() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

Similar documents
2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

- II

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

[ ] x f(x) F = f(x) F(x) f(x) f(x) f(x)dx A p.2/29

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n

Chap11.dvi

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ

DVIOUT

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

(1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

v er.1/ c /(21)

y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) (velocity) p(t) =(x(t),y(t),z(t)) ( dp dx dt = dt, dy dt, dz ) dt f () > f x

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

1

III ϵ-n ϵ-n lim n a n = α n a n α 1 lim a n = 0 1 n a k n n k= ϵ-n 1.1

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

4 R f(x)dx = f(z) f(z) R f(z) = lim R f(x) p(x) q(x) f(x) = p(x) q(x) = [ q(x) [ p(x) + p(x) [ q(x) dx =πi Res(z ) + Res(z )+ + Res(z n ) Res(z k ) k


³ÎΨÏÀ

2011de.dvi

1 I

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s


Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x


I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

body.dvi

1 yousuke.itoh/lecture-notes.html [0, π) f(x) = x π 2. [0, π) f(x) = x 2π 3. [0, π) f(x) = x 2π 1.2. Euler α

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

O f(x) x = A = lim h f( + h) f() h A (differentil coefficient) f f () y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) * t (v

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

ft. ft τfτdτ = e t.5.. fx = x [ π, π] n sinnx n n=. π a π a, x [ π, π] x = a n cosnx cosna + 4 n=. 3, x [ π, π] x 3 π x = n sinnx. n=.6 f, t gt n 3 n

J1-a.dvi

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

= π2 6, ( ) = π 4, ( ). 1 ( ( 5) ) ( 9 1 ( ( ) ) (

(, ) (, ) S = 2 = [, ] ( ) 2 ( ) 2 2 ( ) 3 2 ( ) 4 2 ( ) k 2,,, k =, 2, 3, 4 S 4 S 4 = ( ) 2 + ( ) ( ) (

f(x) x = A = h f( + h) f() h A (differentil coefficient) f(x) f () y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) * t (velo

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>


no35.dvi


( z = x 3 y + y ( z = cos(x y ( 8 ( s8.7 y = xe x ( 8 ( s83.8 ( ( + xdx ( cos 3 xdx t = sin x ( 8 ( s84 ( 8 ( s85. C : y = x + 4, l : y = x + a,

04.dvi

webkaitou.dvi

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

i

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

< 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3)

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

基礎数学I

2 2 ( Riemann ( 2 ( ( 2 ( (.8.4 (PDF 2

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

[] x < T f(x), x < T f(x), < x < f(x) f(x) f(x) f(x + nt ) = f(x) x < T, n =, 1,, 1, (1.3) f(x) T x 2 f(x) T 2T x 3 f(x), f() = f(t ), f(x), f() f(t )

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)


2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

A

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y


n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.


, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

1 1 u m (t) u m () exp [ (cπm + (πm κ)t (5). u m (), U(x, ) f(x) m,, (4) U(x, t) Re u k () u m () [ u k () exp(πkx), u k () exp(πkx). f(x) exp[ πmxdx

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )


I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x

2014 S hara/lectures/lectures-j.html r 1 S phone: ,

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (


1 θ i (1) A B θ ( ) A = B = sin 3θ = sin θ (A B sin 2 θ) ( ) 1 2 π 3 < = θ < = 2 π 3 Ax Bx3 = 1 2 θ = π sin θ (2) a b c θ sin 5θ = sin θ f(sin 2 θ) 2

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F


1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

Transcription:

() 6 f(x) [, b] 6. Riemnn [, b] f(x) S f(x) [, b] (Riemnn) = x 0 < x < x < < x n = b. I = [, b] = {x,, x n } mx(x i x i ) =. i [x i, x i ] ξ i n (f) = f(ξ i )(x i x i ) i=. (ξ i ) (f) 0( ), ξ i, S, ε > 0 δ > 0 = mx x i x i < δ i ξ i ( ξ i [x i, x i ]) S = f(ξ i )(x i x i ) S < ε, S, b f(x)dx

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

(3) 6. [, b] (Riemnn). n (f) = f(ξ i )(x i x i ) i= = {x, x,, x n }. f(x) ( L f(x) < L) sup f(x) = M i, inf f(x) = m i. x i x x i x i x x i n m i (x i x i ) (f) i= n M i (x i x i ) i= m i f(ξ i ) M i s = S = n m i (x i x i ) i= n M i (x i x i ) i=. (i) s S (m i M i ) (ii) ( ) s s S S. ) = {x, x,, x n }. [x i, x i ] y. m i = inf f(x) x i x x i inf f(x) m i x i x y inf f(x). y x x i m i (x i x i ) inf f(x)(y x i ) + inf f(x)(x i y) x i x y y x x i s [x i, x i ] s [x i, x i ] i s s. S S.

