A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x A (1)

Similar documents
A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x A (1)

II Time-stamp: <05/09/30 17:14:06 waki> ii


ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

, = = 7 6 = 42, =

A, B, C. (1) A = A. (2) A = B B = A. (3) A = B, B = C A = C. A = B. (3)., f : A B g : B C. g f : A C, A = C. 7.1, A, B,. A = B, A, A A., A, A


II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

p-sylow :

,2,4

15 mod 12 = 3, 3 mod 12 = 3, 9 mod 12 = N N 0 x, y x y N x y (mod N) x y N mod N mod N N, x, y N > 0 (1) x x (mod N) (2) x y (mod N) y x


D 24 D D D


Armstrong culture Web


I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

1. A0 A B A0 A : A1,...,A5 B : B1,...,B

2001 Miller-Rabin Rabin-Solovay-Strassen self-contained RSA RSA RSA ( ) Shor RSA RSA 1 Solovay-Strassen Miller-Rabin [3, pp

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

2014 (2014/04/01)

数学Ⅱ演習(足助・09夏)

12 2 e S,T S s S T t T (map) α α : S T s t = α(s) (2.1) S (domain) T (codomain) (target set), {α(s)} T (range) (image) s, s S t T s S

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

AI n Z f n : Z Z f n (k) = nk ( k Z) f n n 1.9 R R f : R R f 1 1 {a R f(a) = 0 R = {0 R 1.10 R R f : R R f 1 : R R 1.11 Z Z id Z 1.12 Q Q id


I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x

( ) X x, y x y x y X x X x [x] ( ) x X y x y [x] = [y] ( ) x X y y x ( ˆX) X ˆX X x x z x X x ˆX [z x ] X ˆX X ˆX ( ˆX ) (0) X x, y d(x(1), y(1)), d(x


= = = = = = 1, 000, 000, 000, = = 2 2 = = = = a,

欧州特許庁米国特許商標庁との共通特許分類 CPC (Cooperative Patent Classification) 日本パテントデータサービス ( 株 ) 国際部 2019 年 7 月 31 日 CPC 版が発効します 原文及び詳細はCPCホームページのCPC Revision

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

( [1]) (1) ( ) 1: ( ) 2 2.1,,, X Y f X Y (a mapping, a map) X ( ) x Y f(x) X Y, f X Y f : X Y, X f Y f : X Y X Y f f 1 : X 1 Y 1 f 2 : X 2 Y 2 2 (X 1

Solutions to Quiz 1 (April 20, 2007) 1. P, Q, R (P Q) R Q (P R) P Q R (P Q) R Q (P R) X T T T T T T T T T T F T F F F T T F T F T T T T T F F F T T F

Dynkin Serre Weyl

A

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2


III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x


i

ver Web

1 1.1 R (ring) R1 R4 R1 R (commutative [abelian] group) R2 a, b, c R (ab)c = a(bc) (associative law) R3 a, b, c R a(b + c) = ab + ac, (a + b)c = ac +

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

16 B

Jacobson Prime Avoidance

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

newmain.dvi

第1章

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

48 * *2

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

mahoro/2011autumn/crypto/

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63)

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

欧州特許庁米国特許商標庁との共通特許分類 CPC (Cooperative Patent Classification) 日本パテントデータサービス ( 株 ) 国際部 2019 年 1 月 17 日 CPC 版のプレ リリースが公開されました 原文及び詳細はCPCホームページの C

.1 A cos 2π 3 sin 2π 3 sin 2π 3 cos 2π 3 T ra 2 deta T ra 2 deta T ra 2 deta a + d 2 ad bc a 2 + d 2 + ad + bc A 3 a b a 2 + bc ba + d c d ca + d bc +

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N.

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1.


January 27, 2015

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

2012 A, N, Z, Q, R, C

( ) ( ) 1729 (, 2016:17) = = (1) 1 1

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

( ),.,,., C A (2008, ). 1,, (M, g) (Riemannian symmetric space), : p M, s p : M M :.,.,.,, (, ).,, (M, g) p M, s p : M M p, : (1) p s p, (

1. A0 A B A0 A : A1,...,A5 B : B1,...,B

96 5, ' : G! H '(G) =H,, H G, 37 Z Z m a 2 Z m a a p Z m (p.90 ) p(a + b) =a + b = a + b = p(a)+p(b):, p {p(ab) =p(a)p(b){, p ( 95 ). 97. m, n, Z m Z


Solutions to Quiz 1 (April 17, 2008) 1. P, Q, R (P Q) R (P R) (Q R). P Q R (P Q) R (P R) (Q R) X T T T T T T T T T T T T T T T F T T F T T T F F T F F

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

ii

29

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

本文/目次(裏白)

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1



x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

DVIOUT

text.dvi

untitled

C による数値計算法入門 ( 第 2 版 ) 新装版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 新装版 1 刷発行時のものです.

