Abstruct CANGAROO-III (PhotoMultiplier Tube PMT PMT ) PMT PMT R3479 ND 1 PMT 10 ( 90 ) Woomera PMT PMT (Light Guide LG) LG 0.944±0.023 PMT (4 ch) PMT

Size: px
Start display at page:

Download "Abstruct CANGAROO-III (PhotoMultiplier Tube PMT PMT ) PMT PMT R3479 ND 1 PMT 10 ( 90 ) Woomera PMT PMT (Light Guide LG) LG 0.944±0.023 PMT (4 ch) PMT"

Transcription

1 CANGAROOIII January 16, 2009

2 Abstruct CANGAROO-III (PhotoMultiplier Tube PMT PMT ) PMT PMT R3479 ND 1 PMT 10 ( 90 ) Woomera PMT PMT (Light Guide LG) LG 0.944±0.023 PMT (4 ch) PMT R8900U (HPKK) R8900U Bialkali Ultra Bialkali R ( 470 nm) 350 nm 1.88 PMT Borosilicate UV 2.09 R3479 R8900U PMT Pulse Height ( 100 ns 8 p.e. ) Pulse hight 6 p.e. 0.03% R ±0.07% R8900U 0.38±0.17% Pulse Height PMT Pulse Hight p.e. ns 0.03% 1

3 1 Introduction γ IACT CANGAROO-III CANGAROO-III PMT CANGAROO-III R&D CTA R&D

4 4 PMT R PMT R PMT ND lter PMT Gain HV HV PMT R PMT PMT PMT PMT Gain PMT Ultra Bialkali PMT UBA R8900U R3479 SA0079( ) R8900U R8900U Gain HV R8900U HV R8900U R3479 R8900U R

5 PMT Pulse Height Discussion PMT R R8900U 350 nm UBA Conclusion PMT R LG LG Ultra Bialkali PMT PMT

6 IACT CANGAROO-III CANGAROO-III CANGAROO R PMT CTA CTA sensitivity /4 inch PMT

7 4.2 R PMT R PMT PMT p.e LED NSPB510s ND R3479 PMT R ND R3479 HV R R3479 PMT R3479 1p.e. 100 p.e R3479 1p.e. 100 p.e R PMT Winston Cone LG LG R3479 R R8900U

8 5.3 R8900U x y R8900U PMT R8900U 1p.e R8900U MAX4107 AD8009AR mm R3479 R Crab ADC cut

9 6.6 Pulse Height

10 1.1 IACT PMT R PMT PMT 2(CAMAC ) ND R3479 ND HV 1 HV HV 2 α R R3479 R8900U-200-M PMT R R3479 SA Bialkali Ultra Bialkali Bialkali Ultra Bialkali LED R3479 R8900U-200-M Pulse Height

11 6.3 (1) (2) nm UBA

12 1 Introduction 1.1 γ 1900 Wilson 10 Hess 1952 Morrison π 0 π 0 γγ γ γ SAS-2 COS-B γ γ γ γ γ γ π 0 2γ Compton Compton Compton Compton 100MeV γ π 0 2γ Compton γ γ

13 X-ray Gamma-ray from Synchrotron from Inverse Compton 2 E df/de Energy from Proton 1.1: γ 12

14 1.2 γ γ ( ) γ γ σ B (ν) dx(g/cm 2 ) ν ν + dν (de) = ν { (ν) dx(g/cm 2 ) = (ν)} νmax 0 (σ B (ν)dν) (dx N ) (hν) (1.1) A ( N A ) E hν max E ν max = E/h σ B de E = 4Z2 e 2 hc X 0 X 0 = {4 Z2 e 2 hc N A ( e2 mc 2 )2 ln(184z 1/3 )dx (1.2) N A ( e2 mc 2 )2 ln(184z 1/3 )} 1 (g/cm 2 ) (1.3) 1.2 E = E 0 exp( x X 0 ) X 0 (radiation length) X 0 (g/cm 2 ) 13

15 1/e X 0 = 36.8g/cm 2 γ 1g/cm 2 N νmax A 0 σ pc dν = 7 1 (1.4) 9 X 0 ( ) ( ) γ 84MeV Heitler(1944) 1.2 γ 0 1.2: X N(X) = 2 X/X 0 (1.5) 14

16 E c E c N max (X max ) = E 0 N max (X max ) = E 0 E c (1.6) (E 0 γ ) X max = X 0 ln(e 0 /E c ) ln2 (1.7) N max E 0 X max ln(e 0 /E c ) γ [1] γ 2 X max X max = X 0 (ln E 0 E c ) (1.8) γ 1TeV 100MeV X max = 10X0 10X 0 = 370g/cm 2 = km n c/n cos θ = c/n v θ = cos 1 ( 1 nβ ) (β = v c ) (1.9) 15

17 c n - - v 1.3: β 1 8km n = θ = cos 1 1 ( ) = 0.8 (= 0.014rad) (1.10) 8km 8km 0.014rad = 112m m 2 γ (Imaging Air Cherenkov Telescope, IACT) (PMT) PMT IACT 16

18 PMT γ ( ) Alpha( α ) Width Length Distance [2] 1.4 Width Length Distance 1.4: CANGAROO-III 4 ˆ Width ˆ Lengh ˆ Distance Alpha ( α ) ˆ Alpha(α) Alpha ( α ) 17

19 γ γ Alpha 0 [3] 1.5 CANGAROO- III ( ) 1.5: γ γ

20 camera A camera B shower image shower orientaion angle shower impact position telescope A telescope B 1.6: : 2 : shower impact position shower orientaion angle camera A camera B telescope A telescope B 1.7: 3 19

21 1.2.3 IACT CANGAROO-III 4 IACT CANGAROO H.E.S.S. MAGIC VERITAS IACT 10 m IACT 100GeV 4 IACT o -150 o -120 o -90 o -60 o -30 o 0 o 30 o 60 o 90 o 120 o 150 o o 30 o MAGIC 0 o -30 o VERITAS -60 o H.E.S.S. CANGAROO-III 1.8: 4 IACT MAGIC VER- ITAS H.E.S.S. CANGAROO 20

22 MAGIC VERITAS H.E.S.S. CANGAROO Project CANGAROO MAGIC HESS VERITAS Location 4 Big IACT projects mirror shape FOV d f f/d System 31.1S, 136.8E, 160 m asl Parabolic m 8 m 0.8 array 28.8N, 17.9W, 2225 m asl Parabolic m 17 m 1.0 single 23.3S, 16.5E, 1800 m asl Davies-cotton m 15 m 1.25 array 31.7N, 110.9W, 2300 m asl Davies-cotton m 10 m 1.2 array 1.1: IACT f d Davies Davies-cotton 21

23 2 CANGAROO-III 2.1 CANGAROO-III CANGAROO(Collaboration of Australia and Nippon for a GAmma Ray Observatory in the Outback) 2.1: CANGAROO-III CANGAROO-III 10 m GeV CANGAROO 22

24 CANGAROO-III CANGAROO m (CANGAROO-I) m 3.0 (CANGAROO-II) 10m ( T2 T3 T4 ) : CANGAROO-III CANGAROO 10 m m 23

25 1 sec GPS PC Ethernet PC 100msec PC PC OS KURT 1 2.3: CANGAROO 4 (T4) m CANGAROO 80 cm GFRP(Glass Fiber Reinforced Plastic) 5kg GFRP 60-80% FWHM 24

26 0.2 ( 2.4 [18]) ( 2.5[12]) 2.4: CCD 4 X radial prole Lorentzian 2.5: : GFRP ( ) 80 cm 5kg : 25

27 ϕ ϕ 3/4 R3479(MAXIM MAX4107 ) 427 ( R ) 120kg 80cm ϕ 100cm 2.6: : 427 : Winston cone ( 4.5 ) (dead space) 33 26

28 (4.5 ) % 2.1 (4.5 ) CAEN SY : R : 1 2 SiO 80% 27

29 2.2 PMT CANGAROO-III [4][5] 2.9 PMT 2.9: PMT ( ) 2 PMT PMT η η = 100 (%) (2.1) PMT 28

30 CANGAROO-III PMT R3479( ) Bialkali( nm 420 nm) PMT nm PMT PMT ( 2.10) 2.10: nm CANGAROO UV PMT (1)MgF 2 29

31 ( ) MgF 2 115nm (2) Al 2 O 2 150nm (3) 160nm (4)UV (UV ) (UV) 185nm (5) (Borosilicate ) 300nm 40 K( 40) PMT PMT ( ) ( ) δ V n G δ = A V (A = const.) (2.2) G = δ n = (AV ) n (2.3) V an(a = const.) a PMT PMT 30

32 PMT CANGAROO PMT ( 0.2mm) PMT PMT (1) (2) (3) (4) PMT (5) ( ) PMT P a(10 7 T orr) 2 (6) 40 K PMT CANGAROO-III 31

33 2.3 CANGAROO-III CANGAROO-III 4 (T4) (2004 ) 5 PMT : : CANGAROO-III : γ CANGAROO-III γ +α γ 32

34 3 R&D CTA CTA(Cherenkov Telescope Array) γ [8] 1 - L 3.1: CTA [8] 70 m 3.1 CTA 70 m 250 m ( ) 33

35 ( m ) ( ) ( 10 m ) ( 10 m ) km IACT (E threshold ) 70 m 10-20GeV 250 m GeV km 1-2TeV CTA sensitivity 3.2 sensitivity 3.2: CTA sensitivity( ) 10 sensitivity CTA 10 sensitivity CTA

36 3.2 R&D R&D PMT PMT 1. PMT ( ) 2. PMT 3. PMT PMT 4. PMT PMT CANGAROO-III CANGAROO-III R&D PMT PMT CANGAROO-III 4 R&D 35

