AI n Z f n : Z Z f n (k) = nk ( k Z) f n n 1.9 R R f : R R f 1 1 {a R f(a) = 0 R = {0 R 1.10 R R f : R R f 1 : R R 1.11 Z Z id Z 1.12 Q Q id

Similar documents
D 24 D D D

1 1.1 R (ring) R1 R4 R1 R (commutative [abelian] group) R2 a, b, c R (ab)c = a(bc) (associative law) R3 a, b, c R a(b + c) = ab + ac, (a + b)c = ac +

16 B

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1.

Jacobson Prime Avoidance

数学Ⅱ演習(足助・09夏)

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II Time-stamp: <05/09/30 17:14:06 waki> ii

15 mod 12 = 3, 3 mod 12 = 3, 9 mod 12 = N N 0 x, y x y N x y (mod N) x y N mod N mod N N, x, y N > 0 (1) x x (mod N) (2) x y (mod N) y x

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

2012 A, N, Z, Q, R, C

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th


A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

( ) X x, y x y x y X x X x [x] ( ) x X y x y [x] = [y] ( ) x X y y x ( ˆX) X ˆX X x x z x X x ˆX [z x ] X ˆX X ˆX ( ˆX ) (0) X x, y d(x(1), y(1)), d(x

koji07-01.dvi

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

( )

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

March 4, R R R- R R


III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

2001 Miller-Rabin Rabin-Solovay-Strassen self-contained RSA RSA RSA ( ) Shor RSA RSA 1 Solovay-Strassen Miller-Rabin [3, pp

1 Ricci V, V i, W f : V W f f(v ) = Imf W ( ) f : V 1 V k W 1

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.


,2,4

ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

ii

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)


2000年度『数学展望 I』講義録

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1.

A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x A (1)


.1 1,... ( )

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

kou05.dvi


untitled

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

untitled

newmain.dvi

1 α X (path) α I = [0, 1] X α(0) = α(1) = p α p (base point) loop α(1) = β(0) X α, β α β : I X (α β)(s) = ( )α β { α(2s) (0 s 1 2 ) β(2s 1) ( 1 2 s 1)

2011de.dvi

VI VI.21 W 1,..., W r V W 1,..., W r W W r = {v v r v i W i (1 i r)} V = W W r V W 1,..., W r V W 1,..., W r V = W 1 W

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

n ( (

.1 A cos 2π 3 sin 2π 3 sin 2π 3 cos 2π 3 T ra 2 deta T ra 2 deta T ra 2 deta a + d 2 ad bc a 2 + d 2 + ad + bc A 3 a b a 2 + bc ba + d c d ca + d bc +

1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

one way two way (talk back) (... ) C.E.Shannon 1948 A Mathematical theory of communication. 1 ( ) 0 ( ) 1

転がり軸受 総合カタログ

2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 1, 2 1, 3? , 2 2, 3? k, l m, n k, l m, n kn > ml...? 2 m, n n m


14 (x a x x a f(x x 3 + 2x 2 + 3x + 4 (x 1 1 y x 1 x y + 1 x 3 + 2x 2 + 3x + 4 (y (y (y y 3 + 3y 2 + 3y y 2 + 4y + 2 +

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n

48 * *2


x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s


, n

Armstrong culture Web

a n a n ( ) (1) a m a n = a m+n (2) (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 552

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

「図形の数理」テキストfinal.dvi

ARspec_decomp.dvi

2018/10/04 IV/ IV 2/12. A, f, g A. (1) D(0 A ) =, D(1 A ) = Spec(A), D(f) D(g) = D(fg). (2) {f l A l Λ} A I D(I) = l Λ D(f l ). (3) I, J A D(I) D(J) =

i

2014 (2014/04/01)

Part () () Γ Part ,


半 系列における記号の出現度数の対称性

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

O E ( ) A a A A(a) O ( ) (1) O O () 467

RA宣言.PDF

1 1 3 ABCD ABD AC BD E E BD 1 : 2 (1) AB = AD =, AB AD = (2) AE = AB + (3) A F AD AE 2 = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD 1 1


I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

ii-03.dvi

漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト

4 R f(x)dx = f(z) f(z) R f(z) = lim R f(x) p(x) q(x) f(x) = p(x) q(x) = [ q(x) [ p(x) + p(x) [ q(x) dx =πi Res(z ) + Res(z )+ + Res(z n ) Res(z k ) k