(4) (iii) s S 3 = s s 3 S 3 S s S ( ) S,s inf sup inf S sup s f(x) inf S = sup s ε > 0 S s < ε f(x) [, b]. ε > 0 δ x y < δ f(x) f(y) < ε δ < δ x i x i < δ x, y [x i, x i ] ε < f(x) f(y) < ε [x i, x i ] x sup, y inf ε M i m i ε f(x) f(y) < ε M i m i ε S s ε(b ) inf S = sup s. S.

(5) s (f) S = mx(x i x i ) < δ S s ε(b ) (f) S = S s ε(b ) S (f) S S < S. s S < S S S s ε(b ) S f(x) g(x) [, b] () f(x) + g(x) b (f(x) + g(x)) dx = b f(x)dx + b g(x)dx [ ] f(x) ε > 0 δ > 0 = mx i x i x i < δ f(ξ i )(x i x i ) b f(x)dx < ε g(x) ε > 0 δ > 0 = mx x i x i < δ i g(ξ i )(x i x i ) b g(x)dx < ε δ = min(δ, δ ) (min(δ, δ ) = {δ, δ } δ, δ ) < δ (f(ξ i ) + g(ξ i ))(x i x i ) f + g f(ξ i )(x i x i ) b f + g (f(x) + g(x))dx = b b b f(x)dx b g(x)dx f(x)dx + g(ξ i )(x i x i ) f(x)dx + b g(x)dx b g(x)dx < ε

(6) () c R b cf(x)dx = c b f(x)dx (3) < c < b b f(x)dx = c f(x)dx + b c f(x)dx (4) f(x) 0 b f(x)dx 0 (5) f(x) g(x) b f(x)dx b g(x)dx (6) M = sup f(x), m = inf f(x) x b x b m f(x) M x [, b] [, b] m(b ) b f(x)dx M(b ) p (m p M) b f(x)dx = p(b ) Remrk f(x) [, b] M = sup f(x) = mx f(x) x b x b m = inf f(x) = min f(x) x b x b f(ξ) = p (m p M) ξ [, b]. b f(x)dx = f(ξ)(b )

(7) (7) b b f(x)dx f(x) dx ( f(x) f(x) f(x) ) (8) ( ) b f(x)g(x)dx b f(x) dx b g(x) dx [ ] λ b f(x) + λg(x) dx 0. (9) f(x) g(x) y = f(x), y = g(x), x =, x = b b (g(x) f(x))dx

(8) 6. F (x) = x f(t)dt f(x), f(x)dx 6. f(x) F (x) = f(x) (6) F (x + h) F (x) F (x) = lim h 0 h = lim h 0 = lim h 0 x+h x+h x f(t)dt x f(t)dt h f(t)dt h h f(x + θh) = lim (0 θ ) h 0 h = lim f(x + θh) = f(x) h 0 Remrk F (x) = f(x) f(x). f(x) f(x) C

(9) 6. (6.) x α+ x α + C (α ) dx = α + log x + C (α = ) (6.) cos x dx = sin x + C (6.3) sin x dx = cos x + C (6.4) e x dx = ex + C (6.5) cos x dx = tn x + C (6.6) sin x dx = cot x + C (6.7) ( x ) tn = + ( x ) = x + x + dx = x tn + C (6.8) x dx = sin x + C (6.9) f (x) dx = log f(x) + C f(x)

(0) (6.0) x dx = ( x ) dx = x + log x x + + C (6.) x dx = e x log dx = log ex log + C = log x + C (6.) tn x dx = sin x sin x cos x dx = cos x dx = log cos x + C (6.3) x dx = log x + x + C ( x > ) (6.4) x dx = ( x ) x + sin x + C (6.5) x dx = ( x x log x + ) x + C ( x > ) (6.6) x + dx = ( x x + log x + ) x + C

() F (x) f(x). F (x) = f(x) 6. d dx u(x) c b f(t)dt f(x)dx = [F (x)] b = F (b) F () f(x) F (t) d u(x) f(t)dt = [F (t)] u(x) c dx c Riemnn = d (F (u(x)) F (c)) dx = d dx F (u(x)) = F (u(x)) u (x) = f(u(x)) u (x) 6.3 ( lim + + 3 + + n ) n n 3 Riemnn S n = n 3 ( + + 3 + + n ) = n { ( ) + n S n [0, ] y = x lim S n = n 0 x dx = 3 ( ) } ( n ) + + n n S n y = x [0, ]

