Size: px
Start display at page:

Download ""

Transcription

1 2011 (2011/02/08)

2

3

4

5 5

6

7 Chapter A f : A A A A f(a, b) ab a + b (a, b) ab a, b, c A (ab)c = a(bc) A e A a A ae = ea = a A 1 A 1 ( (a, b) a + b 0 A 0 ) A a ab = ba = 1 A b a A b a a 1 ( (a, b) a + b a ) A A (a, b) ab a, b A ab = ba (a, b) a + b A ( ) A A A A 7

8 8 CHAPTER G a, b, a i (1) (a 1 ) 1 = a (2) (ab) 1 = b 1 a 1 (a 1 a l ) 1 = a l 1 a G G H G H G H (1) x, y H xy H x H x 1 H (2) x, y H xy 1 H (3) x, y H x 1 y H G G G {1 G } G G {1 G } 1 H G H G H < G H G H G A, B G AB = {ab a A, b B}, A 1 = {a 1 a A} A(BC) = (AB)C, (AB) 1 = B 1 A 1 (4) HH H, H 1 H (5) HH 1 H (6) H 1 H H H G H = HH = H 1 = HH 1 = H 1 H A = {a} {a}b ab Ab ab = {ab b B}, Ab = {ab a A}

9 H, K G H K G {H λ λ Λ} G λ Λ H λ G G Z(G) = {g G x G xg = gx} G (center) G Z(G) = G G Z(G) G G S G S G S S S S = {s 1,, s l } s 1,, s l G H, K HK G HK = KH 1.3 G H a, b G a 1 b H a b G a G ah = {ah h H} G H a (left coset) G/H {a λ H λ Λ} G = λ Λ a λ H G H G/H G = ah a G/H G H ( ) G : H H G (index) a G ah = H G ( ). G H G = G : H H H G

10 10 CHAPTER 1. G a a n = 1 n n a o(a) a = {1, a, a 2,, a o(a) 1 } G o(a) G a a r ab 1 H a r b Ha = {ha h H} G H a H \ G {a λ λ Λ} G H {a λ 1 λ Λ} ( ) ( ) 1.4 a G ah = Ha H G (normal subgroup) H G H G H G H G H (coset) G 1 G G G G H (1) H G ( g G gh = Hg) (2) h H, g G ghg 1 H (3) g G ghg 1 H (4) g G ghg 1 = H. (1) = (2). h H, g G gh = Hg gh gh = Hg h H gh = h g ghg 1 = h H (2) = (1). g G gh = Hg x gh h H x = gh ghg 1 H x = gh = (ghg 1 )g Hg

11 gh Hg y Hg h H y = hg g 1 hg = g 1 h(g 1 ) 1 H y = hg = g(g 1 hg) gh Hg gh gh = Hg (2) (3) (4) = (3) (3) = (4) g G ghg 1 H g 1 G (3) g 1 Hg H g g 1 H ghg 1 (4) H, K G H K G {H λ λ Λ} G λ Λ H λ G H G N G HN G H, K G HK G H G N G H N H. 1.5 G H, K G a, b G a b HaK = HbK HaK = {hak h H, k K} a HaK G (H, K) (double coset) H \ G/K G = HaK a H\G/K HaK = h H hak HaK K HaK H G H, K a G HaK H : H aka 1 K HaK = H : H aka 1 K. f : H/(H aka 1 ) {hak h H} f(h(h aka 1 )) = hak h(h aka 1 ) = h (H aka 1 ) k K h = h(aka 1 ) h ak = h(aka 1 )ak = hak f

12 12 CHAPTER 1. f f hak = h ak, h, h H a 1 (h ) 1 ha K, (h ) 1 h H aka 1 h(h aka 1 ) = h (H aka 1 ) f H G HaK HaK = ahk HK 1.6 G H G/H H G/H H G G/H (ah)(bh) = (ab)h H = 1H a 1 H ah G/H G H (factor group) N H G N G G/N H/N = {hn h H} G/N h, h H (hn)(h N) 1 = (hn)((h ) 1 N) = (h(h ) 1 )N H/N N H H/N H/N X x X x 1 X 1 = {x 1 x X} (x 1 ) 1 = x X X 1 (word) xx 1 X X X (free group) F (X) ( ). X = {a} F (X) = {a i i Z} Z

13 X F (X) R F (X) R F (X) N R F (X) N N F (X)/N X R X R F (X) R 1 X R R r r = ( ). a a n = 1 n ( ) ( (cyclic group) ) n C n C n = {1, a, a 2,, a n 1 } Z n Z/nZ (). x, y x n = y 2 = 1, yx = x n 1 y 2n (dihedral group) 2n D 2n D 2n = {1, x, x 2,, x n 1, y, xy, x 2 y,, x n 1 y} G = a a n = 1 (1) a m = 1 n m (2) o(a m ) = n/ gcd(m, n) gcd(m, n) = 1 o(a m ) = o(a) a m = a. (1) (2) d = gcd(m, n) m = dm, n = dn (a m ) n = a m n = 1 o(a m ) n a m = o(a m ) n x, y xm + yn = d a d = a xm+yn = (a m ) x (a n ) y = (a m ) x a m a d a m o(a d ) = n n = a d a m = o(a m ) o(a m ) = a m = n = n/d

14 14 CHAPTER G n d n {x G x d = 1} = d N G g G G/N gn o(gn) o(g) K n M n (K) M n (K) ( M n (K) K n ) ( GL n (K)). K K n 0 K n K n (general linear group) GL n (K) K q F q F q GL n (K) GL n (q) GL 2 (2) F 2 = {0, 1} GL n (q) ( SL n (K)). K n 1 GL n (K) K n (special linear group) SL n (K) SL n (F q ) SL n (q) SL 2 (3) F 2 = {0, 1, 2} ( O(n)). T M n (R) (orthogonal matrix) t T T = T t T = E (E ) t T = T 1 n GL n (R) n (orthogonal group) O(n) O(n) GL n (R) ( U(n)). U M n (C) (unitary matrix) U U = UU = E U = U 1 U = t U n GL n (C) n (unitary group) U(n) U(n) GL n (C).

15 X X X X Sym(X) Sym(X) X X X σ ( ) x σ = σ(x) X = n < X = {1, 2,, n} Sym(X) S n n S n n n 1 1, 2,, n ( ) σ = ( ) ( ) = ( 1 2 ) ( ) = ( ) = ( 1 2 ) σ a 1, a 2,, a l a 1 σ a 2 σ a 3 σ σ a l σ a 1 (a 1 a 2 a l 1 a l ) ( (a 1, a 2,, a l 1, a l ) ) l l l 2 1 ( ) ( ) ( ) = (1 2 3), = (1 2) n

16 16 CHAPTER 1. ( ) n (1 2 l) = (1 l)(1 l 1) (1 3)(1 2) σ ( ) σ [l 1, l 2,, l r ], l 1 l 2, l r 1 l i = 1 l i σ = [3, 2, 1] ( [3, 2]) ( ) = (1 2 3)(4 5)(6) σ [l 1, l 2,, l r ] σ o(σ) l 1, l 2,, l r (1) σ, τ σ τστ 1 (2) σ σ τ σ = τστ 1 n σ ( ) σ 1 1 sgn(σ) S n n A n n 5 n A n 1 A n 1 (simple group) ( ), ( )(5 6) A

17 M U(M) M U(M) M M K n M n (K) GL n (K) X X Sym(X) R U(R) R ( ) K U(K) = K {1 K } K Z U(Z) = {1, 1} G 1 G G G g g 2 = 1 G G Z(G) G/Z(G) G ( G = Z(G) ) ( ) a b 0 a b K M = GL c d 2 (K) M = c d M GL 3 (K) GL 2 (K) GL 3 (K) GL 2 (K) GL 3 (K) ( m n GL m (K) GL n (K) ) X Sym(X) Y X Sym(Y ) X Y Sym(X) Sym(Y ) Sym(X) Sym(Y ) Sym(X) ( m n S m S n ) G = D 8 = x, y x 4 = y 2 = 1, yx = x 3 y H = y G H (H, H)

