|
|
|
- かずただ みつだ
- 7 years ago
- Views:
Transcription
1 2011 (2011/02/08)
2
3
4
5 5
6
7 Chapter A f : A A A A f(a, b) ab a + b (a, b) ab a, b, c A (ab)c = a(bc) A e A a A ae = ea = a A 1 A 1 ( (a, b) a + b 0 A 0 ) A a ab = ba = 1 A b a A b a a 1 ( (a, b) a + b a ) A A (a, b) ab a, b A ab = ba (a, b) a + b A ( ) A A A A 7
8 8 CHAPTER G a, b, a i (1) (a 1 ) 1 = a (2) (ab) 1 = b 1 a 1 (a 1 a l ) 1 = a l 1 a G G H G H G H (1) x, y H xy H x H x 1 H (2) x, y H xy 1 H (3) x, y H x 1 y H G G G {1 G } G G {1 G } 1 H G H G H < G H G H G A, B G AB = {ab a A, b B}, A 1 = {a 1 a A} A(BC) = (AB)C, (AB) 1 = B 1 A 1 (4) HH H, H 1 H (5) HH 1 H (6) H 1 H H H G H = HH = H 1 = HH 1 = H 1 H A = {a} {a}b ab Ab ab = {ab b B}, Ab = {ab a A}
9 H, K G H K G {H λ λ Λ} G λ Λ H λ G G Z(G) = {g G x G xg = gx} G (center) G Z(G) = G G Z(G) G G S G S G S S S S = {s 1,, s l } s 1,, s l G H, K HK G HK = KH 1.3 G H a, b G a 1 b H a b G a G ah = {ah h H} G H a (left coset) G/H {a λ H λ Λ} G = λ Λ a λ H G H G/H G = ah a G/H G H ( ) G : H H G (index) a G ah = H G ( ). G H G = G : H H H G
10 10 CHAPTER 1. G a a n = 1 n n a o(a) a = {1, a, a 2,, a o(a) 1 } G o(a) G a a r ab 1 H a r b Ha = {ha h H} G H a H \ G {a λ λ Λ} G H {a λ 1 λ Λ} ( ) ( ) 1.4 a G ah = Ha H G (normal subgroup) H G H G H G H G H (coset) G 1 G G G G H (1) H G ( g G gh = Hg) (2) h H, g G ghg 1 H (3) g G ghg 1 H (4) g G ghg 1 = H. (1) = (2). h H, g G gh = Hg gh gh = Hg h H gh = h g ghg 1 = h H (2) = (1). g G gh = Hg x gh h H x = gh ghg 1 H x = gh = (ghg 1 )g Hg
11 gh Hg y Hg h H y = hg g 1 hg = g 1 h(g 1 ) 1 H y = hg = g(g 1 hg) gh Hg gh gh = Hg (2) (3) (4) = (3) (3) = (4) g G ghg 1 H g 1 G (3) g 1 Hg H g g 1 H ghg 1 (4) H, K G H K G {H λ λ Λ} G λ Λ H λ G H G N G HN G H, K G HK G H G N G H N H. 1.5 G H, K G a, b G a b HaK = HbK HaK = {hak h H, k K} a HaK G (H, K) (double coset) H \ G/K G = HaK a H\G/K HaK = h H hak HaK K HaK H G H, K a G HaK H : H aka 1 K HaK = H : H aka 1 K. f : H/(H aka 1 ) {hak h H} f(h(h aka 1 )) = hak h(h aka 1 ) = h (H aka 1 ) k K h = h(aka 1 ) h ak = h(aka 1 )ak = hak f
12 12 CHAPTER 1. f f hak = h ak, h, h H a 1 (h ) 1 ha K, (h ) 1 h H aka 1 h(h aka 1 ) = h (H aka 1 ) f H G HaK HaK = ahk HK 1.6 G H G/H H G/H H G G/H (ah)(bh) = (ab)h H = 1H a 1 H ah G/H G H (factor group) N H G N G G/N H/N = {hn h H} G/N h, h H (hn)(h N) 1 = (hn)((h ) 1 N) = (h(h ) 1 )N H/N N H H/N H/N X x X x 1 X 1 = {x 1 x X} (x 1 ) 1 = x X X 1 (word) xx 1 X X X (free group) F (X) ( ). X = {a} F (X) = {a i i Z} Z
13 X F (X) R F (X) R F (X) N R F (X) N N F (X)/N X R X R F (X) R 1 X R R r r = ( ). a a n = 1 n ( ) ( (cyclic group) ) n C n C n = {1, a, a 2,, a n 1 } Z n Z/nZ (). x, y x n = y 2 = 1, yx = x n 1 y 2n (dihedral group) 2n D 2n D 2n = {1, x, x 2,, x n 1, y, xy, x 2 y,, x n 1 y} G = a a n = 1 (1) a m = 1 n m (2) o(a m ) = n/ gcd(m, n) gcd(m, n) = 1 o(a m ) = o(a) a m = a. (1) (2) d = gcd(m, n) m = dm, n = dn (a m ) n = a m n = 1 o(a m ) n a m = o(a m ) n x, y xm + yn = d a d = a xm+yn = (a m ) x (a n ) y = (a m ) x a m a d a m o(a d ) = n n = a d a m = o(a m ) o(a m ) = a m = n = n/d
14 14 CHAPTER G n d n {x G x d = 1} = d N G g G G/N gn o(gn) o(g) K n M n (K) M n (K) ( M n (K) K n ) ( GL n (K)). K K n 0 K n K n (general linear group) GL n (K) K q F q F q GL n (K) GL n (q) GL 2 (2) F 2 = {0, 1} GL n (q) ( SL n (K)). K n 1 GL n (K) K n (special linear group) SL n (K) SL n (F q ) SL n (q) SL 2 (3) F 2 = {0, 1, 2} ( O(n)). T M n (R) (orthogonal matrix) t T T = T t T = E (E ) t T = T 1 n GL n (R) n (orthogonal group) O(n) O(n) GL n (R) ( U(n)). U M n (C) (unitary matrix) U U = UU = E U = U 1 U = t U n GL n (C) n (unitary group) U(n) U(n) GL n (C).
