3 H(e, e K + )X K + Method and performance of K + meson identification in the 3 H(e, e K + )X experiment 30

Size: px
Start display at page:

Download "3 H(e, e K + )X K + Method and performance of K + meson identification in the 3 H(e, e K + )X experiment 30"

Transcription

1 3 H(e, e K + )X K + Method and performance of K + meson identification in the 3 H(e, e K + )X experiment 30

2

3 i (uud,udd) s - - s (JLab) 3 H(e, e K + )nnλ nnλ JLab Hall A 3 H(e, e K + )nnλ (e ) K + JLab Hall A (HRS) nnλ K + HRS K + π + K K + K + (KID) K + nnλ E 100 kev K +

4 ii i (K, π ) (π +, K + ) (e, e K + ) nnλ GSI nnλ Λ nnλ JLab 3 H(e, e K + )nnλ JLab Continuous Electron Beam Accelerator Facility(CEBAF) JLab Target holder design Cooling system (HRS) HRS HRS-R Particles Identification Detector L-HRS Detector Packages

5 iii Beam Time Schedule H(e, e K + )Λ/Σ nnλ (x, y) VDC Scintilattion Trigger Counter(STC) TOF coincidence time (S2) Cherenkov AC K K H(e, e K + )Λ/Σ Λ/Σ AC cut Λ, Σ 0 S/N Λ, Σ AC S/N FOM p(γ, K + )Λ/Σ

6 iv KEK(E369) 89 Y(π +, K + ) 89 Λ Y n-p Λ Λ-p (I = 1/2) ( 4 Λ H, 4 ΛHe) ΛN-ΣN CERN 12 C(K, π ) 12 Λ C Λ JLab 12 C(e, e K + ) 12 Λ B JLab Hall C CH (e, e K + ) JLab CLAS γ + p K + Λ DWIA 12 Λ B K+ θ K GSI Li GSI Invariant mas t + π nnλ, 3 ΛH Λ-n nnλ (Geant4) nnλ Λ-n

7 v H(e, e K + )nnλ JLab Gas Target Ladder system Solid Target Ladder system H holder Top view of cell Cooling system HRS HRS Magnet GUI HRS-R Detectors Package AC S VDC HRS L Detector Package coincidence Coincidence trigger Gate nnλ Seive Slit Seive Slit p e, p K p e = 2.1 GeV Λ/Σ p e = 2.2 GeV/c H(e, e K + )Λ/Σ VDC VDC VDC VDC HRS-R path length coincidence time Offset S S2 coincidence

8 vi 3.19 AC AC coincidence time AC1, AC AC1 π +, p AC AC2 π +, p AC coincidence time H(e, e K + )Λ/Σ AC coincidence time (Al) π AC Λ AC Σ AC1 Λ AC2 Λ AC1 S Λ /N AC2 S Λ /N FOM AC FOM AC FOM AC1, 2 cut AC1 Λ AC Λ

9 vii d+π, t+π ( 5 Λ He d+3 He+ π )[15] CEBAF Target spessification HRS spectification HRS Dipole Magnet specification HRS Quadro Magnet specification AC specification VDC resolution table Beam Time table n M S2 p, π Particle identification with AC (AC1 < 1.0 PEs & 3.5 < AC2 < 10 PEs) (K +, π +, p) Λ, Σ AC Λ, Σ 0 S/N FOM

10

11 1 1 (JLab Hypernuclear Collaborater) Thomas Jefferson National Acceletor Facility(JLab) Λ nnλ (E ) (AC) (STC) K + (KID) [1] (S=1/2) ( ) (R, B, G) (R, R), (B, B), (G, G) J P = (1/2) + uds ( 1.1) 1.1 s (p, n) (Λ, Σ 0, ±, Ξ ± ) Λ (m Λ = MeV/c 2 ) Λ Λ-

12 : x (Q) y (S) (e, e p), (p, 2p) E t ħ (1.1) s E 10 MeV Λ Λ Λ γ 200 ps Λ MeV

13 : KEK(E369) 89 Y(π +, K + ) 89 Λ Y [2] Λ (p, n) Λ (π +, K + ) Λ ( 1.10) 89 Λ Y ( 1.2) Λ ( ) QCD Λ Λ-n, Λ-p Λ-p

14 : n-p [13] (M fi ) σ M fi 2 ρ(p) (1.2) ρ(p) ( 1.3) 1950 Λ-p ( 1.4) Λ-p Λ-p Λ- Λ Λ Λ- Λ- Λ (CSB) Λ Λ- Λ (CSB) 1 MeV/c 2 SU(2) (I = 1/2) 3 H, 3 He B H B He = 0.76 MeV[16] 3 H, 3 He ( B em ) ( B = B H B He ) B B em = MeV (1.3) [16] 3 H, 3 He Λ 4 Λ H, 4 Λ He (J = 0+ ) (J = 1 + )

15 : Λ Λ-p [12] Λ-p p-n Λ-p Λ-p ( 1.5) 4 Λ H, 4 ΛHe B J + H, BJ + He 1.5 ( B0+ ) B 0+ = 0.35 MeV (1.4) ( 1.3) Λ Λ ΛN-ΣN ( 1.6) Λ- Λ (τ 260 ps) (M Λ = 1116 MeV/c 2 ) Λ ( 1.7) (ρ /fm 3 )

16 : (I = 1/2) ( 4 Λ H, 4 ΛHe) [5] 3 H, 3 He B = MeV Λ J = 0 + B = 0.35 MeV [5] ν e, ν e Λ n Λ + ν e + ν e (1.5) Λ Λ Λ ( 1.7) Λ Λ-n ( ) [6] (µ < 2.0 µm) Λ 1960 π (A 16) [7] 1970

17 : ΛN-ΣN (CERN) (BNL) (K, π ) Λ 1980 BNL (KEK) (π +, K + ) (π +, K + ) 2003 (e, e K + ) Λ (E91-016) (JLab) (MAMI-C) ELPH (e, e K + ) 2010 (GSI) nnλ (K, π ), (π +, K + ), (e, e K + ) (K, π ) (K, π ) K n(k, π )Λ (K, π ) (K, π )

18 : [14] (ρ 0 = 0.16 /fm 3 ) Λ Λ (K, π ) (σ 100 µb/sr) (K ) Stopped (K, π ) Λ p Λ 280 MeV/c Λ Magic momentum (K ) In-flight(K, π ) magic momentum ( 1.10) Magic momentum Λ ( L = 0) Λ substitutional state ( 1.11)

19 : (π +, K + ) (π +, K + ) (K, π ) π + Λ (π +, K + ) (K, π ) (σ 10 µb/sr)( 1.9) π + K + (K, π ) Λ Λ ( 1.2) (e, e K + ) (K, π ), (π +, K + ) (K, π ), (π +, K + ) Λ ( E) MeV 2000 (e, e K + ) 1 MeV [9] Λ (π +, K + ), (K, π ) (e, e K + ) Λ p(e, e K + )Λ

20 : [3] (e, e K + ) (e, e K + ) Λ Λ (π +, K + ), (K, π ) kev Λ, Σ 0 kev Λ, Σ 0 ( 1.14)

21 : [4] θ = 0 deg θ = 0 deg θ = 0 deg (K, π ) p beam = 0.5 GeV/c Magic momentum (K, π ), (π +, K + ), (e, e K + ) Λ Λ ( ) ( 1.21) (π ) (K, π ), (π +, K + ), (e, e K + ) 1.3 Λ K +, Λ ( 1.15) e e + γ (1.6) γ + p Λ + K + (1.7)

22 : CERN 12 C(K, π ) 12 Λ C [8] 1.1: Reaction Cross section E MeV momentum transfer (FWHM) In flight (K, π ) 100 µb 1 L = 0 (Magic momentum) Stopped (K, π ) 10 µb 1 L 1 (π +, K + ) 100 nb 1 L 3 (e, e K + ) 1 nb 0.5 L 3 Heavy ion 5 q = (ω, q) 4 P e = (E e, p e ) P e = (E e, p e ) q = p e p e (1.8) ω = E e E e (1.9) ω (K + + Λ) ( 1.16) σ tot 1.1 < E γ < 1.6 GeV σ tot 2 µb

23 : Λ [3] (e, e K + ) Γ d 3 [ σ dσt de edω = Γ + ϵ dσ L + ϵ cos(2ϕ) dσ T T edω K dω K dω K dω K Γ = d2 σ = α E γ E e dωdω e 2π 2 Q 2 ϵ = 1/ [1 + 2 q 2 Q 2 + cos ϕ 2ϵ(1 + ϵ) dσ ] LT dω K (1.10) (1.11) (1 ϵ)e e ] (1.12) tan2 ( θ e 2 ) Ω e, K K + σ T, L, T T, LT (transverse) (logitudinal) (polarization) (interference) (θ γk ) S = 1 (spin-flip) K + θ K (θ K 0 ) (θ K ) ( 1.17)

24 : JLab 12 C(e, e K + ) 12 Λ C [9] Λ 12 Λ B Λ (J P ) 1.4 nnλ nnλ Λ (I = 1) Λ pnλ( 3 Λ H), ppλ(3 Λ He) ( 1.18) (I = 0) 3 Λ H (B Λ = 130 kev) [21] 3 Λ H (2 H) Λ (I = 0, 1) I = 1 (I = 1) (pp, np, nn) Λ 2013 GSI nnλ [15] nnλ

25 1.4 nnλ : JLab Hall C CH 2 [11] Λ CH 2 Quasi-free( ) Λ/Σ QF nnλ GSI nnλ GSI nnλ (GSI) d + π, t + π GSI Li (UNILAC) (SIS18) (E beam = 2A GeV (FRS) (π, t) ( 1.21) ( 1.22) t + π ( 1.21) 2n + Λ (τ = ) ps π, t (π, t) nnλ ( 1.2) 5 Λ He d +3 He + π