18 18 CHAPTER Q 8 = {±1, ±i, ±, j, ±k} i 2 = j 2 = k 2 = 1, ij = ji = k, jk = kj = i, ki = ik = j 1 1 Q 8 Q 8 8 D 8 Q 8 D V = x, y xy = yx, x 2 = y 2 = 1 V (V ) GL n (C)

19 Chapter G, H f : G H (group homomorphism) a, b G f(ab) = f(a)f(b) f(a + b) = f(a) + f(b) G H f : G H K GL n (K) det : GL n (K) K det(ab) = det(a) det(b) n σ sgn(σ) S n {1, 1} K V, W K- f : V W f(v + v ) = f(v) + f(v ) R R = R {0} exp : R R exp(x + y) = exp(x) exp(y) G H ι : H G, ι(h) = h f : G H, g : H K g f : G K 19

20 20 CHAPTER f : G H (1) f(1 G ) = 1 H (2) a G f(a 1 ) = f(a) 1. (1) f(1 G ) = f(1 G 1 G ) = f(1 G )f(1 G ) f(1 G ) 1 1 H = f(1 G ) (2) 1 H = f(1 G ) = f(aa 1 ) = f(a)f(a 1 ) f(a) 1 f(a) 1 = f(a 1 ) f : G H Kerf = {a G f(a) = 1 H } f (kernel) f (image) Imf = {f(a) a G} f : Z/4Z Z/4Z f(a + 4Z) = 2a + 4Z f f f : G H (1) Kerf G (2) Imf H. (1) f(1 G ) = 1 H 1 G Kerf Kerf x, y Kerf f(xy 1 ) = f(x)f(y) 1 = 1 H xy 1 Kerf Kerf G x Kerf, g G f(gxg 1 ) = f(g)f(x)f(g) 1 = f(g)f(g) 1 = 1 H gxg 1 Kerf Kerf G (2) 1 H = f(1 G ) Imf Imf a, b Imf x, y G a = f(x), b = f(y) Imf H ab 1 = f(x)f(y) 1 = f(xy 1 ) Imf S n sgn sgn A n (Ker(sgn) = A n ) f : G H f (monomorphism) f (epimorphism) f (isomorphism)f f : G H G H G H G = H

21 G G G G = G f : G H f f 1 : H G G = H H = G f : G H g : H K g f : G K G = H H = K G = K G = {a, b}, H = {x, y} a b a a b b b a x y x x y y y x G H f : G H f(a) = x, f(b) = y f f : G H f Kerf = 1. f 1 G Kerf x Kerf f(x) = 1 H = f(1 G ) f x = 1 G Kerf = 1 Kerf = 1 f(x) = f(y) 1 = f(x)f(y) 1 = f(xy 1 ) xy 1 Kerf = {1 G } x = y f N G f : G G/N f(g) = gn Kerf = N f : G H (1) A G f(a) H (2) B H f 1 (B) G (3) B H f 1 (B) G (4) f A G f(a) H. (1) x, y A f(x)f(y) 1 = f(xy 1 ) f(a) f(a) H (2) s, t f 1 (B) f(s), f(t) B f(st 1 ) = f(s)f(t) 1 B st 1 f 1 (B) (3) f 1 (B) G (2) g G, s f 1 (B) f(s) B H f(gsg 1 ) = f(g)f(s)f(g) 1 f(g)bf(g) 1 B

22 22 CHAPTER 2. gsg 1 f 1 (B) (4) f(a) B (1) x f(a), h H a A x = f(a) f g G h = f(g) hxh 1 = f(g)f(a)f(g) 1 = f(gag 1 ) f(gag 1 ) f(a) f : G H A G f(a) H f : G H N Kerf G f : G/N H f(gn) = f(g). f an = bn n N b = an n N Kerf f f f(b) = f(an) = f(a)f(n) = f(a)1 H = f(a) f((an)(bn)) = f((ab)n) = f(ab) = f(a)f(b) = f(an)f(bn) ( ). f : G H f : G/Kerf Imf f(g(kerf)) = f(g) G/Kerf = Imf f G/Kerf = H. N = Kerf f : G/N H (gn f(g)) Imf = Imf f : G/Kerf Imf Imf f an Kerf f(an) = 1 H f(a) = 1 H a Kerf an = 1 G N Kerf = 1 f f

23 f : Z/4Z Z/4Z f(a + 4Z) = 2a + 4Z f ( ) a + 4Z a f Kerf = {0, 2} = 2Z/4Z, Imf = {0, 2} = 2Z/4Z (Z/4Z)/(2Z/4Z) = 2Z/4Z 2.3 ( 2.2.2) (). H G N G HN/N = H/(H N). f : H HN/N f(h) = hn x HN h H n N x = hn xn = hnn = hn = f(h) f f(h) = hn = 1N h N Kerf = H N HN/N = H/(H N) G = Z, H = 4Z, N = 6Z H+N = 4Z+6Z = 2Z, H N = 12Z 2Z/6Z = 4Z/12Z f : 2Z/6Z 4Z/12Z, f(a + 6Z) = 2a + 12Z (). N H G N H G/H = (G/N)/(H/N). f : G G/H Kerf = H N g : G/N G/H, g(xn) = xh Kerg = H/N G/H = (G/N)/(H/N)

24 24 CHAPTER (Z/4Z)/(2Z/4Z) = 2Z/4Z (Z/4Z)/(2Z/4Z) = Z/2Z Z/2Z = 2Z/4Z f : Z/2Z 2Z/4Z, f(a + 2Z) = 2a + 4Z N G p : G G/N S G N T G/N H S H/N = p(h) T X T p 1 (X) S N G G N G/N G G G G (automorphism) G G Aut(G) GF (2) 2 V V = {(0, 0), (0, 1), (1, 0), (1, 1)} V {(0, 0)} V Aut(V ) = S 3 g G f g : G G, x gxg 1 f g G G (inner automorphism) f : G Aut(G), g f g f Aut(G) Inn(G) f g Kerf f g = id G x G gxg 1 = x Kerf G Z(G)

25 Inn(G) = G/Z(G) Inn(G) Aut(G). σ Inn(G), τ Aut(G) g G x G σ(x) = f g (x) = gxg 1 f g y G (τστ 1 )(y) = τ(gτ 1 (y)g 1 ) = τ(g)yτ(g) 1 τστ 1 = f τ(g) Inn(G) Inn(G) Aut(G) Aut(G)/Inn(G) G Out(G) G H G σ Inn(G) σ(h) = H G H G (characteristic subgroup) σ Aut(G) σ(h) = H H G, K H K G H G K H K G. k K, g G gkg 1 = f g (k) H G f g Aut(H) K H gkg 1 K H G K H K G. σ Aut(G) σ H Aut(H) σ(k) = (σ H )(K) = K Z(G) G G, H f : G H f f 1 : H G f G G G G, H f : G H g G o(g) < o(f(g)) < o(f(g)) o(g) ( f o(g) = o(f(g)) )

26 26 CHAPTER G a, b G [a, b] = aba 1 b 1 a b (commutator) G G (derived subgroup) D(G) [G, G] (1) [a, b] = 1 ab = ba (2) D(G) G (3) N G G/N D(G) N (4) M G, N G G/M, G/N G/(M N) G D 0 (G) = G D n+1 (G) = D(D n (G)) D n (G) n- n D n (G) = 1 G 1 (solvable group) G ( ) n- D n (G) G G A, B G A B = 1 a A b B ab = ba G, A ϕ : A Aut(G) G A g, h G, a, b A (g, a)(h, b) = (gϕ(a)(h), ab) G A ( G A (semidirect product) G A ) n ϕ(n) ϕ(n) n n 1 5 A 5 5

27 Chapter X G f : G X X f(g, x) gx f f G X () (A1) x X 1 G x = x (A2) x X, g, h G (gh)x = g(hx) f G X ( ) X G- xg gh g h gx xg g x x g K GL n (K) ( ) K n K n K n K GL n (K) M n (K) M M n (K) P GL n (K) P M = P MP 1, M P = P 1 MP (A1) (A2) (P Q) M = (P Q)M(P Q) 1 = P QMQ 1 P 1 = P (QMQ 1 ) = P ( Q M) 27

