1 R n (x (k) = (x (k) 1,, x(k) n )) k 1 lim k,l x(k) x (l) = 0 (x (k) ) 1.1. (i) R n U U, r > 0, r () U (ii) R n F F F (iii) R n S S S = { R n ; r > 0

Similar documents
A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

(, ) (, ) S = 2 = [, ] ( ) 2 ( ) 2 2 ( ) 3 2 ( ) 4 2 ( ) k 2,,, k =, 2, 3, 4 S 4 S 4 = ( ) 2 + ( ) ( ) (



III ϵ-n ϵ-n lim n a n = α n a n α 1 lim a n = 0 1 n a k n n k= ϵ-n 1.1

1 a b = max{a, b}, a b = mi{a, b} a 1 a 2 a a 1 a = max{a 1,... a }, a 1 a = mi{a 1,... a }. A sup A, if A A A A A sup A sup A = + A if A = ± y = arct

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

2010 II / y = e x y = log x = log e x 2. ( e x ) = e x 3. ( ) log x = 1 x 1.2 Warming Up 1 u = log a M a u = M a 0

2011de.dvi


y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) (velocity) p(t) =(x(t),y(t),z(t)) ( dp dx dt = dt, dy dt, dz ) dt f () > f x

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

i

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2


1

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

meiji_resume_1.PDF

/ n (M1) M (M2) n Λ A = {ϕ λ : U λ R n } λ Λ M (atlas) A (a) {U λ } λ Λ M (open covering) U λ M λ Λ U λ = M (b) λ Λ ϕ λ : U λ ϕ λ (U λ ) R n ϕ

= π2 6, ( ) = π 4, ( ). 1 ( ( 5) ) ( 9 1 ( ( ) ) (

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

04.dvi

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

A

³ÎΨÏÀ


r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B



.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

2014 S hara/lectures/lectures-j.html r 1 S phone: ,

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n

f(x) x = A = h f( + h) f() h A (differentil coefficient) f(x) f () y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) * t (velo

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a

O f(x) x = A = lim h f( + h) f() h A (differentil coefficient) f f () y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) * t (v

koji07-01.dvi

December 28, 2018

tnbp59-21_Web:P2/ky132379509610002944

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

untitled

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2

A, B, C. (1) A = A. (2) A = B B = A. (3) A = B, B = C A = C. A = B. (3)., f : A B g : B C. g f : A C, A = C. 7.1, A, B,. A = B, A, A A., A, A

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1,

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z


n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

(1) (2) (3) (4) 1

v er.1/ c /(21)

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

mugensho.dvi

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

/ 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point R n set space R n R n x = x 1 x n y = y 1 y n distance dx,

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (


18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

< 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

II Time-stamp: <05/09/30 17:14:06 waki> ii

Part () () Γ Part ,

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

Chap11.dvi

Fubini

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1.

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

webkaitou.dvi


7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

(1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa

数学Ⅱ演習(足助・09夏)

gr09.dvi

2000年度『数学展望 I』講義録

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s


6.1 (P (P (P (P (P (P (, P (, P.


入試の軌跡

Transcription:

III 2018 11 7 1 2 2 3 3 6 4 8 5 10 ϵ-δ http://www.mth.ngoy-u.c.jp/ ymgmi/teching/set2018.pdf http://www.mth.ngoy-u.c.jp/ ymgmi/teching/rel2018.pdf n x = (x 1,, x n ) n R n x 0 = (0,, 0) x = (x 1 ) 2 + + (x n ) 2 r > 0 r () r () r () = {x R n ; x < r}, r () = {x R n ; x r}. 1

1 R n (x (k) = (x (k) 1,, x(k) n )) k 1 lim k,l x(k) x (l) = 0 (x (k) ) 1.1. (i) R n U U, r > 0, r () U (ii) R n F F F (iii) R n S S S = { R n ; r > 0, r () S, r () \ S } S = S \ S S S = S S S 1.2. 1.3. R n K (finite covering property) {U i } i I K i I U i I F K i F U i 1.4. R n K 3 (i) K (ii) K K (iii) K Proof. (i) (ii): { j } j 1 K R n K K x K x /2 (x) K { x /2 (x)} x K K x 1,..., x N { xj /2(x j )} 1 j N K x 1,..., x N r > 0 2