37 4 PMT R PMT R3479 CANGAROO-III 3/4inch (PMT)(R3479 (HPKK), 4.1) 427 8m CANGAROO 4 ϕ ( ϕ) PMT R3479 (HV) PMT HV PMT R3479 HV PMT PMT1 1 PMT HV PMT HV OFF PMT R

38 4.1: 3/4 inch PMT R3479( ) PMT (MAX4107) 2cm 17cm 86g( ) PMT R mm(3/4 inch) 170mm 86g( ) UV 15mmMIN. 8 (0.2mm ) 25 (400nm ) at 1700V (PMT ) 1.3nsec( 5nsec) 14nsec T.T.S.( ) 0.36nsec(FWHM) 4.1: nm PMT 37

39 R3479 photomultiplier tube (H8820) K DY1 DY2 DY3 DY4 DY5 DY6 DY7 DY8 P C1 SIGNAL R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 ACTIVE BASE R13 C2 R1,R2 : 2M 5% 1/10W R3 : 1M 5% 1/10W R4,R6 : 750k 5% 1/10W R5,R8,R9 : 820k 5% 1/10W R7 : 470k 5% 1/10W R10,R11,R12 : 51 5% 1/4W R13 : 10k 5% 1/10W C1 : 1000pF, 2kV C2 : 4700pF, 2kV +HV 4.2: PMT R3479(KA HPKK) 14:2:3:2:2:2:2:2:2 C3 : 1000pF, 2kV C4 : 4700pF, 2kV C5,C6 : 0.1 microf, 2kV C7,C8 : 4.7 microf, 2kV D1 : 1SS352 U1 : MAX4107 L1,L2 : NFM41P11C : PMT R3479(KA HPKK) PMT R

40 4.1.2 PMT LED PMT 4.4: PMT 2 PMT HV PMT 27m PMT HV ND 4.5 PMT PMT ( ) HV (HV 30 39

41 HV ND ) HV LED 5V( 3.5V[9]) (60cm 43cm 22cm) ND 4.4 PMT 4.5 PMT Dark box pulse generator attenuator 19dB 4mLEMO cable ND filters gate OUT gate & delay generator 100nsec width 50 ohm LED PMT module IN TTL/NIM convertor PC OUT ADC gate IN 27m 4.5: PMT PMT ND 3 cm PMT (1)Gain HV (2) HV (3)

42 PMT 1 LED NSPB510s 3.6V 20mA 470nm 30 NDlter MAN series nm [10] pulse generator AVTECH AVI-V-C-N 1ch KHz nsec 0 50V TTL 100nsec 0 250nsec HV CAEN SY527(crate) A932AP(board) V AC100V [10] 4.2: PMT PMT 2(CAMAC) ADC C009 16ch 12bit pC(0-5V) 50 ns 800nsec 50 1LSB TDC ch 12bit nsec psec 4.3: PMT CAMAC 41

43 count PMT PMT Woomera ADC PMT PMT ADC PMT 1 Photoelectron (1 p.e.) 1 p.e p.e. 4.6: Photoelectron : : : 42

44 1 p.e. LED ADC 1 p.e. 0 p.e. 2 p.e. 3 p.e. F pois = F pois,0 pe + F pois,1 p.e. + F pois,2 p.e = 1 (4.1) F pois = F gauss,0 p.e. + F gauss,1 p.e. + F gauss,2 p.e = 1 (4.2) F gauss,n p.e. (n-p.e. ) F pois,n pe = F gauss,n p.e. S e µ µ n n! = F gauss,n p.e. F gauss,n p.e. = S e µ µ n 1 exp ( (x X n) 2 ) n! 2πσn 2σ 2 n (4.3) S ( ) µ X n σ n X n X n = n (X 1 X 0 ) + X 0 = n X + X 0 (n 0) (4.4) 43

45 σ n σ n = n σ (4.5) F pois = F pois,0 pe + F pois,1 p.e. + F pois,2 p.e = Se µ 1 exp ( (x X 0) 2 ) 2πσ0 2(σ 0 ) 2 + S e µ µ 1 1 exp ( (x X 0 1 X) 2 1! 2π 1σ 2( ) 1σ) 2 + S e µ µ 2 1 exp ( (x X 0 2 X) 2 2! 2π 2σ 2( ) 2σ) 2 + S e µ µ 3 1 exp ( (x X 0 3 X) 2 3! 2π 3σ 2( ) 3σ) (4.6) (µ ) ADC (X 0 ) (σ 0 ) 1 p.e. ADC ADC ( X), (σ) p.e. ( ) 1 p.e. PMT HV 1 p.e. ( ) 10 p.e. 1 p.e. 6 P1 (µ) 44

46 P2 ADC (X 0 ) P3 ADC (σ 0 ) P4 1 ADC ( PMT ) ( X) P5 1 ADCrms (σ) P6= 1 p.e. count total event = N =P6 fit by Poisson-Gaussian convolutional function 2000 P2 = P P3 P5 P4 ADC channel : : 1 p.e. : 1 p.e. 45

47 4.1.4 ND lter PMT LED( ) PMT LED PMT /UV LED NSPB510s ( 470 nm) AVL-V-C-N(AVtech ) 4.8 NSPB510s 4.8: T a = 25 I F = 20 ma LED NSPB510s 470 nm 46

48 PMT PMT ND MAN ND CANGAROO ND ND : % ND % ND 1% 1 )ND 2 V570 (JASCO ) ND 1. (1) ND 7 (a) 2002 ND % 7 3. (2) ND 6 (a) 2005 ND % 6 5. (3) ND 1 (a) 2008 ND 1% 1 7. (4) 47

49 4.9: ND ( ) % % % 20%

50 4.9 ND LED NSPB510s 470 nm 4.4 Value by SIGMA KOKI ND ND 470 nm ND lter ND lter old ( ) old-2005 ( ) 2008 ( ) Value by SIGMA KOKI ± N.A. 10± N.A. N.A. 20± N.A. 30± N.A. 40± N.A. 50± N.A. 70±5 4.4: 470nm ND lter old 2002 old N.A. ND PMT R3479 LED NSPB510s ND nm 4.4 ND 1. ND ND 49

51 PMT R3479 (ID : KA8706) ND lter ND lter old ( ) old-2005 ( ) 2008 ( ) ± ± ± ± ±1.1 N.A ±2.1 N.A. N.A ± ±2.6 N.A ± ±4.2 N.A ± ±5.3 N.A ± ±6.8 N.A. 4.5: PMT R3479(ID : KA8706) LED NSPB510s ND lter N.A. 2. PMT ND ND

52 4.1.5 PMT PMT CANGAROO-III PMT R3479 R3479 PMT54 Woomera PMT PMT 1. HV Gain HV (a) Gain HV HV 1 (b) Gain 2 1/2 HV HV 2 HV 1/2 10 p.e. 3 Gain HV (HV HV α ) 2. HV (a) Gain HV HV t 1p.e. (HV t HV 1 5 % ) 3. PMT (a) ND lter p.e. (b) 3.(a) ND lter PMT PMT 1. HV CANGAROO-III PMT R

53 PMT ( 4.1) PMT HV 1. HV G = ( ) α HV1 (4.7) 1400 G 1400V α PMT HV ( ) 4.7 HV 1 Gain x HV HV x ( ( ) α ) x HVx = (4.8) G G HV x = HV 1 x 1 α (4.9) 4.9 Gain 2 1/2 HV HV 2 HV 1/2 HV 1 HV 2 HV 1/2 3 HV Gain HV HV 1 α (α =4.9 [9] ) 2. Gain HV HV t HV I. HV II. Gain HV (HV= ) III. PMT HV HV 2. HV 1 PMT 10 ( 90 ) 52

54 4.2 PMT PMT54 Woomera PMT54 53(98.1% ) 1 (1.9% ) % 63 5 (7.95% ) 5 (7.95% ) PMT 5 Woomera New( ) Used Everything O.K. 53+5=58 Bad Q.E.( ) 5+1=6 64 PMT 4.10: R3479 PMT PMT54 Woomera 63 Everything O.K. Bad Q.E. Spark 53

55 4.2.1 Gain HV Gain HV PMT 10p.e Gain HV HV 1 HV 1 Gain 2 1/2 HV HV 2 HV 1/2 PMT ADC 1000events ADC pC (ADCmean pedestal) Gain = (4.10) ( (C)) HV Gain = K (HV ) α (4.11) 4.11 ( log ) Gain HV vs Gain Number of PMTs 6 5 Alpha vs Count s ID Entries Mean RMS UDFLW OVFLW ALLCHAN E Voltage (V) alpha 4.11: PMTR3479(ID : KA8706) PMT α (σ = 1.5% ) PMT PMT 4.9(σ =2.1 )[9] 4.8(σ =2.0 )[10] 3 α 1% 54

56 4.2.2 HV PMT (60 ) Gain HV (4.2.1 ) HV 3 PMT α HV 1 PMT 10 ( 90 ) ND 1 p.e. A D PMT HV P1( ) 1 P4 ( ADC ) LED 5V LED (5V [9]) PMT LED ND ( PMT ND ) ND PMT ( ) PMT ND PMT 1p.e. P1 20 P4 PMT ( ) HV P P4 HV PMT ND 55

57 Photoelectrons VS ND filter ratio Photoelectrons ND filter ratio 4.12: ND ND PMT 4 p.e. 1 p.e. ND (10 20 p.e. ) ND PMT PMT HV 4.13 Number of PMTs 6 5 HV, where 1.2e7 gain ID Entries Mean RMS UDFLW OVFLW ALLCHAN HV (V) 4.13: PMT R HV 1275V(σ = 7.9% ) PMT 1275V(σ = 7.9% ) 1144V(σ =6.7 )[9] 1230V(σ =10 )[10] HV HPKK PMT PMT 56