26 : (e, e K + ) Λ, K + 1.2: d + π, t + π ( 5 Λ He d + 3 He + π )[15] Decay channel Counts rate 3 Λ H p + d + π 8 4 Λ H d + d + π 1 4 Λ H t + p + π 6 6 Λ He 4 He + d + π 3 4 Λ He p + p + d + π 8 5 Λ He d +3 He + π 1 (t, π ) 4 Λ H t + p + π ± 1.1 ± 2.2 MeV/c 2 MeV/c 2 GSI nnλ nnλ

27 1.4 nnλ : JLab CLAS γ + p K + Λ [10] s GeV (0.85 < cos θ K < 0.95) (µb) CLAS 2004 SAPHIR LEPS [10] Λ nnλ GSI nnλ (A=3, 4) nnλ nnλ nnλ 3 Λ H(J = 1/2+ ) ( 3 VNΛ NΣ T 1.0, 3 VNΛ NΣ T 1.2) (i) 3 Λ H nnλ (ii) nnλ 3 Λ H nnλ

28 : DWIA 12 Λ B K+ θ K [3] K + γ + p Λ + K + θ K 0 nnλ nnλ E R Γ E E = E R i Γ 2 (E R, Γ R) (1.13) Λn 1.24 Λ-n Λn Y Λn Λp Y Λp s s = Y Λn /Y Λp s s = 1.0 s = Λn Re[E] < 0, Im[E] < 0 nnλ

29 1.4 nnλ : 1.19: GSI [15] 6 Li UNILAC (SIS18) 6 Li FRS Re[E] > 0, Im[E] < 0 nnλ 1.24 s = % (δs = 0.05) Re[E] > 0 Y Λp 10 % nnλ

30 : 6 Li E = 12 GeV 6 Li 12 C ( ) π ( ) π nnλ GSI nnλ JLab Hall A (HRS) nnλ nnλ GSI nnλ nnλ nnλ JLab nnλ nnλ ( B Λ 100 kev) ( σ 100) kev (ACCBG) nnλ nnλ nnλ

31 1.4 nnλ : GSI Invariant mass [15] (π, t) t + π ±1.1 ± 2.2 MeV 1.22: t + π [15] 190 ps π + t Λ-n nnλ Γ B Λ 1.24 Λ-n Λ-n (Λ, n) Λ-n Λ-p CSB Λ Λ p 2000 event 20 % nnλ B Λ 100 kev, σ 100 kev % Λ n K + (KID) (AC) (STC) KID

32 : nnλ, Λ H : ΛN ΣN 3 VΛN ΣN T (1.0, 1.2) nnλ, 3 Λ H(J = 1/2+ ) nnλ (AC1, AC2) π +, p AC KID Λ, Σ 0 Λ, Σ 0 S/N AC Figure of meri(fom) peak significance S Λ / N B.G. AC Λ, Σ 0 S/N AC KID K + Λ, Σ 0 Λ, Σ 0 JLab Hall B Λ [10] KID KID nnλ

33 1.4 nnλ : Λ-n nnλ [22] [GeV] [GeV] Λ p Λ n S s = 2.5% Re[E] > 0 s 5 % nnλ 1.25: (Geant4) nnλ [26] nnλ nnλ B 100 kev σ 100 kev

34 : Λ-n [22] nnλ B 100 kev σ 100 kev nnλ Λ-n 5 %

35 25 2 nnλ nnλ (JLab) nnλ nnλ JLab (HRS) JLab 3 H(e, e K + )nnλ Thomas Jefferson National Accelerator Facility(JLab) Hall C (YN ) 2.1: 3 H(e, e K + )nnλ 4.3 GeV 3 H(e, e K + )nnλ K + (e ) HRS (p e = 2.2 GeV/c, θ ee = 13.2 ) K + (p K = 1.8 GeV/c, θ ek = 13.2 )

36 26 2 nnλ [23] (E ) Hall A Hall A (HRS) e, K + A Z A Λ (Z 1) (M HYP ) (B HYP ) K + ( p e, M HYP = p K ) (E e + M Target E e E K ) 2 ( p e p e p K ) 2 (2.1) B HYP = (Z 1)m p + (A Z)m n + m Λ M HYP (2.2) (P T arget = 0) 4.3 GeV 3 H nnλ nnλ K + HRS nnλ ( 2.1) K + (p e, p K ) (θ ee, θ ek ) (p e = 2.2 GeV/c, p K = 1.8 GeV/c), (θ ee = 13.2, θ ek = 13.2 ) 2.2 JLab Continuous Electron Beam Accelerator Facility(CEBAF) JLab Continuous Electron Beam Accelerator Facility(CEBAF)( 2.2) CEBAF 108 MeV (north linac, south linac) 12 GeV(5.5 pass) (Hall A, B, C, D) JLab CEBAF ( ) ( 2.1) CEBAF (E e ) ( E e ) E/E GeV

37 2.2 JLab : JLab (CEBAF)[24] 1.1 GeV 12 GeV(5.5 ) Hall A, B, C, D 450 kev HRS K +, e CEBAF σ 100µm 2.1: CEBAF [24] Beam Parametrers Max Energy (Hall A, B, C) 11 GeV Max Energy (Hall D) 12 GeV Max Intensity (Hall A, C/B) 85 µa/5 µa Energy spread ( E/E) < (FWHM) Bunch interval 2 ns

38 第 2 章 nnλ 実験の概要 28 表 2.2: Target spessification State of Target Target Gas Solid 2.3 thickness [mg/cm2 ] 3 H H H He 53.4 C 883 Al BeO 142 標的システム 本実験では トリチウム (3 H) 低温ガス標的 (40 K) を含む複数のガス標的と個体標的が使わ れ 図 2.3 図 2.4 のような標的システム内に設置されている ガス標的システムは (図 2.3) のように計5つのセルが連なっており 上から 3 H, 2 H, 1 H, 3 He, empty がそれぞれ収納さ れており それぞれの標的に対してビーム軸方向に厚さ 25 cm 約 34 cc のガスが収納されて いる (図 2.5) また 4 つのセルのガス標的の下には個体標的プレートが設置されており 上 から炭素フィルム標的 炭素穴標的 ラスター補正用標的 アルミ標的 炭素標的 チタニウ ム標的そして BeO 標的が連なって配置されている (図 2.4) 個体標的はパラメータ調整や補 正データを目的として使用され 内容の詳細については第3章で詳しく述べることにする 図 2.3: Gas Target Ladder system 図 2.4: Solid Target Ladder system

39 : 3 H holder Target holder design 3 H 40 TBq 25 cm ( 2.6) 2.5 (Al alloy ASTM B209 AL 7075-T651) ( 2.3) K + (295K) 1.38 MPa (0.28 MPa at 40 K) Cooling system JLab 1 (15 K) End Station Refrigerator (ESR) 15 K ESR 15 K Fin tube heat exchanger(hx) ESR ( 2.7) 22.5µA

40 30 2 nnλ 2.3: Position on cell Empty 3 H 2 H 1 H 3 He Entrance Exit Mid left Mid right : Top view of cell 2.4 (HRS) (E ) JLab Hall A (HRS) ( 2.8) HRS HRS 2.7: Cooling system

41 2.4 (HRS) : HRS [27] JLab Hall A (HRS) CEBAF Hall A HRS HRS QQDQ HRS(HRS-R) p K = 1.8 GeV/c K + HRS(HRS-L) p e = 2.2 GeV/c HRS 2.4 HRS 2.4: HRS spectification HRS General Charactors Momentum Range GeV/c Congiuration QQDQ Beam Angle 45 Optical Length 23.4 m Momentum Acceptance ± 4.5 % Momentum Resolution(FWHM)

42 32 2 nnλ 2.9: [30] HRS QQDQ QQ (D ) D Q HRS HRS 2.9 (Q) (D) HRS-R, HRS-L HRS Q D (D ) (Q1, Q2) D 2000 A(2 T) 4.6 GeV/c (p) δp/p 4.5% ( 2.5) D GUI D ( 2.10) SN QQ

43 2.4 (HRS) : HRS Dipole Magnet specification spesification Dipole Maxium current 2000 A (10 V) Maxium magnetic field 2 T Effective length 6.6 m Bend radius 8.4 m Bending angle 45 Q1 Q2, Q3 ( 2.6) Q 2.10: HRS Magnet GUI HRS GUI HRS K + Q1, Q2, D, Q3 K + HRS

44 34 2 nnλ 2.6: HRS Quadro Magnet specification spesification Q1 Q2/Q3 Bore radius 150 mm 300 mm Magnetic length 948 mm 1800 mm Maximum Mag-fileld gradient 8.31 T/m 3.5 T/m Maxium current 3250 A 1850 A 2.11: HRS-R Detectors Package GUI ( 2.10) HRS-R Particles Identification Detector HRS HRS-R π +, p K + π +, p (AC) (STC) K + (VDC) HRS-R 2.11 HRS-R

45 2.4 (HRS) : AC AC1 24 PMT 2.7: AC specification AC1 AC2 Refractive index PMT Burle RCA 8854 Photonis XP 4572B Number of PMT Thickness 9 cm 5 cm HRS (ACD) K + (AC1, 2) AC K + π + ( 2.7) AC1, AC2 [n 1 = 1.015(Matsushita silica aerogel SP15), n 2 = (Matsushita silica aerogel SP50)) ( cm 3 ] AC1(9 cm),