15 X X X X Sym(X) Sym(X) X X X σ ( ) x σ = σ(x) X = n < X = {1, 2,, n} Sym(X) S n n S n n n 1 1, 2,, n ( ) σ = ( ) ( ) = ( 1 2 ) ( ) = ( ) = ( 1 2 ) σ a 1, a 2,, a l a 1 σ a 2 σ a 3 σ σ a l σ a 1 (a 1 a 2 a l 1 a l ) ( (a 1, a 2,, a l 1, a l ) ) l l l 2 1 ( ) ( ) ( ) = (1 2 3), = (1 2) n
16 16 CHAPTER 1. ( ) n (1 2 l) = (1 l)(1 l 1) (1 3)(1 2) σ ( ) σ [l 1, l 2,, l r ], l 1 l 2, l r 1 l i = 1 l i σ = [3, 2, 1] ( [3, 2]) ( ) = (1 2 3)(4 5)(6) σ [l 1, l 2,, l r ] σ o(σ) l 1, l 2,, l r (1) σ, τ σ τστ 1 (2) σ σ τ σ = τστ 1 n σ ( ) σ 1 1 sgn(σ) S n n A n n 5 n A n 1 A n 1 (simple group) ( ), ( )(5 6) A
17 M U(M) M U(M) M M K n M n (K) GL n (K) X X Sym(X) R U(R) R ( ) K U(K) = K {1 K } K Z U(Z) = {1, 1} G 1 G G G g g 2 = 1 G G Z(G) G/Z(G) G ( G = Z(G) ) ( ) a b 0 a b K M = GL c d 2 (K) M = c d M GL 3 (K) GL 2 (K) GL 3 (K) GL 2 (K) GL 3 (K) ( m n GL m (K) GL n (K) ) X Sym(X) Y X Sym(Y ) X Y Sym(X) Sym(Y ) Sym(X) Sym(Y ) Sym(X) ( m n S m S n ) G = D 8 = x, y x 4 = y 2 = 1, yx = x 3 y H = y G H (H, H)
18 18 CHAPTER Q 8 = {±1, ±i, ±, j, ±k} i 2 = j 2 = k 2 = 1, ij = ji = k, jk = kj = i, ki = ik = j 1 1 Q 8 Q 8 8 D 8 Q 8 D V = x, y xy = yx, x 2 = y 2 = 1 V (V ) GL n (C)
19 Chapter G, H f : G H (group homomorphism) a, b G f(ab) = f(a)f(b) f(a + b) = f(a) + f(b) G H f : G H K GL n (K) det : GL n (K) K det(ab) = det(a) det(b) n σ sgn(σ) S n {1, 1} K V, W K- f : V W f(v + v ) = f(v) + f(v ) R R = R {0} exp : R R exp(x + y) = exp(x) exp(y) G H ι : H G, ι(h) = h f : G H, g : H K g f : G K 19
20 20 CHAPTER f : G H (1) f(1 G ) = 1 H (2) a G f(a 1 ) = f(a) 1. (1) f(1 G ) = f(1 G 1 G ) = f(1 G )f(1 G ) f(1 G ) 1 1 H = f(1 G ) (2) 1 H = f(1 G ) = f(aa 1 ) = f(a)f(a 1 ) f(a) 1 f(a) 1 = f(a 1 ) f : G H Kerf = {a G f(a) = 1 H } f (kernel) f (image) Imf = {f(a) a G} f : Z/4Z Z/4Z f(a + 4Z) = 2a + 4Z f f f : G H (1) Kerf G (2) Imf H. (1) f(1 G ) = 1 H 1 G Kerf Kerf x, y Kerf f(xy 1 ) = f(x)f(y) 1 = 1 H xy 1 Kerf Kerf G x Kerf, g G f(gxg 1 ) = f(g)f(x)f(g) 1 = f(g)f(g) 1 = 1 H gxg 1 Kerf Kerf G (2) 1 H = f(1 G ) Imf Imf a, b Imf x, y G a = f(x), b = f(y) Imf H ab 1 = f(x)f(y) 1 = f(xy 1 ) Imf S n sgn sgn A n (Ker(sgn) = A n ) f : G H f (monomorphism) f (epimorphism) f (isomorphism)f f : G H G H G H G = H
21 G G G G = G f : G H f f 1 : H G G = H H = G f : G H g : H K g f : G K G = H H = K G = K G = {a, b}, H = {x, y} a b a a b b b a x y x x y y y x G H f : G H f(a) = x, f(b) = y f f : G H f Kerf = 1. f 1 G Kerf x Kerf f(x) = 1 H = f(1 G ) f x = 1 G Kerf = 1 Kerf = 1 f(x) = f(y) 1 = f(x)f(y) 1 = f(xy 1 ) xy 1 Kerf = {1 G } x = y f N G f : G G/N f(g) = gn Kerf = N f : G H (1) A G f(a) H (2) B H f 1 (B) G (3) B H f 1 (B) G (4) f A G f(a) H. (1) x, y A f(x)f(y) 1 = f(xy 1 ) f(a) f(a) H (2) s, t f 1 (B) f(s), f(t) B f(st 1 ) = f(s)f(t) 1 B st 1 f 1 (B) (3) f 1 (B) G (2) g G, s f 1 (B) f(s) B H f(gsg 1 ) = f(g)f(s)f(g) 1 f(g)bf(g) 1 B
22 22 CHAPTER 2. gsg 1 f 1 (B) (4) f(a) B (1) x f(a), h H a A x = f(a) f g G h = f(g) hxh 1 = f(g)f(a)f(g) 1 = f(gag 1 ) f(gag 1 ) f(a) f : G H A G f(a) H f : G H N Kerf G f : G/N H f(gn) = f(g). f an = bn n N b = an n N Kerf f f f(b) = f(an) = f(a)f(n) = f(a)1 H = f(a) f((an)(bn)) = f((ab)n) = f(ab) = f(a)f(b) = f(an)f(bn) ( ). f : G H f : G/Kerf Imf f(g(kerf)) = f(g) G/Kerf = Imf f G/Kerf = H. N = Kerf f : G/N H (gn f(g)) Imf = Imf f : G/Kerf Imf Imf f an Kerf f(an) = 1 H f(a) = 1 H a Kerf an = 1 G N Kerf = 1 f f
23 f : Z/4Z Z/4Z f(a + 4Z) = 2a + 4Z f ( ) a + 4Z a f Kerf = {0, 2} = 2Z/4Z, Imf = {0, 2} = 2Z/4Z (Z/4Z)/(2Z/4Z) = 2Z/4Z 2.3 ( 2.2.2) (). H G N G HN/N = H/(H N). f : H HN/N f(h) = hn x HN h H n N x = hn xn = hnn = hn = f(h) f f(h) = hn = 1N h N Kerf = H N HN/N = H/(H N) G = Z, H = 4Z, N = 6Z H+N = 4Z+6Z = 2Z, H N = 12Z 2Z/6Z = 4Z/12Z f : 2Z/6Z 4Z/12Z, f(a + 6Z) = 2a + 12Z (). N H G N H G/H = (G/N)/(H/N). f : G G/H Kerf = H N g : G/N G/H, g(xn) = xh Kerg = H/N G/H = (G/N)/(H/N)