28 28 CHAPTER 3. P M = P MP 1 M (P Q) = (P Q) 1 M(P Q) = Q 1 P 1 MP Q = (P 1 MP ) Q = (M P ) Q M P = P 1 MP ( ). G X g G x X gx = x S R n O(n) n ( ) M S T O(n) T M = T MT 1 O(n) S f : G X X G X g G f g : X X, f g (x) = gx f g f g 1 = f g 1 f g = id G f g f g Sym(X) F : G Sym(X), F (g) = f g g, h G x X F (gh)(x) = f gh (x) = (gh)x = g(hx) = f g (f h (x)) = F (g)(f (h)(x)) = (F (g) F (h))(x) = (F (g)f (h))(x) F (gh) = F (g)f (h) F F : G Sym(X) f : G X X gx = f(g, x) = F (g)(x) G X G X G Sym(X) G Sym(X) G X (permutation representation) G X f : G Sym(X) G X (faithful) f G X (1) G X (2) g G x X gx = x g = 1 G X f : G Sym(X) G Sym(X) Sym(X) X (permutation group) S n n X G X G X f : G Sym(X) G/Kerf

29 G X x, y X x y g G y = gx X X G (orbit) G- x X ( ) C x C x = {gx g G} G X C x Gx ( g x, x g G x, x G ) g G Gx G G g, h G gx = hx gx = hx x = 1x = (g 1 g)x = g 1 (gx) = g 1 (hx) = (g 1 h)x G x = {g G gx = x} x G G x G (G x Gx ) G x G S 4 G = (1 2), (3 4) = {( ), (1 2), (3 4), (1 2)(3 4)} G X = {1, 2, 3, 4} X G {1, 2}, {3, 4} X X = {1, 2} {3, 4} G 1 = G 2 = {( ), (3 4)}, G 3 = G 4 = {( ), (1 2)} gx = hx x = (g 1 h)x g 1 h G x gg x = hg x G X x X f : G/G x Gx, f(gg x ) = gx G : G x < G : G x = Gx

30 30 CHAPTER 3.. gg x = hg x gx = hx f Gx g G gx f f(gg x ) = f(hg x ) gx = hx gg x = hg x f X G (transitive) G X x, y X g G y = gx X G- (transitive G-set) G X x X Gx G Gx f : G X X f G Gx Im(f G Gx ) Gx f : G Gx Gx G Gx G- G- G ( G- ). G G G (g, x) gx G G- ( ) G- G X Y X G y Y g G gy Y y Y Y Y G- G Y 3.3 G H H G G/H G/H = {ah a G} g(ah) = (ga)h ah, bh G/H bh = (ba 1 )(ah) G- X Y X Y G- f : X Y x X, g G gf(x) = f(gx)

31 f G- 1 X Y G G X X id G f G Y Y f G X x X f : G/G x X f(ag x ) = ax f G- G- G-. ag x = bg x ax = bx f ax = bx ag x = bg x f G f f g G, ag x G/G x gf(ag x ) = g(ax) = (ga)x = f((ga)g x ) = f(g(ag x )) f G- 3.4 G G G g G x G g x = gxg 1 G G- G G x g = g 1 xg G G ( ) x G g G x x = g x = gxg 1 xg = gx G x C G (x) G x (centralizer) C G (x) = {g G xg = gx} S G C G (S) = s S C G (s) 1 A B

32 32 CHAPTER 3. G S C G (G) G Z(G) x G G x = { g x g G} = {gxg 1 g G} G x (conjugacy class) G x G x G x G : C G (x) G N N G N G G G G {x 1 = 1, x 2,, x r } G = G x 1 G x 2 G x r G = G x 1 + G x G x r G (class equation) C G (1) = G G x 1 = G 1 = 1 G x i G : C G (x i ) G G x = 1 x Z(G) S 3 C 1 = {1}, C 2 = {(1 2 3), (1 3 2)}, C 3 = {(1 2), (1 3), (2 3)} 6 = S 3 C 1 C 2 C 1 C 3 S 3 6 C 1 C 2 C 1 C 2 1 Z(S 3 ) = 1

33 p G p n N 1 G N Z(G) 1. N G G N G C 1 = {1 G }, C 2,, C l x i C i G x i = G : C G (x i ) G p n i G x 1 = 1 l l N = p n i = 1 + p n i i=1 N G N 1 N p p n 1 = 1 i n i > 0 p i 1 n i = 0 1 x i Z(G) N p p p G = N A G g G i=2 g A = gag 1 = {gag 1 a A} G G ( ) 2 G A A (normalizer) N G (A) N G (A) = {g G g A = A} = {g G gag 1 = A} = {g G ga = Ag} A = g A N G (A) G H G H N G (H) G. N G (A) 2 G G G H G h H hh = H = Hh H N G (H) H G g H G. x, y g H a, b H x = gag 1, y = gbg 1 xy 1 = (gag 1 )(gbg 1 ) 1 = gag 1 gb 1 g 1 = g(ab 1 )g 1 ab 1 H xy 1 g H g H H G G H G N G (H) = G H G H N G (H) H N G (H) H G H G G : N G (H). H G H 3.2.4

34 34 CHAPTER n Z/nZ G (1) g G a + nz Z/nZ g(a + nz) ga + nz G Z/nZ (2) n = 5, 6, 8 (1) K V = K n K n GL n (K) V 1 0 e e GL n (K) G = D 8 = x, y x 4 = y 2 = 1, yx = x 3 y H = y D 8 N G (H) A 4 (1) A 4 (2) A 4 (3) A Q p p G n a i, b i {1,, n}, a i b i (i = 1, 2) g G g(a 1 ) = a 2, g(b 1 ) = b 2 G 2 ( t ) G n G 1 = {σ G σ(1) = 1} G 1 {2, 3,, n} G 2 G 1 {2, 3,, n}

35 Chapter (Sylow) p G p G G p. G G = p G p G > p 1 g G n = o(g) p n o(g n/p ) = p p n H = g 1 < H < G p H p G/H G/H < G p G/H G/H p a a l = 1 p l a l = 1 p l p o(a) o(a o(a)/p ) = p G ( 1) p G Z(G) p Z(G) 1. G = G 1 + G x G x r G x i = G : C G (x i ) C G (x i ) G G x i p G = G : 1 p C G (1) = G G 1 = 1 p p G x i = 1 i C G (x i ) = G x i Z(G) p p- G p- p- G G = p a q, p q G p a G p- p- G p- 35

36 36 CHAPTER ( (1)). p r G G p r G p-. G G = 1 G > 1 p r G r = 0 r > 0 G H G : H p H p r G p Z(G) p Z(G) p a N = a a Z(G) N G N = p G/N p r 1 G/N G/N p r 1 H/N H = p r G p r G p- Syl p (G) G p Syl p (G) ( (2)). G (1) P Syl p (G) G p- Q g G Q g P (2) P, Q Syl p (G) P Q (3) Syl p (G) 1 (mod p). (1) G (Q, P ) r r G = Qa i P = Q : Q a i P a 1 i P i=1 i=1 G = P G : P P Syl p (G) G : P 0 (mod p) r 0 G : P = Q : Q a i P a 1 i (mod p) i=1 Q p- Q : Q a i P a 1 i p- i Q : Q a i P a 1 i = 1 Q a i P a 1 i = a i P (2) (1) P, Q Q = g P Q = g P (3) N = N G (P ) (2) Syl p (G) = G : N P Syl p (N) N (2) P N G p- G (P, N)- l G = P b j N b 1 = 1 G : N N = G = j=1 l P b j N = j=1 l P : P b j Nb 1 j N j=1

