v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

Similar documents
all.dvi

6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civit

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

all.dvi

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

量子力学 問題

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

TOP URL 1

SO(3) 49 u = Ru (6.9), i u iv i = i u iv i (C ) π π : G Hom(V, V ) : g D(g). π : R 3 V : i 1. : u u = u 1 u 2 u 3 (6.10) 6.2 i R α (1) = 0 cos α

all.dvi

linearal1.dvi

TOP URL 1

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

数学Ⅱ演習(足助・09夏)

ver Web

弾性定数の対称性について

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

TOP URL 1


1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =


4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i

2000年度『数学展望 I』講義録

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (


meiji_resume_1.PDF

II 1 II 2012 II Gauss-Bonnet II

行列代数2010A

all.dvi

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4

+ 1 ( ) I IA i i i 1 n m a 11 a 1j a 1m A = a i1 a ij a im a n1 a nj a nm.....

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

III,..

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

( )

構造と連続体の力学基礎

SO(2)


II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2


微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B


January 27, 2015

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

phs.dvi

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

(1) PQ (2) () 2 PR = PR P : P = R : R (2) () = P = P R M = XM : = M : M (1) (2) = N = N X M 161 (1) (2) F F = F F F EF = F E

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x


Part () () Γ Part ,

1.1 foliation M foliation M 0 t Σ t M M = t R Σ t (12) Σ t t Σ t x i Σ t A(t, x i ) Σ t n µ Σ t+ t B(t + t, x i ) AB () tα tαn µ Σ t+ t C(t + t,

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t



LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

Morse ( ) 2014

: , 2.0, 3.0, 2.0, (%) ( 2.

A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %

Ł\”ƒ-2005

第3章

第90回日本感染症学会学術講演会抄録(I)

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

koji07-01.dvi

I II III IV V

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x

1.500 m X Y m m m m m m m m m m m m N/ N/ ( ) qa N/ N/ 2 2

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

newmain.dvi

I II

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.


x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

untitled

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1.

OHP.dvi

2 x x, y, z x,, z F c : x x x cos y sin z z 8 F F F F F x x x F x x F 9 F c J Fc J Fc x x x y y y cos sin 0 sin cos 0 0 0, J Fc 0 J Fc t x /x J Fc,, z

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

,,..,. 1

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k


,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

Transcription:

1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1

1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [ 1] 1 1.1.1.2 2 2

1.1. v1.1 2011/04/10 1. 1.1.1.3 e 1, e 2, e 3 v = v i e i (7) e 1, e 2, e 3 T T T (v) = v i T (e i ) (8) v = v i e i = v ie i (9) v i = R ij v j (10) e i = e j (R 1 ) ji = 3 v i e i v ie i = i,j,k=1 R ij v j R ik e k = R ij e j (11) j,k=1 δ jk v j e k = R v j e j (12) 1.1.1.4 [ ] f(x) = 1 2π f(k)e ikx dk (13) f(x) e ikx / 2π f(k) 3

1.1. v1.1 2011/04/10 1. 1.1.2 1.1.2.1 q p (14) q p grad q = K p (15) µ K µ K µ 1.1.2.2 q = K(f) (16) f = 1 p (17) µ K K(λf) = λk(f) (18) K(f 1 + f 2 ) = K(f 1 + f 2 ) (19) x y K q f q = f = q i e i (20) f i e i (21) 4

1.1. v1.1 2011/04/10 1. q i e i = K( f i e i ) (22) K q i e i = f i K(e i ) (23) K(e i ) K(e i ) = e j K ji (24) q i e i = e j K ji f i (25) i, q i = K ij f j (26) K ij 1.1.2.3 T v = T (u) (27) T (e i ) = e j T ji (28) T ij = e i T (e j ) (29) 1.1.2.1 v i = T ij u j (30) I(u) = u (31) 5

1.1. v1.1 2011/04/10 1. 1 0 0 0 1 0 = (δ ij ) (32) 0 0 1 1.1.2.4 u, v s = T (u, v) (33) T (u 1 + u 2, v) = T (u 1, v) + T (u 2, v) (34) T (u, v 1 + v 2 ) = T (u, v 1 ) + T (u, v 2 ) (35) T (λu, v) = T (u, λv) = λt (u, v) (36) u = v = u i e i (37) v i e i (38) s = u i T (e i, e j )v j (39) i, T ij = T (e i, e j ) (40) s = u i T ij v j (41) i, (33) (27) (33) T T (u) = T (e i, u)e i (42) T T ij = e i T (e j ) = e i T (e k, e j )e k = T (e i, e j ) = T ij (43) k=1 6