58 4.2.3 PMT ND P4 P4 (1 ) ADC = ADCmean pedestal P 4 (4.12) [10] x (x a) f(x) = ((x a+c) b c b ) c (1 b) + a (x > a) b (4.13) a a 4.14 PMTR3479 (PMT ID : KA8706) Output p.e Linearity Deviation(%) Linearity Deviation Expected p.e Expected p.e. 4.14: PMT R3479(PMT ID : KA8706) : Linearity : ND (p.e.) : (p.e.) : Deviation : (p.e.) : (%) 4.14 ND 4.14 ( ) 4.15 PMT (a ) 57

59 Number of PMTs 10 8 Saturation point vs Counts ID Entries Mean RMS UDFLW OVFLW ALLCHAN Saturation point (p.e.) 4.15: R3479 PMT 165 p.e.(σ = 4.1% ) 132 p.e. ( 4.15 Saturation point 130 ) 226p.e.(σ =7.3 )[9] 202p.e.(σ =6.3 )[10] 50 p.e. LED 5 V ( 3.5V[9]) LED 5V LED (NSPB510s 2.5V) [9] LED ( ) PMT PMT 58

60 4.2.4 R p.e. P1 1 p.e. Gain HV Gain PMT P1 0.8 PMT ( P1 1.2 ) 1 p.e. ( ) p.e. PMT ( 4.16 ) Number of PMTs 7 6 Input 1 p.e. ID Entries Mean RMS UDFLW OVFLW ALLCHAN Number of PMTs 6 5 Input 100 p.e. ID Entries Mean RMS UDFLW OVFLW ALLCHAN phtoelectrons phtoelectrons 4.16: PMTR3479 : 1 p.e. : 1 p.e. PMT Gain p.e. 100 p.e. 80 p.e. PMT 54 1 (1.85% ) Woomera PMT 63 5 (7.93% ) PMT 1 p.e. 0.8 p.e

61 p.e. 1 p.e : R3479 1p.e. 100 p.e. 1p.e. 100 p.e p.e. 1 p.e. 1 p.e. 1 p.e. P1 1.0±0.2(±20% ) PMT 1.0±0.2 PMT R3479 PMT R8900U 60

62 4.3 PMT PMT PMTR PMTR3479 MAX4107 ( 4.3 ) 4.18: PMT R3479 MAX4107 MAX4107 PMT 132 p.e. PMT 171 p.e. 30% ( ) PMT PMT 61

63 Output p.e Linearity Deviation(%) Linearity Deviation Expected p.e Expected p.e. 4.19: PMT KA8320 : Linearity : ND (p.e.) : (p.e.) : Deviation : (p.e.) : (%) 132 p.e. Output p.e Linearity Deviation(%) Linearity Deviation Expected p.e Expected p.e. 4.20: PMT KA8320 : Linearity : ND (p.e.) : (p.e.) : Deviation : (p.e.) : (%) 171 p.e %

64 4.3.2 PMT PMT % 47 ( 74% ). 53 PMT 4 ( 6.34% ) PMT 2 ( 3.17% ) : PMT HV 2 HV PMT PMT R3479 PMT 1 Woomera PMT HV LED 4.22 Woomera PMT HV 920V HV ( ) 63

65 4.22: Woomera PMT HV LED 4.23 HV 900V ( 4.23) 4.23: Woomera PMT HV 920V HV LED HV 900V PMT 64

66 4.4 PMT Gain CANGAROO- III 10 m 114 PMT PMT 1/2 PMT PMT PMT Gain CANGAROO-III PMT R3479 PMT ( 4.1) PMT HV HV ( ) α G = HV G 1400V x HV HV x ( ( ) α ) x HVx = G G HV x = HV 1 x 1 α HV 1 CANGAROO-III PMT HV HV p HV x = HV p x 1 α PMT HV HV p PMT HV α 65

67 2 PMT CANGAROO-III ( ) ( ) PMT 2 PMT854 (1 427 PMT ) PMT HV 1 α 2 HV HV PMT (10 ) PMT ID HV 1 alpha HV 2 KA KA KA KA KA KA KA KA KA KA : PMT HV HV 1 2 HV HV 2 α 10 PMT ID

68 4.5 CANGAROO-III PMT ( 4.24) 4.24: CANGAROO-III Winston Cone PMT CANGAROO-III Winston Cone ( 4.25) 4.25 Winston Cone o' z' o' A Winston Cone B Winston Cone θ 0 z > 0 ( θ 0 θ 0 z > 0 z ) 67

69 L B r r light z a a a a 0 0 focus2 o -f o =focus1 A : pass with 0 or 1 bounce z on-z axis B : rejected 1 2 z = r -f 4f 4.25: Winston Cone Winston Cone A Winston Cone B Winston Cone LG SiO 300nm 400nm 80% 33 1 PMTR3479 PMT R PMT

70 ±0.22 Lgiht Guiede (LG ) R3479 No LG (p.e.) LG (p.e.) LG / No LG KA8650 (R3479) : R LG LG 10 LG4 LG ADC count LG LG 4.26: 69

71 New Light Guide 1 (ADC) Old and damaged Light Guide 1 (ADC) New Light Guide 2 (ADC) Old and damaged Light Guide 2 (ADC) New Light Guide 3 (ADC) Old and damaged Light Guide 3 (ADC) New Light Guide 4 (ADC) Old and damaged Light Guide 4 (ADC) 4.27: LG( ) LG( ) 10 LG4 LG4 8 ADC count 70

72 ADC count ±0.023 CANGAROO-III LG LG (ADC count) New LG Old damaged LG Old damaged / New total : 0.944±0.023 ( 470 nm LED NSPB510s ) CANGAROO-III CANGAROO-III 71

73 5 PMT Ultra Bialkali PMT CANGAROO-III PMT R3479 PMT PMT PMT (4 ch) PMT R8900U (HPKK) R8900U Photocathode PMT R3479 Bialkali Ultra Bialkali(UBA) 40% (PMT R % 1.6 ) PMT R8900U 5.1 UBA R8900U PMT R8900U (Photocathode) PMT R3479 Bialkali Ultra Bialkali(UBA) PMT CANGAROO- III PMT R3479 Bialkali (Sb-Rb-Cs Sb-K-Cs) "Bi"alkali 420 nm ( nm) R8900U UltraBialkali 350 nm Bialkali R3479 R8900U 72

74 R3479 (Bialkali) R8900U-200-M4 (Ultra Bialkali) eective area (mm 2 ) = Se ϕ = 15mm = mm square = real area (mm 2 ) = Sr 24mm HEX = mm square = light guide gain = elg (no light guide) elgse/sr = fgeom fkd fp MT = fgeomfkd fqe fgeomfqe = ϵtotal FOM fgeom = (1-3.5/L) 2 L = 40 mm, fgeom = (+10%) 5.1: R3479 R8900U-200-M4 R8900U-200-M

75 R3479 R8900U (4 ch) PMT 5.1 PMT R3479 R8900U R8900U PMT 5.1: R3479 R8900 R8900U PMT PMT R3479 R8900U R3479 (LG) 4.5 LG SiO CANGAROO-III LG PMT (4.5 ) LG LG PMT R8900U LG 74

76 5.2 R8900U 5.2 PMT R8900U 30mm(square) 29mm Borosilicate(R8900U-200-M4) UV (R8900U-203-M4) 23.5mm square. Ultra Bialkali (400nm ) at 800V (PMT ) 1.4nsec 11.4nsec 5.2: nm R : R8900U 75

77 R8900U 4 4 R P1 P4 R8900U ( 5.2) ( 5.3) 5.3 R : R8900U R3479 GND GND R8900U ( ) CANGAROO-III DC R8900U Borosilicate ( ) R8900U-200-M4 UV R8900U-203-M4 2 76

78 PMT R8900U 30 mm PMT PMT R Dark room pulse generator attenuator 19dB 4mLEMO cable (2) ND filters gate OUT gate & delay generator 100nsec width 50 ohm LED 8m PMT module IN TTL/NIM convertor PC OUT ADC gate IN 27m 5.4: PMT ND 8 m LED ND LED PMT ADC LED ND 8 m 77

79 CANGAROO-III 8 m PMT ND ADC LED LED 5V PMT ND PMT LED 8 m LED PMT R8900U LED 8 m PMT 5.4 PMTR3479 ˆ (x ) PMTR cm 60 cm 1 m ˆ (y ) 3 cm 66 cm ˆ (x ) (y ) ND 8 m LED xy 1.00 ADC count (x = 45, y = 0) 8 m ND LED PMT (x = 45, y = 0)

80 5.5: x 1 m 3cm x =45 cm x 5.6: y x 3cm y = 0 cm y 79

81 5.7: x y (x = 45, y = 0) y = x = x = y = +3 Center x = 45 y = x = 48 x = y = y = : (x=45,y=0) (% ) Center 1 x y ±3 cm x y ±6 cm -x 1 cm 0.53% 5.8 (x=45,y=0) (% ) Center 1 x y ±3 cm PMT - x 1 cm 0.53 % (X = -6 cm ) 1 cm 80

82 5.2.2 R3479 SA0079( ) R8900U PMT R3479 PMT PMT R3479 PMT SA0079 ( 5.9 ) 5.9: : PMT SA0079 PMT SA0079 PMT R3479 R3479 : SA SA0079 SA0079 R8900U 4.3 ( 5.9 ) R3479 SA0079 R3479 R3479 SA p.e. LG LG ( 5.10) Photoelectron 5.3 R3479 SA0079 LG R8900U 81