K r K K K (ii) (i): (olzno ) K K {U i } i I U i K K r > 0 K r 1 K U i 0 0 K 0 1/2 U i 1/2 1 1 0 K 1/2 k { k } (i) k U i (ii) 1 j k j K k 1 j k j K {c k } j k c j c k 1/2 j {c k } Cuchy c = lim c k K c K c U i i r > 0 r (c) U i k 1/2 k < r k+1 U i k+1 U i K 1.5. (i) (ii) ϵ > 0, δ > 0, x y δ f(x) f(y) ϵ Proof. (i) M = sup{f(k)} M f(k) M f(k) M j f 1 ((, M j ]), j = 1,... K K (ii) K δ > 0 f(x) f() ϵ for x δ () { δ/2()} K K 1,..., N δ = mx{δ 1,..., δ N } x y δ x j δ j /2 j y j x y + x j δ j f(x) f( j ) ϵ, f(y) f( j ) ϵ f(x) f(y) 2ϵ 1.6. X R m Y R n φ : X Y X (x (k) ) k 1 lim k φ(x(k) ) = φ( lim k x(k) ) 1.7. φ : X Y Y U φ 1 (U) X 2 D R 2 D f D D = i D i 3

f(x i ) D i i x i D i i D i D i D i 0 x i f f D f(x) dx D D D i f D [, b] = [ 1, b 1 ] [ n, b n ] R n 2.1. f : R = { i } S(, f) = i f i i, S(, f) = i f i i, = mx{d( i )} f i = sup{f(x); x i }, f i = inf{f(x); x i }, d( i ) = b i i lim S(, f) = lim S(, f) 0 0 f f(x) dx f 2.2. f, g (i) α, β αf + βg (αf(x) + βg(x)) dx = α f(x) dx + β (ii) f(x) (iii) f(x) g(x) f(x) dx f(x) dx 4 f(x) dx. g(x) dx. g(x) dx.

2.3. = [, b] * 1 Proof. f(x) dx = b1 bn dx 1 dx n f(x 1,..., x n ) 1 n 2.4. R n D 1 D (x) = { 1 x D 0 x D 1 D D D D f 1 D f D f(x) dx 2.5. Proof. n = 2 D δ = S(1 D, ) S(1 D, ) (h + 2δ)(k + 2δ) hk δ 0 0 D 2.6. [0, 1] Dirichlet f f(x) = 1 Q = f D { 1 if x is rtionl number, 0 otherwise 2.7. (i) D D f f(x) dx (1 D f ) (ii) D f(x) dx = f(x) dx D i D i D *1 b dt f(t) 5

2.8. R n A 1 A A A = sup{ 1 A (x) dx; } 2.9. α > 0 A = {(x, y); x > 1, 0 < y < 1/x α } { 1 A = α 1 if α > 1, + otherwise 2.10.,, A = A + A. 3 m n M m,n (R) M m,n (R) mn m n A (Hilbert-Schmidt norm) A A 2 = i,j ij 2 A A A Ax A x (x R m ). A = sup{ Ax / x ; 0 x R n } 1. ( ) A A mn A x(t) R n ( b ) b x(t)dt = x i (t)dt b x(t)dt b 1 i n x(t) dt ( < b) 6

Proof. b x(t) dt = lim j x(t j )(t j t j 1 ) b x(t)dt lim sup j x(t j ) (t j t j 1 ) = b x(t) dt 3.1. R n D R m φ D (differentible) m n A φ(x) φ() A(x ) φ(x) = φ() + A(x ) + o(x ) lim = 0 x x A φ () φ (differentil) φ φ (derivtive) *2 3.2. (i) φ (φ ()) ij = φ i x j () (ii) φ D φ D Proof. (i) x (ii) U, b U φ(b) φ() = 1 0 φ ( + t(b ))(b )dt. 3.3. φ : D R C r φ r m φ i (i = 1,..., m) C r 3.4 (Chin Rule). D R n E R m φ : D E, ψ : E R l C r ψ φ : D R l C r (ψ φ) () = ψ (φ())φ () S R n Φ : S S 0 < ρ < 1, x, y S, Φ(x) Φ(y) ρ x y *3 (contrction) *2 differentil derivtive Jcobin Jcobi mtrix *3 7

3.5. S R n Φ : S S (i) S Φ() = Φ (ii) x S lim k Φ k (x) = Φ k Φ k Proof. Φ k (x) Φ k (y) ρ Φ k 1 (x) Φ k 1 (y) ρ k x y 0 (k ) x S x k = Φ k (x) x k x k+1 ρ k x 0 x 1 x k x l x k x k+1 + + x l 1 x l ρk ρ l 1 ρ x 0 x 1 (k < l) (x k ) k 0 Cuchy lim k x k x S x S Φ(x ) = Φ(lim x k ) = lim Φ(x k ) = lim x k+1 = x. 4 4.1. φ R n D C r D (i) φ E = φ(d) R n (ii) φ (iii) φ E φ(x) x D R n C r 4.2. (i) (ii) 4.3. φ : D E T E D S (T f) φ = S(f φ), f C (E) T S 4.4 ( ). D R n φ : D R n D C l (l 1) D φ φ () R n R n n n U (i) V φ(u) 8