46 36 2 nnλ 2.13: S2 AC2(5 cm) Millipore (GSWP00010) Millipore 400 nm 95 % (UV ) 315 nm 80 % Millipore 3M 3M the Enhanced Specular Reflector(ESR) PMT( ) AC Burle RCA 8854 PMT 26 AC2 Photonis XP 4572B 24 Burle Quantacon PMT UV (390 nm) 22.5 % AC2 XP 4572 PMT UV 24 % Scintillation Trigger Counter (STC) HRS-L (S0, S2) S0 S0 10 mm BICRON408 S0 (170 L 25 W cm 2 ) S0 PMT(XP4312B) PMT NIM

47 2.4 (HRS) 37 moduls S2 S2 16 STC ( 2.13) 43.2 L 14.0 W 5.08 T cm 3 (EJ-230) PMT(Photonis XP2282B) S0 S2 2 m S0, S2 v S0, S2 (x=2.0 m) S0, S2 (t 0, t 2 ) β β = = x 1 (2.3) t 2 t 0 c pc (2.4) m2 c 4 + p 2 c 2 m, p p = 1.8 GeV/c β β (VDC) VDC HRS 23 cm ( 2.14) (VDC) 45 2 ( 2.14) 20 µm 368 VDC (1472 ch) Fastbus(LeCroy 1877) TDC VDC Ar 30 l 7 l/h (MAD card) Fastbus TDC HRS VDC 2.8 θ, ϕ p z, D p x θ = Arctan(p x /p z ), ϕ = Arctan(p y /p z ) θ, ϕ

48 38 2 nnλ 2.14: VDC [30] HRS VDC VDC 2.8: VDC resolution table [25] Angle FWHM resolution (mrad) Reconstruction accuracy (mrad) θ(p x /p z ) 6.00 ± 0.60 ϕ (p y /p z ) 2.3 ± L-HRS Detector Packages HRS-L ( 2.15) p e = 2.2 GeV/c HRS-L π, µ e STC VDC µ µ HRS-L 2.15 VDC, STC(S0, S2) HRS-R (2.4.2 )

49 : HRS L Detector Package HRS (e, K + ) (LHRS, RHRS) T 1 = (S0 & S2) L (2.5) T 2 = ((S0 & S2)& GC) L (2.6) T 3 = ((S0 S2) & GC) L (2.7) T 4 = (S0& S2) R (2.8) (T 1, T 2, T 3 ) K + T 4 T 1 (S0, S2) TDC T 2, T 3 S0, S2 (GC) TDC K + (T 4 ) S0, S2 HRS-R, HRS-L (C 1 ) C 1 = (S0 & S2) L &(S0 & S2) R (2.9) (2.10) (C 1 ) LHRS RHRS 2.16 C 1 K + T ns

50 40 2 nnλ 2.16: coincidence 40 ns (T 1, T 2 ) ( 2.17) T 1, T 3, T 4, C Beam Time Schedule /31-11/26 27 [C] 2.9

51 : Coincidence trigger Gate 2.9: Beam Time table Target Kinematics (p e, p K ) GeV/c Beam Charge [C] Days 3 H (2.2, 1.8) 16.6 C 16 days 1 H (2.2, 1.8) 1.0 C 0.5 days 1 H (2.1, 1.8) 4.7 C 5 days 3 He (2.2, 1.8) 0.5 days Total 19 C 27 days

52 42 3 H(e, e K + )Λ/Σ 0 STC, AC, VDC H(e, e K + )Λ/Σ 0 K + nnλ 3.1 nnλ nnλ K + VDC reference plane reference plane 3.1: nnλ

53 3.1 nnλ : n M n m x tar x tar y tar y tar z tar p = M x RP x RP y RP y RP (x, y, z) (x, y ) (3.1) x = p x /p z (3.2) y = p y /p z (3.3) p reference plane x tar x tar y tar y tar z tar p x RP x RP y RP = M y RP x RP x RP (3.4) ( 3.1) ( (p) (x, y, z) (x, y )) -reference plane (β)

54 44 3 H(e, e K + )Λ/Σ 0 3.2: VDC Reference Plane (x RP, x RP, y RP, y RP ) M (x T, x T, y T, y T, p T ) (x T, y T ) (x T, y T, z, p) (x, y) JLab (σ e < 100 µm) (x, y) ( 2 ) (Carbon hole) ( 3.3) (x, y) ( ) JLab (CH 2 )(z<1 cm) z 1 cm

55 3.1 nnλ : x y (z) z 25 cm (z) (Malti Carbon film) z 10 ( 3.4) (z) ( )

56 46 第 3 章 H(e, e K + )Λ/Σ0 のデータ解析 図 3.4: 炭素フィルム標的 厚さ 2 mm の炭素フィルムが 10 枚設置されている 炭素フィルム は 2 cm の間隔で設置されており 右から2番目と3番目にはスペースがある 非対称の設置 を行うことによりビーム上流と下流の方向を確認できる 角度補正 逆輸送行列の要素群として粒子の位置情報の他に粒子の角度情報が含まれている ハイパー核 のエネルギー分布を求めるための質量欠損法 (式 2.1) は引数として 散乱電子と K + 中間子の 運動量ベクトル ( p = (px, py, pz )) の合計6つのパラメータ群が必要である HRS の粒子検 出器群で観測できるパラメータ量は位置 角度 時間情報であり それらの情報から式 (3.2) で定義した粒子の運動量ベクトル情報に変換する ( p = pz(x, y, 1)) 標的での角度 (x, y ) は穴が空いた Seive Slit を用いることでシーブスリットの穴を通過した粒子を区別することが できる シーブスリットの穴の位置情報と逆輸送行列で再構成した標的での角度情報を比較 し 逆輸送行列のパラメータ調整を行うことで角度の決定精度を高めることができる

57 3.1 nnλ : z (m) (2 cm) z (e, K + ) 2.1 (p) H(e, e K + )Λ/Σ 0 Λ, Σ 0 Λ, Σ 0 (p) Λ, Σ 0 Λ, Σ 0 HRS 4.5 %(= p/p) nnλ (p e, p K ) = (2.2, 1.8) GeV/c Σ 0 ( 3.10)

58 48 3 H(e, e K + )Λ/Σ 0 3.6: Seive Slit Seive Slit HRS Seive Slit HRS Sieve Slit Seive Slit (H(e, e K + )Λ/Σ 0 ) (p e, p K ) = (2.1, 1.8) GeV/c(Kine1: 3.9) nnλ (p e, p K ) = (2.2, 1.8) GeV/c(Kine2: 3.10) Λ, Σ 0 Kine1, Kine2 Λ Kine1 Λ, Σ 0 Kine2 Λ nnλ ( 3 He, H) 3 H He (ν e ) 3 H 3 He + e + ν e (3.5) 2017 JLab H 3 He 3 He 3 Λ H 1 H 1 H 1 H 3 H ( 3 He, H)

59 : Seive Slit [30] Sieve Slit 49 4 mm 2 mm 12.5 mm, 25 mm Sieve Slit 14 cm, 20 cm VDC VDC VDC Bethe-Bloch de ρdx = C Z z 2 [ ( 2mc 2 γ 2 β 2 ) A β 2 ln β 2 δ ] (3.6) I 2 C = e 4 n 4πϵ 2 0 mc 2ρ (3.7) I δ VDC ( a, l) (b) (E),

60 50 3 H(e, e K + )Λ/Σ 0 3.8: p e, p K E=4.3 GeV, θ ee = 13.2, θ γk = 0 Λ, Σ 0, nnλ HRS p = 0.045p p e = 2.2 GeV/c( ) Σ 0 Λ, Σ 0 (p e = 2.1GeV/c)( ) ( ) p e = 2.1 GeV/c Λ Λ (V) E = Q 2πϵrl V = Q 2πϵl ln b a (3.8) (3.9) (3.8, 3.9) E = V r ln b a (3.10) VDC w t 0

61 : p e = 2.1 GeV Λ/Σ GeV/c 2 Λ 1.2 GeV/c 2 Σ 0 Λ, Σ 0 t 1 x x = t1 t 0 wdt (3.11) JLab VDC 3.11 [25] VDC TDC t = b > 2 cm 3.13 VDC VDC 2 VDC(VDC1, VDC2) 2 VDC1(u1, v1) VDC2(u2, v2) VDC 1) S2 & S0

62 52 3 H(e, e K + )Λ/Σ : p e = 2.2 GeV/c Σ Σ 0 Λ 3.9 Λ nnλ 2) Pion Event (AC1 > 1000 ch & AC2 > 6000 ch) VDC (1), (2) VDC % Scintilattion Trigger Counter(STC) HRS 2 (S0, S2) (S0, S2) β HRS-R β β PMT PMT y hit PMT y 2 PMT (TOF) TOF = ts2 R + ts2 L 2 ts0 R + ts0 L 2 (3.12) t R, t L 2 PMT S2, S0 PMT 3.12 β

63 : VDC [25] 3.12: VDC x, y [25] 3.11 y (b < 0.1) σ β = β t T OF σ T OF (3.13) t T OF S0, S2 β 3.13 β KID TOF TOF HRS-R K + KID (S2) TOF t tar S2 t S2 l path β TOF t TOF = l path βc (3.14) β ( 3.24) RHRS (π +, K +, p) TOF HRS S2

64 54 3 H(e, e K + )Λ/Σ : VDC (26 m) T tof π = 87.0 ns T tof K = 90.0 ns T tof p = 97.8 ns (3.15) (3.15) TOF K + K + π + TOF 3 ns K + π + (K + : π + = 1 : 1000) TOF coincidence time K + (S0, S2) t coin HRS(L-R) S2 t L (S2), t R (S2) (t L (tar), t R (tar)) t coin t coin = (t R (S2) t R (tar)) (t L (S2) t L (tar)) (3.16) (t L (tar), t R (tar)) coincidence time S2 S2 coincidence time