83 5.10: Lgiht Guiede (LG ) R3479 SA0079 No LG (p.e.) LG (p.e.) LG / No LG SA KA8650 (R3479) : R3479 SA0079 R3479 SA

84 5.3 R8900U PMT R8900U PMT R8900U- 200-M4 PMT R3479 [10] [9] HV PMT HV PMT (60 ) HV PMTR8900U R8900U-200-M4 1 PMT HV HV HV PMTR8900U PMT 1. Gain HV (a) HV V Gain Gain HV 2. R8900U HV (a) Gain HV HV t 1p.e. 3. PMT (a) ND lter p.e. (b) 3.(a) ND lter PMT PMT 83

85 5.3.1 R8900U Gain HV PMT R3479 PMT R8900U HV HV (HV = V 5 ) PMT ADC 1000events ADC R pC PMT R3479 Gain = (ADCmean pedestal) (5.1) ( (C)) HV R3479 Gain = K (HV ) α (5.2) 5.11 ( log ) Gain HV vs Gain Voltage V 5.11: R8900U PMT R α 8.36 R8900U R (R PMT α α = 4.9) HV 84

86 R3479 R8900U (R3479 R8900U ) : PMT : PMT PMT PMT : PMT PMT PMT R3479 R8900U HV HV R8900U 1000V R V R8900U HV HV 85

87 5.3.2 R8900U HV PMT R8900U (PMT R3479 ) (60 ) PMT R Photoelectron P1( ) 1 P4 ( ADC ) 8 R Photoelectron 5.13 fit by Poisson-Gaussian convolutional function 5.13: R8900U 1p.e. PMT R8900U-200-M4 HV HV t = 698V R (R V) HV R

88 5.3.3 R8900U R3479 ND 4.13 [10] 5.14 Output p.e Linearity Deviation(%) Linearity Deviation Expexted p.e Expected p.e. 5.14: R8900U : Linearity : ND (p.e.) : (p.e.) : Deviation : (p.e.) : (%) R8900U-200-M (a ) 248 p.e. R PMT (165 p.e.) 1.50 R8900U R3479 MAX4107 AD8009AR MAX AD8009AR MAX

89 5.15: MAX4107 AD8009AR AD8009AR 1.5 [14] 88

90 PMT PMT Compton ( from Inverse Compton ) π 0 2γ( from Proton ) 2 GeV TeV 4 2 GeV TeV 4 R3479 CANGAROO-III 160 p.e. GeV TeV 1 R8900U 2 PMT R8900U 250 p.e. R PMT ADC p.e. ADC 250 p.e. ADC p.e AD8009AR PMT R8900U R3479( MAX4107) 89

91 5.4 R3479 R8900U R R3479(Bialkali) R8900U-200- M4(UltraBialkali) Bialkali UltraBialkali R3479 R8900U-200-M mm 6 mm Dark room pulse generator attenuator 19dB 4mLEMO cable (2) ND filters gate OUT gate & delay generator 100nsec width 50 ohm LED 8m PMT module IN TTL/NIM convertor PC OUT ADC gate IN 27m 5.16: R3479 R8900U-200-M4 6mm 90

92 1 Photoelectron HV 100 Photoelectrons ND 1 Photoelectron HV ND Photoelectron 6 mm PMT 5.4 Bialkali Ultrabialkali model eective area(mm 2 ) measured p.e. p.e./mm 2 Q.E. ratio R3479 (Bialkali) R8900U-200-M4 (Ultra Bialkali) : Bialkali Ultra Bialkali 6mm PMT 6 mm Photoelectron R8900U-200-M4(UltraBialkali) R3479(Bialkali) 1.45 PMT (f KD1 ) R R8900U 0.7 R3479 R8900U 5.4 (f KD1 ) (f KD1 ) 5.5 f KD1 R3479(Bialkali) 91

93 f KD1 R8900U 1.65 Bialkali UltraBialkali model Q.E. ratio Q.E. ratio with f KD1 f KD1 without f KD1 R3479 (Bialkali) R8900U-200-M4 (Ultra Bialkali) : (f KD1 ) f KD1 R3479(Bialkali) f KD1 R8900U 1.65 PMT R3479 R8900U PMT 5.17(93 ) PMT Bialkali Ultra- Bialkali ( Super Bialkali(SBA) SBA ) LED NSPB510s LED nm 470 nm 5.17 Bialkali( ) 21% UltraBialkali( ) 29% 470 nm UltraBialkali Bialkali f KD1 f KD LED

94 LED 470 nm LED nm 500nm 10nm (94 ) 5.17: Bialkali Ultra Bialkali 470nm LED( 4.8) Bialkali 21% Ultra Bialkali 29% Borosilicate ( ) ( ) i nm w i Bialkali ϵ i(ba) Ultra- 93

95 LED (nm) BA (%) UBA (%) : LED BA Bialkali UBA UltraBialkali Bialkali ϵ i(uba) < ϵ >= Σw iϵ i Σw i (5.3) Bialkali UltraBialkali < ϵ BA >= (5.4) < ϵ UBA >= (5.5) 29.24/20.85 = 1.40 UltraBialkali 1.40 f KD HPKK PMT (1% ) R8900U-203-M4 1% HPKK R8900U 94

96 5.4.2 PMT R8900U-200-M4 R8900U-200-M4 4 4 =16 1 Photoelectron ND HV ND HV 15 Photoelectron PMT ( ) HV ADC count ( ) PMT R8900U-200-M : R8900U % % 95

97 5.4.3 PMT 16 1 Photoelectron ND HV 100 Photoelectrons ND ND Photoelectron HV Photoelectron Photoelectron : % R8900U-200-M % 96

98 5.4.4 PMT R8900U-200-M4 (5.4.2 ) (5.4.3 ) PMT (5.4.2 ) (5.4.3 ) % : % 97

99 5.4.5 PMT Borosilicate( ) (R8900U-200-M4) UV (r8900u-203-m4) 5.7 model measured p.e. quantum eciency ratio R8900U-200-M4 (Borosilicate) R8900U-203-M4 (UV) : LED NSPB510s( ) 470 nm : LED 470nm( 4.8) UV 100% 400nm UV 98

100 5.21 LED 470 nm UV 100% 400 nm UV : LED 470nm( 4.8 ) UV 350nm UV LED 470nm(4.8) UV 350nm UV UV

101 PMT R8900U 4 16 R8900U-200- M4(Borosilicate ) R8900U-203-M4(UV ) 5.23 R8900U-200-M4(Borosilicate ) R8900U-203-M4(UV ) 4 1% : 4 R8900U-200- M4(Borosilicate) R8900U-203-M4(UV) 5.24 R8900U-200-M4(Borosilicate ) R8900U-203-M4(UV ) 4 1% nm 5.25 R8900U-200-M4(Borosilicate ) R8900U-203-M4(UV ) nm 100

102 : 4 R8900U-200- M4(Borosilicate) R8900U-203-M4(UV) 1% : 4 R8900U-200- M4(Borosilicate) R8900U-203-M4(UV) R8900U 4 PMT 4 HV 4 4 HV 101

103 eective area (mm 2 ) = S e real area (mm 2 ) = S r R3479 (Bialkali) ϕ =15mm mm HEX R8900U-200-M4 (Ultra Bialkali) 23.5mm square mm square light guide gain = e LG (no light guide) e LG S e /S r = f geom f KD f geom f KD1 = f P MT quantum eciency ratio = f QE nm nm f P MT f QE = ϵ total ϵ total ratio 5.8: R3479 R8900U-200-M4 R8900U-200-M (@470 nm) R3479 R8900U 5.8 S e S r e LG R ( 4.7 ) R8900U f geom 102

104 / R8900U f KD1 1 f geom PMT f P MT f P MT f QE ϵ total ϵ total R3479 R8900U 1.47 (@470 nm) ( ) (IACT GeV GeV) ux E 2 IACT Hadron S/N CANGAROO-III PMT R3479 PMT PMT (4 ch) PMT R8900U R8900U R

105 6 PMT ( ) 10 1 PMT PMT ( ) PMT IACT 104

106 CTA Pulsar ( : E threshold = 10 GeV Pulsar (cut o ) CANGAROO-III IACT TeV Pulsar ( ) Pulsar Pulsar Pulsar Pulsar Outer gap model Polar cap model ( 6.1 [15]) 2 model Outer gap model Polar cap model Outer gap model Outer gap model 10GeV Polar cap model GeV 10GeV MAGIC Crab Pulsar 25GeV 12GeV Outer gap model [15] 6.1 MAGIC Crab Pulsar [15] MAGIC 1 PMT TeV 105

107 Outer gap region Light cylinder Polar cap region Neutron star Rotation axis Slot gap region Magnetic field Closed field lines A B C D Counts Counts Counts x10 3 Counts x MAGIC >60G ev Phase MAGIC >25G ev Phase EGRET >1G ev Phase EGRET >100 MeV Open field lines E Amplitude Phase 3 x10 MAGIC optical Phase 6.1: : Pulsar : MAGIC Crab (E threshold = 25 GeV [15] E threshold = 25 GeV GeV ( 8 p.e. 100 ns ) Pulse Height 6 p.e. Pulse Height 6 p.e. 0.03% PMT R8900U ( 8 p.e. 100 ns ) Pulse Height 6 p.e. 0.03% PMT R3479 PMTR8900U 106