24 24 CHAPTER (Z/4Z)/(2Z/4Z) = 2Z/4Z (Z/4Z)/(2Z/4Z) = Z/2Z Z/2Z = 2Z/4Z f : Z/2Z 2Z/4Z, f(a + 2Z) = 2a + 4Z N G p : G G/N S G N T G/N H S H/N = p(h) T X T p 1 (X) S N G G N G/N G G G G (automorphism) G G Aut(G) GF (2) 2 V V = {(0, 0), (0, 1), (1, 0), (1, 1)} V {(0, 0)} V Aut(V ) = S 3 g G f g : G G, x gxg 1 f g G G (inner automorphism) f : G Aut(G), g f g f Aut(G) Inn(G) f g Kerf f g = id G x G gxg 1 = x Kerf G Z(G)
25 Inn(G) = G/Z(G) Inn(G) Aut(G). σ Inn(G), τ Aut(G) g G x G σ(x) = f g (x) = gxg 1 f g y G (τστ 1 )(y) = τ(gτ 1 (y)g 1 ) = τ(g)yτ(g) 1 τστ 1 = f τ(g) Inn(G) Inn(G) Aut(G) Aut(G)/Inn(G) G Out(G) G H G σ Inn(G) σ(h) = H G H G (characteristic subgroup) σ Aut(G) σ(h) = H H G, K H K G H G K H K G. k K, g G gkg 1 = f g (k) H G f g Aut(H) K H gkg 1 K H G K H K G. σ Aut(G) σ H Aut(H) σ(k) = (σ H )(K) = K Z(G) G G, H f : G H f f 1 : H G f G G G G, H f : G H g G o(g) < o(f(g)) < o(f(g)) o(g) ( f o(g) = o(f(g)) )
26 26 CHAPTER G a, b G [a, b] = aba 1 b 1 a b (commutator) G G (derived subgroup) D(G) [G, G] (1) [a, b] = 1 ab = ba (2) D(G) G (3) N G G/N D(G) N (4) M G, N G G/M, G/N G/(M N) G D 0 (G) = G D n+1 (G) = D(D n (G)) D n (G) n- n D n (G) = 1 G 1 (solvable group) G ( ) n- D n (G) G G A, B G A B = 1 a A b B ab = ba G, A ϕ : A Aut(G) G A g, h G, a, b A (g, a)(h, b) = (gϕ(a)(h), ab) G A ( G A (semidirect product) G A ) n ϕ(n) ϕ(n) n n 1 5 A 5 5
27 Chapter X G f : G X X f(g, x) gx f f G X () (A1) x X 1 G x = x (A2) x X, g, h G (gh)x = g(hx) f G X ( ) X G- xg gh g h gx xg g x x g K GL n (K) ( ) K n K n K n K GL n (K) M n (K) M M n (K) P GL n (K) P M = P MP 1, M P = P 1 MP (A1) (A2) (P Q) M = (P Q)M(P Q) 1 = P QMQ 1 P 1 = P (QMQ 1 ) = P ( Q M) 27
28 28 CHAPTER 3. P M = P MP 1 M (P Q) = (P Q) 1 M(P Q) = Q 1 P 1 MP Q = (P 1 MP ) Q = (M P ) Q M P = P 1 MP ( ). G X g G x X gx = x S R n O(n) n ( ) M S T O(n) T M = T MT 1 O(n) S f : G X X G X g G f g : X X, f g (x) = gx f g f g 1 = f g 1 f g = id G f g f g Sym(X) F : G Sym(X), F (g) = f g g, h G x X F (gh)(x) = f gh (x) = (gh)x = g(hx) = f g (f h (x)) = F (g)(f (h)(x)) = (F (g) F (h))(x) = (F (g)f (h))(x) F (gh) = F (g)f (h) F F : G Sym(X) f : G X X gx = f(g, x) = F (g)(x) G X G X G Sym(X) G Sym(X) G X (permutation representation) G X f : G Sym(X) G X (faithful) f G X (1) G X (2) g G x X gx = x g = 1 G X f : G Sym(X) G Sym(X) Sym(X) X (permutation group) S n n X G X G X f : G Sym(X) G/Kerf
29 G X x, y X x y g G y = gx X X G (orbit) G- x X ( ) C x C x = {gx g G} G X C x Gx ( g x, x g G x, x G ) g G Gx G G g, h G gx = hx gx = hx x = 1x = (g 1 g)x = g 1 (gx) = g 1 (hx) = (g 1 h)x G x = {g G gx = x} x G G x G (G x Gx ) G x G S 4 G = (1 2), (3 4) = {( ), (1 2), (3 4), (1 2)(3 4)} G X = {1, 2, 3, 4} X G {1, 2}, {3, 4} X X = {1, 2} {3, 4} G 1 = G 2 = {( ), (3 4)}, G 3 = G 4 = {( ), (1 2)} gx = hx x = (g 1 h)x g 1 h G x gg x = hg x G X x X f : G/G x Gx, f(gg x ) = gx G : G x < G : G x = Gx
30 30 CHAPTER 3.. gg x = hg x gx = hx f Gx g G gx f f(gg x ) = f(hg x ) gx = hx gg x = hg x f X G (transitive) G X x, y X g G y = gx X G- (transitive G-set) G X x X Gx G Gx f : G X X f G Gx Im(f G Gx ) Gx f : G Gx Gx G Gx G- G- G ( G- ). G G G (g, x) gx G G- ( ) G- G X Y X G y Y g G gy Y y Y Y Y G- G Y 3.3 G H H G G/H G/H = {ah a G} g(ah) = (ga)h ah, bh G/H bh = (ba 1 )(ah) G- X Y X Y G- f : X Y x X, g G gf(x) = f(gx)
31 f G- 1 X Y G G X X id G f G Y Y f G X x X f : G/G x X f(ag x ) = ax f G- G- G-. ag x = bg x ax = bx f ax = bx ag x = bg x f G f f g G, ag x G/G x gf(ag x ) = g(ax) = (ga)x = f((ga)g x ) = f(g(ag x )) f G- 3.4 G G G g G x G g x = gxg 1 G G- G G x g = g 1 xg G G ( ) x G g G x x = g x = gxg 1 xg = gx G x C G (x) G x (centralizer) C G (x) = {g G xg = gx} S G C G (S) = s S C G (s) 1 A B
32 32 CHAPTER 3. G S C G (G) G Z(G) x G G x = { g x g G} = {gxg 1 g G} G x (conjugacy class) G x G x G x G : C G (x) G N N G N G G G G {x 1 = 1, x 2,, x r } G = G x 1 G x 2 G x r G = G x 1 + G x G x r G (class equation) C G (1) = G G x 1 = G 1 = 1 G x i G : C G (x i ) G G x = 1 x Z(G) S 3 C 1 = {1}, C 2 = {(1 2 3), (1 3 2)}, C 3 = {(1 2), (1 3), (2 3)} 6 = S 3 C 1 C 2 C 1 C 3 S 3 6 C 1 C 2 C 1 C 2 1 Z(S 3 ) = 1