65 : VDC2 VDC π + S0, S2, AC1, AC2 VDC 0 < t < 4 ns VDC1 99.4% S (S2) Path Length Correction t tar S2 t S2 t tar = t S2 l path /cβ (3.17) 3.17 ( 3.15) coincidence time coincidence time R-HRS K + L-HRS e β K, β e β K, e = p (3.18) p2 + (m K, e c) 2 t corr = l path /cβ K, e (3.19) (3.16) (3.19) t coin t coin = (t R (S2) l path /(cβ K )) (t L (S2) l path /(cβ e )) (3.20)

66 56 第 3 章 H(e, e K + )Λ/Σ0 のデータ解析 図 3.15: 補正前後の HRS-R path length と coincidence time の相関図 軸は粒子の通った距 離 (path length) 縦軸は coincidence time を表している 補正前の相関図では coincidence time が path plength 依存性を持っていることがわかる 補正後の coincidence time は path length 依存性が小さいことがわかる と表すことができ K +, e 粒子における coincidence time の軌跡依存性の補正を行った (図 3.15) S2 offset parameter tuning HRS では 16 セグメントの S2 シンチレータカウンターを用いて粒子の観測を行う しかし ハードウェアによる時間情報の読み込みの差がセグメント毎に生じてしまうため補正を適用 させる必要がある S2 の F1TDC のオフセットを合わせる前の coincidence-time での陽子 π + 中間子の分解能はそれぞれ σπ = 1.10 ns, σp = 1.25 ns であり S2 の要求精度に十分満た していないため HRS 両アームの S2 の offset parameters の調整を行う必要がある (図 3.17) coincidence time のセグメント依存性を図に示す π + 中間子の選択を行うためにカット条 件として AC カットを用いた (AC1 > 150 & AC2 > 2000) ある S2 セグメントを通過した イベントでの coincidence time をガウス関数でフィットした中心値を取得 比較を行った S2 offset を合わせる前ではセグメント毎にばらつきが確認できたため HRS 両アームの S2 の offset を合わせた図 3.16 S2 offset パラメータ調整前では coincidence time のセグメ ント毎の振れ幅がそれぞれのアームに対して 2 ns あるのに対し パラメータ調整後では coincidence time のセグメント依存性を 50 ps 以下に抑えることができた 以上の補正をを 加えた coincidence time を図 3.17 に示す

67 : Offset S2 HRS-L HRS-R S2 π + 50 ps Cherenkov (n) (c/n) PMT cos θ c = 1 nβ (3.21) 3.2: S2 p, π + Coin-time resolution σ coin [ns] π + p No correction S2 offset and path length correction

68 58 3 H(e, e K + )Λ/Σ : S2 coincidence time S2 path length correction offset coincidence time path length S2 offset coincidence time π +, p (Z) (n) (λ) (α) d 2 ( N dλdx = 2πZ2 α λ ) β 2 n 2 (3.22) (n(λ)) ACD (λ 1 < λ < λ 2 ) ( dn 1 dx = 2πϵαZ2 sin 2 θ 1 ) λ 1 λ 2 (3.23) ϵ AC1, AC2 (3.23) 3.18 KID 2 p K = 1.8 GeV/c (β) β π = β K = β p = (3.24)

69 : Particle identification with AC index π + K + p n=1.015 (AC1) detection no detection no detection n=1.055 (AC2) detection detection no detection trigger condition AC1 & AC2 AC1 &AC2 AC1 &AC2 βn > 1(n: ) (n=1.015, 1.055) (π +, K +, p) AC2, AC AC1, HRS-R ACD gain FADC ADC ADC AC 1photon-electron(1PE) ADC (NPE) NPE = ADC ADC ped ADC 1PE ADC ped (3.25) 3.18: AC1 AC2

70 60 3 H(e, e K + )Λ/Σ : AC1 2.0 PEs ADC 1PE, ADC ped 1PE ADC Fit NPE AC ADC NPE AC AC1, 2 PMT (3.19, 3.20) AC1, AC AC AC1, AC2 (N AC1, N AC2 ) = (6, 30) AC1 30 % AC2 75 % AC1 π + 2 PEs K +, π AC K + S2 Coincidence-time β π +, p ( 3.17) AC π K + K + π +, p K + coincidence-tme AC1, 2 ( 3.21) 3.21 (t ct = 2 ns) (ACCBG) ACCBG π +, p AC1, AC2 coincidence time π +, p K +

71 3.3 AC K : AC2 20 PEs (t ct 0 ns)accbg AC1, AC2 π +, p ( 3.22, 3.23) AC1, AC2 threshold(th1, th2 min, th max ) AC1 < th1 (3.26) th2 min < AC2 < th2 max (3.27) π +, p ( 3.28) 3.23 th2 max = 60 PEs th2 min 0 60 y = p ( 0 (x p1 ) 2 exp 2π 2p 2 2 ) + ACC. (ACC : const) (3.28) (3.29) y ACCBG ACCBG coincidence time ACCBG ( 20 < t ct < 15 ns) 3.22, 3.23 π +, p AC1, AC2 coincidence time K +, π +, p AC1 NPE < 1.0 (3.30) 3.5 < AC2 NPE < 8 (3.31)

72 62 第 3 章 H(e, e K + )Λ/Σ0 のデータ解析 適切な AC カット条件を coincidence time に課すことによって K + イベント数を見積もっ た しかし AC カット条件を課すことによって π +, p と同時に K + 中間子イベントも削り取 られていることから K + イベント数は AC カット条件により変動する そこで coincidence time の K + 領域における S/N 比及び K + イベントを十分確保できるような 適切な AC カッ ト条件を求める必要がある K + イベント及び coincidence time の K + 領域における S/N 比 の AC カット依存性の評価について第4章にて詳細に述べる 図 3.21: coincidence time と AC1, AC2 光電子数の相関図 上図は AC1 の光電子数と coincidence time の相関図 下図は AC2 と coincidence time の相関図を表している 2 ns 毎 にアクシデンタルバックグランドがあり coincidence time(tct =3 ns) 付近に π + イベント tct =-7 ns 付近に p イベントが確認できる

73 3.3 AC K : AC1 π +, p AC1 3.4: (AC1 < 1.0 PEs & 3.5 < AC2 < 10 PEs) (K +, π +, p) particles Events mean [ns] σ [ns] K π p

74 64 3 H(e, e K + )Λ/Σ : AC2 π +, p AC2

75 3.3 AC K : AC coincidence time p, K +, π +

76 66 4 K + E (H(e, e K + )Λ/Σ 0 ) K + KID K + nnλ θ K 0 Λ H(e, e K + )Λ/Σ 0 θ K 0 Λ Λ, Σ 0 K + K + Λ, Σ 0 Λ, Σ 0 ) 4.1 H(e, e K + )Λ/Σ 0 K + coincidence time π +, p AC 4.1:

77 4.1 H(e, e K + )Λ/Σ : H(e, e K + )Λ/Σ 0 coincidence time K + ( 1 < t ct < 1) ns (ACC) coincidence time π +, K +, p ( 40 < t ct < 20, 20 < t ct < 40) ns AC Λ, Σ 0 coincidence time K + AC coincidence time K + coincidence time AC Λ/Σ 0 Λ, Σ 0 K + K Λ/Σ AC H(e, e K + ) (ACCBG) Λ, Σ 0 ACCBG coincidence time ACC 4.3 ACCBG Λ/Σ 0 π +

78 68 4 K + 4.3: AC coincidence time AC coincidence time CEBAF 2 ns (ACC) K + π + ACC 4.4 (m) (±0.125 m) Λ, Σ 0 π + (f Al, f π ) (f BG ) f Al f π = p 0 exp ( (x p 1) 2 ) 2p 2 + p 4 exp ( (x p 5) 2 ) 3 2p 2 6 = p 0 exp ( (x p 1) 2 ) 2p 2 3 (4.1) (4.2) f BG = p BG 0 f Al + p BG 1 f π (4.3) p 0, p 1, p 2, p 3, p 4, p 5 ( 4.5)f Al π + ( 4.6)f π + p BG 0, p BG 1 (4.3) 4.7

79 4.2 AC cut Λ, Σ 0 S/N : [m] [GeV/c] (z = 0.125, 0.125) m (Al) 0.1 < z < 0.1 m 4.2 AC cut Λ, Σ 0 S/N K + AC AC K + AC K + (e, e K + ) K +, e π +, p K + 3 Λ/Σ 0 Λ/Σ 0 coincidence time K + AC K + Λ/Σ 0 Λ/Σ 0 ( 3.1) , 700

80 70 4 K + 4.5: (Al) ( 0.1 < z & 0.1 < z) m( 4.4) 4.6: π + coincidence time π + 2 < t ct < 4 ns ( 4.3) K + K + AC K + π + S/N ratio AC 2 π + ( ) K + coincidence time S/N coincidence time K + S/N

81 4.2 AC cut Λ, Σ 0 S/N : π + (f Al f π ) f BG f BG f Al, f π ( 4.3) AC K + π Λ, Σ 0 K + AC AC K + π +, p coincidence time K + AC coincidence time K + AC1, AC2 K + Λ, Σ 0 K + H(e, e K + )Λ/Σ 0 K + Λ, Σ 0 Λ, Σ 0 Λ, Σ 0 AC Λ, Σ 0 Λ, Σ 0 Λ, Σ 0 Λ, Σ 0