108 R3479 ( 6.2) 2 µs (Pulse Height) ( mv ) 6.2: R3479 LED 5 p.e. LED 100 p.e. 60 mv 2 s 2 µs 107

109 6.1.2 R3479 R8900U R8900U 6.3 R3479 Dark room pulse generator attenuator 19dB ND filters 4mLEMO cables (2) gate OUT gate & delay generator 100nsec width 50 ohm LED 8m PMT module IN OUT TTL/NIM convertor PC ADC gate IN oscilloscope 27m 6.3: R8900U Gate R µs ADC Gate 2 µs ADC Gate 2 µs C009 ADC 50 ns Gate 160 ns ADC Gate 160 ns 160 ns 13 = 2080 ns ns ( : 6.4) Gate counts 108

110 LED signal ADC Gate 1 ADC Gate ADC Gate ns 6.4: LED ADC Gate Gate 160 ns Gate = 2080 ns Gate counts ns Pulsar (E threshold = 10 GeV 100 ns 8 p.e. (Pulse Height 0 30 p.e. 6 p.e. Pulse Height PMT 100 ns 8 p.e. Pulse Height 6 p.e. = (6.1) PMT 6 p.e. Pulse Height 0.03% Pulse Height 6 p.e. PMT R3479 PMT R8900U 6.2 Pulse Height 109

111 Pulse Height 6 p.e. ADC 6 p.e. (6 p.e. ) Pulse Height 3 p.e. (6 p.e. ) 3 p.e. ADC ADC = P edestal 3 p.e. 6 p.e. ADC Ch 3pecut = P edestal + (3p.e. ADC ) (6.2) Ch 6pecut = P edestal + (6p.e. ADC ) (6.3) Ch 3pecut Ch 6pecut ( 6.5 ) 6.5: : : ADC count count Mean ADC count 3 6 p.e. ADC channel 110

112 1. PMT ˆ PMT R3479(PMT ID:KA8650 ) PMTR8900U-200-M4 2 PMT 2. ˆ PMT p.e.( 100 ns ) 4 ( 100ns 8 p.e. 10 p.e. 3 5 p.e. 30 p.e. ) 3. Pulse Height ADC ˆ PMT 3 p.e. (3 p.e. cut) ˆ PMT 6 p.e. (6 p.e. cut) 111

113 PMT R3479 R8900U-200-M PMT After Pulse Rate ( ) 3pe input (%) 5pe input (%) 10pe input (%) 30pe input (%) R3479 (3cut) R3479 (6cut) R8900U-200 (3cut ) R8900U-200 (6cut) : PMT ADC cut PMT (3cut) 3 p.e. cut (6cut) 6 p.e. cut 6.1 PMT R3479 R8900U-200- M4 3 p.e. cut 6 p.e. cut PMT R3479 R8900U-200-M4 R8900U-200-M4 cut PMT cut 3 p.e. 6 p.e. cut ADC cut 3 p.e. cut 2 30 p.e. 0.03% 112

114 6.2.2 Pulse Height Pulse Height R3479 R8900U-200-M4 PMT 3p.e. 6 p.e. ADC 6.6 ln N events Photoelectrons vs Events ID Entries Mean RMS UDFLW OVFLW ALLCHAN ln N events 10 Photoelectrons vs Events ID Entries Mean RMS UDFLW OVFLW ALLCHAN photoelectrons photoelectrons 6.6: Pulse Height R3479 R8900U-200-M4 3p.e. 6 p.e. ADC Pulse Height Photoelectron Log 6.4 N Pulse Height P.H. Pulse Height ( ) P.H. N = A exp (6.4) ρ ρ Pulse Height ρ

115 PMT After Pulse (Pulse Height) 3pe input 5pe input 10pe input 30pe input R3479 (3cut) R3479 (6cut) R8900U-200 (3cut) R8900U-200 (6cut) : ρ PMT ADC cut 6.2 PMT R3479 R8900U-200- M4 3 p.e. cut 6 p.e. cut ρ= p.e. 114

116 6.2.3 ( ) R3479 R8900U-200-M4 PMT 3p.e. 6 p.e. ADC 6.7 ln N events Time vs Events ID Entries Mean RMS UDFLW OVFLW ALLCHAN ln N events Time vs Events ID Entries Mean RMS UDFLW OVFLW ALLCHAN Time (ns) Time (ns) 6.7: R3479 R8900U-200-M4 3p.e. 6 p.e. ADC cut Log 6.5 N T Pulse Height ( ) T N = B exp (6.5) τ e X x τ ( ) 115

117 ( ) ( ) 6.7 ( 6.8) ln N events Time vs Events ID Entries Mean RMS UDFLW OVFLW ALLCHAN ln N events Time vs Events ID Entries Mean RMS UDFLW OVFLW ALLCHAN Time (ns) Time (ns) 6.8: 6.7 T = ns R3479 R8900U-200-M τ PMT R3479 R8900U- 200-M4 3 p.e. cut 6 p.e. cut τ= ns 116

118 PMT After Pulse (Time constant,0 nsec < T) 3pe input 5pe input 10pe input 30pe input R3479 (3cut) R3479 (6cut) R8900U-200 (3cut ) R8900U-200 (6cut) : τ PMT ADC cut PMT After Pulse (Time constant,320 nsec < T) 3pe input 5pe input 10pe input 30pe input R3479 (3cut) R3479 (6cut) R8900U-200 (3cut ) R8900U-200 (6cut) : τ PMT ADC cut 117

119 7 Discussion 7.1 PMT R3479 CANGAROO-III PMT R3479 CANGAROO-III PMT 1. PMT 2. Woomera PMT Woomera 3. PMT CANGAROO-III ( PMT ) 1. 2 Woomera PMT Woomera Woomera PMT 3 PMT 118

120 7.2 R8900U 350 nm PMT 470 nm LED(NSPB510 ) 350 nm nm Ultra Bialkali Borosilicate UV nm 350 nm 7.1 PMT HPKK data R8900U-200-M4 R (Borosilicate Glass) 1.54 R8900U-203-M4 R8900U-200-M (UV Glass) 1.11 R : 350 nm R8900U-203-M4 R nm 2.09 HPKK data Borosilicate UV 1.88 UV PMT R

121 7.3 UBA Ultra Bailkali PMT R8900U PMT R PMT R8900U % 3. PMT 1. CTA 1000 PMT PMT R3479 R8900U 2. R8900U R3479 R8900U % PMT 3 PMT R3479 PMT 120

122 8 Conclusion 8.1 PMT R3479 ˆ Gain HV HV 3 PMT HV 1 PMT 10 ( 90 ) 4.9(σ = 1.5% ) ˆ HV 1275V(σ = 7.9% ) ˆ 165 p.e.(σ = 4.1% ) 150 p.e. ˆ 100 p.e. 80 p.e. PMT 20% PMT 54 1 (1.85% ) Woomera PMT 63 5 (7.93% ) 20% ˆ PMT % 2 ( 3.17% ) 4 ( 6.34% ) PMT

123 5 1 23% ˆ Gain CANGAROO-III T3 T4 PMT854 Gain 2 HV HV LG LG ˆ LG 2.13±0.22 ˆ LG 0.944±0.023 LG 8.3 Ultra Bialkali PMT (4 ch) PMT R8900U ( 8.1 ) ˆ R8900U-200-M4 R8900U HV Gain HV ˆ R8900U HV 8.36 R (R PMT α α = 4.9) HV R8900U PMT 122

124 ˆ HV 698V R (R V) HV R3479 ˆ (a ) 248 p.e. R PMT (165 p.e.) 1.50 R8900U R3479 MAX4107 AD8009AR MAX ˆ Photocathode Bialkali(R3479) Ultra Bialkali(R8900U- 200-M4) R ( 470 nm) R3479 UV R8900U- 200-M4 Borocilicate 470 nm ˆ 350 nm 1.88 PMT Borosilicate (R8900U-200-M4) UV (R8900U-203-M4) 2.09 ˆ ˆ R8900U-200-M4 R8900U-203-M4 4 4 ( ) 123

125 PMT HPKK data R8900U-200-M4(Borosilicate Glass) R3479 HV 1.72 A R A R A B 2.5 A 1.5 A 3.3 A R8900U-203-M4(UV Glass) R8900U-200-M A B R A B A = 470 nm B = 350 nm 8.1: UBA 124

126 8.4 PMT PMT ( 8.2) ˆ Pulsar (E threshold = 10 GeV ( 100 ns 8 p.e. ) Pulse Height 6 p.e. 0.03% R ±0.07% R8900U 0.38±0.17% 0.03% ˆ Pulse Height ˆ ns τ τ PMT After Pulse Rate ( ) 3pe input (%) 5pe input (%) 10pe input (%) 30pe input (%) R3479 (3cut) R3479 (6cut) R8900U-200 (3cut ) R8900U-200 (6cut) : PMT ADC cut PMT (3cut) 3 p.e. cut (6cut) 6 p.e. cut 125

127 D3 M2 M1 CANGAROO 126

128 127

129 [1] Nishimura,J., Hand bd Phys. XLV1/2, Springer-Velag, [2] A. M. Hillas. Proceedings of ICRC volume 3, 445. [3] A. V. Plyasheshnikov and G. F. Bignami. Nuovo Cim, 8C, 39, [4] 2 (1998). [5] W.R.Leo,Techniques for Nuclear and Particle Physics Experiments(1994). [6] (1960). [7] (1996). [8] The Cherenkov Telescope Array (CTA) Project, [9] ( 2003 ). [10] ( 2002 ). [11] ( 2001 ). [12] ( 2002 ). [13] ( 2005 ). [14] ( 2009 ). 128

130 [15] The MAGIC Collaboration, Sciencexpress, vol322, "Observation of Pulsed -Rays Above 25 GeV From the Crab Pulsar with MAGIC "(2008). [16] F.A.Aharonian, Very High Energy Cosmic Gamma Radiation (World Scientic Publishing Co. Pte. Ltd. 2004). [17] (1999). [18] (2004 ). 129

131 130

Drift Chamber

Drift Chamber Quench Gas Drift Chamber 23 25 1 2 5 2.1 Drift Chamber.............................................. 5 2.2.............................................. 6 2.2.1..............................................