33 p G p n N 1 G N Z(G) 1. N G G N G C 1 = {1 G }, C 2,, C l x i C i G x i = G : C G (x i ) G p n i G x 1 = 1 l l N = p n i = 1 + p n i i=1 N G N 1 N p p n 1 = 1 i n i > 0 p i 1 n i = 0 1 x i Z(G) N p p p G = N A G g G i=2 g A = gag 1 = {gag 1 a A} G G ( ) 2 G A A (normalizer) N G (A) N G (A) = {g G g A = A} = {g G gag 1 = A} = {g G ga = Ag} A = g A N G (A) G H G H N G (H) G. N G (A) 2 G G G H G h H hh = H = Hh H N G (H) H G g H G. x, y g H a, b H x = gag 1, y = gbg 1 xy 1 = (gag 1 )(gbg 1 ) 1 = gag 1 gb 1 g 1 = g(ab 1 )g 1 ab 1 H xy 1 g H g H H G G H G N G (H) = G H G H N G (H) H N G (H) H G H G G : N G (H). H G H 3.2.4
34 34 CHAPTER n Z/nZ G (1) g G a + nz Z/nZ g(a + nz) ga + nz G Z/nZ (2) n = 5, 6, 8 (1) K V = K n K n GL n (K) V 1 0 e e GL n (K) G = D 8 = x, y x 4 = y 2 = 1, yx = x 3 y H = y D 8 N G (H) A 4 (1) A 4 (2) A 4 (3) A Q p p G n a i, b i {1,, n}, a i b i (i = 1, 2) g G g(a 1 ) = a 2, g(b 1 ) = b 2 G 2 ( t ) G n G 1 = {σ G σ(1) = 1} G 1 {2, 3,, n} G 2 G 1 {2, 3,, n}
35 Chapter (Sylow) p G p G G p. G G = p G p G > p 1 g G n = o(g) p n o(g n/p ) = p p n H = g 1 < H < G p H p G/H G/H < G p G/H G/H p a a l = 1 p l a l = 1 p l p o(a) o(a o(a)/p ) = p G ( 1) p G Z(G) p Z(G) 1. G = G 1 + G x G x r G x i = G : C G (x i ) C G (x i ) G G x i p G = G : 1 p C G (1) = G G 1 = 1 p p G x i = 1 i C G (x i ) = G x i Z(G) p p- G p- p- G G = p a q, p q G p a G p- p- G p- 35
36 36 CHAPTER ( (1)). p r G G p r G p-. G G = 1 G > 1 p r G r = 0 r > 0 G H G : H p H p r G p Z(G) p Z(G) p a N = a a Z(G) N G N = p G/N p r 1 G/N G/N p r 1 H/N H = p r G p r G p- Syl p (G) G p Syl p (G) ( (2)). G (1) P Syl p (G) G p- Q g G Q g P (2) P, Q Syl p (G) P Q (3) Syl p (G) 1 (mod p). (1) G (Q, P ) r r G = Qa i P = Q : Q a i P a 1 i P i=1 i=1 G = P G : P P Syl p (G) G : P 0 (mod p) r 0 G : P = Q : Q a i P a 1 i (mod p) i=1 Q p- Q : Q a i P a 1 i p- i Q : Q a i P a 1 i = 1 Q a i P a 1 i = a i P (2) (1) P, Q Q = g P Q = g P (3) N = N G (P ) (2) Syl p (G) = G : N P Syl p (N) N (2) P N G p- G (P, N)- l G = P b j N b 1 = 1 G : N N = G = j=1 l P b j N = j=1 l P : P b j Nb 1 j N j=1
37 P N P : P N = 1 P : P b j Nb 1 j = 1 b 1 j P b j N b 1 j P b j = P b j N j = 1 j 1 P : P b j Nb 1 j 1 p- l G : N = 1 + P : P b j Nb 1 j j=2 Syl p (G) = G : N 1 (mod p) p- p- G p- G p- G p- p p, q p < q, p q 1 G = pq G ( 15, 35 ). P Syl p (G), Q Syl q (G) N = N G (P ) P N G N p pq N = p pq N = p Syl p (G) = G : N = q 1 (mod p) N = pq N = G P G Q G P, Q G p- q- 1 x G x o(x) o(x) G o(x) = 1 o(x) {p, q, pq} o(x) = pq x x = G G o(x) = pq x o(x) = p x = p p- p- P p- x P p 1 o(x) = q q 1 p 2, q (p 1) + (q 1) = p + q 1 < 2q pq = G o(x) = pq G n 7 n S n S n (n 7) 15 (S 8 [5, 3] 15 ) G p P Syl p (G) G H N G (P ) N G (H) = H
38 38 CHAPTER 4.. N G (H) H x N G (H) x H = H x P x H = H P, x P Syl P (H) P x P H h H x P = h P h 1 x N G (P ) H x hh = H N G (H) H p = 2, 3, 5 5 S 5 p- p G p P Syl p (G) P G P G p G H G P Syl p (H) P H P G G H G p P Syl p (H) G = HN G (P ) p 2p C 2p D 2p p G p G p-
39 Chapter G, H G H (g 1, h 1 )(g 2, h 2 ) = (g 1 g 2, h 1 h 2 ) (1 G, 1 H ) (g, h) 1 = (g 1, h 1 ) G H G H ( ) G H = H G, G H K = (G H) K = G (H K) r G i, i=1 ( ) r r G i = G i i=1 G H G 1 = {(g, 1 H ) g G} G 1 = G G G H H G H 39 λ Λ i=1 G λ
40 40 CHAPTER 5. (1) G H G H (2) G H G H G = r i=1 G i G g = (g 1,, g r ) (g i G i ) π i : G G i, π i (g) = g i G G i ι i : G i G, ι i (g i ) = (1,, 1, g i, 1,, 1) G i G π i ι i (g i ) = g i, (ι 1 π 1 (g))(ι 2 π 2 (g)) (ι r π r (g)) = g π i ι i = id Gi, r (ι i π i ) = id G i= G, H Z(G H) = {(a, b) a Z(G), b Z(H)} = Z(G) Z(H) 5.2 G H 1, H 2,, H r G G H 1, H 2,, H r ( ) (D1) i j H i H j (D2) G h 1 h 2 h r (h i H i ) G = H 1 H r G H 1, H 2,, H r (E1) i H i G