37 P N P : P N = 1 P : P b j Nb 1 j = 1 b 1 j P b j N b 1 j P b j = P b j N j = 1 j 1 P : P b j Nb 1 j 1 p- l G : N = 1 + P : P b j Nb 1 j j=2 Syl p (G) = G : N 1 (mod p) p- p- G p- G p- G p- p p, q p < q, p q 1 G = pq G ( 15, 35 ). P Syl p (G), Q Syl q (G) N = N G (P ) P N G N p pq N = p pq N = p Syl p (G) = G : N = q 1 (mod p) N = pq N = G P G Q G P, Q G p- q- 1 x G x o(x) o(x) G o(x) = 1 o(x) {p, q, pq} o(x) = pq x x = G G o(x) = pq x o(x) = p x = p p- p- P p- x P p 1 o(x) = q q 1 p 2, q (p 1) + (q 1) = p + q 1 < 2q pq = G o(x) = pq G n 7 n S n S n (n 7) 15 (S 8 [5, 3] 15 ) G p P Syl p (G) G H N G (P ) N G (H) = H

38 38 CHAPTER 4.. N G (H) H x N G (H) x H = H x P x H = H P, x P Syl P (H) P x P H h H x P = h P h 1 x N G (P ) H x hh = H N G (H) H p = 2, 3, 5 5 S 5 p- p G p P Syl p (G) P G P G p G H G P Syl p (H) P H P G G H G p P Syl p (H) G = HN G (P ) p 2p C 2p D 2p p G p G p-

39 Chapter G, H G H (g 1, h 1 )(g 2, h 2 ) = (g 1 g 2, h 1 h 2 ) (1 G, 1 H ) (g, h) 1 = (g 1, h 1 ) G H G H ( ) G H = H G, G H K = (G H) K = G (H K) r G i, i=1 ( ) r r G i = G i i=1 G H G 1 = {(g, 1 H ) g G} G 1 = G G G H H G H 39 λ Λ i=1 G λ

40 40 CHAPTER 5. (1) G H G H (2) G H G H G = r i=1 G i G g = (g 1,, g r ) (g i G i ) π i : G G i, π i (g) = g i G G i ι i : G i G, ι i (g i ) = (1,, 1, g i, 1,, 1) G i G π i ι i (g i ) = g i, (ι 1 π 1 (g))(ι 2 π 2 (g)) (ι r π r (g)) = g π i ι i = id Gi, r (ι i π i ) = id G i= G, H Z(G H) = {(a, b) a Z(G), b Z(H)} = Z(G) Z(H) 5.2 G H 1, H 2,, H r G G H 1, H 2,, H r ( ) (D1) i j H i H j (D2) G h 1 h 2 h r (h i H i ) G = H 1 H r G H 1, H 2,, H r (E1) i H i G

41 (E2) G = H 1 H r (E3) i H i (H 1 H i 1 H i+1 H r ) = 1. G H 1, H 2,, H r G g h 1 h 2 h r (h i H i ) f i H i gf i g 1 = h 1 h 2 h r f i h r 1 h 2 1 h 1 1 = h i f i h i 1 H i H i G (E1) G h 1 h 2 h r (h i H i ) (E2) x H i (H 1 H i 1 H i+1 H r ) x = h 1 h i 1 h i+1 h r x = 1 H1 1 Hi 1 x1 Hi+1 1 Hr = h 1 h i 1 1 Hi h i+1 h r (D2) x = 1 (E3) (E1), (E2), (E3) i j H j H 1 H i 1 H i+1 H r H i H j = 1 h i H i, h j H j h i h j h 1 i h 1 j = (h i h j h 1 i )h 1 j (h i H j h 1 i )h 1 j H j h 1 j H j h i h j h 1 i h 1 j H i h i h j h 1 i h 1 j H i H j = 1 h i h j h 1 i h 1 j = 1 h i h j = h j h i (D1) (E2) G g h 1 h 2 h r (h i H i ) h 1 h 2 h r = k 1 k 2 k r (h i, k i H i ) (D1) 1 = (h 1 h 2 h r )(k 1 k 2 k r ) 1 = (h 1 k 1 1 )(h 2 k 2 1 ) (h r k r 1 ) (E3) k 1 h 1 1 = (h 2 k 2 1 ) (h r k r 1 ) H 1 (H 2 H r ) = 1 h 1 = k 1 h i = k i i (D2) G H, K G = H K H ( K) G G 1 G (indecomposable) (decomposable) G H 1,, H r H i G H 1,, H r G G = a a 6 = 1 H = a 2, K = a 3 G, H, K 6, 3, 2 H = {1, a 2, a 4 }, K = {1, a 3 } G = H K C 6 = C3 C 2

42 42 CHAPTER m, n C mn = Cm C n. C mn = a, C m = b, C n = c f : C mn C m C n f(a i ) = (b i, c i ) f(a i ) = (b i, c i ) = 1 i m n mn a i = 1 Kerf = 1 f C mn = mn = C m C n f f p G n C p G (p-) p- GF (p) n C 6 C 4 = C12 C C 4 C 2 C (g, h) G H g G h H (g, h) o(g) o(h) D(G H) = D(G) D(H) G H G H

43 Chapter (). C e1 C e2 C er e i+1 e i (i = 1, 2,, r 1), e i > 1 (i = 1, 2,, r) {e i } C e1 C e2 C er r i=1 e i = 12 e i+1 e i {12}, {6, 2} 12 C 12, C 6 C , p- 43

44 44 CHAPTER p a p- G G H G = a H. G p- a G G H G = a H G G = 1 G 1 G = a H = 1 G a b a G/ a p- o(b a ) p- o(b a ) = p s c = b (ps 1) o(c a ) = p c a, c p a c p = a m p m o(a m ) = o(a) o(c) = p o(a) > o(a) o(a) p m m = m p d = ca m d a d p = 1 d d a = 1 π : G G/ d π a π( a ) = π(a) = a π(a) G/ d G/ d U G/ d = π(a) U U = π 1 (U) G = a U G a G, U G x a U π(x) π(a) U = 1 x a Kerπ = 1 a U = 1 g G π(g) = π(a) i u i u U π u U π(u ) = u π(a i u ) = π(a) i u = π(g) g a i u d g a i u d j j π(d j ) = 1 U u d j U G = a U G = a U p p-. G p-a G G = a H H H p- G p 1,, p l G P i Syl pi (G) G = l i=1 P i P i G G = l i=1 P i G C e1 C e2 C er e i+1 e i (i = 1, 2,, r 1)

45 p 1,, p l G P i Syl pi (G) P i C fi,1 C fi,2 C fi,l(i) f i,j p i f i,1 f i,2 f i,l(i) f i,j+1 f i,j l(i) (i = 1, 2,, r) l l(i) < l i f i,l(i)+1 = = f i,l = 1 G j = r i=1 C f i,j G j r i=1 f i,j i f i,j+1 f i,j G j+1 G j G = G 1 G l G e 1,, e r. G = C e1 C e2 C er = Cf1 C f2 C fs e i+1 e i (i = 1, 2,, r 1), f j+1 f j (j = 1, 2,, s 1) m (G, m) = {g G g m = 1} a = (a 1,, a r ) C e1 C er a (G, m) i a i (C ei, m) (C n, m) = gcd(m, n) m S(m) m e i i T (m) m f j j e i+1 e i i < j m e j m e i f i p (G, p) (G, p) = p S(p) = p T (p) S(p) = T (p) (G, p 2 ) = p 2S(p2) + p S(p) = p 2T (p2) + p T (p) S(p 2 ) = T (p 2 ) l S(p l ) = T (p l ) e i+1 e i, f j+1 f j p l e i p l f i p e i = f i ( ( ) )

46 46 CHAPTER 6. A B A B ( ) Z n Z/nZ Z F = Z Z F F = Zx 1 Zx r 2F = {2f f F } 2F F F/2F F/2F = Zx 1 /2Zx 1 Zx r /2Zx r = Z/2Z Z/2Z F/2F = 2 r F/2F F r ( ) f : A F A F B = Kerf B A. F = Zx 1 Zx r x i f(c i ) = x i c i A C = Zc Zc r A = B C a A f(a) = r i=1 k ix i c = r i=1 k ic i f(c) = f(a) a = (a c) + c f(a c) = f(a) f(c) = 0 a c B c C a B + C A = B + C b B C c C c = r i=1 k ic i c B 0 = f(c) = r i=1 k ix i F k 1 = = k r = 0 c = 0 B C = 0 A = B C F A A F ( ). F = Zx 1 Zx r F r r = 1 0 r > 1 a A a = r i=1 a ix i f : A Zx r f(a) = a r x r Imf = 0 A Zx 1 Zx r 1 A r 1 Imf 0 0 m Z Imf = mzx r