More information

2005 4 18 3 31 1 1 8 1.1.................................. 8 1.2............................... 8 1.3.......................... 8 1.4.............................. 9 1.5.............................. 9

More information

JPS2016_Aut_Takahashi_ver4

JPS2016_Aut_Takahashi_ver4 CTA 111: CTA 7 A B A C D A E F G D H I J K H H J L H I A C B I A J I H A M H D G Dang Viet Tan G Daniela Hadasch A Daniel Mazin A C CTA-Japan A, B, Max-Planck-Inst. fuer Phys. C, D, ISEE E, F, G, H, I,

More information

[ ] [ ] [ ] [ ] [ ] [ ] ADC

[ ] [ ] [ ] [ ] [ ] [ ] ADC [ ] [ ] [ ] [ ] [ ] [ ] ADC BS1 m1 PMT m2 BS2 PMT1 PMT ADC PMT2 α PMT α α = n ω n n Pn TMath::Poisson(x,[0]) 0.35 0.3 0.25 0.2 0.15 λ 1.5 ω n 2 = ( α 2 ) n n! e α 2 α 2 = λ = λn n! e λ Poisson Pn 0.1

More information

Mott散乱によるParity対称性の破れを検証

Mott散乱によるParity対称性の破れを検証 Mott Parity P2 Mott target Mott Parity Parity Γ = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 t P P ),,, ( 3 2 1 0 1 γ γ γ γ γ γ ν ν µ µ = = Γ 1 : : : Γ P P P P x x P ν ν µ µ vector axial vector ν ν µ µ γ γ Γ ν γ

More information

untitled

untitled BELLE TOP 12 1 3 2 BELLE 4 2.1 BELLE........................... 4 2.1.1......................... 4 2.1.2 B B........................ 7 2.1.3 B CP............... 8 2.2 BELLE...................... 9 2.3

More information

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge 22 2 24 W 1983 W ± Z 0 3 10 cm 10 cm 50 MeV TAC - ADC 65000 18 ADC [ (µs)] = 0.0207[] 0.0151 (2.08 ± 0.36) 10 6 s 3 χ 2 2 1 20 µ + µ 8 = (1.20 ± 0.1) 10 5 (GeV) 2 G µ ( hc) 3 1 1 7 1.1.............................

More information

Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3

Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3 19 Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3 1 1 1.1 γ ΛN................. 1 1.2 KEK J-PARC................................ 2 1.2.1 J-PARC....................................

More information

= hυ = h c λ υ λ (ev) = 1240 λ W=NE = Nhc λ W= N 2 10-16 λ / / Φe = dqe dt J/s Φ = km Φe(λ)v(λ)dλ THBV3_0101JA Qe = Φedt (W s) Q = Φdt lm s Ee = dφe ds E = dφ ds Φ Φ THBV3_0102JA Me = dφe ds M = dφ ds

More information

24 10 10 1 2 1.1............................ 2 2 3 3 8 3.1............................ 8 3.2............................ 8 3.3.............................. 11 3.4........................ 12 3.5.........................

More information

Muon Muon Muon lif

Muon Muon Muon lif 2005 2005 3 23 1 2 2 2 2.1 Muon.......................................... 2 2.2 Muon........................... 2 2.3................................. 3 2.4 Muon life time.........................................

More information

untitled

untitled MPPC 18 2 16 MPPC(Multi Pixel Photon Counter), MPPC T2K MPPC T2K (HPK) CPTA, MPPC T2K p,π T2K > 5 10 5 < 1MHz > 15% 200p.e. MIP 5p.e. p/π MPPC HPK MPPC 2 1 MPPC 5 1.1...................................

More information

Donald Carl J. Choi, β ( )

Donald Carl J. Choi, β ( ) :: α β γ 200612296 20 10 17 1 3 2 α 3 2.1................................... 3 2.2................................... 4 2.3....................................... 6 2.4.......................................

More information

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100 positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) 0.5 1.5MeV : thermalization 10 100 m psec 100psec nsec E total = 2mc 2 + E e + + E e Ee+ Ee-c mc

More information

25 3 4

25 3 4 25 3 4 1 µ e + ν e +ν µ µ + e + +ν e + ν µ e e + TAC START STOP START veto START (2.04 ± 0.18)µs 1/2 STOP (2.09 ± 0.11)µs 1/8 G F /( c) 3 (1.21±0.09) 5 /GeV 2 (1.19±0.05) 5 /GeV 2 Weinberg θ W sin θ W

More information

main.dvi

main.dvi MICE Sci-Fi 2 15 3 7 1 1 5 1.1 MICE(Muon Ionization Cooling Experiment)............. 5 1.1.1........................... 5 1.1.2............................... 7 1.1.3 MICE.......................... 10

More information

2

2 Rb Rb Rb :10256010 2 3 1 5 1.1....................................... 5 1.2............................................. 5 1.3........................................ 6 2 7 2.1.........................................

More information

2004 A1 10 4 1 2 2 3 2.1................................................ 3 2.2............................................. 4 2.3.................................................. 5 2.3.1.......................

More information

untitled

untitled masato@icrr.u-tokyo.ac.jp 996 Start 997 998 999 000 00 00 003 004 005 006 007 008 SK-I Accident Partial Reconstruction SK-II Full reconstruction ( SK-III ( ),46 (40%) 5,8 (9%),9 (40%) 5MeV 7MeV 4MeV(plan)

More information

thesis.dvi

thesis.dvi 3 17 03SA210A 2005 3 1 introduction 1 1.1 Positronium............ 1 1.2 Positronium....................... 4 1.2.1 moderation....................... 5 1.2.2..................... 6 1.2.3...................

More information

SPECT(Single Photon Emission Computer Tomography ) SPECT FWHM 3 4mm [] MPPC SPECT MPPC LSO 6mm 67.5 photo electron 78% kev γ 4.6 photo electron SPECT

SPECT(Single Photon Emission Computer Tomography ) SPECT FWHM 3 4mm [] MPPC SPECT MPPC LSO 6mm 67.5 photo electron 78% kev γ 4.6 photo electron SPECT 3 SPECT SJ SPECT(Single Photon Emission Computer Tomography ) SPECT FWHM 3 4mm [] MPPC SPECT MPPC LSO 6mm 67.5 photo electron 78% kev γ 4.6 photo electron SPECT 9ch MPPC array 3 3 9 3 3 9.mm(sigma) . SPECT..................................................................3............

More information

PDF

PDF 1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV

More information

untitled

untitled SPring-8 RFgun JASRI/SPring-8 6..7 Contents.. 3.. 5. 6. 7. 8. . 3 cavity γ E A = er 3 πε γ vb r B = v E c r c A B A ( ) F = e E + v B A A A A B dp e( v B+ E) = = m d dt dt ( γ v) dv e ( ) dt v B E v E

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x Compton Scattering Beaming exp [i k x ωt] k λ k π/λ ω πν k ω/c k x ωt ω k α c, k k x ωt η αβ k α x β diag + ++ x β ct, x O O x O O v k α k α β, γ k γ k βk, k γ k + βk k γ k k, k γ k + βk 3 k k 4 k 3 k

More information

Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE

Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE 21 2 27 Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE ) Bethe-Bloch 1 0.1..............................

More information

Microsoft PowerPoint - 山形大高野send ppt [互換モード]

Microsoft PowerPoint - 山形大高野send ppt [互換モード] , 2012 10 SCOPE, 2012 10 2 CDMA OFDMA OFDM SCOPE, 2012 10 OFDM 0-20 Relative Optical Power [db] -40-60 10 Gbps NRZ BPSK-SSB 36dB -80-20 -10 0 10 20 Relative Frequency [GHz] SSB SSB OFDM SSB SSB OFDM OFDM

More information

1 1 (proton, p) (neutron, n) (uud), (udd) u ( ) d ( ) u d ( ) 1: 2: /2 1 0 ( ) ( 2) 0 (γ) 0 (g) ( fm) W Z 0 0 β( )

1 1 (proton, p) (neutron, n) (uud), (udd) u ( ) d ( ) u d ( ) 1: 2: /2 1 0 ( ) ( 2) 0 (γ) 0 (g) ( fm) W Z 0 0 β( ) ( ) TA 2234 oda@phys.kyushu-u.ac.jp TA (M1) 2161 sumi@epp.phys.kyushu-u.ac.jp TA (M1) 2161 takada@epp.phys.kyushu-u.ac.jp TA (M1) 2254 tanaka@epp.phys.kyushu-u.ac.jp µ ( ) 1 2 1.1...............................................

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

CdTe γ 02cb059e :

CdTe γ 02cb059e : CdTe γ 02cb059e : 2006 5 2 i 1 1 1.1............................................ 1 1.2............................................. 2 1.3............................................. 2 2 3 2.1....................................