On a branched Zp-cover of Q-homology 3-spheres

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1.

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)


Transcription:

7 2 2.1 A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x 1 2.1.1 A (1) A = R x y = xy + x + y (2) A = N x y = x y (3) A = N 2 (a, b), (c, d) A (a, b) (c, d) = (ad + bc, bd) (4) X A X A = 2 X ) x, y A x y = x y (5) A x y = x y

2 8 (6) Y a z ( ) (, ) (.) A Y (you are stupid, but i am not.) A A ξ = (α 1 α 2... α n ) ξ = (α 1α 2... α m) n = m α i = α i (1 i n) ξ ξ = (α 1 α 2... α n α 1α 2... α m) (7) n A = M n n (C) x y (8) n A = M n n (R) x y = xy yx (9) A X x y X n 2.1.2 (1) (2) A 2.1.3 x 1 x 2 x n 2.1.4 2.1.5 x x 2.1.6 A e x e = x x A ( e x = x ) e 2.1.7 e x A x y = e y x x

2 9 2.2 G G G G (1) (x y) z = x (y z) ( x, y, z G) (2) e G such that x e = e x = x ( x G) (2) x G, x 1 G such that x x 1 = x 1 x = e G G x y = y x ( x, y G) + 0 x x G G G G n G = {a 1, a 2,..., a n } a i, a j (1 i, j n) a i a j = a k a k e x e e x x x e G x 0 = e, x 1 = x, x 2 = x x,..., x n+1 = x n x G x G x n G x 2.2.1 G (1) x y = x z y = z (2) x x = x x = e (3) a, b G a x = b x (4) a G a G = {a x x G} G a = {x a x G} a G = G = G a (5) (a 1 a 2 a n ) 1 = a 1 n a 1 2 a 1 1 2.2.2 (1) 3, 4, 5, 6 3, 5 4, 6

2 10 (2) 7 7 2.2.3 n n 2.2.4 x G (a) G x n = e n (b) G n n x m = e m (c) G G Z 2.2.5 (a) Z (b) R {0} (c) n GL n (C) (d) n S n (e) M G 2.2.6 G n x G x m = e n m 2.2.7 n Z x, y x y n n a b mod n Z Z/nZ x [x] Z/nZ = {[0], [1], [2],..., [n 1]} Z/nZ [x] + [y] [x + y] Z/nZ [0] Z/nZ [1] n n Z/nZ

2 11 2.3 G H G H G G H G G e e H x, y H x y 1 H H G G x, y x y x 1 y H G/H ah = {ah h H} G/H {ah a G} ah a H x y xh = yh G x, y x y x y 1 H H\G Ha = {ha h H} H\G {Ha a G} Ha a H x y Hx = Hy G/H H [G : H] ( ) G = H [G : H] G H H [G : H] G G x x n = e n x (order) ord(x) G ord(x) G 2.3.1 G H (a) G = R H = Z (b) G x H H = {x n x Z} (c) G = GL(n, C) = {X n det(x) 0} H = SL(n, C) = {X GL(n, C) det(x) = 1} (d) G = GL(n, C) = {X n det(x) 0} T = {X GL(n, C) X } {( ) } t 0 (e) G = SL(2, R) H = 0 t 1 t 0 R (f) n G = S n H = A n 2.3.2 G H G/H H\G

2 12 2.3.3 n = pq p, q G = Z/nZ 2.3.4 G n G n x G x 2.3.5 G G 2.3.6 G n n m m G 2.3.7 G H G/H H\G 2.3.8 Q 2.3.9 G H H K [G : K] = [G : H][H : K] 2.3.10 G G =< x > /(x n = e) G x i x n e G x n (a) G =< x > (b) G =< x, y > /(x 2 = e, y 2 = e, xy = yx) (c) G =< x, y > /(x 3 = e, y 2 = e, yx = x 2 y) 2.3.11 n Z/nZ n ϕ(n) ϕ (a) ϕ(n) {i 1 i < n, (i, n) = 1} (b) p ϕ(p r ) = p r 1 (p 1) (c) n = m n ϕ(m)

2 13 2.4 G G f : G G f f (a) x, y G f(x y) = f(x) f(y) f (b) f(e) = e (c) f(x 1 ) = f(x) 1 (d) f(x y 1 ) = f(x) f(y) 1 f : G G f G G G = G f : G G Im(f) = {f(x) G x G} Im(f) f (Image) Im(f) G f : G G f Im(f) = G f : G G Ker(f) = {x G f(x) = e } Ker(f) f (Kernel) Ker(f) G f : G G f Ker(f) = {e} 2.4.1 f f f(x y 1 ) = f(x) f(y) 1 2.4.2 (a) f : GL(n, C) GL(1, C) f(a) = det(a) (b) R C = C {0} = GL(1, C) f : R C f(x) = e 2πix (c) f : Z Z/2Z 0 x f(x) = 1 x