平成 15 年度 ( 第 25 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 15 月年 78 日開催月 4 日 ) X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = (

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

Transcription:

1 1.1 1.1 R R (1) R = 1 2 Z = 2 n Z (2) R 1.2 R C Z R 1.3 Z 2 = {(a, b) a Z, b Z Z 2 a, b, c, d Z (a, b) + (c, d) = (a + c, b + d), (a, b)(c, d) = (ac, bd) (1) Z 2 (2) Z 2? (3) Z 2 1.4 C Q[ 1] = {a + bi a, b Q (i = 1 1.5 C Z[ 1] = {a + bi a, b Z (i = 1 2 a + bi 2 = a 2 + b 2 1.6 R = 2 n Z, k N {0 k (1) R Q Z R Q (2) R 1.7 R = m n Z, m (1) R Q Z R Q (2) R 1

AI 2 1.2 1.8 n Z f n : Z Z f n (k) = nk ( k Z) f n n 1.9 R R f : R R f 1 1 {a R f(a) = 0 R = {0 R 1.10 R R f : R R f 1 : R R 1.11 Z Z id Z 1.12 Q Q id Q 1.13 Z Z 2 Z 2 1.3 1.14 f : Z 2 Z (1) a, b (m, n) Z 2 f((m, n)) = am + bn f((1, 0)) f((0, 1)) (2) f a, b (1, 0)(1, 0) = (1, 0), (0, 1)(0, 1) = (0, 1) 1.15 f : C C a R f(a) = a i = 1 (1) f(i) = i f(i) = i i 2 + 1 = 0 (2) f f 1.3 1.16 Z[x] f = x 4 +2x 3 3x 2 +4x 5 g = x 2 x+1 1.17 f Q[x] x 1 6, f x 2 + x + 1 x + 2 f x 3 1

AI 3 1.18 K a, b K f = f(x) K[x] K[x] x a x b 0 f (x a)(x b) 1.4 1.19 R I I R (1) R = Z, I = N {0 = {0, 1, 2, 3,... (2) R = Z, I = {n Z n (3) R = Z[x], I = {f Z[x] f = 0 f (4) R = Z[x], I = {f(x) Z[x] f(1) 2Z (5) R = Q[x], I = {f(x) Q[x] f( 2) = 0 1.20 I J R I + J I J R 1.21 R R R I R I R R 1.22 R R f : R R (1) I R f 1 (I ) R (2) f I R f(i) R (3) R I f(i) R R, I, f, R 1.23 (1) K {0 K 2 (2) R 0 1 R {0 R 2 R 1.24 K R f : K R f 1.25 I Z 2 (1) (a, b) I (a, 0) I (0, b) I (2) I 1 = {a Z (a, 0) I I 2 = {a Z (0, a) I Z (3) I = I 1 I 2 = {(a, b) a I 1, b I 2

AI 4 1.5 1.26 Z/7Z Z/7Z 1.27 R = Z/8Z (1) R (2) R (3) R 1.28 R = Z/12Z (1) R (2) R (3) R 1.29 R = Z/2Z S := R[x]/R[x](x 2 + x + 1) 1 1 Z Z/2Z x 2 + x + 1 = 1x 2 + 1x + 1 R[x] (1) S? S (2) S (3) S (2) 1.30 R C i = 1 ρ : R[x] C f = f(x) R[x] ρ(f) = f(i) (1) ρ (2) f(x) R[x] x 2 + 1 ax + b (a, b R) f(i) = ai + b (3) Ker ρ = R[x](x 2 + 1) (4) R[x]/Ker ρ C 1.31 R 1.32 Z 2

AI 5 1.6 1.33 Z n Z nz = Zn n (1) 24Z + 15Z (2) 2014Z + 2520Z (3) 15Z + 36Z + 16Z 1.34 Q[x] (1) Q[x](x 2 1) + Q[x](x 3 + 1) (2) Q[x](x 4 + x 2 + 1) + Q[x](x 4 + 2x 3 + x 2 1) 1.35 3978a + 3465b = 9 a, b 1.36 Q[x] a(x)(x 3 + 1) + b(x)(x 2 + 1) = 1 a(x), b(x) Q[x] 1.37 n 2 k k Z/nZ k (1) k Z/nZ kl + qn = 1 l, q (2) k Z/nZ k n (3) Z/16Z (4) Z/30Z 1.38 R a, b R 0 d a b a = a d, b = b d a, b R e = a b d (1) Ra Rb Re (2) ua + vb = 1 u, v (3) c R Ra Rb c = c(ua + vb ) c e (4) Ra Rb = Re 1.39 36Z 54Z Z 1.40 Z[x] I = 2Z[x] + xz[x] = {2f + xg f, g Z[x]