1.1. v1.1 2011/04/10 1. T (27) T T (u, v) = u T (v) (44) T T ij = T (e i, e j ) = e i T (e j ) = T ij (45) T (33) (27) 1.1.2.5 v v T, T, T, T v T T 1.1.2.6 (27) (T + S)(u) = T (u) + S(u) (46) (T S)(u) = T (u) S(u) (47) (λt )(u) = λt (u) (48) (T + S) ij = T ij + S ij (49) (T S) ij = T ij S ij (50) (λt ) ij = λt ij (51) u O(u) = 0 (52) O 0 7

1.1. v1.1 2011/04/10 1. 1.1.2.7 q i = K ij f j (53) q i = f i = R ij q j (54) R ij f j (55) q i = K ij f j (56) q i = K ijf j (57) (54) (55) (57) R ij q j = K ijr jk f k (58) j,k=1 (56) R ij K jk f k = K ijr jk f k (59) j,k=1 j,k=1 f R ij K jk = K ijr jk (60) (R 1 ) kl = R lk k K il = R ij R lk K jk (61) j,k=1 [ 2] z 180 8

1.1. v1.1 2011/04/10 1. 1.1.2.8 (v i ) (i = 1, 2, 3) R ij 1.1.1.1 v i = R ij v j (62) (T ij ) (i, j = 1, 2, 3) T ij = R ik R jl T kl (63) k,l=1 (T ijk ) (i, j, k = 1, 2, 3) T ijk = R il R jm R kn T lmk (64) l,m.n=1 [ ] (R ij ) [ 3] (40) (63) [ 4] (x, y) x (σ xx = σ, σ ij = 0) z 3 x θ 9

1.1. v1.1 2011/04/10 1. 3 σ n τ θ 45 1.1.2.9 1.1.2.9.1 T ij = T ji (65) (33) T (u, v) = T (v, u) (66) T Maxwell 1.1.2.9.2 T ij = T ji (67) (33) T (u, v) = T (v, u) (68) T 10

1.1. v1.1 2011/04/10 1. Levi-Civita 1 ((i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2)) ɛ ijk = 1 ((i, j, k) = (1, 3, 2), (3, 2, 1), (2, 1, 3)) 0 (otherwise) ɛ ijk Levi-Civita Eddington ɛ ijk (69) ɛ ijk ɛ lmk = δ il δ jm δ im δ jl (70) k=1 j,k=1 i,j,k=1 [ 5] ɛ ijk ɛ ljk = 2δ il (71) ɛ ijk ɛ ijk = 6 (72) 1.1.2.9.3 0 A 3 A 2 A = A 3 0 A 1 (73) A 2 A 1 0 A ( A) i = 1 2 j,k=1 A ( A) ij = ɛ ijk A jk (74) ɛ ijk A k (75) k=1 A A A = A (76) A = (aɛ ijk ) (77) 11

1.2. v1.1 2011/04/10 1. A A = 1 ɛ ijk A ijk (78) 3! i,j,k=1 A ( A) ijk = ɛ ijk A (79) A A A = A (80) [ 6] 1.2 1.2.1 1.2.1.1 1.2.1.1.1 a, b a b = a 1 b 1 + a 2 b 2 + a 3 b 3 (81) 1 0 0 0 1 0 0 0 1 (82) e 1 e 1 = e 2 e 2 = e 3 e 3 = 1 (83) e 1 e 2 = e 2 e 3 = e 3 e 1 = 0 (84) e 2 e 1 = e 3 e 2 = e 1 e 3 = 0 (85) 12

1.2. v1.1 2011/04/10 1. a b = b a (86) a (b + c) = a b + a c (87) (a + b) c = a c + b c (88) (λa) b = a (λb) = λ(a b) (89) a = a a (90) a a 1.2.1.1.2 [ ] (x 0, x 1, x 2, x 3 ) = (ct, x, y, z) a b = a 0 b 0 + a 1 b 1 + a 2 b 2 + a 3 b 3 (91) Minkowski 4 a b = g ij a i b j (92) i,j=0 g ij f(x), g(x) f g = f(x)g(x)dx (93) 1.2.1.1.3 a b θ a b = a b cos θ (94) 0 a, b a b a b 0 (95) a b a b (96) 13