82 72 4 K + 4.8: Λ 4.1: Λ, Σ 0 Particles Events mean(µ) MeV/c 2 σ MeV/c 2 S/N Λ 796± ± ± Σ 0 127± ± ± f Λ, Σ = p 0 exp ( (x p 1) 2 ) + p 3 x + p 4 (4.4) 2p 2 3 ( 4.4) Λ, Σ 0 Λ, Σ Λ, Σ 0 K + (p e = 2.1 GeV/c) K + (N K 920) Λ, Σ 0 (±3σ) S/N S Λ /N = 1.02, S Σ0 /N = 0.13 S Λ, Σ 0 N

83 4.2 AC cut Λ, Σ 0 S/N : Σ AC AC Λ NΛ cut Λ NΛ tot Λ R Λ R AC Λ = NΛ cut /NΛ tot (4.5) AC1, AC2 (4.5) Λ ( 4.10, 4.11) Λ AC1, AC2 Λ Λ S/N AC coincidence time π +, p 3.24 K + coincidence time K + S/N AC S(Signal) K + N(Background) ACC π + AC threshold S/N

84 74 4 K : AC1 Λ AC1 threshold(th1) NPE < th1 Λ 4.11: AC2 Λ AC2 threshold(th2) th2 < NPE Λ (ACCBG) coincidence time ACC K + ACC ACC (2 ns) 4.3 ACCBG K + ACCBG AC1, AC2 AC1, AC2 threshold th1, th2 AC1 < th1 (4.6) th2 < AC2 (4.7) K + coincidence time(ct) 1 < ct < 1 ns AC1, 2 (4.6, 4.7) S/N ( 4.12, 4.13) PEs< th1 S/N 1.0 th1 < 15 PEs threshold S/N 4.13 S/N AC2 threshold(th2)

85 4.2 AC cut Λ, Σ 0 S/N : AC1 S Λ /N AC1 threshold(th1) NPE<th1 S Λ /N (S Λ ) Λ N Λ (±3σ Λ ) 4.13: AC2 S Λ /N AC2 threshold(th2) th2<npe S Λ /N (S Λ ) Λ N Λ (±3σ Λ ) FOM AC Λ, Σ 0 S/N Λ S/N AC FOM Λ (S) S/N (S/N) FOM = S/N S (4.8) (4.8) peak significance AC1, AC2 (4.6, 4.7) FOM (4.14, 4.15) 4.14 AC2 threshold ( ) FOM AC1 cut 4.15 FOM

86 76 4 K : FOM AC1 AC1 threshold FOM AC2 threshold 1.0, 2.0, 5.0 PEs FOM 4.15: FOM AC2 AC2 threshold FOM AC1 threshold 0.1, 1.0, 3.0 PEs FOM 4.2: AC Λ, Σ 0 S/N FOM Particles Events S/N Survival ratio FOM Λ 440 ± Σ ± total (Λ + Σ 0 ) AC2 cut FOM AC1, AC2 FOM AC1, AC2 ( 4.16) FOM 4.16 (4.6, 4.7) AC1, AC2 threshold FOM AC AC1 < PEs (4.9) 2.0 PEs < AC2 (4.10)

87 4.3 p(γ, K + )Λ/Σ : FOM AC1, 2 cut AC1, AC2 threshold FOM AC1, AC2 threshold (4.14, 4.15) FOM AC1 AC1, threshold(th1) (AC1<th1) AC2 threshold(th2) th2<ac2 4.3 p(γ, K + )Λ/Σ 0 Λ, Σ 0 p(γ, K + )Λ/Σ 0 p(γ, K + )Λ/Σ 0 dσ dω = 1 1 N T N γ 1 1 ε SR ε K Ω N T N γ (4.11) Ω HRS N Λ, Σ 0 Λ, Σ 0 f decay K + ε K virtual photon flux(γ) (E e E e ) HRS (Ω e ) N γ = ΓdΩ e de e (4.12)

88 78 4 K + (Q) N γ = Q ΓdΩ e de e (4.13) e Γ HRS Ω (4.13) N γ N γ = Q e Γ (4.14) 4.7 C H (2.38 C) (1.11) virtual photon flux(γ) Γ = α E γ E e 2π 2 Q 2 = /(MeV sr e) (4.15) (1 ϵ)e e (4.15) (2.38 C) HRS ( Ω = 6 msr, E e = 180 MeV ) (4.14) ( 4.16) N γ = (4.16) N T N T N T = g/cm /mol 2 g/mol 2 = /cm 2 (4.17) K + ε K K + (τ K ) s K + HRS HRS l = 23 m[27] K + (ε K ) ε K = e l/cβγt K = (4.18) K + HRS VDC, STC(S0, S2), AC(AC1, AC2) (ε V DC, ε ST C, ε AC ) AC1, AC2 K % S0, S2 100 % VDC AC VDC HRS ε tot ε tot = (ε V DC ε ST C ε AC ) R (ε V DC ε ST C ) (4.19) = ((0.995) ) R ((0.995) 4 1.0) L (4.20)

89 4.3 p(γ, K + )Λ/Σ 0 79 VDC 99.5 % AC (4.11) Λ, Σ 0 dσ Λ dω dσ Σ 0 dω = 400 ± 20 nb/sr (4.21) = 120 ± 20 nb/sr (4.22) Λ, Σ (4.15) vartual photon flux 4.19 virtual photon flux HRS HRS p/p = 4.5 % virtual photon flux (4.15) HRS virtual photon flux Γ max = /(MeV sr e) (θ ee = 11.2, E e = 2.2 GeV) (4.23) Γ min = /(MeV sr e) (θ ee = 15.2, E e = 2.0 GeV) (4.24) Λ dσ Λ dω = 400 ± nb/sr (4.25) JLab CLAS (γ, K + ) Λ [10] (θ γk 0 ) dσ C.M. /d cos θ γk 2.2 µb CLAS CLAS C.M. Ω/ cos θ = 2π CLAS 360 nb/sr Λ KID

90 80 4 K KID Λ CLAS (4.25) virtual photon flux θ ee E e Monte Calro Simulator(Gean4) Λ, Σ 0 nnλ KID H(e, e K + )Λ/Σ 0 m 100 kev

91 : AC Λ 4.18: AC2 Σ 0

92 82 4 K : 2.2, 2.1, 2.0 GeV HRS p/p = 4.5 % HRS (p e = 2.1 GeV/c) (θ ee = 13.2 ) virtual photon flux /(MeV sr e)

93 GSI HypHI nnλ nnλ (JLab) m 100 kev nnλ (HRS) K + K + HRS π +, p K K + KID HRS time of flight coincidence time π +, p π +, p (AC) threshold AC Λ, Σ 0 Λ, Σ 0 Λ, Σ 0 peak significance FOM AC cut tuning AC1, AC2 (4.9, 4.10) Λ peak significance 54 Λ 60 % KID Λ dσ Λ /dω = 400 ± nb/sr Λ JLab CLAS Λ dσ Λ /dω = 360 nb/sr KID KID nnλ nnλ

94 84 [1] E. Rutherford The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, (1911). [2] H. Hotchi et al., Phys. Rev. C, (2001). [3] O. Hashimoto et al., Prog. Part. Nucl. Phys (2006). [4],,, [5] A.R. Bodmer et al., Phys. Rev. C, (1985). [6] M. Danysz, et al., The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science (1953). [7] G. Bohm et al., Nucl. Phys. B, 4, 511 (1968). [8] R. Bertini et al., Nucl. Phys. A, , (1981). [9] T. Miyoshi et al. (HNSS Collaboration), Phys. Rev. Lett (2003). [10] M.E. McCracken et al. (CLAS Collaboration), Phys. Rev. C, (2010). [11] T. Gogami, Ph.D. Thesis, Tohoku Univ., (2014). [12] J.A. Kadyk, et al., Nucl. Phys. B, (1971). [13] H.W. Bertini, Phys. Rev (1969). [14] I. Bombaci, ArXiv: (1997). [15] C. Rappold et al., Phys. Rev. C, (2013). [16] J.H.E. Mattauch et al., Nucl. Phys (1965). [17] R.A. Brandenburg et al., Phys. Rev. A, (1978). [18] E. Hiyama et al., Phys. Rev. C, (2014). [19] M.Q. Tran et al., SAPHIR Collaboration, Phys. Lett. B, (1998). [20] https : // (2018). [21] M. Juric et al., Nucl. Phys. B, 52 1 (1973). [22] I.R. Afnan et al., Phys. Rev. C, (2015). [23] O. Hashimoto et al., Nucl. Phys. A, (2010). [24] F. Pilat, Proceedings of LINAC2012, TH3A (2012). [25] K.G. Fissum et al., Nucl. Inst. and Meth. A, (2001). [26] L. Tang et al., PAC45 prog/proposals/17/pr pdf (2018). [27] http : //hallaweb.jlab.org/equipment/highresol.html (2018).

95 85 [28] (2018). [29] http : //coda.jlab.org/drupal/filebrowser/download/ (2018). [30] J. Arcorn et al., Nucl. Inst. and Meth. A, (2004). [31] C. Amsler et al. (Particle Data Group), Phys. Lett. B, (2018).

96 86 JLab JLab JLab HLab meeting JLab JLab GP-PU JLab Tang JLab Tang Bishnu

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge 22 2 24 W 1983 W ± Z 0 3 10 cm 10 cm 50 MeV TAC - ADC 65000 18 ADC [ (µs)] = 0.0207[] 0.0151 (2.08 ± 0.36) 10 6 s 3 χ 2 2 1 20 µ + µ 8 = (1.20 ± 0.1) 10 5 (GeV) 2 G µ ( hc) 3 1 1 7 1.1.............................