2 14 (d) n S n n f : S n Z/2Z f(σ) = sgn(σ) sgn(σ) σ 0 x sgn(σ) = 1 x 2.4.3 2.4.4 f : G G (a) f G G (b) f G G 2.4.5 G G f : G G f G G 2.4.6 f : G G f 1 : G G 2.4.7 f : G G (a) f Ker(f) = {e} (b) Ker(f) = {e} G Im(f) 2.4.8 G f : G G f(x) = x 1 f f G 2.4.9 G f : G G f(x) = x 2 G 2.4.10 Q f : Q Q f(1) = 1 f 2.4.11 Z Q 2.4.12 Q + = {x Q x > 0} Q + Z Q 2.4.13 G a G φ a : G G φ a (x) = axa 1 φ a G φ a a G

2 15 2.5 G N N G (normal subgroup) (a) xn = Nx (b) xnx 1 = N (c) xnx 1 N for any x G for any x G for any x G N G G H NH = HN G G f : G G Ker(f) G Im(f) G N G G/N G/N G N G/N xn yn xyn well-defind xn = x N, yn = y N xyn = x y N N G/N N = en, xn x 1 N 2.5.1 GL(2, R) {( ) } a c (a) N 1 = ab 0, c R 0 b {( ) } a 0 (b) N 2 = 0 b ab 0 {( ) } a b (c) N 3 = 0 1 a 0, b R {( ) } 1 b (d) N 4 = 0 1 b R 2.5.2 H G 2 H G 2.5.3 N H G N H = {e} N H 2.5.4 G n H i (i = 1, 2,..., n) N = n i=1 H i G

2 16 2.5.5 N G H G (a) H N H (b) NH = {n h n N, h H} G (c) H G NH G 2.5.6 4 S 4 2.5.7 n S n A n 2.5.8 G Z(G) = {a ab = ba for any b G} Z(G) G (center) (a) Z(G) G (b) Z(G) G H G (c) H Z(G) G G/H G (d) G/Z(G) G 2.5.9 G a, b [a, b] = aba 1 b 1 a, b G G [G, G] G (a) [G, G] G (b) G/[G, G] (c) H G G [G, G] H G/H (d) G/H G H [G, G] H 2.5.10 S n Z(S n ) [S n, S n ]

2 17 2.6 f : G G H = Ker(f) H G f f : G/H G [x] G/H f([x]) = f(x) f : G G G/Ker(f) = Im(f) H K G K HK = {h k h H, k K} G H K H K HK H/H K = HK/K K H G G H/K G/K G/K = (G/K)/(H/K) 2.6.1 2.6.2 2.6.3 n S n A n S n /A n = Z/2Z 2.6.4 SL(n, C) GL(n, C) GL(n, C)/SL(n, C) C = C {0} 2.6.5 S = {z C z = 1} S C = C {0} C /S 2.6.6 n R n R n H = {(x 1,..., x n ) R n a 1 x 1 + + a n x n = 0} R n R n /H = R 1 (a 1,..., a n ) (0,..., 0) 2.6.7 n, m Z Z nz = {nz z Z} mz (a) nz mz n m (b) d n m c n m nz + mz = dz, nz mz = cz n m an + bm (a, b Z) (c) dz/mz = nz/cz

2 18 2.6.8 S 4 V = {(1), (12)(34), (13)(24), (14)(23)} S 4 S 4 /V = S 3 2.6.9 G H K [G : H] [G : K] G = HK 2.6.10 (a) G 1 G 2 G 1 G 2 = {(g 1, g 2 ) g 1 G 1, g 2 G 2 } (g 1, g 2 ) (h 1, h 2 ) = (g 1 h 1, g 2 h 2 ) G 1 G 2 G 1 G 2 G 1 G 2 (e 1, e 2 ) (g 1, g 2 ) 1, g 1 2 ) (b) G 1 = {(g 1, e 2 ) g 1 G 1 } G 1 G 2 G 1 G 2 /G 1 = G 2 G 1 G 2 /G 2 = G 1 (c) G = G 1 G 2 G Z(G) [G, G] Z(G) = Z(G 1 ) Z(G 2 ), [G, G] = [G 1, G 1 ] [G 2, G 2 ] (d) F G 1 G 2 G 1 G 2 F G 1 G 2 π : G 1 G 2 G 1 G 2 Ker(π) (g 1 2.6.11 H K G (a) G HK (d) π H K (b) HK h k (h H, k K) (c) a b = e (a H, b K) a = b = e (d) H K = {e} 2.6.12 G H K H K G = H K p q Z/(pq)Z = Z/pZ Z/qZ