ix + F 3 e 3ix F e ix + F e ix + F 3 e 3ix dx πψ x πψx p39 7. AX = X A [ a b c d x

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, PC ( 4 5 )., 5, Milnor Milnor., ( 6 )., (I) Z modulo

More information

' , 24 :,,,,, ( ) Cech Index theorem 22 5 Stability 44 6 compact 49 7 Donaldson 58 8 Symplectic structure 63 9 Wall crossing 66 1

' , 24 :,,,,, ( ) Cech Index theorem 22 5 Stability 44 6 compact 49 7 Donaldson 58 8 Symplectic structure 63 9 Wall crossing 66 1 1998 1998 7 20 26, 44. 400,,., (KEK), ( ) ( )..,.,,,. 1998 1 '98 7 23, 24 :,,,,, ( ) 1 3 2 Cech 6 3 13 4 Index theorem 22 5 Stability 44 6 compact 49 7 Donaldson 58 8 Symplectic structure 63 9 Wall crossing

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

0. Intro ( K CohFT etc CohFT 5.IKKT 6.

0. Intro ( K CohFT etc CohFT 5.IKKT 6. E-mail: sako@math.keio.ac.jp 0. Intro ( K 1. 2. CohFT etc 3. 4. CohFT 5.IKKT 6. 1 µ, ν : d (x 0,x 1,,x d 1 ) t = x 0 ( t τ ) x i i, j, :, α, β, SO(D) ( x µ g µν x µ µ g µν x ν (1) g µν g µν vector x µ,y

More information

τ τ

τ τ 1 1 1.1 1.1.1 τ τ 2 1 1.1.2 1.1 1.1 µ ν M φ ν end ξ µ ν end ψ ψ = µ + ν end φ ν = 1 2 (µφ + ν end) ξ = ν (µ + ν end ) + 1 1.1 3 6.18 a b 1.2 a b 1.1.3 1.1.3.1 f R{A f } A f 1 B R{AB f 1 } COOH A OH B 1.3

More information

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K 2 2 T c µ T c 1 1.1 1911 Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 1 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K τ 4.2K σ 58 213 email:takada@issp.u-tokyo.ac.jp 1933 Meissner Ochsenfeld λ = 1 5 cm B = χ B =

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

, = = 7 6 = 42, =

, = = 7 6 = 42, = http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1 1 2016.9.26, http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1.1 1 214 132 = 28258 2 + 1 + 4 1 + 3 + 2 = 7 6 = 42, 4 + 2 = 6 2 + 8

More information

chap1.dvi

chap1.dvi 1 1 007 1 e iθ = cos θ + isin θ 1) θ = π e iπ + 1 = 0 1 ) 3 11 f 0 r 1 1 ) k f k = 1 + r) k f 0 f k k = 01) f k+1 = 1 + r)f k ) f k+1 f k = rf k 3) 1 ) ) ) 1+r/)f 0 1 1 + r/) f 0 = 1 + r + r /4)f 0 1 f

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

(, Goo Ishikawa, Go-o Ishikawa) ( ) 1

(, Goo Ishikawa, Go-o Ishikawa) ( ) 1 (, Goo Ishikawa, Go-o Ishikawa) ( ) 1 ( ) ( ) ( ) G7( ) ( ) ( ) () ( ) BD = 1 DC CE EA AF FB 0 0 BD DC CE EA AF FB =1 ( ) 2 (geometry) ( ) ( ) 3 (?) (Topology) ( ) DNA ( ) 4 ( ) ( ) 5 ( ) H. 1 : 1+ 5 2

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

0 Intoduction 0.1 (localization fomula) T = U(1) M µ M T µ = M M T µ eff M T 2. M T M T Gauss µ µ eff (1) (2) Atiyah-Singe U(1) [At85]

0 Intoduction 0.1 (localization fomula) T = U(1) M µ M T µ = M M T µ eff M T 2. M T M T Gauss µ µ eff (1) (2) Atiyah-Singe U(1) [At85] v2.3 2005/02/11 12 Contents 0 Intoduction 2 0.1....................................... 2 0.2......................................... 2 1 U(1) Boel 3 1.1............................ 3 1.2..........................