(ii) φ U ψ (iii) ψ : V U C l Proof. A = φ () φ A 1 φ φ () = I φ (x) det(φ (x)) x r > 0, r () D, x r (), φ (x) φ (x) I 1 2 (1) r () x φ(x) x R n (1) φ(u) φ(v) (u v) 1 0 φ (u + t(v u)) I u v dt 1 u v (2) 2 u v 2 φ(u) φ(v), u, v r (). (3) Φ y : r () x x φ(x) + y R n (y r/2 (φ())) (2) Φ y (u) Φ y (v) 1 2 u v Φ y (u) u + φ() φ(u) + y φ() 1 2 u + y φ() < r 2 + r 2 = r Φ y r () Φ y ( r ()) r () Φ y (x) = x φ(x) = y x r () V = r/2 (φ()), U = {x r (); φ(x) V } φ U V U, V (3) φ : U V ψ Lipshitz ψ C l ψ y 0 V φ(x 0 ) = y 0 x 0 U φ x 0 φ(x) φ(x 0 ) = φ (x 0 )(x x 0 ) + o(x x 0 ). x 0 U r () φ (x 0 ) ψ(y) ψ(y 0 ) = φ (x 0 ) 1 (y y 0 ) φ (x 0 ) 1 (o(ψ(y) ψ(y 0 ))). (3) o(ψ(y) ψ(y 0 )) = o(y y 0 ) φ (x 0 ) 1 (o(ψ(y) ψ(y 0 ))) = o(y y 0 ) ψ y 0 ψ (y 0 ) = φ (x 0 ) 1, φ(x 0 ) = y 0, x 0 U ψ ψ (y) = φ (ψ(y)) 1 *4 ψ C 1 φ (ψ(y)) C l 1 C 1 C 1 ψ (y) = φ (ψ(y)) 1 C 1 ψ C 2 ψ C l *4 φ (x) 1 φ (x) 9

4.5. R m, b R n F (x, y) (, b) R m+n N(, b) R n C r F y (, b) Rm R n C r f f() = b, F (x, f(x)) = F (, b) Proof. φ : N(, b) R m+n φ(x, y) = (x, F (x, y)) (, F (, b)) ψ(x, z) = (g(x, z), f(x, z)) g(x, z) = x, F (x, f(x, z)) = z 4.6. n = 1 f(x) = f(x, b) F (x, f(x)) = b ( ) ( ) f F F (x) = (x, f(x)) / (x, f(x)). x i x i y 5 5.1. R n U R n V C 1 φ : U V φ 1 φ 1 C 1 φ U x det(φ (x)) R φ (Jcobin) J φ J φ U 5.2. φ : U V f : V R V *5 [f] f(y) dy = f(φ(x)) J φ (x) dx V U n n = 1 n 1 n 5.3. U, U U ψ : U W, W φ (i) φ(x) = φ (ψ (x)), x U, (ii) φ, ψ Proof. det(φ ()) 0 φ 1 (),, φ n () 0 φ i () 0 x 1 x 1 x 1 ψ : U R n ψ(x) = (φ i (x), x 2,, x n ) *5 [f] {x V ; f(x) 0} V 10

φ i φ i φ i x 1 x 2 x n det ψ () = 0 1 0...... 0 0 1 = φ i x 1 () 0 U ψ = ψ U W = ψ(u ) W φ = φ ψ 1 (i) (ii) ψ φ φ (φ i (x), x 2,, x n ) = (φ 1 (x), φ 2 (x),, φ n (x)) i 5.4. (ii) Proof. φ : U V φ i (x 1,, x n ) = x 1 U, V U t, V t (t R) U t = {x = (x 2,, x n ) R n 1 ; (t, x 2,, x n ) U} V t = {y = (y 1,, y i 1, y i+1,, y n ); (y 1,, y i 1, t, y i+1,, y n ) V } U t φ t φ t (x 2,, x n ) = (φ 1 (t, x 2,, x n ),, φ i 1 (t, x 2,, x n ), φ i+1 (t, x 2,, x n ),, φ n (t, x 2,, x n )) f t (y ) dy = f t (φ t (x )) det φ t(x ) dx V t U t t R f(y) dy = f(φ(x)) det φ x 1 (x ) dx V U det φ (x) = det φ x 1 (x ) U 5.3 U U 3r () U r > 0 { r ()} U [f φ] = φ 1 ([f]) 1,, N r 1,, r N [f φ] rj ( j ) 1 j N U j = U j, φ j = φ j 5.5. R n 2rj ( j ) h j 0 (j = 1,, N) N h j (x) = 1 j=1 (x [f φ]) 11

Proof. g j 1 if x j r j g j (x) = 2 x j /r j if r j x j 2r j 0 otherwise h j (x) = g j(x) j g j(x) 5.5 f(y) dy = f(y)h j (φ 1 (y)) dy = V j V j V j f(y)h j (φ 1 (y)) dy V j = φ(u j ) [h j ] U j 5.4 f(y)h j (φ 1 (y)) dy = f(φ j (z))h j (φ 1 (φ j (z))) det φ j(z) dz V j W j = f(φ j ψ j (x))h j (φ 1 φ j ψ j (x)) det φ j(ψ j (x)) det ψ j(x) dx U j = f(φ(x))h j (x) det φ (x) dx. U j 5.3(i) f(y) dy = f(y)h j (φ 1 (y)) dy = f(φ(x))h j (x) det φ (x) dx V j V j j U j = f(φ(x)) h j (x) det φ (x) dx = f(φ(x)) det φ (x) dx U j U 12