47 f : A mzx r A = Kerf C C C = A/Kerf = Imf = mzx r Z f Kerf Zx 1 Zx r 1 B r 1 A r A T (A) A A A T (A) = 0 A ( ) A A/T (A). a A a T (A/T (A)) 0 m Z ma = 0 ma T (A) 0 n Z 0 = n(ma) = (nm)a a T (A) a = 0 ( ) A a 1,, a r A = r i=1 Za i F = r i=1 Zx i x 1,, x r π : F A f( r i=1 k ix i ) = r i=1 k ia i B A π 1 (B) F y 1,, y s π 1 (B) B π(y 1 ),, π(y s ) A T (A) ( ) T (A) a 1,, a r T (A) T (A) r i=1 k ia i (k i Z) a i n i (< ) 0 k i < n i ( ) A x 1,, x r A x 1,, x r y 1,, y m m i=1 Zy i = m i=1 Zy i x 1,, x m B = m i=1 Zx i A/B A/B x 1,, x r 1 i m x i B x i = 0 A/B x m+1,, x r j (m + a j r) x j Zx j B = 0 m i=1 Zx i + Zx j = m i=1 Zx i Zx j x j (m+a j r) x j (m+a j r) l A/B l 0 A A (l) = {a l a A} A (l) B B A (l)

48 48 CHAPTER 6. f : A A (l) f(a) = a l f A A = A (l) A ( ). A A = F T (A) F T (A) F T (A) ( ). A/T (A) f : A A/T (A) Kerf = T (A) A = T (A) B B B = A/T (A) B T (A) F A T (A) A Z Z Z/e 1 Z Z/e r Z e i+1 e i A T (A) A , 24, C 4 C 6 C 10 C e1 C er e i+1 e i (i = 1, 2,, r 1) p p p p A = Z Z/2Z (a, b) (a Z, b Z/2Z = {0, 1}) x = (1, 1), y = (0, 1) A = x y ( )

49 [1],, [2],, Akihide Hanaki 2011/02/08 49

50 2, 34 G-, 29 G-, 27 n, 28 p-, 33 p-, 35, 7, 29, 7, 10, 14, 26, 30, 46, 25, 26, 7, 7, 7, 20, 16, 7, 16, 29, 42, 13, 7, 31, 33, 32, 16, 18, 7, 19, 7, 12, 26, 26, 7, 16, 15, 15, 15, 27, 30, 18, 24, 24, 9, 21, 28, 8, 40, 12, 48, 13, 15, 10, 19, 22, 12, 10 p-, 35, 36, 33 50

51 51, 10, 13, 9 G-, 30, 7, 14, 20, 20, 15, 7, 7, 17, 16, 20, 7, 15, 28, 28, 28, 9, 31, 32, 39, 40, 41, 46, 41, 41, 14, 14, 20, 30, 31, 20, 23, 47, 48, 47, 14, 25, 13, 40, 47, 7, 26, 9, 9, 16, 8, 10, 10, 7, 12, 7, 43, 7, 48, 46, 14, 14, 9, 46, 11, 11, 32, 24, 24, 15, 7

ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University 2004 1 1 1 2 2 1 3 3 1 4 4 1 5 5 1 6 6 1 7 7 1 8 8 1 9 9 1 10 10 1 E-mail:hsuzuki@icu.ac.jp 0 0 1 1.1 G G1 G a, b,

More information

A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x A (1)

A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x A (1) 7 2 2.1 A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x 1 2.1.1 A (1) A = R x y = xy + x + y (2) A = N x y = x y (3) A =

More information

A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x A (1)

A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x A (1) 7 1 11 A µ : A A A µx, y x y x y z x y z A x, y, z x y y x A x, y A e x e e x x A x e A e x A xy yx e y x x x y y x 1 111 A 1 A R x y xy + x + y R x, y, z, : xyz xy+x+yz xy+x+yz+xy+x+y+z xyz+y+z+x+yz+y+z

More information

Armstrong culture Web

Armstrong culture Web 2004 5 10 M.A. Armstrong, Groups and Symmetry, Springer-Verlag, NewYork, 1988 (2000) (1989) (2001) (2002) 1 Armstrong culture Web 1 3 1.1................................. 3 1.2.................................

More information

II Time-stamp: <05/09/30 17:14:06 waki> ii

II Time-stamp: <05/09/30 17:14:06 waki> ii II waki@cc.hirosaki-u.ac.jp 18 1 30 II Time-stamp: ii 1 1 1.1.................................................. 1 1.2................................................... 3 1.3..................................................

More information

12 2 e S,T S s S T t T (map) α α : S T s t = α(s) (2.1) S (domain) T (codomain) (target set), {α(s)} T (range) (image) s, s S t T s S

12 2 e S,T S s S T t T (map) α α : S T s t = α(s) (2.1) S (domain) T (codomain) (target set), {α(s)} T (range) (image) s, s S t T s S 12 2 e 2.1 2.1.1 S,T S s S T t T (map α α : S T s t = α(s (2.1 S (domain T (codomain (target set, {α(s} T (range (image 2.1.2 s, s S t T s S t T, α s, s S s s, α(s α(s (2.2 α (injection 4 T t T (coimage

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

2014 (2014/04/01)

2014 (2014/04/01) 2014 (2014/04/01) 1 5 1.1...................................... 5 1.2...................................... 7 1.3...................................... 8 1.4............................... 10 1.5 Zorn...........................

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

15 mod 12 = 3, 3 mod 12 = 3, 9 mod 12 = N N 0 x, y x y N x y (mod N) x y N mod N mod N N, x, y N > 0 (1) x x (mod N) (2) x y (mod N) y x

15 mod 12 = 3, 3 mod 12 = 3, 9 mod 12 = N N 0 x, y x y N x y (mod N) x y N mod N mod N N, x, y N > 0 (1) x x (mod N) (2) x y (mod N) y x A( ) 1 1.1 12 3 15 3 9 3 12 x (x ) x 12 0 12 1.1.1 x x = 12q + r, 0 r < 12 q r 1 N > 0 x = Nq + r, 0 r < N q r 1 q x/n r r x mod N 1 15 mod 12 = 3, 3 mod 12 = 3, 9 mod 12 = 3 1.1.2 N N 0 x, y x y N x y

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1.

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1. () 1.1.. 1. 1.1. (1) L K (i) 0 K 1 K (ii) x, y K x + y K, x y K (iii) x, y K xy K (iv) x K \ {0} x 1 K K L L K ( 0 L 1 L ) L K L/K (2) K M L M K L 1.1. C C 1.2. R K = {a + b 3 i a, b Q} Q( 2, 3) = Q( 2

More information

, = = 7 6 = 42, =

, = = 7 6 = 42, = http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1 1 2016.9.26, http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1.1 1 214 132 = 28258 2 + 1 + 4 1 + 3 + 2 = 7 6 = 42, 4 + 2 = 6 2 + 8

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

p-sylow :

p-sylow : p-sylow :15114075 30 2 20 1 2 1.1................................... 2 1.2.................................. 2 1.3.................................. 3 2 3 2.1................................... 3 2.2................................

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

13 0 1 1 4 11 4 12 5 13 6 2 10 21 10 22 14 3 20 31 20 32 25 33 28 4 31 41 32 42 34 43 38 5 41 51 41 52 43 53 54 6 57 61 57 62 60 70 0 Gauss a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x

More information

2001 Mg-Zn-Y LPSO(Long Period Stacking Order) Mg,,,. LPSO ( ), Mg, Zn,Y. Mg Zn, Y fcc( ) L1 2. LPSO Mg,., Mg L1 2, Zn,Y,, Y.,, Zn, Y Mg. Zn,Y., 926, 1

2001 Mg-Zn-Y LPSO(Long Period Stacking Order) Mg,,,. LPSO ( ), Mg, Zn,Y. Mg Zn, Y fcc( ) L1 2. LPSO Mg,., Mg L1 2, Zn,Y,, Y.,, Zn, Y Mg. Zn,Y., 926, 1 Mg-LPSO 2566 2016 3 2001 Mg-Zn-Y LPSO(Long Period Stacking Order) Mg,,,. LPSO ( ), Mg, Zn,Y. Mg Zn, Y fcc( ) L1 2. LPSO Mg,., Mg L1 2, Zn,Y,, Y.,, Zn, Y Mg. Zn,Y., 926, 1 1,.,,., 1 C 8, 2 A 9.., Zn,Y,.