More information

3-2 PET ( : CYRIC ) ( 0 ) (3-1 ) PET PET [min] 11 C 13 N 15 O 18 F 68 Ga [MeV] [mm] [MeV]

3-2 PET ( : CYRIC ) ( 0 ) (3-1 ) PET PET [min] 11 C 13 N 15 O 18 F 68 Ga [MeV] [mm] [MeV] 3 PET 3-1 PET 3-1-1 PET PET 1-1 X CT MRI(Magnetic Resonance Imaging) X CT MRI PET 3-1 PET [1] H1 D2 11 C-doxepin 11 C-raclopride PET H1 D2 3-2 PET 0 0 H1 D2 3-1 PET 3-2 PET ( : CYRIC ) ( 0 ) 3-1-2 (3-1

More information

soturon.dvi

soturon.dvi Stopped Muon 94S2003J 11 3 10 1 2 2 3 2.1 Muon : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3 2.2 : : : : : : : : 4 2.3 : : : : : : : : : : : : : 6 3 7 3.1 : : : : : : : : : : : : : : : :

More information

0.1 I I : 0.2 I

0.1 I I : 0.2 I 1, 14 12 4 1 : 1 436 (445-6585), E-mail : sxiida@sci.toyama-u.ac.jp 0.1 I I 1. 2. 3. + 10 11 4. 12 1: 0.2 I + 0.3 2 1 109 1 14 3,4 0.6 ( 10 10, 2 11 10, 12/6( ) 3 12 4, 4 14 4 ) 0.6.1 I 1. 2. 3. 0.4 (1)

More information

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2 1 6 6.1 (??) (P = ρ rad /3) ρ rad T 4 d(ρv ) + PdV = 0 (6.1) dρ rad ρ rad + 4 da a = 0 (6.2) dt T + da a = 0 T 1 a (6.3) ( ) n ρ m = n (m + 12 ) m v2 = n (m + 32 ) T, P = nt (6.4) (6.1) d [(nm + 32 ] )a

More information

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint ( 9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) 2. 2.1 Ĥ ψ n (r) ω n Schrödinger Ĥ ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ + Ĥint (t)] ψ (r, t), (2) Ĥ int (t) = eˆxe cos ωt ˆdE cos ωt, (3)

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ

LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ 8 + J/ψ ALICE B597 : : : 9 LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ 6..................................... 6. (QGP)..................... 6.................................... 6.4..............................

More information

LT 低コスト、シャットダウン機能付き デュアルおよびトリプル300MHz 電流帰還アンプ

LT 低コスト、シャットダウン機能付き デュアルおよびトリプル300MHz 電流帰還アンプ µ µ LT1398/LT1399 V IN A R G 00Ω CHANNEL A SELECT EN A R F 3Ω B C 97.6Ω CABLE V IN B R G 00Ω EN B R F 3Ω 97.6Ω V OUT OUTPUT (00mV/DIV) EN C V IN C 97.6Ω R G 00Ω R F 3Ω 1399 TA01 R F = R G = 30Ω f = 30MHz

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4 23 1 Section 1.1 1 ( ) ( ) ( 46 ) 2 3 235, 238( 235,238 U) 232( 232 Th) 40( 40 K, 0.0118% ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4 2 ( )2 4( 4 He) 12 3 16 12 56( 56 Fe) 4 56( 56 Ni)

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

BESS Introduction Detector BESS (BESS-TeVspectrometer) Experimetns Data analysis (1) (2) Results Summary

BESS Introduction Detector BESS (BESS-TeVspectrometer) Experimetns Data analysis (1) (2) Results Summary Measurements of Galactic and Atmospheric Cosmic-Ray Absolute Fluxes BESS Introduction Detector BESS (BESS-TeVspectrometer) Experimetns Data analysis (1) (2) Results Summary Introduction 90% 9% 100~10 6

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

pc725v0nszxf_j

pc725v0nszxf_j PC725NSZXF PC725NSZXF PC725NSZXF PC725 DE file PC725 Date Jun. 3. 25 SHARP Corporation PC725NSZXF 2 6 5 2 3 4 Anode Cathode NC Emitter 3 4 5 Collector 6 Base PC725NSZXF PC725YSZXF.6 ±.2.2 ±.3 SHARP "S"

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a 1 2 2.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a) L ( ) ) * 2) W Z 1/2 ( - ) d u + e + ν e 1 1 0 0

More information

C: PC H19 A5 2.BUN Ohm s law

C: PC H19 A5 2.BUN Ohm s law C: PC H19 A5 2.BUN 19 8 6 3 19 3.1........................... 19 3.2 Ohm s law.................... 21 3.3.......................... 24 4 26 4.1................................. 26 4.2.................................

More information

B 1 B.1.......................... 1 B.1.1................. 1 B.1.2................. 2 B.2........................... 5 B.2.1.......................... 5 B.2.2.................. 6 B.2.3..................

More information

Microsoft Word - 章末問題

Microsoft Word - 章末問題 1906 R n m 1 = =1 1 R R= 8h ICP s p s HeNeArXe 1 ns 1 1 1 1 1 17 NaCl 1.3 nm 10nm 3s CuAuAg NaCl CaF - - HeNeAr 1.7(b) 2 2 2d = a + a = 2a d = 2a 2 1 1 N = 8 + 6 = 4 8 2 4 4 2a 3 4 π N πr 3 3 4 ρ = = =

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

NaI(Tl) CsI(Tl) GSO(Ce) LaBr 3 (Ce) γ Photo Multiplier Tube PMT PIN PIN Photo Diode PIN PD Avalanche Photo Diode APD MPPC Multi-Pixel Photon Counter L

NaI(Tl) CsI(Tl) GSO(Ce) LaBr 3 (Ce) γ Photo Multiplier Tube PMT PIN PIN Photo Diode PIN PD Avalanche Photo Diode APD MPPC Multi-Pixel Photon Counter L 19 P6 γ 2 3 27 NaI(Tl) CsI(Tl) GSO(Ce) LaBr 3 (Ce) γ Photo Multiplier Tube PMT PIN PIN Photo Diode PIN PD Avalanche Photo Diode APD MPPC Multi-Pixel Photon Counter LaBr 3 (Ce) PMT 662keV 2.9% CsI(Tl) 7.1%

More information

OPA134/2134/4134('98.03)

OPA134/2134/4134('98.03) OPA OPA OPA OPA OPA OPA OPA OPA OPA TM µ Ω ± ± ± ± + OPA OPA OPA Offset Trim Offset Trim Out A V+ Out A Out D In +In V+ Output In A +In A A B Out B In B In A +In A A D In D +In D V NC V +In B V+ V +In

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

nenmatsu5c19_web.key

nenmatsu5c19_web.key KL π ± e νe + e - (Ke3ee) Ke3ee ν e + e - Ke3 K 0 γ e + π - Ke3 KL ; 40.67(%) Ke3ee K 0 ν γ e + π - Ke3 KL ; 40.67(%) Me + e - 10 4 10 3 10 2 : MC Ke3γ : data K L real γ e detector matter e e 10 1 0 0.02

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

B

B B07557 0 0 (AGN) AGN AGN X X AGN AGN Geant4 AGN X X X (AGN) AGN AGN X AGN. AGN AGN Seyfert Seyfert Seyfert AGN 94 Carl Seyfert Seyfert Seyfert z < 0. Seyfert I II I 000 km/s 00 km/s II AGN (BLR) (NLR)

More information

main.dvi

main.dvi CeF 3 1 1 3 1.1 KEK E391a... 3 1.1.1 KL 0 π0 νν... 3 1.1.2 E391a... 4 1.1.3... 5 1.2... 6 2 8 2.1... 8 2.2... 10 2.3 CeF 3... 12 2.4... 13 3 15 3.1... 15 3.2... 15 3.3... 18 3.4... 22 4 23 4.1... 23 4.2...

More information

QMI_10.dvi

QMI_10.dvi ... black body radiation black body black body radiation Gustav Kirchhoff 859 895 W. Wien O.R. Lummer cavity radiation ν ν +dν f T (ν) f T (ν)dν = 8πν2 c 3 kt dν (Rayleigh Jeans) (.) f T (ν) spectral energy

More information

Μ粒子電子転換事象探索実験による世界最高感度での 荷電LFV探索 第3回機構シンポジューム 2009年5月11日 素粒子原子核研究所 三原 智

Μ粒子電子転換事象探索実験による世界最高感度での 荷電LFV探索  第3回機構シンポジューム 2009年5月11日 素粒子原子核研究所 三原 智 µ COMET LFV esys clfv (Charged Lepton Flavor Violation) J-PARC µ COMET ( ) ( ) ( ) ( ) B ( ) B ( ) B ( ) B ( ) B ( ) B ( ) B 2016 J- PARC µ KEK 3 3 3 3 3 3 3 3 3 3 3 clfv clfv clfv clfv clfv clfv clfv

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 = 3 3.1 3.1.1 kg m s J = kg m 2 s 2 MeV MeV [1] 1MeV=1 6 ev = 1.62 176 462 (63) 1 13 J (3.1) [1] 1MeV/c 2 =1.782 661 731 (7) 1 3 kg (3.2) c =1 MeV (atomic mass unit) 12 C u = 1 12 M(12 C) (3.3) 41 42 3 u

More information

Canvas-tr01(title).cv3

Canvas-tr01(title).cv3 Working Group DaiMaJin DaiRittaikaku Multiparticle Jiki-Bunnsekiki Samurai7 Superconducting Analyser for Multi particles from RadioIsotope Beams with 7Tm of bending power (γ,n) softgdr, GDR non resonant

More information

MUFFIN3

MUFFIN3 MUFFIN - MUltiFarious FIeld simulator for Non-equilibrium system - ( ) MUFFIN WG3 - - JCII, - ( ) - ( ) - ( ) - (JSR) - - MUFFIN sec -3 msec -6 sec GOURMET SUSHI MUFFIN -9 nsec PASTA -1 psec -15 fsec COGNAC

More information

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) ( August 26, 2005 1 1 1.1...................................... 1 1.2......................... 4 1.3....................... 5 1.4.............. 7 1.5.................... 8 1.6 GIM..........................