() 6.3 G(x) g(x) f(x)g(x)dx = f(x)g(x) f (x)g(x)dx b f(x)g(x)dx = [f(x)g(x)] b b f (x)g(x)dx [ ] f(x)g(x) d dx (f(x)g(x)) = f (x)g(x) + f(x)g (x) = f (x)g(x) + f(x)g(x) b 6.4 () () b [(f(x)g(x))] b = f (x)g(x) + b log xdx = log xdx = (x) log xdx = x log x x x dx = x log x dx = x log x x + C (C: ) ( ) x x(log x) dx = (log x) dx = x (log x) x log xdx ( ) = x x (log x) log xdx ( = x (log x) x x log x + ) dx x = x (log x) x x log x + 4 + C (C: ) f(x)g(x)

(3) 6.4 x = ϕ(t) (ϕ(t) : ) f(x)dx = f(ϕ(t))ϕ (t)dt ϕ(b) f(x)dx = b ϕ() f(ϕ(t))ϕ (t)dt Remrk. f(x)dx = f(x(t)) dx dt dt ( ) [ ] F (x) = x ϕ() f(t)dt. F (x) = f(x). x = ϕ(t) ϕ (t). F (x)ϕ (t) = f(x)ϕ (t) b d dt (F (ϕ(t))) = f(ϕ(t))ϕ (t) F (ϕ(b)) F (ϕ()) = = 6.5 (log x) x dx t = log x dt dx = x (log x) dx = x x t dx dt dt = x t xdt = t dt ϕ(b) ϕ() = 3 t3 + C = 3 (log x)3 + C f(x)dx = b b f(ϕ(t))ϕ (t)dt f(ϕ(t))ϕ (t)dt

(4) () e x 6.6 I = I = (e x ) sin xdx = e x sin x e x cos xdx e x sin xdx ( ) e x cos xdx = e x cos x + e x sin xdx ( ) I = e x sin x e x cos x + e x sin xdx I = e x sin x e x cos x I I = e x sin x e x cos x I = ex (sin x cos x) e x sin xdx = ex (sin x cos x) + C e ix = cos x + i sin x e iπ + = 0 e ix = cos x + i sin x = e x e ix dx = e x (cos x + i sin x)dx e (+i)x dx = + i e(+i)x = i ex e ix = ex (cos x i cos x + i sin x + sin x) z = + bi Re z =, Im z = b e x sin xdx = ex (sin x cos x) + C e x cos xdx = ex (sin x + cos x) + C

(5) e iθ e iθ = cos(θ + θ ) + i sin(θ + θ ) (cos θ + i sin θ )(cos θ + i sin θ ) = cos θ cos θ sin θ sin θ + i(cos θ sin θ + sin θ cos θ ) cos(θ + θ ) = cos θ cos θ sin θ sin θ sin(θ + θ ) = cos θ sin θ + sin θ cos θ (e iθ ) n = e iθn = cos nθ + i sin nθ = (cos θ + i sin θ) n

(6) P (x) () P (x), Q(x) dx Q(x) Step P (x) = Q (x) OK Step P (x) Q(x) P (x) Q(x) = R(x) + P (x) Q(x) P (x) Q(x) Step3 P (x) Q (x) Q(x) P (x) Q(x). x + 6.7 dx x 3 x + x x + x 3 x + x = x + (x ) x x + (x ) x = A x + B x + C A, B, C (x ) ( ) x + = A(x ) + Bx(x ) + Cx = (A + B)x + ( A B + C)x + A A + B = 0 A B + C = A =, B =, C = 3 A = x + ( ) x 3 x + x = x x + 3 dx (x ) = log x log x 3 x + C = log x x 3 x + C.

(7) ( ) x + b n (3) F x, dx cx + d x + b t = n cx + d x + b cx + d = tn (). 6.8 ( x) dx + x t = + x + x = t, x = t dx, dt = t ( t + ) t tdt = t dt = (t + )(t )dt ( = t = t log t + + C ) t + dt = + x log + x + + C

(8) (4) F (sin x, cos x)dx tn x = t sin x = x x sin cos = x x sin + cos x tn x + tn = t + t cos x, dx dt. sin x = t + t cos x = t + t dx dt = + t 6.9 dx + cos x t = tn x + cos x dx = + t + t dt +t = ( + t ) + t dt = t + 3 dt = t + 3 dt ( ) = tn t + c = tn tn x + C 3 3 3 3

(9) (5) F (e x )dx t = e x dt dx = ex = t () 6.0 dx e x + 4e x + 5 e x = t = t + 4 + 5 t dt t = t + 5t + 4 dt = (t + )(t + 4) dt = ( 3 t + ) dt = t + 4 3 log t + t + 4 + c = ( e x ) 3 log + + C e x + 4 Remrk () (5).,