More information

,2,4

,2,4 2005 12 2006 1,2,4 iii 1 Hilbert 14 1 1.............................................. 1 2............................................... 2 3............................................... 3 4.............................................

More information

January 27, 2015

January 27, 2015 e-mail : kigami@i.kyoto-u.ac.jp January 27, 205 Contents 2........................ 2.2....................... 3.3....................... 6.4......................... 2 6 2........................... 6

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

等質空間の幾何学入門

等質空間の幾何学入門 2006/12/04 08 tamaru@math.sci.hiroshima-u.ac.jp i, 2006/12/04 08. 2006, 4.,,.,,.,.,.,,.,,,.,.,,.,,,.,. ii 1 1 1.1 :................................... 1 1.2........................................ 2 1.3......................................

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i [ ] (2016 3Q N) a 11 a 1n m n A A = a m1 a mn A a 1 A A = a n (1) A (a i a j, i j ) (2) A (a i ca i, c 0, i ) (3) A (a i a i + ca j, j i, i ) A 1 A 11 0 A 12 0 0 A 1k 0 1 A 22 0 0 A 2k 0 1 0 A 3k 1 A rk

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載

1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載 1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載のない限り 熱容量を考慮した空き容量を記載しております その他の要因 ( 電圧や系統安定度など ) で連系制約が発生する場合があります

More information

Nobelman 絵文字一覧

Nobelman 絵文字一覧 Nobelman i-mode EZweb J-SKY 1 88 2 89 3 33 4 32 5 5 F[ 6 6 FZ 7 35 W 8 34 W 9 7 F] W 10 8 F\ W 11 29 FR 12 30 FS 13 64 FU 14 63 FT 15 E697 42 FW 16 E678 70 FV 17 E696 43 FX 18 E6A5 71 FY 19 117 20 E6DA

More information

LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University 2002 2 2 2 2 22 2 3 3 3 3 3 4 4 5 5 6 6 7 7 8 8 9 Cramer 9 0 0 E-mail:hsuzuki@icuacjp 0 3x + y + 2z 4 x + y

More information

ver Web

ver Web ver201723 Web 1 4 11 4 12 5 13 7 2 9 21 9 22 10 23 10 24 11 3 13 31 n 13 32 15 33 21 34 25 35 (1) 27 4 30 41 30 42 32 43 36 44 (2) 38 45 45 46 45 5 46 51 46 52 48 53 49 54 51 55 54 56 58 57 (3) 61 2 3

More information

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a 9 203 6 7 WWW http://www.math.meiji.ac.jp/~mk/lectue/tahensuu-203/ 2 8 8 7. 7 7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa,

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

16 B

16 B 16 B (1) 3 (2) (3) 5 ( ) 3 : 2 3 : 3 : () 3 19 ( ) 2 ax 2 + bx + c = 0 (a 0) x = b ± b 2 4ac 2a 3, 4 5 1824 5 Contents 1. 1 2. 7 3. 13 4. 18 5. 22 6. 25 7. 27 8. 31 9. 37 10. 46 11. 50 12. 56 i 1 1. 1.1..

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................

More information

6. Euler x

6. Euler x ...............................................................................3......................................... 4.4................................... 5.5......................................

More information

欧州特許庁米国特許商標庁との共通特許分類 CPC (Cooperative Patent Classification) 日本パテントデータサービス ( 株 ) 国際部 2019 年 1 月 17 日 CPC 版のプレ リリースが公開されました 原文及び詳細はCPCホームページの C

欧州特許庁米国特許商標庁との共通特許分類 CPC (Cooperative Patent Classification) 日本パテントデータサービス ( 株 ) 国際部 2019 年 1 月 17 日 CPC 版のプレ リリースが公開されました 原文及び詳細はCPCホームページの C 欧州特許庁米国特許商標庁との共通特許分類 CPC (Cooperative Patent Classification) 日本パテントデータサービス ( 株 ) 国際部 2019 年 1 月 17 日 CPC 2019.02 版のプレ リリースが公開されました 原文及び詳細はCPCホームページの CPC Revisions(CPCの改訂 ) 内のPre-releaseをご覧ください http://www.cooperativepatentclassification.org/cpcrevisions/prereleases.html

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

欧州特許庁米国特許商標庁との共通特許分類 CPC (Cooperative Patent Classification) 日本パテントデータサービス ( 株 ) 国際部 2019 年 7 月 31 日 CPC 版が発効します 原文及び詳細はCPCホームページのCPC Revision

欧州特許庁米国特許商標庁との共通特許分類 CPC (Cooperative Patent Classification) 日本パテントデータサービス ( 株 ) 国際部 2019 年 7 月 31 日 CPC 版が発効します 原文及び詳細はCPCホームページのCPC Revision 欧州特許庁米国特許商標庁との共通特許分類 CPC (Cooperative Patent Classification) 日本パテントデータサービス ( 株 ) 国際部 2019 年 7 月 31 日 CPC 2019.08 版が発効します 原文及び詳細はCPCホームページのCPC Revisions(CPCの改訂 ) をご覧ください https://www.cooperativepatentclassification.org/cpcrevisions/noticeofchanges.html

More information

000 001

000 001 all-round catalogue vol.2 000 001 002 003 AA0102 AA0201 AA0701 AA0801 artistic brushes AA0602 AB2701 AB2702 AB2703 AB2704 AA0301 AH3001 AH3011 AH3101 AH3201 AH3111 AB3201 AB3202 AB2601 AB2602 AB0701 artistic

More information

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+ R 3 R n C n V??,?? k, l K x, y, z K n, i x + y + z x + y + z iv x V, x + x o x V v kx + y kx + ky vi k + lx kx + lx vii klx klx viii x x ii x + y y + x, V iii o K n, x K n, x + o x iv x K n, x + x o x

More information

1 1.1 R (ring) R1 R4 R1 R (commutative [abelian] group) R2 a, b, c R (ab)c = a(bc) (associative law) R3 a, b, c R a(b + c) = ab + ac, (a + b)c = ac +

1 1.1 R (ring) R1 R4 R1 R (commutative [abelian] group) R2 a, b, c R (ab)c = a(bc) (associative law) R3 a, b, c R a(b + c) = ab + ac, (a + b)c = ac + ALGEBRA II Hiroshi SUZUKI Department of Mathematics International Christian University 2004 1 1 1 2 2 1 3 3 1 4 4 1 5 5 1 6 6 1 7 7 1 7.1....................... 7 1 7.2........................... 7 4 8

More information

Part y mx + n mt + n m 1 mt n + n t m 2 t + mn 0 t m 0 n 18 y n n a 7 3 ; x α α 1 7α +t t 3 4α + 3t t x α x α y mx + n

Part y mx + n mt + n m 1 mt n + n t m 2 t + mn 0 t m 0 n 18 y n n a 7 3 ; x α α 1 7α +t t 3 4α + 3t t x α x α y mx + n Part2 47 Example 161 93 1 T a a 2 M 1 a 1 T a 2 a Point 1 T L L L T T L L T L L L T T L L T detm a 1 aa 2 a 1 2 + 1 > 0 11 T T x x M λ 12 y y x y λ 2 a + 1λ + a 2 2a + 2 0 13 D D a + 1 2 4a 2 2a + 2 a

More information

ORIGINAL TEXT I II A B 1 4 13 21 27 44 54 64 84 98 113 126 138 146 165 175 181 188 198 213 225 234 244 261 268 273 2 281 I II A B 292 3 I II A B c 1 1 (1) x 2 + 4xy + 4y 2 x 2y 2 (2) 8x 2 + 16xy + 6y 2

More information

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

( )/2   hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1 ( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

Dynkin Serre Weyl

Dynkin Serre Weyl Dynkin Naoya Enomoto 2003.3. paper Dynkin Introduction Dynkin Lie Lie paper 1 0 Introduction 3 I ( ) Lie Dynkin 4 1 ( ) Lie 4 1.1 Lie ( )................................ 4 1.2 Killing form...........................................