1.2. v1.1 2011/04/10 1. 4 cos 0 a = (a 1, a 2, a 3 ) x y z α, β, γ (l, m, n) l = cos α (97) m = cos α (98) n = cos γ (99) l = a e 1 a m = a e 2 a n = a e 3 a = = = a 1 a 2 1 + a 2 2 + a2 3 a 2 a 2 1 + a 2 2 + a2 3 a 3 a 2 1 + a 2 2 + a2 3 (100) (101) (102) l 2 + m 2 + n 2 = 1 (103) 4 r A n A a t r a = tn (104) 14

1.2. v1.1 2011/04/10 1. A n A a n (r a) = 0 (105) A R A a (r a) (r a) = R 2 (106) 1.2.1.1.4 W = F r (107) F r 1.2.1.2 1.2.1.2.1 A B A : B = i, A ij B ij (108) : A = 1 2 A : A (109) A = A : A (110) 1/2 A 12 (= A 21 ) A A 12 (111) 15

1.2. v1.1 2011/04/10 1. 1.2.1.2.2 : (112) τ ė ė = 1 ( τ ) n 1 τ (113) 2µB G n 3.5 µ G B τ ij ė ij ė ij = 1 2µ τ ij (114) ė ij = 1 ( τ ) n 1 τij (115) 2µB G τ (109) 1.2.1.3 1.1.2.3 (27) v = T (u) (116) v i = T ij u j (117) v = T u (118) v = T u (119) 16

1.2. v1.1 2011/04/10 1. (27) u T S v = S(T (u)) (120) v i = S ij T jk u k (121) j,k=1,3 T S S T (122) 1.2.1.4 S = (S ij ), T = (T ijk ), (123) p q p + q S T = (S ij T klm ), (124) ST ρu u (125) ρuu Maxwell (SI ) 1 µ 0 ( B B 1 ) 2 B2 I (126) (33) a b (a b)(u, v) = (a u)(b v) (127) (a b) ij = (a b)(e i, e j ) = (a e i )(b e j ) = a i b j (128) 17

1.2. v1.1 2011/04/10 1. T = i, T ij e i e j (129) e i e j (33) T T (u, v) = (41) 1.2.1.5 i, T ij (e i e j )(u, v) = i, 1.2.1.5.1 a, b (a b) i = j,k=1 u i T ij v j (130) ɛ ijk a j b k (131) Levi-Civita ɛ ijk a b = e 1 e 2 e 3 a 1 a 2 a 3 b 1 b 2 b 3 (132) a b = b a (133) a (b + c) = a b + a c (134) (a + b) c = a c + b c (135) (λa) b = a (λb) = λ(a b) (136) (133) b = a a a = 0 (137) e 1 e 1 = e 2 e 2 = e 3 e 3 = 0 (138) e 1 e 2 = e 3, e 2 e 3 = e 1, e 3 e 1 = e 2 (139) 18

1.2. v1.1 2011/04/10 1. 5 1.2.1.5.2 a b θ (0 θ π) 5 a b a b a b sin θ a b a b a b a b a b [ 7] a b θ = 0 π a b a b = 0 (140) 1.2.1.5.3 r p L = r p (141) 1.2.1.6 1.2.1.6.1 a b c a b c = a (b b) = b (c a) = c (a c) (142) a b c a 1 a 2 a 3 = b 1 b 2 b 3 c 1 c 2 c 3 = a 1 b 1 c 1 a 2 b 2 c 2 a 3 b 3 c 3 (143) a, b, c 6 a, b, c 6 b 19

1.2. v1.1 2011/04/10 1. 6 c b c a cos θ V V = a b c cos θ = a (b c) (144) 1.2.1.6.2 a, b, c a (b c) (a b) c a (b c) (a b) c a (b c) = (a c)b (a b)c (145) (a b) c = (a c)b (b c)a (146) 1.2.1.7 1.2.1.7.1 a, b a b = a b b a (147) 0 a 1 b 2 b 1 a 2 a 1 b 3 b 1 a 3 a b = (a i b j b i a j )e i e j = a 2 b 1 b 2 a 1 0 a 2 b 3 b 2 a 3 (148) i, a 3 b 1 b 3 a 1 a 3 b 2 b 3 a 2 0 20