More information

25 3 4

25 3 4 25 3 4 1 µ e + ν e +ν µ µ + e + +ν e + ν µ e e + TAC START STOP START veto START (2.04 ± 0.18)µs 1/2 STOP (2.09 ± 0.11)µs 1/8 G F /( c) 3 (1.21±0.09) 5 /GeV 2 (1.19±0.05) 5 /GeV 2 Weinberg θ W sin θ W

More information

Mott散乱によるParity対称性の破れを検証

Mott散乱によるParity対称性の破れを検証 Mott Parity P2 Mott target Mott Parity Parity Γ = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 t P P ),,, ( 3 2 1 0 1 γ γ γ γ γ γ ν ν µ µ = = Γ 1 : : : Γ P P P P x x P ν ν µ µ vector axial vector ν ν µ µ γ γ Γ ν γ

More information

Canvas-tr01(title).cv3

Canvas-tr01(title).cv3 Working Group DaiMaJin DaiRittaikaku Multiparticle Jiki-Bunnsekiki Samurai7 Superconducting Analyser for Multi particles from RadioIsotope Beams with 7Tm of bending power (γ,n) softgdr, GDR non resonant

More information

Electron Ion Collider と ILC-N 宮地義之 山形大学

Electron Ion Collider と ILC-N 宮地義之 山形大学 Electron Ion Collider と ILC-N 宮地義之 山形大学 ILC-N ILC-N Ee Ee == 250, 250, 500 500 GeV GeV Fixed Fixed target: target: p, p, d, d, A A 33-34 cm-2 LL ~~ 10 1033-34 cm-2 ss-1-1 s s == 22, 22, 32 32 GeV GeV

More information

main.dvi

main.dvi MICE Sci-Fi 2 15 3 7 1 1 5 1.1 MICE(Muon Ionization Cooling Experiment)............. 5 1.1.1........................... 5 1.1.2............................... 7 1.1.3 MICE.......................... 10

More information

untitled

untitled BELLE TOP 12 1 3 2 BELLE 4 2.1 BELLE........................... 4 2.1.1......................... 4 2.1.2 B B........................ 7 2.1.3 B CP............... 8 2.2 BELLE...................... 9 2.3

More information

untitled

untitled SPring-8 RFgun JASRI/SPring-8 6..7 Contents.. 3.. 5. 6. 7. 8. . 3 cavity γ E A = er 3 πε γ vb r B = v E c r c A B A ( ) F = e E + v B A A A A B dp e( v B+ E) = = m d dt dt ( γ v) dv e ( ) dt v B E v E

More information

Drift Chamber

Drift Chamber Quench Gas Drift Chamber 23 25 1 2 5 2.1 Drift Chamber.............................................. 5 2.2.............................................. 6 2.2.1..............................................

More information

rcnp01may-2

rcnp01may-2 E22 RCP Ring-Cyclotron 97 953 K beam K-atom HF X K, +,K + e,e K + -spectroscopy OK U U I= First-order -exchange - coupling I= U LS U LS Meson-exchange model /5/ I= Symmetric LS Anti-symmetric LS ( σ Λ

More information

BESS Introduction Detector BESS (BESS-TeVspectrometer) Experimetns Data analysis (1) (2) Results Summary

BESS Introduction Detector BESS (BESS-TeVspectrometer) Experimetns Data analysis (1) (2) Results Summary Measurements of Galactic and Atmospheric Cosmic-Ray Absolute Fluxes BESS Introduction Detector BESS (BESS-TeVspectrometer) Experimetns Data analysis (1) (2) Results Summary Introduction 90% 9% 100~10 6

More information

untitled

untitled masato@icrr.u-tokyo.ac.jp 996 Start 997 998 999 000 00 00 003 004 005 006 007 008 SK-I Accident Partial Reconstruction SK-II Full reconstruction ( SK-III ( ),46 (40%) 5,8 (9%),9 (40%) 5MeV 7MeV 4MeV(plan)

More information

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a 1 2 2.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a) L ( ) ) * 2) W Z 1/2 ( - ) d u + e + ν e 1 1 0 0

More information

Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE

Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE 21 2 27 Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE ) Bethe-Bloch 1 0.1..............................

More information

LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ

LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ 8 + J/ψ ALICE B597 : : : 9 LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ 6..................................... 6. (QGP)..................... 6.................................... 6.4..............................

More information

24 10 10 1 2 1.1............................ 2 2 3 3 8 3.1............................ 8 3.2............................ 8 3.3.............................. 11 3.4........................ 12 3.5.........................

More information

FPWS2018講義千代

FPWS2018講義千代 千代勝実(山形大学) 素粒子物理学入門@FPWS2018 3つの究極の 宗教や神話 哲学や科学が行き着く人間にとって究極の問い 宇宙 世界 はどのように始まり どのように終わるのか 全てをつかさどる究極原理は何か 今日はこれを考えます 人類はどういう存在なのか Wikipediaより 4 /72 千代勝実(山形大学) 素粒子物理学入門@FPWS2018 電子レンジ 可視光では中が透け

More information

Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3

Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3 19 Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3 1 1 1.1 γ ΛN................. 1 1.2 KEK J-PARC................................ 2 1.2.1 J-PARC....................................

More information

KamLAND (µ) ν e RSFP + ν e RSFP(Resonant Spin Flavor Precession) ν e RSFP 1. ν e ν µ ν e RSFP.ν e νµ ν e νe µ KamLAND νe KamLAND (ʼ4). kton-day 8.3 < E ν < 14.8 MeV candidates Φ(νe) < 37 cm - s -1 P(νe

More information

2005 4 18 3 31 1 1 8 1.1.................................. 8 1.2............................... 8 1.3.......................... 8 1.4.............................. 9 1.5.............................. 9

More information

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100 positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) 0.5 1.5MeV : thermalization 10 100 m psec 100psec nsec E total = 2mc 2 + E e + + E e Ee+ Ee-c mc

More information

反D中間子と核子のエキゾチックな 束縛状態と散乱状態の解析

反D中間子と核子のエキゾチックな   束縛状態と散乱状態の解析 .... D 1 in collaboration with 1, 2, 1 RCNP 1, KEK 2 . Exotic hadron qqq q q Θ + Λ(1405) etc. uudd s? KN quasi-bound state? . D(B)-N bound state { { D D0 ( cu) B = D ( cd), B = + ( bu) B 0 ( bd) D(B)-N

More information

LEPS

LEPS LEPS2 2016 2 17 LEPS2 SPring-8 γ 3 GeV γ 10 Mcps LEPS2 7 120 LEPS Λ(1405) LEPS2 LEPS2 Silicon Strip Detector (SSD) SSD 100 µm 512 ch 6 cm 3 x y 2 SSD 6 3072 ch APV25-s1 APVDAQ VME APV25-s1 SSD 128 ch

More information

K 20 1 e, e K + 2000 2005 JLab e, e K + Λ K + 2 K + Missing Mass E/E 10 4 JLab 1 e, e K + Λ K, π π +, K + Λ Λ Σ 0 Mass Mass 2000 E89-009 e, e K + 12 Λ B 750 kev FWHM Missing Mass e, e K + background K

More information

untitled

untitled TOF ENMA JAEA-RMS) TOF Pre-scission JAERI-RMS (m-state 16 O + 27 Al 150MeV d TOF Nucl. Phys. A444, 349-364 (1985). l = m d Pre-scission Scission 10-19 (Post_scission) (Pre-scission) Proton_fission Alpha_fission

More information

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + 2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j

More information

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2 1 6 6.1 (??) (P = ρ rad /3) ρ rad T 4 d(ρv ) + PdV = 0 (6.1) dρ rad ρ rad + 4 da a = 0 (6.2) dt T + da a = 0 T 1 a (6.3) ( ) n ρ m = n (m + 12 ) m v2 = n (m + 32 ) T, P = nt (6.4) (6.1) d [(nm + 32 ] )a

More information

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ± 7 7. ( ) SU() SU() 9 ( MeV) p 98.8 π + π 0 n 99.57 9.57 97.4 497.70 δm m 0.4%.% 0.% 0.8% π 9.57 4.96 Σ + Σ 0 Σ 89.6 9.46 K + K 0 49.67 (7.) p p = αp + βn, n n = γp + δn (7.a) [ ] p ψ ψ = Uψ, U = n [ α

More information

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e ( ) Note 3 19 12 13 8 8.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R, µ R, τ R (1a) L ( ) ) * 3) W Z 1/2 ( - )

More information

Undulator.dvi

Undulator.dvi X X 1 1 2 Free Electron Laser: FEL 2.1 2 2 3 SACLA 4 SACLA [1]-[6] [7] 1: S N λ [9] XFEL OHO 13 X [8] 2 2.1 2(a) (c) z y y (a) S N 90 λ u 4 [10, 11] Halbach (b) 2: (a) (b) (c) (c) 1 2 [11] B y = n=1 B

More information

= hυ = h c λ υ λ (ev) = 1240 λ W=NE = Nhc λ W= N 2 10-16 λ / / Φe = dqe dt J/s Φ = km Φe(λ)v(λ)dλ THBV3_0101JA Qe = Φedt (W s) Q = Φdt lm s Ee = dφe ds E = dφ ds Φ Φ THBV3_0102JA Me = dφe ds M = dφ ds

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

Microsoft PowerPoint - 島田美帆.ppt

Microsoft PowerPoint - 島田美帆.ppt コンパクト ERL におけるバンチ圧縮の可能性に関して 分子科学研究所,UVSOR 島田美帆日本原子力研究開発機構,JAEA 羽島良一 Outline Beam dynamics studies for the 5 GeV ERL 規格化エミッタンス 0.1 mm mrad を維持する周回部の設計 Towards user experiment at the compact ERL Short bunch

More information

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz 2 Rutherford 2. Rutherford N. Bohr Rutherford 859 Kirchhoff Bunsen 86 Maxwell Maxwell 885 Balmer λ Balmer λ = 364.56 n 2 n 2 4 Lyman, Paschen 3 nm, n =3, 4, 5, 4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n

More information

main.dvi

main.dvi SGC - 48 208X Y Z Z 2006 1930 β Z 2006! 1 2 3 Z 1930 SGC -12, 2001 5 6 http://www.saiensu.co.jp/support.htm http://www.shinshu-u.ac.jp/ haru/ xy.z :-P 3 4 2006 3 ii 1 1 1.1... 1 1.2 1930... 1 1.3 1930...