More information

CRA3689A

CRA3689A AVIC-DRZ90 AVIC-DRZ80 2 3 4 5 66 7 88 9 10 10 10 11 12 13 14 15 1 1 0 OPEN ANGLE REMOTE WIDE SET UP AVIC-DRZ90 SOURCE OFF AV CONTROL MIC 2 16 17 1 2 0 0 1 AVIC-DRZ90 2 3 4 OPEN ANGLE REMOTE SOURCE OFF

More information

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10 1 2007.4.13. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 0. 1. 1. 2. 3. 2. ɛ-δ 1. ɛ-n

More information

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9 1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n 1-2. 0 m n m n 0 2 = 1.41421356 π = 3.141516 1-3. 1 0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c),

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト 名古屋工業大の数学 年 ~5 年 大学入試数学動画解説サイト http://mathroom.jugem.jp/ 68 i 4 3 III III 3 5 3 ii 5 6 45 99 5 4 3. () r \= S n = r + r + 3r 3 + + nr n () x > f n (x) = e x + e x + 3e 3x + + ne nx f(x) = lim f n(x) lim

More information

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63)

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63) 211 12 1 19 2.9 F 32 32: rot F d = F d l (63) F rot F d = 2.9.1 (63) rot F rot F F (63) 12 2 F F F (63) 33 33: (63) rot 2.9.2 (63) I = [, 1] [, 1] 12 3 34: = 1 2 1 2 1 1 = C 1 + C C 2 2 2 = C 2 + ( C )

More information

( ),.,,., C A (2008, ). 1,, (M, g) (Riemannian symmetric space), : p M, s p : M M :.,.,.,, (, ).,, (M, g) p M, s p : M M p, : (1) p s p, (

( ),.,,., C A (2008, ). 1,, (M, g) (Riemannian symmetric space), : p M, s p : M M :.,.,.,, (, ).,, (M, g) p M, s p : M M p, : (1) p s p, ( ( ),.,,., C A (2008, ). 1,,. 1.1. (M, g) (Riemannian symmetric space), : p M, s p : M M :.,.,.,, (, ).,,. 1.2. (M, g) p M, s p : M M p, : (1) p s p, (2) s 2 p = id ( id ), (3) s p ( )., p ( s p (p) = p),,

More information

function2.pdf

function2.pdf 2... 1 2009, http://c-faculty.chuo-u.ac.jp/ nishioka/ 2 11 38 : 5) i) [], : 84 85 86 87 88 89 1000 ) 13 22 33 56 92 147 140 120 100 80 60 40 20 1 2 3 4 5 7.1 7 7.1 1. *1 e = 2.7182 ) fx) e x, x R : 7.1)

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

2 A id A : A A A A id A def = {(a, a) A A a A} 1 { } 1 1 id 1 = α: A B β : B C α β αβ : A C αβ def = {(a, c) A C b B.((a, b) α (b, c) β)} 2.3 α

2 A id A : A A A A id A def = {(a, a) A A a A} 1 { } 1 1 id 1 = α: A B β : B C α β αβ : A C αβ def = {(a, c) A C b B.((a, b) α (b, c) β)} 2.3 α 20 6 18 1 2 2.1 A B α A B α: A B A B Rel(A, B) A B (A B) A B 0 AB A B AB α, β : A B α β α β def (a, b) A B.((a, b) α (a, b) β) 0 AB AB Rel(A, B) 1 2 A id A : A A A A id A def = {(a, a) A A a A} 1 { } 1

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

(u(x)v(x)) = u (x)v(x) + u(x)v (x) ( ) u(x) = u (x)v(x) u(x)v (x) v(x) v(x) 2 y = g(t), t = f(x) y = g(f(x)) dy dx dy dx = dy dt dt dx., y, f, g y = f (g(x))g (x). ( (f(g(x)). ). [ ] y = e ax+b (a, b )

More information

(1) θ a = 5(cm) θ c = 4(cm) b = 3(cm) (2) ABC A A BC AD 10cm BC B D C 99 (1) A B 10m O AOB 37 sin 37 = cos 37 = tan 37

(1) θ a = 5(cm) θ c = 4(cm) b = 3(cm) (2) ABC A A BC AD 10cm BC B D C 99 (1) A B 10m O AOB 37 sin 37 = cos 37 = tan 37 4. 98 () θ a = 5(cm) θ c = 4(cm) b = (cm) () D 0cm 0 60 D 99 () 0m O O 7 sin 7 = 0.60 cos 7 = 0.799 tan 7 = 0.754 () xkm km R km 00 () θ cos θ = sin θ = () θ sin θ = 4 tan θ = () 0 < x < 90 tan x = 4 sin

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b) 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h 0 f(a + h, b) f(a, b) h............................................................... ( ) f(x, y) (a, b) x A (a, b) x

More information

II Lie Lie Lie ( ) 1. Lie Lie Lie

II Lie Lie Lie ( ) 1. Lie Lie Lie II Lie 2010 1 II Lie Lie Lie ( ) 1. Lie Lie 2. 3. 4. Lie i 1 1 2 Lie Lie 4 3 Lie 8 4 9 5 11 6 14 7 16 8 19 9 Lie 23 10 Lie 26 11 Lie Lie 31 12 Lie 35 1 1 C Lie Lie 1.1 Hausdorff M M {(U α, φ α )} α A (1)

More information

行列代数2010A

行列代数2010A (,) A (,) B C = AB a 11 a 1 a 1 b 11 b 1 b 1 c 11 c 1 c a A = 1 a a, B = b 1 b b, C = AB = c 1 c c a 1 a a b 1 b b c 1 c c i j ij a i1 a i a i b 1j b j b j c ij = a ik b kj b 1j b j AB = a i1 a i a ik

More information

n ( (

n ( ( 1 2 27 6 1 1 m-mat@mathscihiroshima-uacjp 2 http://wwwmathscihiroshima-uacjp/~m-mat/teach/teachhtml 2 1 3 11 3 111 3 112 4 113 n 4 114 5 115 5 12 7 121 7 122 9 123 11 124 11 125 12 126 2 2 13 127 15 128

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

March 4, R R R- R R

March 4, R R R- R R March 4, 2016 1. R- 2 1.1. R- 2 1.2. R- R- 4 1.3. R- 5 2. 6 2.1. 6 2.2. 6 2.3. 6 2.4. 7 3. 8 3.1. 8 3.2. 8 4. 10 4.1. 10 4.2. 10 4.3. 10 5. 12 5.1. 12 5.2. 14 6. Hom 14 6.1. Hom 14 6.2. Hom 15 6.3. Hom

More information

( [1]) (1) ( ) 1: ( ) 2 2.1,,, X Y f X Y (a mapping, a map) X ( ) x Y f(x) X Y, f X Y f : X Y, X f Y f : X Y X Y f f 1 : X 1 Y 1 f 2 : X 2 Y 2 2 (X 1

( [1]) (1) ( ) 1: ( ) 2 2.1,,, X Y f X Y (a mapping, a map) X ( ) x Y f(x) X Y, f X Y f : X Y, X f Y f : X Y X Y f f 1 : X 1 Y 1 f 2 : X 2 Y 2 2 (X 1 2013 5 11, 2014 11 29 WWW ( ) ( ) (2014/7/6) 1 (a mapping, a map) (function) ( ) ( ) 1.1 ( ) X = {,, }, Y = {, } f( ) =, f( ) =, f( ) = f : X Y 1.1 ( ) (1) ( ) ( 1 ) (2) 1 function 1 ( [1]) (1) ( ) 1:

More information

96 5, ' : G! H '(G) =H,, H G, 37 Z Z m a 2 Z m a a p Z m (p.90 ) p(a + b) =a + b = a + b = p(a)+p(b):, p {p(ab) =p(a)p(b){, p ( 95 ). 97. m, n, Z m Z