More information

Îã³°·¿¤Î¥·¥å¡¼¥Ù¥ë¥È¥«¥êto=1=¡á=1=¥ë¥�¥å¥é¥¹

Îã³°·¿¤Î¥·¥å¡¼¥Ù¥ë¥È¥«¥êto=1=¡á=1=¥ë¥�¥å¥é¥¹ (kaji@math.sci.fukuoka-u.ac.jp) 2009 8 10 R 3 R 3 ( wikipedia ) (Schubert, 19 ) (= )(Ehresmann, 20 ) (Chevalley, 20 ) G/P: ( : ) W : ( : ) X w : W X w W G: B G: Borel P B: G/P: 1 C n ( ) Fl n := {0 V

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P 9 (Finite Element Method; FEM) 9. 9. P(0) P(x) u(x) (a) P(L) f P(0) P(x) (b) 9. P(L) 9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L)

More information

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo [1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin + 8 5 Clifford Spin 10 A 12 B 17 1 Clifford Spin D Euclid Clifford Γ µ, µ = 1,, D {Γ µ, Γ ν

More information

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+ R 3 R n C n V??,?? k, l K x, y, z K n, i x + y + z x + y + z iv x V, x + x o x V v kx + y kx + ky vi k + lx kx + lx vii klx klx viii x x ii x + y y + x, V iii o K n, x K n, x + o x iv x K n, x + x o x

More information

II 1 II 2012 II Gauss-Bonnet II

II 1 II 2012 II Gauss-Bonnet II II 1 II 212 II Gauss-Bonnet II 1 1 1.1......................................... 1 1.2............................................ 2 1.3.................................. 3 1.4.............................................

More information

?

? 240-8501 79-2 Email: nakamoto@ynu.ac.jp 1 3 1.1...................................... 3 1.2?................................. 6 1.3..................................... 8 1.4.......................................

More information

II Time-stamp: <05/09/30 17:14:06 waki> ii

II Time-stamp: <05/09/30 17:14:06 waki> ii II waki@cc.hirosaki-u.ac.jp 18 1 30 II Time-stamp: ii 1 1 1.1.................................................. 1 1.2................................................... 3 1.3..................................................

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

『共形場理論』

『共形場理論』 T (z) SL(2, C) T (z) SU(2) S 1 /Z 2 SU(2) (ŜU(2) k ŜU(2) 1)/ŜU(2) k+1 ŜU(2)/Û(1) G H N =1 N =1 N =1 N =1 N =2 N =2 N =2 N =2 ĉ>1 N =2 N =2 N =4 N =4 1 2 2 z=x 1 +ix 2 z f(z) f(z) 1 1 4 4 N =4 1 = = 1.3

More information

OCAMI

OCAMI OCAMI 2015 12 16 1. 2. R 3. Lie 4. U(n), SU(n), O(n), SO(n), Sp(n) 5. U(n), SU(n), O(n), SO(n), Sp(n) 6. Lie 7. G 2 G 2 /SO(4) 1. M Riemann M Riemann def x M, s x : s.t. s 2 x = id, x s x s x x R n S n

More information

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 p µ γ µ + mp ν γ ν + m 5.1 γ p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 1 2 p µp ν {γ µ, γ ν } + m 2 5.2 p m p p µ γ µ {, } 10 γ {γ µ, γ ν } 2η µν 5.3 p µ γ µ + mp

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

Dynkin Serre Weyl

Dynkin Serre Weyl Dynkin Naoya Enomoto 2003.3. paper Dynkin Introduction Dynkin Lie Lie paper 1 0 Introduction 3 I ( ) Lie Dynkin 4 1 ( ) Lie 4 1.1 Lie ( )................................ 4 1.2 Killing form...........................................

More information

i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................

More information

13 0 1 1 4 11 4 12 5 13 6 2 10 21 10 22 14 3 20 31 20 32 25 33 28 4 31 41 32 42 34 43 38 5 41 51 41 52 43 53 54 6 57 61 57 62 60 70 0 Gauss a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x

More information

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2. A A 1 A 5 A 6 1 2 3 4 5 6 7 1 1.1 1.1 (). Hausdorff M R m M M {U α } U α R m E α ϕ α : U α E α U α U β = ϕ α (ϕ β ϕβ (U α U β )) 1 : ϕ β (U α U β ) ϕ α (U α U β ) C M a m dim M a U α ϕ α {x i, 1 i m} {U,

More information

( 3) b 1 b : b b f : a b 1 b f = f (2.7) g : b c g 1 b = g (2.8) 1 b b (identity arrow) id b f a b g f 1 b b c g (2.9) 3 C C C a, b a b Hom C (a, b) h