41 (E2) G = H 1 H r (E3) i H i (H 1 H i 1 H i+1 H r ) = 1. G H 1, H 2,, H r G g h 1 h 2 h r (h i H i ) f i H i gf i g 1 = h 1 h 2 h r f i h r 1 h 2 1 h 1 1 = h i f i h i 1 H i H i G (E1) G h 1 h 2 h r (h i H i ) (E2) x H i (H 1 H i 1 H i+1 H r ) x = h 1 h i 1 h i+1 h r x = 1 H1 1 Hi 1 x1 Hi+1 1 Hr = h 1 h i 1 1 Hi h i+1 h r (D2) x = 1 (E3) (E1), (E2), (E3) i j H j H 1 H i 1 H i+1 H r H i H j = 1 h i H i, h j H j h i h j h 1 i h 1 j = (h i h j h 1 i )h 1 j (h i H j h 1 i )h 1 j H j h 1 j H j h i h j h 1 i h 1 j H i h i h j h 1 i h 1 j H i H j = 1 h i h j h 1 i h 1 j = 1 h i h j = h j h i (D1) (E2) G g h 1 h 2 h r (h i H i ) h 1 h 2 h r = k 1 k 2 k r (h i, k i H i ) (D1) 1 = (h 1 h 2 h r )(k 1 k 2 k r ) 1 = (h 1 k 1 1 )(h 2 k 2 1 ) (h r k r 1 ) (E3) k 1 h 1 1 = (h 2 k 2 1 ) (h r k r 1 ) H 1 (H 2 H r ) = 1 h 1 = k 1 h i = k i i (D2) G H, K G = H K H ( K) G G 1 G (indecomposable) (decomposable) G H 1,, H r H i G H 1,, H r G G = a a 6 = 1 H = a 2, K = a 3 G, H, K 6, 3, 2 H = {1, a 2, a 4 }, K = {1, a 3 } G = H K C 6 = C3 C 2
42 42 CHAPTER m, n C mn = Cm C n. C mn = a, C m = b, C n = c f : C mn C m C n f(a i ) = (b i, c i ) f(a i ) = (b i, c i ) = 1 i m n mn a i = 1 Kerf = 1 f C mn = mn = C m C n f f p G n C p G (p-) p- GF (p) n C 6 C 4 = C12 C C 4 C 2 C (g, h) G H g G h H (g, h) o(g) o(h) D(G H) = D(G) D(H) G H G H
43 Chapter (). C e1 C e2 C er e i+1 e i (i = 1, 2,, r 1), e i > 1 (i = 1, 2,, r) {e i } C e1 C e2 C er r i=1 e i = 12 e i+1 e i {12}, {6, 2} 12 C 12, C 6 C , p- 43
44 44 CHAPTER p a p- G G H G = a H. G p- a G G H G = a H G G = 1 G 1 G = a H = 1 G a b a G/ a p- o(b a ) p- o(b a ) = p s c = b (ps 1) o(c a ) = p c a, c p a c p = a m p m o(a m ) = o(a) o(c) = p o(a) > o(a) o(a) p m m = m p d = ca m d a d p = 1 d d a = 1 π : G G/ d π a π( a ) = π(a) = a π(a) G/ d G/ d U G/ d = π(a) U U = π 1 (U) G = a U G a G, U G x a U π(x) π(a) U = 1 x a Kerπ = 1 a U = 1 g G π(g) = π(a) i u i u U π u U π(u ) = u π(a i u ) = π(a) i u = π(g) g a i u d g a i u d j j π(d j ) = 1 U u d j U G = a U G = a U p p-. G p-a G G = a H H H p- G p 1,, p l G P i Syl pi (G) G = l i=1 P i P i G G = l i=1 P i G C e1 C e2 C er e i+1 e i (i = 1, 2,, r 1)
45 p 1,, p l G P i Syl pi (G) P i C fi,1 C fi,2 C fi,l(i) f i,j p i f i,1 f i,2 f i,l(i) f i,j+1 f i,j l(i) (i = 1, 2,, r) l l(i) < l i f i,l(i)+1 = = f i,l = 1 G j = r i=1 C f i,j G j r i=1 f i,j i f i,j+1 f i,j G j+1 G j G = G 1 G l G e 1,, e r. G = C e1 C e2 C er = Cf1 C f2 C fs e i+1 e i (i = 1, 2,, r 1), f j+1 f j (j = 1, 2,, s 1) m (G, m) = {g G g m = 1} a = (a 1,, a r ) C e1 C er a (G, m) i a i (C ei, m) (C n, m) = gcd(m, n) m S(m) m e i i T (m) m f j j e i+1 e i i < j m e j m e i f i p (G, p) (G, p) = p S(p) = p T (p) S(p) = T (p) (G, p 2 ) = p 2S(p2) + p S(p) = p 2T (p2) + p T (p) S(p 2 ) = T (p 2 ) l S(p l ) = T (p l ) e i+1 e i, f j+1 f j p l e i p l f i p e i = f i ( ( ) )
46 46 CHAPTER 6. A B A B ( ) Z n Z/nZ Z F = Z Z F F = Zx 1 Zx r 2F = {2f f F } 2F F F/2F F/2F = Zx 1 /2Zx 1 Zx r /2Zx r = Z/2Z Z/2Z F/2F = 2 r F/2F F r ( ) f : A F A F B = Kerf B A. F = Zx 1 Zx r x i f(c i ) = x i c i A C = Zc Zc r A = B C a A f(a) = r i=1 k ix i c = r i=1 k ic i f(c) = f(a) a = (a c) + c f(a c) = f(a) f(c) = 0 a c B c C a B + C A = B + C b B C c C c = r i=1 k ic i c B 0 = f(c) = r i=1 k ix i F k 1 = = k r = 0 c = 0 B C = 0 A = B C F A A F ( ). F = Zx 1 Zx r F r r = 1 0 r > 1 a A a = r i=1 a ix i f : A Zx r f(a) = a r x r Imf = 0 A Zx 1 Zx r 1 A r 1 Imf 0 0 m Z Imf = mzx r
47 f : A mzx r A = Kerf C C C = A/Kerf = Imf = mzx r Z f Kerf Zx 1 Zx r 1 B r 1 A r A T (A) A A A T (A) = 0 A ( ) A A/T (A). a A a T (A/T (A)) 0 m Z ma = 0 ma T (A) 0 n Z 0 = n(ma) = (nm)a a T (A) a = 0 ( ) A a 1,, a r A = r i=1 Za i F = r i=1 Zx i x 1,, x r π : F A f( r i=1 k ix i ) = r i=1 k ia i B A π 1 (B) F y 1,, y s π 1 (B) B π(y 1 ),, π(y s ) A T (A) ( ) T (A) a 1,, a r T (A) T (A) r i=1 k ia i (k i Z) a i n i (< ) 0 k i < n i ( ) A x 1,, x r A x 1,, x r y 1,, y m m i=1 Zy i = m i=1 Zy i x 1,, x m B = m i=1 Zx i A/B A/B x 1,, x r 1 i m x i B x i = 0 A/B x m+1,, x r j (m + a j r) x j Zx j B = 0 m i=1 Zx i + Zx j = m i=1 Zx i Zx j x j (m+a j r) x j (m+a j r) l A/B l 0 A A (l) = {a l a A} A (l) B B A (l)