96 5, ' : G! H '(G) =H,, H G, 37 Z Z m a 2 Z m a a p Z m (p.90 ) p(a + b) =a + b = a + b = p(a)+p(b):, p {p(ab) =p(a)p(b){, p ( 95 ). 97. m, n, Z m Z 95 5,,,,,,,, ( ) S 3, f1 2 3g f1 2 3g,,, 5.1,,, 1 1 16 G H ' : G! H, '(ab) ='(a)'(b) for 8a b 2 G (5.1), (,, )., 1 1,, ' e 2 G e 0 2 H '(e) =e 0., g 2 G, '(g ;1 )='(g) ;1 : (5.2) 2, 5.1 2 G, H, G H, '

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

Solutions to Quiz 1 (April 17, 2008) 1. P, Q, R (P Q) R (P R) (Q R). P Q R (P Q) R (P R) (Q R) X T T T T T T T T T T T T T T T F T T F T T T F F T F F

Solutions to Quiz 1 (April 17, 2008) 1. P, Q, R (P Q) R (P R) (Q R). P Q R (P Q) R (P R) (Q R) X T T T T T T T T T T T T T T T F T T F T T T F F T F F Quiz 1 Due at 9:00 p.m. on Thursday, April 17, 2008 Division: ID#: Name: 1. P, Q, R (P Q) R (P R) (Q R). P Q R (P Q) R (P R) (Q R) X T T T F T T F F T F T T T F F F F T T F F T F T F F T F F F F F 2. 1.1

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a

IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a 1 40 (1959 1999 ) (IMO) 41 (2000 ) WEB 1 1959 1 IMO 1 n, 21n + 4 13n + 3 2 (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a = 4, b =

More information

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2 7 1995, 2017 7 21 1 2 2 3 3 4 4 6 (1).................................... 6 (2)..................................... 6 (3) t................. 9 5 11 (1)......................................... 11 (2)

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

AI n Z f n : Z Z f n (k) = nk ( k Z) f n n 1.9 R R f : R R f 1 1 {a R f(a) = 0 R = {0 R 1.10 R R f : R R f 1 : R R 1.11 Z Z id Z 1.12 Q Q id

AI n Z f n : Z Z f n (k) = nk ( k Z) f n n 1.9 R R f : R R f 1 1 {a R f(a) = 0 R = {0 R 1.10 R R f : R R f 1 : R R 1.11 Z Z id Z 1.12 Q Q id 1 1.1 1.1 R R (1) R = 1 2 Z = 2 n Z (2) R 1.2 R C Z R 1.3 Z 2 = {(a, b) a Z, b Z Z 2 a, b, c, d Z (a, b) + (c, d) = (a + c, b + d), (a, b)(c, d) = (ac, bd) (1) Z 2 (2) Z 2? (3) Z 2 1.4 C Q[ 1] = {a + bi

More information

ac b 0 r = r a 0 b 0 y 0 cy 0 ac b 0 f(, y) = a + by + cy ac b = 0 1 ac b = 0 z = f(, y) f(, y) 1 a, b, c 0 a 0 f(, y) = a ( ( + b ) ) a y ac b + a y

ac b 0 r = r a 0 b 0 y 0 cy 0 ac b 0 f(, y) = a + by + cy ac b = 0 1 ac b = 0 z = f(, y) f(, y) 1 a, b, c 0 a 0 f(, y) = a ( ( + b ) ) a y ac b + a y 01 4 17 1.. y f(, y) = a + by + cy + p + qy + r a, b, c 0 y b b 1 z = f(, y) z = a + by + cy z = p + qy + r (, y) z = p + qy + r 1 y = + + 1 y = y = + 1 6 + + 1 ( = + 1 ) + 7 4 16 y y y + = O O O y = y

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................ 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h f(a + h, b) f(a, b) h........................................................... ( ) f(x, y) (a, b) x A (a, b) x (a, b)

More information

0.6 A = ( 0 ),. () A. () x n+ = x n+ + x n (n ) {x n }, x, x., (x, x ) = (0, ) e, (x, x ) = (, 0) e, {x n }, T, e, e T A. (3) A n {x n }, (x, x ) = (,

0.6 A = ( 0 ),. () A. () x n+ = x n+ + x n (n ) {x n }, x, x., (x, x ) = (0, ) e, (x, x ) = (, 0) e, {x n }, T, e, e T A. (3) A n {x n }, (x, x ) = (, [ ], IC 0. A, B, C (, 0, 0), (0,, 0), (,, ) () CA CB ACBD D () ACB θ cos θ (3) ABC (4) ABC ( 9) ( s090304) 0. 3, O(0, 0, 0), A(,, 3), B( 3,, ),. () AOB () AOB ( 8) ( s8066) 0.3 O xyz, P x Q, OP = P Q =

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + ( IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1

More information

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x . P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +

More information

SO(2)

SO(2) TOP URL http://amonphys.web.fc2.com/ 1 12 3 12.1.................................. 3 12.2.......................... 4 12.3............................. 5 12.4 SO(2).................................. 6

More information

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N.

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N. Basic Mathematics 16 4 16 3-4 (10:40-12:10) 0 1 1 2 2 2 3 (mapping) 5 4 ε-δ (ε-δ Logic) 6 5 (Potency) 9 6 (Equivalence Relation and Order) 13 7 Zorn (Axiom of Choice, Zorn s Lemma) 14 8 (Set and Topology)

More information

行列代数2010A

行列代数2010A a ij i j 1) i +j i, j) ij ij 1 j a i1 a ij a i a 1 a j a ij 1) i +j 1,j 1,j +1 a i1,1 a i1,j 1 a i1,j +1 a i1, a i +1,1 a i +1.j 1 a i +1,j +1 a i +1, a 1 a,j 1 a,j +1 a, ij i j 1,j 1,j +1 ij 1) i +j a

More information

/02/18

/02/18 3 09/0/8 i III,,,, III,?,,,,,,,,,,,,,,,,,,,,?,?,,,,,,,,,,,,,,!!!,? 3,,,, ii,,,!,,,, OK! :!,,,, :!,,,,,, 3:!,, 4:!,,,, 5:!,,! 7:!,,,,, 8:!,! 9:!,,,,,,,,, ( ),, :, ( ), ( ), 6:!,,, :... : 3 ( )... iii,,

More information

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p 2012 IA 8 I 1 10 10 29 1. [0, 1] n x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 2. 1 x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 1 0 f(x)dx 3. < b < c [, c] b [, c] 4. [, b] f(x) 1 f(x) 1 f(x) [, b] 5.

More information

( ) x y f(x, y) = ax

( ) x y f(x, y) = ax 013 4 16 5 54 (03-5465-7040) nkiyono@mail.ecc.u-okyo.ac.jp hp://lecure.ecc.u-okyo.ac.jp/~nkiyono/inde.hml 1.. y f(, y) = a + by + cy + p + qy + r a, b, c 0 y b b 1 z = f(, y) z = a + by + cy z = p + qy

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

Step 2 O(3) Sym 0 (R 3 ), : a + := λ 1 λ 2 λ 3 a λ 1 λ 2 λ 3. a +. X a +, O(3).X. O(3).X = O(3)/O(3) X, O(3) X. 1.7 Step 3 O(3) Sym 0 (R 3 ),

Step 2 O(3) Sym 0 (R 3 ), : a + := λ 1 λ 2 λ 3 a λ 1 λ 2 λ 3. a +. X a +, O(3).X. O(3).X = O(3)/O(3) X, O(3) X. 1.7 Step 3 O(3) Sym 0 (R 3 ), 1 1 1.1,,. 1.1 1.2 O(2) R 2 O(2).p, {0} r > 0. O(3) R 3 O(3).p, {0} r > 0.,, O(n) ( SO(n), O(n) ): Sym 0 (R n ) := {X M(n, R) t X = X, tr(x) = 0}. 1.3 O(n) Sym 0 (R n ) : g.x := gxg 1 (g O(n), X Sym 0

More information

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B 1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n

More information