More information

橡実験IIINMR.PDF

橡実験IIINMR.PDF (NMR) 0 (NMR) 2µH hω ω 1 h 2 1 1-1 NMR NMR h I µ = γµ N 1-2 1 H 19 F Ne µ = Neh 2mc ( 1) N 2 ( ) I =1/2 I =3/2 I z =+1/2 I z = 1/2 γh H>0 2µH H=0 µh I z =+3/2 I z =+1/2 I z = 1/2 I z = 3/2 γh H>0 2µH H=0

More information

I ( ) 2019

I ( ) 2019 I ( ) 2019 i 1 I,, III,, 1,,,, III,,,, (1 ) (,,, ), :...,, : NHK... NHK, (YouTube ),!!, manaba http://pen.envr.tsukuba.ac.jp/lec/physics/,, Richard Feynman Lectures on Physics Addison-Wesley,,,, x χ,

More information

vol5-honma (LSR: Local Standard of Rest) 2.1 LSR R 0 LSR Θ 0 (Galactic Constant) 1985 (IAU: International Astronomical Union) R 0 =8.5

vol5-honma (LSR: Local Standard of Rest) 2.1 LSR R 0 LSR Θ 0 (Galactic Constant) 1985 (IAU: International Astronomical Union) R 0 =8.5 2.2 1 2.2 2.2.1 (LSR: Local Standard of Rest) 2.1 LSR R 0 LSR Θ 0 (Galactic Constant) 1985 (IAU: International Astronomical Union) R 0 =8.5 kpc, Θ 0 = 220 km s 1. (2.1) R 0 7kpc 8kpc Θ 0 180 km s 1 270

More information

空気の屈折率変調を光学的に検出する超指向性マイクロホン

空気の屈折率変調を光学的に検出する超指向性マイクロホン 23 2 1M36268 2 2 4 5 6 7 8 13 15 2 21 2 23 2 2 3 32 34 38 38 54 57 62 63 1-1 ( 1) ( 2) 1-1 a ( sinθ ) 2J D ( θ ) = 1 (1-1) kaka sinθ ( 3) 1-2 1 Back face hole Amplifier Diaphragm Equiphase wave surface

More information

2章.doc

2章.doc C 2 H 4 N 2 O 2 LPG LIF 13 2.1 2.1.1 2.1 2.2 115mm70mm 727cm 3 Hand Pump Injector Driver Computer Constant Volume Chamber Injector Piezo-electronic transducer Fan Spark Plug Temperature Indicator C 2 H

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

Contents 1 Jeans (

Contents 1 Jeans ( Contents 1 Jeans 2 1.1....................................... 2 1.2................................. 2 1.3............................... 3 2 3 2.1 ( )................................ 4 2.2 WKB........................

More information

スーパーカミオカンデにおける 高エネルギーニュートリノ研究

スーパーカミオカンデにおける 高エネルギーニュートリノ研究 2009 11 20 Cosmic Ray PD D M P4 ? CR M f M PD MOA M1 ν ν p+p+p+p 4 He +2e - +2ν e MeV e - + p n+ ν e γ e + + e - ν x + ν x p + p, γ + p π + X π µ + ν µ e + ν µ + ν e TeV p + p π + X π µ + ν µ e + ν µ +

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

( ) : 1997

( ) : 1997 ( ) 2008 2 17 : 1997 CMOS FET AD-DA All Rights Reserved (c) Yoichi OKABE 2000-present. [ HTML ] [ PDF ] [ ] [ Web ] [ ] [ HTML ] [ PDF ] 1 1 4 1.1..................................... 4 1.2..................................

More information

KamLAND (µ) ν e RSFP + ν e RSFP(Resonant Spin Flavor Precession) ν e RSFP 1. ν e ν µ ν e RSFP.ν e νµ ν e νe µ KamLAND νe KamLAND (ʼ4). kton-day 8.3 < E ν < 14.8 MeV candidates Φ(νe) < 37 cm - s -1 P(νe

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d m v = mg + kv m v = mg k v v m v = mg + kv α = mg k v = α e rt + e rt m v = mg + kv v mg + kv = m v α + v = k m v (v α (v + α = k m ˆ ( v α ˆ αk v = m v + α ln v α v + α = αk m t + C v α v + α = e αk m

More information

Introduction MPPC is new semiconductor photon sensor Technology is very similar to SiPM. Under development by Hamamatsu Photonics (HPK) MPPC have not

Introduction MPPC is new semiconductor photon sensor Technology is very similar to SiPM. Under development by Hamamatsu Photonics (HPK) MPPC have not Multi Pixel Photon Counter T. Nakadaira KEK Introduction MPPC is new semiconductor photon sensor Technology is very similar to SiPM. Under development by Hamamatsu Photonics (HPK) MPPC have not been listed

More information

Microsoft Word - 11問題表紙(選択).docx

Microsoft Word - 11問題表紙(選択).docx A B A.70g/cm 3 B.74g/cm 3 B C 70at% %A C B at% 80at% %B 350 C γ δ y=00 x-y ρ l S ρ C p k C p ρ C p T ρ l t l S S ξ S t = ( k T ) ξ ( ) S = ( k T) ( ) t y ξ S ξ / t S v T T / t = v T / y 00 x v S dy dx

More information

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) * * 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *1 2004 1 1 ( ) ( ) 1.1 140 MeV 1.2 ( ) ( ) 1.3 2.6 10 8 s 7.6 10 17 s? Λ 2.5 10 10 s 6 10 24 s 1.4 ( m

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ± 7 7. ( ) SU() SU() 9 ( MeV) p 98.8 π + π 0 n 99.57 9.57 97.4 497.70 δm m 0.4%.% 0.% 0.8% π 9.57 4.96 Σ + Σ 0 Σ 89.6 9.46 K + K 0 49.67 (7.) p p = αp + βn, n n = γp + δn (7.a) [ ] p ψ ψ = Uψ, U = n [ α

More information

Triple 2:1 High-Speed Video Multiplexer (Rev. C

Triple 2:1 High-Speed Video Multiplexer (Rev. C www.tij.co.jp OPA3875 µ ± +5V µ RGB Channel OPA3875 OPA3875 (Patented) RGB Out SELECT ENABLE RED OUT GREEN OUT BLUE OUT 1 R G B RGB Channel 1 R1 G1 B1 X 1 Off Off Off 5V Channel Select EN OPA875 OPA4872

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3 II (Percolation) 12 9 27 ( 3-4 ) 1 [ ] 2 [ ] 3 [ ] 4 [ ] 1992 5 [ ] G Grimmett Percolation Springer-Verlag New-York 1989 6 [ ] 3 1 3 p H 2 3 2 FKG BK Russo 2 p H = p T (=: p c ) 3 2 Kesten p c =1/2 ( )

More information

PET. PET, PET., PET 1, TPC 3.,. TPC,,.

PET. PET, PET., PET 1, TPC 3.,. TPC,,. PET TPC 21 2 9 PET. PET, PET., PET 1, TPC 3.,. TPC,,. 1 6 2 PET 7 2.1........................... 7 2.1.1 PET..................... 7 2.1.2.......................... 10 2.2..............................

More information

ADC121S Bit, ksps, Diff Input, Micro Pwr Sampling ADC (jp)

ADC121S Bit, ksps, Diff Input, Micro Pwr Sampling ADC (jp) ADC121S625 ADC121S625 12-Bit, 50 ksps to 200 ksps, Differential Input, Micro Power Sampling A/D Converter Literature Number: JAJSAB8 ADC121S625 12 50kSPS 200kSPS A/D ADC121S625 50kSPS 200kSPS 12 A/D 500mV

More information

Plastic Package (Note 12) Note 1: ( ) Top View Order Number T or TF See NS Package Number TA11B for Staggered Lead Non-Isolated Package or TF11B for S

Plastic Package (Note 12) Note 1: ( ) Top View Order Number T or TF See NS Package Number TA11B for Staggered Lead Non-Isolated Package or TF11B for S Overture 68W ( ) 0.1 (THD N) 20Hz 20kHz 4 68W 8 38W SPiKe (Self Peak Instantaneous Temperature ( Ke)) SOA (Safe Operating Area) SPiKe 2.0 V ( ) 92dB (min) SN 0.03 THD N IMD (SMTPE) 0.004 V CC 28V 4 68W

More information

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

SFGÇÃÉXÉyÉNÉgÉãå`.pdf SFG 1 SFG SFG I SFG (ω) χ SFG (ω). SFG χ χ SFG (ω) = χ NR e iϕ +. ω ω + iγ SFG φ = ±π/, χ φ = ±π 3 χ SFG χ SFG = χ NR + χ (ω ω ) + Γ + χ NR χ (ω ω ) (ω ω ) + Γ cosϕ χ NR χ Γ (ω ω ) + Γ sinϕ. 3 (θ) 180

More information

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq 2007 2007 7 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 2007 2 4 5 6 6 2 2.1 1: KEK Web page 1 1 1 10 16 cm λ λ = h/p p ( ) λ = 10 16 cm E pc [ev] 2.2 quark lepton 2 2.2.1 u d c s t b + 2 3 e 1 3e electric charge

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

news

news ETL NEWS 1999.9 ETL NEWS 1999.11 Establishment of an Evaluation Technique for Laser Pulse Timing Fluctuations Optoelectronics Division Hidemi Tsuchida e-mail:tsuchida@etl.go.jp A new technique has been

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120) 2.6 2.6.1 mẍ + γẋ + ω 0 x) = ee 2.118) e iωt Pω) = χω)e = ex = e2 Eω) m ω0 2 ω2 iωγ 2.119) Z N ϵω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j 2.120) Z ω ω j γ j f j f j f j sum j f j = Z 2.120 ω ω j, γ ϵω) ϵ

More information