48 48 CHAPTER 6. f : A A (l) f(a) = a l f A A = A (l) A ( ). A A = F T (A) F T (A) F T (A) ( ). A/T (A) f : A A/T (A) Kerf = T (A) A = T (A) B B B = A/T (A) B T (A) F A T (A) A Z Z Z/e 1 Z Z/e r Z e i+1 e i A T (A) A , 24, C 4 C 6 C 10 C e1 C er e i+1 e i (i = 1, 2,, r 1) p p p p A = Z Z/2Z (a, b) (a Z, b Z/2Z = {0, 1}) x = (1, 1), y = (0, 1) A = x y ( )
49 [1],, [2],, Akihide Hanaki 2011/02/08 49
50 2, 34 G-, 29 G-, 27 n, 28 p-, 33 p-, 35, 7, 29, 7, 10, 14, 26, 30, 46, 25, 26, 7, 7, 7, 20, 16, 7, 16, 29, 42, 13, 7, 31, 33, 32, 16, 18, 7, 19, 7, 12, 26, 26, 7, 16, 15, 15, 15, 27, 30, 18, 24, 24, 9, 21, 28, 8, 40, 12, 48, 13, 15, 10, 19, 22, 12, 10 p-, 35, 36, 33 50
51 51, 10, 13, 9 G-, 30, 7, 14, 20, 20, 15, 7, 7, 17, 16, 20, 7, 15, 28, 28, 28, 9, 31, 32, 39, 40, 41, 46, 41, 41, 14, 14, 20, 30, 31, 20, 23, 47, 48, 47, 14, 25, 13, 40, 47, 7, 26, 9, 9, 16, 8, 10, 10, 7, 12, 7, 43, 7, 48, 46, 14, 14, 9, 46, 11, 11, 32, 24, 24, 15, 7
ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University
ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University 2004 1 1 1 2 2 1 3 3 1 4 4 1 5 5 1 6 6 1 7 7 1 8 8 1 9 9 1 10 10 1 E-mail:[email protected] 0 0 1 1.1 G G1 G a, b,
A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x A (1)
7 2 2.1 A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x 1 2.1.1 A (1) A = R x y = xy + x + y (2) A = N x y = x y (3) A =
Armstrong culture Web
2004 5 10 M.A. Armstrong, Groups and Symmetry, Springer-Verlag, NewYork, 1988 (2000) (1989) (2001) (2002) 1 Armstrong culture Web 1 3 1.1................................. 3 1.2.................................
II Time-stamp: <05/09/30 17:14:06 waki> ii
II [email protected] 18 1 30 II Time-stamp: ii 1 1 1.1.................................................. 1 1.2................................................... 3 1.3..................................................
X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2
2014 (2014/04/01)
2014 (2014/04/01) 1 5 1.1...................................... 5 1.2...................................... 7 1.3...................................... 8 1.4............................... 10 1.5 Zorn...........................
15 mod 12 = 3, 3 mod 12 = 3, 9 mod 12 = N N 0 x, y x y N x y (mod N) x y N mod N mod N N, x, y N > 0 (1) x x (mod N) (2) x y (mod N) y x
A( ) 1 1.1 12 3 15 3 9 3 12 x (x ) x 12 0 12 1.1.1 x x = 12q + r, 0 r < 12 q r 1 N > 0 x = Nq + r, 0 r < N q r 1 q x/n r r x mod N 1 15 mod 12 = 3, 3 mod 12 = 3, 9 mod 12 = 3 1.1.2 N N 0 x, y x y N x y
数学Ⅱ演習(足助・09夏)
II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w
S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1.
() 1.1.. 1. 1.1. (1) L K (i) 0 K 1 K (ii) x, y K x + y K, x y K (iii) x, y K xy K (iv) x K \ {0} x 1 K K L L K ( 0 L 1 L ) L K L/K (2) K M L M K L 1.1. C C 1.2. R K = {a + b 3 i a, b Q} Q( 2, 3) = Q( 2
I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%
1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: [email protected], http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n
1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =
1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A
13 0 1 1 4 11 4 12 5 13 6 2 10 21 10 22 14 3 20 31 20 32 25 33 28 4 31 41 32 42 34 43 38 5 41 51 41 52 43 53 54 6 57 61 57 62 60 70 0 Gauss a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x
2001 Mg-Zn-Y LPSO(Long Period Stacking Order) Mg,,,. LPSO ( ), Mg, Zn,Y. Mg Zn, Y fcc( ) L1 2. LPSO Mg,., Mg L1 2, Zn,Y,, Y.,, Zn, Y Mg. Zn,Y., 926, 1
Mg-LPSO 2566 2016 3 2001 Mg-Zn-Y LPSO(Long Period Stacking Order) Mg,,,. LPSO ( ), Mg, Zn,Y. Mg Zn, Y fcc( ) L1 2. LPSO Mg,., Mg L1 2, Zn,Y,, Y.,, Zn, Y Mg. Zn,Y., 926, 1 1,.,,., 1 C 8, 2 A 9.., Zn,Y,.
20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33
等質空間の幾何学入門
2006/12/04 08 [email protected] i, 2006/12/04 08. 2006, 4.,,.,,.,.,.,,.,,,.,.,,.,,,.,. ii 1 1 1.1 :................................... 1 1.2........................................ 2 1.3......................................
211 [email protected] 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,
( )
18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................