AI 6 1.41 Q R = 2 n Z, k N {0 k (1) I R m I = Rm R (I R {0 I ) (2) R {0 Rm (m ) 1.42 Q R = m n Z, m (1) I R m I = Rm R (2) R {0 R2 k (k = 0, 1, 2,... ) 1.7 1.43 R {0 R R 1.44 R R R (1) I R I R R (2) I R I R R 1.45 p (1) pz Z = {(np, m) n, m Z Z 2 (2) pz pz = {(np, mp) n, m Z Z 2 (3) {0 Z = {(0, m) m Z Z 2 (4) {(0, 0) Z 2 1.46 Z 2 1.47 c Z ρ c : Z[x] Z ρ c (f) = f(c) (f = f(x) Z[x]) (1) Ker ρ c = Z[x](x c) (2) Z[x](x c)

AI 7 1.48 c Z p J = Z[x](x c) + Z[x]p ρ c : Z[x] Z (1) f Z[x] f(c) p r f J r = 0 (2) π : Z Z/pZ (π(k) = k) Ker (π ρ c ) = J (3) J Z[x] 1.49 Q R = 2 n Z, k N {0 k (I R I Z ) 1.50 Q R = m n Z, m 1.51 R I 0 R π : R R/I 0 a R π(a) = a a R/I 0 (1) J R/I 0 I := π 1 (J) R I I 0 (2) I R I I 0 J := π(i) R/I 0 (3) I := {I I R I I 0, J := {J J R/I 0 Φ : I J Φ(I) = π(i) (I I) Ψ : J I Ψ(J) = π 1 (J) (J J ) Φ Ψ (4) I I I R π(i) R/I 0 (3) (5) I I (R/I 0 )/π(i) R/I R R/I 0 (R/I 0 )/π(i) (6) I I I R π(i) R/I 0 1.52 (1) Z/32Z? (2) Z/36Z?

AI 8 1.8 1.53 Z 96577 1.54 Q[x] x 4 + x 2 + 1 C[x] x 4 + x 2 + 1 1.55 R := Z[ 5] (1) 1 + 5 1 5 R 2 (2) 3, 1 + 5, 1 5 R 2 3 = (1 + 5)(1 5) = 6 (3) R R 2 (4) 2 3 R 2 (5) 1 + 5 1 5 R 1.56 (1) n f = x 2 n Q[x] f Q[x] n (2) I := Q[x]f Q[x] (3) Q[ n] = {a + b n a, b Q ρ : Q[x] Q[ n] g Q[x] ρ(g) = g( n) ρ (4) Q[x]/I Q[ n] Q[ n] 1.57 f = x 3 + x + 1 F 2 [x] (1 F 2 1 (1) f F 2 [x] (2) I := F 2 [x]f F 2 [x] (3) L := F 2 [x]/i 1.58 R = 2 n Z, k N {0 k (1) m m R m Z (2) R ( ) 1.59 R = m n Z, m (1) m m R (2) R ( )

AI 9 1.9 1.60 well-defined ( 1.61 K K K 1.62 Z[x] Q(x) 1.63 K K[x] x 1 x 3 + 3x 2 + 4 R (1) R K[x] (2) R K(x) 2 2.1 2.1 M R N 1 N 2 M R (1) N 1 + N 2 := {u 1 + u 2 u 1 N 1, u 2 N 2 M R (2) N 1 N 2 M R (3) u 1,... u m M Ru 1 + + Ru m = {a 1 u 1 + a m u m a 1,..., a m R M R 2.2 M N R f : M N R Ker f M R Im f N R 2.3 M N R f : M N R (1) f Ker f = {0 (2) f R f 1 : N M R 2.4 L, M, N R f : L M g : M N R g f : L N R 2.5 Z Z n f n : Z Z f n (a) = na ( a Z) (1) f n Z