More information

JPS2012spring

JPS2012spring BelleII 実験用 TOP カウンターの性能評価 2012.7.7( 土 ) 名古屋大学高エネルギー物理学研究室 (N 研究室 ) 有田義宣 BelleII に搭載する粒子識別装置 TOP カウンター 2 BelleII 実験 もっとも識別の難しい π/k 識別 BelleⅡ 実験は Belle 実験をさらに高輝度化 (40 倍 ) し 大量の B 中間子からの稀崩壊現象を探る電子陽電子コライダー

More information

ELECTRONIC IMAGING IN ASTRONOMY Detectors and Instrumentation 5 Instrumentation and detectors

ELECTRONIC IMAGING IN ASTRONOMY  Detectors and Instrumentation   5 Instrumentation and detectors ELECTRONIC IMAGING IN ASTRONOMY Detectors and Instrumentation 5 Instrumentation and detectors 4 2017/5/10 Contents 5.4 Interferometers 5.4.1 The Fourier Transform Spectrometer (FTS) 5.4.2 The Fabry-Perot

More information

J-PARC E15 K K-pp Missing mass Invariant mass K - 3 He Formation K - pp cluster neutron Mode to decay charged particles p Λ π - Decay p Decay E15 dete

J-PARC E15 K K-pp Missing mass Invariant mass K - 3 He Formation K - pp cluster neutron Mode to decay charged particles p Λ π - Decay p Decay E15 dete J-PARC E15 (TGEM-TPC) TGEM M1 ( ) J-PARC E15 TPC TGEM TGEM J-PARC E15 K K-pp Missing mass Invariant mass K - 3 He Formation K - pp cluster neutron Mode to decay charged particles p Λ π - Decay p Decay

More information

Techniques for Nuclear and Particle Physics Experiments Energy Loss by Radiation : Bremsstrahlung 制動放射によるエネルギー損失は σ r 2 e = (e 2 mc 2 ) 2 で表される為

Techniques for Nuclear and Particle Physics Experiments Energy Loss by Radiation : Bremsstrahlung 制動放射によるエネルギー損失は σ r 2 e = (e 2 mc 2 ) 2 で表される為 Techniques for Nuclear and Particle Physics Experiments.. Energy Loss by Radiation : Bremsstrahlung 制動放射によるエネルギー損失は σ r e = (e mc ) で表される為 質量に大きく依存する Ex) 電子の次に質量の小さいミューオンの制動放射によるエネルギー損失 m e 0.5 MeV, m

More information

総研大恒星進化概要.dvi

総研大恒星進化概要.dvi The Structure and Evolution of Stars I. Basic Equations. M r r =4πr2 ρ () P r = GM rρ. r 2 (2) r: M r : P and ρ: G: M r Lagrange r = M r 4πr 2 rho ( ) P = GM r M r 4πr. 4 (2 ) s(ρ, P ) s(ρ, P ) r L r T

More information

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120) 2.6 2.6.1 mẍ + γẋ + ω 0 x) = ee 2.118) e iωt Pω) = χω)e = ex = e2 Eω) m ω0 2 ω2 iωγ 2.119) Z N ϵω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j 2.120) Z ω ω j γ j f j f j f j sum j f j = Z 2.120 ω ω j, γ ϵω) ϵ

More information

nenmatsu5c19_web.key

nenmatsu5c19_web.key KL π ± e νe + e - (Ke3ee) Ke3ee ν e + e - Ke3 K 0 γ e + π - Ke3 KL ; 40.67(%) Ke3ee K 0 ν γ e + π - Ke3 KL ; 40.67(%) Me + e - 10 4 10 3 10 2 : MC Ke3γ : data K L real γ e detector matter e e 10 1 0 0.02

More information

1 2 1 a(=,incident particle A(target nucleus) b (projectile B( product nucleus, residual nucleus, ) ; a + A B + b a A B b 1: A(a,b)B A=B,a=b 2 1. ( 10

1 2 1 a(=,incident particle A(target nucleus) b (projectile B( product nucleus, residual nucleus, ) ; a + A B + b a A B b 1: A(a,b)B A=B,a=b 2 1. ( 10 1 2 1 a(=,incident particle A(target nucleus) b (projectile B( product nucleus, residual nucleus, ) ; a + A B + b a A B b 1: A(a,b)B A=B,a=b 2 1. ( 10 14 m) ( 10 10 m) 2., 3 1 =reaction-text20181101b.tex

More information

Muon Muon Muon lif

Muon Muon Muon lif 2005 2005 3 23 1 2 2 2 2.1 Muon.......................................... 2 2.2 Muon........................... 2 2.3................................. 3 2.4 Muon life time.........................................

More information

untitled

untitled 71 7 3,000 1 MeV t = 1 MeV = c 1 MeV c 200 MeV fm 1 MeV 3.0 10 8 10 15 fm/s 0.67 10 21 s (1) 1fm t = 1fm c 1fm 3.0 10 8 10 15 fm/s 0.33 10 23 s (2) 10 22 s 7.1 ( ) a + b + B(+X +...) (3) a b B( X,...)

More information

Μ粒子電子転換事象探索実験による世界最高感度での 荷電LFV探索 第3回機構シンポジューム 2009年5月11日 素粒子原子核研究所 三原 智

Μ粒子電子転換事象探索実験による世界最高感度での 荷電LFV探索  第3回機構シンポジューム 2009年5月11日 素粒子原子核研究所 三原 智 µ COMET LFV esys clfv (Charged Lepton Flavor Violation) J-PARC µ COMET ( ) ( ) ( ) ( ) B ( ) B ( ) B ( ) B ( ) B ( ) B ( ) B 2016 J- PARC µ KEK 3 3 3 3 3 3 3 3 3 3 3 clfv clfv clfv clfv clfv clfv clfv

More information

A

A A04-164 2008 2 13 1 4 1.1.......................................... 4 1.2..................................... 4 1.3..................................... 4 1.4..................................... 5 2

More information

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4 23 1 Section 1.1 1 ( ) ( ) ( 46 ) 2 3 235, 238( 235,238 U) 232( 232 Th) 40( 40 K, 0.0118% ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4 2 ( )2 4( 4 He) 12 3 16 12 56( 56 Fe) 4 56( 56 Ni)

More information

QMI_10.dvi

QMI_10.dvi ... black body radiation black body black body radiation Gustav Kirchhoff 859 895 W. Wien O.R. Lummer cavity radiation ν ν +dν f T (ν) f T (ν)dν = 8πν2 c 3 kt dν (Rayleigh Jeans) (.) f T (ν) spectral energy

More information

From Evans Application Notes

From Evans Application Notes 3 From Evans Application Notes http://www.eaglabs.com From Evans Application Notes http://www.eaglabs.com XPS AES ISS SSIMS ATR-IR 1-10keV µ 1 V() r = kx 2 = 2π µν x mm 1 2 µ= m + m 1 2 1 k ν = OSC 2

More information

1 1 2 2 3 3 RBS 3 K-factor 3 5 8 Bragg 15 ERDA 21 ERDA 21 ERDA 21 31 31 33 RUMP 38 42 42 42 42 42 42 4 45 45 Ti 45 Ti 61 Ti 63 Ti 67 Ti 84 i Ti 86 V 90 V 99 V 101 V 105 V 114 V 116 121 Ti 121 Ti 123 V

More information

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) ( August 26, 2005 1 1 1.1...................................... 1 1.2......................... 4 1.3....................... 5 1.4.............. 7 1.5.................... 8 1.6 GIM..........................

More information

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k 63 3 Section 3.1 g 3.1 3.1: : 64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () 3 9.8 m/s 2 3.2 3.2: : a) b) 5 15 4 1 1. 1 3 14. 1 3 kg/m 3 2 3.3 1 3 5.8 1 3 kg/m 3 3 2.65 1 3 kg/m 3 4 6 m 3.1. 65 5

More information

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional 19 σ = P/A o σ B Maximum tensile strength σ 0. 0.% 0.% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional limit ε p = 0.% ε e = σ 0. /E plastic strain ε = ε e

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

OHO.dvi

OHO.dvi 1 Coil D-shaped electrodes ( [1] ) Vacuum chamber Ion source Oscillator 1.1 m e v B F = evb (1) r m v2 = evb r v = erb (2) m r T = 2πr v = 2πm (3) eb v

More information

untitled

untitled MPPC 18 2 16 MPPC(Multi Pixel Photon Counter), MPPC T2K MPPC T2K (HPK) CPTA, MPPC T2K p,π T2K > 5 10 5 < 1MHz > 15% 200p.e. MIP 5p.e. p/π MPPC HPK MPPC 2 1 MPPC 5 1.1...................................

More information

Donald Carl J. Choi, β ( )

Donald Carl J. Choi, β ( ) :: α β γ 200612296 20 10 17 1 3 2 α 3 2.1................................... 3 2.2................................... 4 2.3....................................... 6 2.4.......................................