II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K
II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F
1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C
0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,
2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =
1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載
1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載のない限り 熱容量を考慮した空き容量を記載しております その他の要因 ( 電圧や系統安定度など ) で連系制約が発生する場合があります
Nobelman 絵文字一覧
Nobelman i-mode EZweb J-SKY 1 88 2 89 3 33 4 32 5 5 F[ 6 6 FZ 7 35 W 8 34 W 9 7 F] W 10 8 F\ W 11 29 FR 12 30 FS 13 64 FU 14 63 FT 15 E697 42 FW 16 E678 70 FV 17 E696 43 FX 18 E6A5 71 FY 19 117 20 E6DA
LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University
LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University 2002 2 2 2 2 22 2 3 3 3 3 3 4 4 5 5 6 6 7 7 8 8 9 Cramer 9 0 0 E-mail:hsuzuki@icuacjp 0 3x + y + 2z 4 x + y
ver Web
ver201723 Web 1 4 11 4 12 5 13 7 2 9 21 9 22 10 23 10 24 11 3 13 31 n 13 32 15 33 21 34 25 35 (1) 27 4 30 41 30 42 32 43 36 44 (2) 38 45 45 46 45 5 46 51 46 52 48 53 49 54 51 55 54 56 58 57 (3) 61 2 3
1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =
1 8, : 8.1 1, z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = a ii x i + i
7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a
9 203 6 7 WWW http://www.math.meiji.ac.jp/~mk/lectue/tahensuu-203/ 2 8 8 7. 7 7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa,
入試の軌跡
4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf
16 B
16 B (1) 3 (2) (3) 5 ( ) 3 : 2 3 : 3 : () 3 19 ( ) 2 ax 2 + bx + c = 0 (a 0) x = b ± b 2 4ac 2a 3, 4 5 1824 5 Contents 1. 1 2. 7 3. 13 4. 18 5. 22 6. 25 7. 27 8. 31 9. 37 10. 46 11. 50 12. 56 i 1 1. 1.1..
y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =
[ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =
i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................
6. Euler x
...............................................................................3......................................... 4.4................................... 5.5......................................
欧州特許庁米国特許商標庁との共通特許分類 CPC (Cooperative Patent Classification) 日本パテントデータサービス ( 株 ) 国際部 2019 年 1 月 17 日 CPC 版のプレ リリースが公開されました 原文及び詳細はCPCホームページの C
欧州特許庁米国特許商標庁との共通特許分類 CPC (Cooperative Patent Classification) 日本パテントデータサービス ( 株 ) 国際部 2019 年 1 月 17 日 CPC 2019.02 版のプレ リリースが公開されました 原文及び詳細はCPCホームページの CPC Revisions(CPCの改訂 ) 内のPre-releaseをご覧ください http://www.cooperativepatentclassification.org/cpcrevisions/prereleases.html
20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................
x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)
x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy
I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google
I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59
欧州特許庁米国特許商標庁との共通特許分類 CPC (Cooperative Patent Classification) 日本パテントデータサービス ( 株 ) 国際部 2019 年 7 月 31 日 CPC 版が発効します 原文及び詳細はCPCホームページのCPC Revision
欧州特許庁米国特許商標庁との共通特許分類 CPC (Cooperative Patent Classification) 日本パテントデータサービス ( 株 ) 国際部 2019 年 7 月 31 日 CPC 2019.08 版が発効します 原文及び詳細はCPCホームページのCPC Revisions(CPCの改訂 ) をご覧ください https://www.cooperativepatentclassification.org/cpcrevisions/noticeofchanges.html
000 001
all-round catalogue vol.2 000 001 002 003 AA0102 AA0201 AA0701 AA0801 artistic brushes AA0602 AB2701 AB2702 AB2703 AB2704 AA0301 AH3001 AH3011 AH3101 AH3201 AH3111 AB3201 AB3202 AB2601 AB2602 AB0701 artistic
2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+
R 3 R n C n V??,?? k, l K x, y, z K n, i x + y + z x + y + z iv x V, x + x o x V v kx + y kx + ky vi k + lx kx + lx vii klx klx viii x x ii x + y y + x, V iii o K n, x K n, x + o x iv x K n, x + x o x
1 1.1 R (ring) R1 R4 R1 R (commutative [abelian] group) R2 a, b, c R (ab)c = a(bc) (associative law) R3 a, b, c R a(b + c) = ab + ac, (a + b)c = ac +
ALGEBRA II Hiroshi SUZUKI Department of Mathematics International Christian University 2004 1 1 1 2 2 1 3 3 1 4 4 1 5 5 1 6 6 1 7 7 1 7.1....................... 7 1 7.2........................... 7 4 8
ORIGINAL TEXT I II A B 1 4 13 21 27 44 54 64 84 98 113 126 138 146 165 175 181 188 198 213 225 234 244 261 268 273 2 281 I II A B 292 3 I II A B c 1 1 (1) x 2 + 4xy + 4y 2 x 2y 2 (2) 8x 2 + 16xy + 6y 2
( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1
( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S
A
A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................
Dynkin Serre Weyl
Dynkin Naoya Enomoto 2003.3. paper Dynkin Introduction Dynkin Lie Lie paper 1 0 Introduction 3 I ( ) Lie Dynkin 4 1 ( ) Lie 4 1.1 Lie ( )................................ 4 1.2 Killing form...........................................
CRA3689A
AVIC-DRZ90 AVIC-DRZ80 2 3 4 5 66 7 88 9 10 10 10 11 12 13 14 15 1 1 0 OPEN ANGLE REMOTE WIDE SET UP AVIC-DRZ90 SOURCE OFF AV CONTROL MIC 2 16 17 1 2 0 0 1 AVIC-DRZ90 2 3 4 OPEN ANGLE REMOTE SOURCE OFF
0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9
1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n 1-2. 0 m n m n 0 2 = 1.41421356 π = 3.141516 1-3. 1 0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c),
all.dvi
5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0
F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63)
211 12 1 19 2.9 F 32 32: rot F d = F d l (63) F rot F d = 2.9.1 (63) rot F rot F F (63) 12 2 F F F (63) 33 33: (63) rot 2.9.2 (63) I = [, 1] [, 1] 12 3 34: = 1 2 1 2 1 1 = C 1 + C C 2 2 2 = C 2 + ( C )
( ),.,,., C A (2008, ). 1,, (M, g) (Riemannian symmetric space), : p M, s p : M M :.,.,.,, (, ).,, (M, g) p M, s p : M M p, : (1) p s p, (
( ),.,,., C A (2008, ). 1,,. 1.1. (M, g) (Riemannian symmetric space), : p M, s p : M M :.,.,.,, (, ).,,. 1.2. (M, g) p M, s p : M M p, : (1) p s p, (2) s 2 p = id ( id ), (3) s p ( )., p ( s p (p) = p),,
function2.pdf
2... 1 2009, http://c-faculty.chuo-u.ac.jp/ nishioka/ 2 11 38 : 5) i) [], : 84 85 86 87 88 89 1000 ) 13 22 33 56 92 147 140 120 100 80 60 40 20 1 2 3 4 5 7.1 7 7.1 1. *1 e = 2.7182 ) fx) e x, x R : 7.1)
,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.