AI 10 (2) Im f n Ker f n (3) f n Z n (4) f : Z Z Z n f = f n (5) f n n 2.6 M, N R M N R Hom R (M, N) f, g Hom R (M, N) a R M N f + g af (f + g)(u) = f(g) + g(u), (af)(u) = af(u) ( u M) (1) f + g af R (2) R Hom R (M, N) R (3) R R Hom R (R, N) N R 2.7 n 2 M := Z/nZ Z m f m : M M f m (x) = mx (x Z) (1) f m Z (2) m, l f m = f l m l n (3) f : M M Z 0 m n 1 f = f m m 2.8 n m Z/nZ Z/mZ Z 0 2.2 2.9 (1) M 3 := {(u 1, u 2, u 3 ) Z 3 u 1 + u 2 + u 3 = 0 Z 3 (2) f : M 3 M 3 f((u 1, u 2, u 3 )) = (u 2, u 3, u 1 ) f Z (1)

AI 11 2.10 V C n T : V V C V v 1,..., v n α T v 1 = αv 1, T v j = αv j + v j 1 (2 j n) v 1,..., v n V T 2.3 ( ) a b 2.11 a, b, c A = 0 c M 2 (Z) a, b, c A A 1 M 2 (Z) 2.12 n M := Z[ n] Z (1) M 1 n (2) a, b Z f : M M α M f(α) = (a + b n)α f Z (3) f 1, n (4) f Z a, b (5) n = 1 f Z a, b 2.13 M = {f Z[x] deg f 2 M 1, x, x 2 Z (1) n P : M M f(x) M P (f(x)) = (x + 1)f (x) nf(x) f (x) f(x) P Z (2) P 1, x, x 2 (3) P (4) P n Ker P

AI 12 2.5 2.14 ( ) ( ) ( ) (1) 9 6 20 (2) (3) 4 0 0 6 3 5 0 3 (4) ( ) 36 24 18 9 2.15 ( ) 2 6 4 2 6 4 6 0 8 (1) (2) 2 8 0 (3) 2 9 0 2 3 4 0 4 2 0 4 2 2.16 Q[x] ( ) ( ) x 1 1 x 1 1 (1) (2) (3) 0 x 2 0 x 1 ( ) x 1 0 0 x 2 2.17 Q[x] x 1 1 0 x 1 1 0 (1) 0 x 1 0 (2) 0 x 1 1 0 0 x 2 0 0 x 1 (3) x 1 0 0 0 x 2 0 0 0 x 3 2.6 2.18 2.4 f R 2.19 V = R 3 3 t (1, 1, 2) W V/W 2.20 2.15 (1) (4) Z? 2.21 2.16 (1) (3) Z? 2.22 2.17 (1) (3) Q[x]? 2.23 2.18 (1) (3) Q[x]?

AI 13 2.7 2.24 R M R Ann R M = {a R au = 0 ( u M) (1) Ann R M R (2) R = Z M = (Z/8Z) (Z/36Z) Ann Z M 2.25 R M 1 M 2 R M = M 1 M 2 k = 1, 2 p k : M M k p k ((u 1, u 2 )) = u k (u 1 M 1, u 2 M 2 ) (1) p k R (k = 1 (2) Ker p k (3) M 1 M 1 {0 = {(u 1, 0) u 1 M M 1 M 1 M 2 R M/M 1 M 2 R (1) (2) 2.26 240 2.27 M R 2.7 (1) M T M = {0 (2) M M R 2.28 M R M {0 M M (1) M M (2) M u M M = Ru Ann R u := {a R au = 0 R R R/Ann R u M

AI 14 2.8 Jordan 2.29 V K T : V V K W V W K[x] V T K[x] T (W ) W 2.30 Jordan ( ) 1 3 1 2 0 0 4 1 1 2 3 (1) (2) 0 1 0 (3) 6 0 4 (4) 8 2 2 0 2 0 0 1 3 1 4 6 1 2 2.31 A Jordan P 1 AP Jordan P 2.32 A M(n, C) I A = {f(x) C[x] f(a) = O A φ A (x) I A C[x] I A = C[x]φ(x) 2.33 A M(n, C) (1) A Jordan 1 A 1 (2) m A m = I n A : x m 1 A