( 3) b 1 b : b b f : a b 1 b f = f (2.7) g : b c g 1 b = g (2.8) 1 b b (identity arrow) id b f a b g f 1 b b c g (2.9) 3 C C C a, b a b Hom C (a, b) h 2011 9 5 1 Lie 1 2 2.1 (category) (object) a, b, c, a b (arrow, morphism) f : a b (2.1) f a b (2.2) ( 1) f : a b g : b c (composite) g f : a c ( 2) f f a b g f g c g h (2.3) a b c d (2.4) h (g f) = (h

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i [ ] (2016 3Q N) a 11 a 1n m n A A = a m1 a mn A a 1 A A = a n (1) A (a i a j, i j ) (2) A (a i ca i, c 0, i ) (3) A (a i a i + ca j, j i, i ) A 1 A 11 0 A 12 0 0 A 1k 0 1 A 22 0 0 A 2k 0 1 0 A 3k 1 A rk

More information

Z: Q: R: C: 3. Green Cauchy

Z: Q: R: C: 3. Green Cauchy 7 Z: Q: R: C: 3. Green.............................. 3.............................. 5.3................................. 6.4 Cauchy..................... 6.5 Taylor..........................6...............................

More information

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T SAMA- SUKU-RU Contents 1. 1 2. 7.1. p-adic families of Eisenstein series 3 2.1. modular form Hecke 3 2.2. Eisenstein 5 2.3. Eisenstein p 7 3. 7.2. The projection to the ordinary part 9 3.1. The ordinary

More information

c 2009 i

c 2009 i I 2009 c 2009 i 0 1 0.0................................... 1 0.1.............................. 3 0.2.............................. 5 1 7 1.1................................. 7 1.2..............................

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

SO(2)

SO(2) TOP URL http://amonphys.web.fc2.com/ 1 12 3 12.1.................................. 3 12.2.......................... 4 12.3............................. 5 12.4 SO(2).................................. 6

More information

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. R-space ( ) Version 1.1 (2012/02/29) i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. ii 1 Lie 1 1.1 Killing................................

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1) 23 2 2.1 10 5 6 N/m 2 2.1.1 f x x L dl U 1 du = T ds pdv + fdl (2.1) 24 2 dv = 0 dl ( ) U f = T L p,t ( ) S L p,t (2.2) 2 ( ) ( ) S f = L T p,t p,l (2.3) ( ) U f = L p,t + T ( ) f T p,l (2.4) 1 f e ( U/

More information

ver Web

ver Web ver201723 Web 1 4 11 4 12 5 13 7 2 9 21 9 22 10 23 10 24 11 3 13 31 n 13 32 15 33 21 34 25 35 (1) 27 4 30 41 30 42 32 43 36 44 (2) 38 45 45 46 45 5 46 51 46 52 48 53 49 54 51 55 54 56 58 57 (3) 61 2 3

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

No.004 [1] J. ( ) ( ) (1968) [2] Morse (1997) [3] (1988) 1

No.004 [1] J. ( ) ( ) (1968) [2] Morse (1997) [3] (1988) 1 No.004 [1] J. ( ) ( ) (1968) [2] Morse (1997) [3] (1988) 1 1 (1) 1.1 X Y f, g : X Y { F (x, 0) = f(x) F (x, 1) = g(x) F : X I Y f g f g F f g 1.2 X Y X Y gf id X, fg id Y f : X Y, g : Y X X Y X Y (2) 1.3

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a

IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a 1 40 (1959 1999 ) (IMO) 41 (2000 ) WEB 1 1959 1 IMO 1 n, 21n + 4 13n + 3 2 (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a = 4, b =

More information

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18 2013 8 29y, 2016 10 29 1 2 2 Jordan 3 21 3 3 Jordan (1) 3 31 Jordan 4 32 Jordan 4 33 Jordan 6 34 Jordan 8 35 9 4 Jordan (2) 10 41 x 11 42 x 12 43 16 44 19 441 19 442 20 443 25 45 25 5 Jordan 26 A 26 A1

More information

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 (vierbein) QCD QCD 1 1: QCD QCD Γ ρ µν A µ R σ µνρ F µν g µν A µ Lagrangian gr TrFµν F µν No. Yes. Yes. No. No! Yes! [1] Nash & Sen [2] Riemann

More information

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c GL 2 1 Lie SL(2, R) GL(2, A) Gelbart [Ge] 1 3 [Ge] Jacquet-Langlands [JL] Bump [Bu] Borel([Bo]) ([Ko]) ([Mo]) [Mo] 2 2.1 H = {z C Im(z) > 0} Γ SL(2, Z) Γ N N Γ (N) = {γ SL(2, Z) γ = 1 2 mod N} g SL(2,

More information