1.2. v1.1 2011/04/10 1. e 1 e 1 = e 2 e 2 = e 3 e 3 = 0 (149) e 2 e 3 = e 3 e 2 = 0 0 0 0 0 1 (150) 0 1 0 e 3 e 1 = e 1 e 3 = 0 0 1 0 0 0 (151) 1 0 0 0 1 0 e 1 e 2 = e 2 e 1 = 1 0 0 (152) 0 0 0 (148) 1.1.2.9.3 ( (a b)) ij = k,l,m=1 ɛ ijk ɛ klm a l b m = l,m=1 (δ il δ jm δ im δ jl )a l b m = a i b j a j b i = (a b) ij (153) (a b) = a b (154) ( (a b)) i = 1 2 ɛ ijk (a j b k b j a k ) = ɛ ijk a j b k = (a b) i (155) j,k=1 j,k=1 (a b) = a b (156) a b 0 a b (157) [ 8] (a 1 a 2 ) : (b 1 b 2 ) = 2 a 1 b 1 a 1 b 2 a 2 b 1 a 2 b 2 (158) (a 1 a 2 ) (b 1 b 2 ) = a 1 b 1 a 1 b 2 a 2 b 1 a 2 b 2 (159) 21

1.2. v1.1 2011/04/10 1. 1.2.1.7.2 a b c = a b c + b c a + c a b a c b b a c c b a (160) (a b c) ijk = a i b j c k + b i c j a k + c i a j b k a i c j b k b i a j c k c i b j a k (161) a i a j a k = b i b j b k (162) c i c j c k a 1 a 2 a 3 = ɛ ijk b 1 b 2 b 3 (163) c 1 c 2 c 3 e 1 e 2 e 3 = e 2 e 3 e 1 = e 3 e 1 e 2 (164) = e 1 e 3 e 2 = e 2 e 1 e 3 = e 3 e 2 e 1 (165) = (ɛ ijk ) (166) 1.1.2.9.3 ( ( a b c a 1 a 2 a 3 )) ijk = ɛ ijk b 1 b 2 b 3 c 1 c 2 c 3 = (a b c) ijk (167) ( a b c ) = a b c (168) (a b c) = 1 3! ɛ ijk ɛ ijk i,j,k=1 a 1 a 2 a 3 b 1 b 2 b 3 c 1 c 2 c 3 = a 1 a 2 a 3 b 1 b 2 b 3 c 1 c 2 c 3 = a b c (169) a b c 0 a, b, c (170) 22

1.2. v1.1 2011/04/10 1. 1.2.2 1.2.2.1 σ n σ i (n) = σ ij n j (171) (σ ij ) σ ij [ ] σ i (n) = n j σ ji (172) (171) σ ij = R ik R jl σ kl (173) k,l=1 σ = R σ R 1 (174) σ R 1.2.2.2 23

1.2. v1.1 2011/04/10 1. [ 9] T = 3 1 1 1 2 0 1 0 2 (175) R A 0 p A p = λp (176) λ (A λi) p = p i (A λi) e i = 0 (177) (A λi) e i, (i = 1, 2, 3) [(A λi) e 1 ] [(A λi) e 2 ] [(A λi) e 3 ] = 0 (178) λ 3 (e 1 e 2 e 3 ) λ 2 [(A e 1 ) e 2 e 3 + e 1 (A e 2 ) e 3 + e 1 e 2 (A e 3 )] + λ[e 1 (A e 2 ) (A e 3 ) + (A e 1 ) e 2 (A e 3 ) + (A e 1 ) (A e 2 ) e 3 ] [(A e 1 ) (A e 2 ) (A e 3 )] = 0 (179) (e 1 e 2 e 3 ) (A e 1 ) e 2 e 3 + e 1 (A e 2 ) e 3 + e 1 e 2 (A e 3 ) = I A [e 1 e 2 e 3 ] (180) e 1 (A e 2 ) (A e 3 ) + (A e 1 ) e 2 (A e 3 ) + (A e 1 ) (A e 2 ) e 3 = II A [e 1 e 2 e 3 ] (181) (A e 1 ) (A e 2 ) (A e 3 ) = III A [e 1 e 2 e 3 ] (182) I A, II A, III A A (179) λ 3 I A λ 2 + II A λ III A = 0 (183) 24