9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,
24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x
24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),
(1) θ a = 5(cm) θ c = 4(cm) b = 3(cm) (2) ABC A A BC AD 10cm BC B D C 99 (1) A B 10m O AOB 37 sin 37 = cos 37 = tan 37
4. 98 () θ a = 5(cm) θ c = 4(cm) b = (cm) () D 0cm 0 60 D 99 () 0m O O 7 sin 7 = 0.60 cos 7 = 0.799 tan 7 = 0.754 () xkm km R km 00 () θ cos θ = sin θ = () θ sin θ = 4 tan θ = () 0 < x < 90 tan x = 4 sin
No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2
No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j
5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)
5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h 0 f(a + h, b) f(a, b) h............................................................... ( ) f(x, y) (a, b) x A (a, b) x
( [1]) (1) ( ) 1: ( ) 2 2.1,,, X Y f X Y (a mapping, a map) X ( ) x Y f(x) X Y, f X Y f : X Y, X f Y f : X Y X Y f f 1 : X 1 Y 1 f 2 : X 2 Y 2 2 (X 1
2013 5 11, 2014 11 29 WWW ( ) ( ) (2014/7/6) 1 (a mapping, a map) (function) ( ) ( ) 1.1 ( ) X = {,, }, Y = {, } f( ) =, f( ) =, f( ) = f : X Y 1.1 ( ) (1) ( ) ( 1 ) (2) 1 function 1 ( [1]) (1) ( ) 1:
96 5, ' : G! H '(G) =H,, H G, 37 Z Z m a 2 Z m a a p Z m (p.90 ) p(a + b) =a + b = a + b = p(a)+p(b):, p {p(ab) =p(a)p(b){, p ( 95 ). 97. m, n, Z m Z
95 5,,,,,,,, ( ) S 3, f1 2 3g f1 2 3g,,, 5.1,,, 1 1 16 G H ' : G! H, '(ab) ='(a)'(b) for 8a b 2 G (5.1), (,, )., 1 1,, ' e 2 G e 0 2 H '(e) =e 0., g 2 G, '(g ;1 )='(g) ;1 : (5.2) 2, 5.1 2 G, H, G H, '
2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =
1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,
IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a
1 40 (1959 1999 ) (IMO) 41 (2000 ) WEB 1 1959 1 IMO 1 n, 21n + 4 13n + 3 2 (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a = 4, b =
i 18 2H 2 + O 2 2H 2 + ( ) 3K
i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................
4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................
AI n Z f n : Z Z f n (k) = nk ( k Z) f n n 1.9 R R f : R R f 1 1 {a R f(a) = 0 R = {0 R 1.10 R R f : R R f 1 : R R 1.11 Z Z id Z 1.12 Q Q id
1 1.1 1.1 R R (1) R = 1 2 Z = 2 n Z (2) R 1.2 R C Z R 1.3 Z 2 = {(a, b) a Z, b Z Z 2 a, b, c, d Z (a, b) + (c, d) = (a + c, b + d), (a, b)(c, d) = (ac, bd) (1) Z 2 (2) Z 2? (3) Z 2 1.4 C Q[ 1] = {a + bi
ac b 0 r = r a 0 b 0 y 0 cy 0 ac b 0 f(, y) = a + by + cy ac b = 0 1 ac b = 0 z = f(, y) f(, y) 1 a, b, c 0 a 0 f(, y) = a ( ( + b ) ) a y ac b + a y
01 4 17 1.. y f(, y) = a + by + cy + p + qy + r a, b, c 0 y b b 1 z = f(, y) z = a + by + cy z = p + qy + r (, y) z = p + qy + r 1 y = + + 1 y = y = + 1 6 + + 1 ( = + 1 ) + 7 4 16 y y y + = O O O y = y
5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................
5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h f(a + h, b) f(a, b) h........................................................... ( ) f(x, y) (a, b) x A (a, b) x (a, b)
0.6 A = ( 0 ),. () A. () x n+ = x n+ + x n (n ) {x n }, x, x., (x, x ) = (0, ) e, (x, x ) = (, 0) e, {x n }, T, e, e T A. (3) A n {x n }, (x, x ) = (,
[ ], IC 0. A, B, C (, 0, 0), (0,, 0), (,, ) () CA CB ACBD D () ACB θ cos θ (3) ABC (4) ABC ( 9) ( s090304) 0. 3, O(0, 0, 0), A(,, 3), B( 3,, ),. () AOB () AOB ( 8) ( s8066) 0.3 O xyz, P x Q, OP = P Q =
II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2
II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh
IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (
IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1
1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x
. P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +
SO(2)
TOP URL http://amonphys.web.fc2.com/ 1 12 3 12.1.................................. 3 12.2.......................... 4 12.3............................. 5 12.4 SO(2).................................. 6
Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N.
Basic Mathematics 16 4 16 3-4 (10:40-12:10) 0 1 1 2 2 2 3 (mapping) 5 4 ε-δ (ε-δ Logic) 6 5 (Potency) 9 6 (Equivalence Relation and Order) 13 7 Zorn (Axiom of Choice, Zorn s Lemma) 14 8 (Set and Topology)
行列代数2010A
a ij i j 1) i +j i, j) ij ij 1 j a i1 a ij a i a 1 a j a ij 1) i +j 1,j 1,j +1 a i1,1 a i1,j 1 a i1,j +1 a i1, a i +1,1 a i +1.j 1 a i +1,j +1 a i +1, a 1 a,j 1 a,j +1 a, ij i j 1,j 1,j +1 ij 1) i +j a
/02/18
3 09/0/8 i III,,,, III,?,,,,,,,,,,,,,,,,,,,,?,?,,,,,,,,,,,,,,!!!,? 3,,,, ii,,,!,,,, OK! :!,,,, :!,,,,,, 3:!,, 4:!,,,, 5:!,,! 7:!,,,,, 8:!,! 9:!,,,,,,,,, ( ),, :, ( ), ( ), 6:!,,, :... : 3 ( )... iii,,
( ) x y f(x, y) = ax
013 4 16 5 54 (03-5465-7040) [email protected] hp://lecure.ecc.u-okyo.ac.jp/~nkiyono/inde.hml 1.. y f(, y) = a + by + cy + p + qy + r a, b, c 0 y b b 1 z = f(, y) z = a + by + cy z = p + qy
x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)
2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................
Step 2 O(3) Sym 0 (R 3 ), : a + := λ 1 λ 2 λ 3 a λ 1 λ 2 λ 3. a +. X a +, O(3).X. O(3).X = O(3)/O(3) X, O(3) X. 1.7 Step 3 O(3) Sym 0 (R 3 ),
1 1 1.1,,. 1.1 1.2 O(2) R 2 O(2).p, {0} r > 0. O(3) R 3 O(3).p, {0} r > 0.,, O(n) ( SO(n), O(n) ): Sym 0 (R n ) := {X M(n, R) t X = X, tr(x) = 0}. 1.3 O(n) Sym 0 (R n ) : g.x := gxg 1 (g O(n), X Sym 0
r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B
1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n