1.2. v1.1 2011/04/10 1. I A, II A, III A 1.2.2.3 A = A ij e i e j (184) i, (A e 1 ) e 2 e 3 + e 1 (A e 2 ) e 3 + e 1 e 2 (A e 3 ) = ( A i1 e i ) e 2 e 3 + e 1 ( A i2 e i ) e 3 + e 1 e 2 ( A i3 e i ) = A 11 (e 1 e 2 e 3 ) + A 22 (e 1 e 2 e 3 ) + A 33 (e 1 e 2 e 3 ) = (A 11 + A 22 + A 33 )(e 1 e 2 e 3 ) (185) I A = A 11 + A 22 + A 33 = A ii = tra (186) A e 1 (A e 2 ) (A e 3 ) + (A e 1 ) e 2 (A e 3 ) + (A e 1 ) (A e 2 ) e 3 = e 1 ( A i2 e i ) ( A j3 e j ) + ( A j1 e j ) e 2 ( A i3 e i ) +( A i1 e i ) ( A j2 e j ) e 3 = (A 22 A 33 A 32 A 23 )(e 1 e 2 e 3 ) + (A 11 A 33 A 31 A 13 )(e 1 e 2 e 3 ) +(A 11 A 22 A 21 A 12 )(e 1 e 2 e 3 ) = (A 11 A 22 + A 22 A 33 + A 33 A 11 A 12 A 21 A 23 A 32 A 31 A 13 )(e 1 e 2 e 3 ) (187) II A = A 11 A 22 + A 22 A 33 + A 33 A 11 A 12 A 21 A 23 A 32 A 31 A 13 ( ) 2 = 1 A ii A ij A ji 2 = 1 I A 2 2 i, i, A ij A ji (188) 25

1.2. v1.1 2011/04/10 1. (A e 1 ) (A e 2 ) (A e 3 ) = ( A i1 e i ) ( A j2 e j ) ( A k3 e k ) = i,j,k=1 k=1 ɛ ijk A i1 A j2 A k3 (e 1 e 2 e 3 ) (189) III A = ɛ ijk A i1 A j2 A k3 = det A (190) i,j,k=1 A I A = A ii = II A = 1 I A 2 2 = 1 I A 2 2 = 1 I A 2 2 = 1 2 [ = II A I 2 A i,k,l=1 i, A ij = k,l=1 R ik R il A kl = A ija ji i,j,k,l,m,n=1 k,l,m,n=1 m,n=1 R ik R jl A kl (191) k,l=1 δ kl A kl = A kk = I A (192) k=1 R ik R jl A kl R jm R in A mn δ kn δ lm A kl A mn A nm A mn ] (193) det(a B) = (det A)(det B) (194) A = R A R 1 (195) 26

1.2. v1.1 2011/04/10 1. III A = det A = det R A R 1 = det A = III A (196) A = λ 1 0 0 0 λ 2 0 0 0 λ 3 (197) I A = λ 1 + λ 2 + λ 3 (198) II A = λ 1 λ 2 + λ 2 λ 3 + λ 3 λ 1 (199) III A = λ 1 λ 2 λ 3 (200) 0 τ I τ = 0 (201) II τ = 1 τ ij τ ij = τ 2 2 (202) i, III A = det τ (203) 1.2.2.4 A J A1 = tra = A ii (204) J A2 = 1 2 tra2 = 1 2 J A3 = 1 3 tra3 = 1 3 A ij A ji (205) i, i,j,k=1 A ij A jk A ki (206) A J A1, J A2, J A3 I A = J A1 (207) II A = 1 2 (J A1 2 J A2 ) (208) III A = 1 6 J A1 3 J A1 J A2 + J A3 (209) [ 10] (209) 27

1.2. v1.1 2011/04/10 1. 1.2.2.5 web pages H. (1967) P. (1979) (1981) 23 (1987) 53 (1997) Introduction to Elasticity/Tensors, http://en.wikiversity.org/wiki/introduction_to_elasticity/tensors http://www.thefullwiki.org/introduction_to_elasticity/tensors 4 27 28