More information

1 1 (proton, p) (neutron, n) (uud), (udd) u ( ) d ( ) u d ( ) 1: 2: /2 1 0 ( ) ( 2) 0 (γ) 0 (g) ( fm) W Z 0 0 β( )

1 1 (proton, p) (neutron, n) (uud), (udd) u ( ) d ( ) u d ( ) 1: 2: /2 1 0 ( ) ( 2) 0 (γ) 0 (g) ( fm) W Z 0 0 β( ) ( ) TA 2234 oda@phys.kyushu-u.ac.jp TA (M1) 2161 sumi@epp.phys.kyushu-u.ac.jp TA (M1) 2161 takada@epp.phys.kyushu-u.ac.jp TA (M1) 2254 tanaka@epp.phys.kyushu-u.ac.jp µ ( ) 1 2 1.1...............................................

More information

main.dvi

main.dvi CeF 3 1 1 3 1.1 KEK E391a... 3 1.1.1 KL 0 π0 νν... 3 1.1.2 E391a... 4 1.1.3... 5 1.2... 6 2 8 2.1... 8 2.2... 10 2.3 CeF 3... 12 2.4... 13 3 15 3.1... 15 3.2... 15 3.3... 18 3.4... 22 4 23 4.1... 23 4.2...

More information

[ ] [ ] [ ] [ ] [ ] [ ] ADC

[ ] [ ] [ ] [ ] [ ] [ ] ADC [ ] [ ] [ ] [ ] [ ] [ ] ADC BS1 m1 PMT m2 BS2 PMT1 PMT ADC PMT2 α PMT α α = n ω n n Pn TMath::Poisson(x,[0]) 0.35 0.3 0.25 0.2 0.15 λ 1.5 ω n 2 = ( α 2 ) n n! e α 2 α 2 = λ = λn n! e λ Poisson Pn 0.1

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq 2007 2007 7 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 2007 2 4 5 6 6 2 2.1 1: KEK Web page 1 1 1 10 16 cm λ λ = h/p p ( ) λ = 10 16 cm E pc [ev] 2.2 quark lepton 2 2.2.1 u d c s t b + 2 3 e 1 3e electric charge

More information

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x Compton Scattering Beaming exp [i k x ωt] k λ k π/λ ω πν k ω/c k x ωt ω k α c, k k x ωt η αβ k α x β diag + ++ x β ct, x O O x O O v k α k α β, γ k γ k βk, k γ k + βk k γ k k, k γ k + βk 3 k k 4 k 3 k

More information

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint ( 9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) 2. 2.1 Ĥ ψ n (r) ω n Schrödinger Ĥ ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ + Ĥint (t)] ψ (r, t), (2) Ĥ int (t) = eˆxe cos ωt ˆdE cos ωt, (3)

More information

Microsoft Word - 章末問題

Microsoft Word - 章末問題 1906 R n m 1 = =1 1 R R= 8h ICP s p s HeNeArXe 1 ns 1 1 1 1 1 17 NaCl 1.3 nm 10nm 3s CuAuAg NaCl CaF - - HeNeAr 1.7(b) 2 2 2d = a + a = 2a d = 2a 2 1 1 N = 8 + 6 = 4 8 2 4 4 2a 3 4 π N πr 3 3 4 ρ = = =

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

thesis.dvi

thesis.dvi 3 17 03SA210A 2005 3 1 introduction 1 1.1 Positronium............ 1 1.2 Positronium....................... 4 1.2.1 moderation....................... 5 1.2.2..................... 6 1.2.3...................

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K 2 2 T c µ T c 1 1.1 1911 Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 1 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K τ 4.2K σ 58 213 email:takada@issp.u-tokyo.ac.jp 1933 Meissner Ochsenfeld λ = 1 5 cm B = χ B =

More information

( ) ,

( ) , II 2007 4 0. 0 1 0 2 ( ) 0 3 1 2 3 4, - 5 6 7 1 1 1 1 1) 2) 3) 4) ( ) () H 2.79 10 10 He 2.72 10 9 C 1.01 10 7 N 3.13 10 6 O 2.38 10 7 Ne 3.44 10 6 Mg 1.076 10 6 Si 1 10 6 S 5.15 10 5 Ar 1.01 10 5 Fe 9.00

More information

[Ver. 0.2] 1 2 3 4 5 6 7 1 1.1 1.2 1.3 1.4 1.5 1 1.1 1 1.2 1. (elasticity) 2. (plasticity) 3. (strength) 4. 5. (toughness) 6. 1 1.2 1. (elasticity) } 1 1.2 2. (plasticity), 1 1.2 3. (strength) a < b F

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

Microsoft PowerPoint - okamura.ppt[読み取り専用]

Microsoft PowerPoint - okamura.ppt[読み取り専用] TKK の物理的可能性 an extension of the TK neutrino oscillation experiment with a far detector in Korea 岡村直利 ( 京大 基研 ) 関西セミナーハウス (007/03/7( 007/03/7) based on hep-ph/050406 [Phys.Lett.B637,66 (006)] hep-ph/060755

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

Table 1: Basic parameter set. Aperture values indicate the radius. δ is relative momentum deviation. Parameter Value Unit Initial emittance 10 mm.mrad

Table 1: Basic parameter set. Aperture values indicate the radius. δ is relative momentum deviation. Parameter Value Unit Initial emittance 10 mm.mrad SuperKEKB EMITTANCE GROWTH BY MISALIGNMENTS AND JITTERS IN SUPERKEKB INJECTOR LINAC Y. Seimiya, M. Satoh, T. Suwada, T. Higo, Y. Enomoto, F. Miyahara, K. Furukawa High Energy Accelerator Research Organization

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

500 6 LHC ALICE ( 25 ) µsec MeV QGP

500 6 LHC ALICE ( 25 ) µsec MeV QGP 5 6 LHC ALICE shigaki@hiroshima-u.ac.jp chujo.tatsuya.fw@u.tsukuba.ac.jp gunji@cns.s.u-tokyo.ac.jp 3 ( 5 ) 5. µsec MeV QGP 98 RHIC QGP CERN LHC. LHC ALICE LHC p+p RHIC QGP ALICE 3 5 36 3, [, ] ALICE [,

More information

Mathews Grant J. (University of Notre Dame) Boyd Richard N. (Lawrence Livermore National Laboratory) 2009/5/21

Mathews Grant J. (University of Notre Dame) Boyd Richard N. (Lawrence Livermore National Laboratory) 2009/5/21 Mathews Grant J. (University of Notre Dame) Boyd Richard N. (Lawrence Livermore National Laboratory) 2009/5/21 Abstract strongly interacting massive particles (SIMPs, X) Big Bang (BBN) X heavy colored

More information

natMg+86Krの反応による生成核からのβ線の測定とGEANTによるシミュレーションとの比較

natMg+86Krの反応による生成核からのβ線の測定とGEANTによるシミュレーションとの比較 nat Mg+ 86 Kr の反応による生成核からの β 線の測定と GEANT によるシミュレーションとの比較 田尻邦彦倉健一朗 下田研究室 目次 実験の目的 nat Mg+ 86 Kr 生成核からの β 線の測定 @RCNP 実験方法 実験結果 GEANT によるシミュレーション 解析 結果 まとめ 今後の課題 実験の目的 偏極した中性子過剰 Na アイソトープの β-γ-γ 同時測定実験を TRIUMF

More information

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) 1 9 v..1 c (216/1/7) Minoru Suzuki 1 1 9.1 9.1.1 T µ 1 (7.18) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) E E µ = E f(e ) E µ (9.1) µ (9.2) µ 1 e β(e µ) 1 f(e )

More information

1 2 2 (Dielecrics) Maxwell ( ) D H

1 2 2 (Dielecrics) Maxwell ( ) D H 2003.02.13 1 2 2 (Dielecrics) 4 2.1... 4 2.2... 5 2.3... 6 2.4... 6 3 Maxwell ( ) 9 3.1... 9 3.2 D H... 11 3.3... 13 4 14 4.1... 14 4.2... 14 4.3... 17 4.4... 19 5 22 6 THz 24 6.1... 24 6.2... 25 7 26

More information

nakajima_

nakajima_ SK-Gd (ICRR) 30 2018 12 21 SK-Gd SK!2 !3 ls of SK Solar ν measurement rvation of day-night asymmetry far, B8, 2.5σ indication Hep reported at NEUTRINO2014) nalizing all SK-IV data very of the transition

More information

MEG μ + e + γ ( ) ( MEGA) = (BSM) MEG μ + e + γ ( : a few ) 180 γ μ + e +

MEG μ + e + γ ( ) ( MEGA) = (BSM) MEG μ + e + γ ( : a few ) 180 γ μ + e + MEG ( ) 2011 9 10 MEG μ + e + γ ( ) (1.2 10-11 MEGA) = (BSM) MEG μ + e + γ ( : a few 10-13 ) 180 γ μ + e + μ eγ @MEG DC μ + (590MeV 1.3MW @ ) γ: e + : MEG (900L) (VUV) 846 PMT : PMT : PMT PMT (DRS4) particle

More information

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III.

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III. Masafumi Udagawa Dept. of Physics, Gakushuin University Mar. 8, 16 @ in Gakushuin University Reference M. U., L. D. C. Jaubert, C. Castelnovo and R. Moessner, arxiv:1603.02872 Outline I. Introduction:

More information

untitled

untitled 9118 154 B-1 B-3 B- 5cm 3cm 5cm 3m18m5.4m.5m.66m1.3m 1.13m 1.134m 1.35m.665m 5 , 4 13 7 56 M 1586.1.18 7.77.9 599.5.8 7 1596.9.5 7.57.75 684.11.9 8.5 165..3 7.9 87.8.11 6.57. 166.6.16 7.57.6 856 6.6.5

More information

τ-→K-π-π+ν τ崩壊における CP対称性の破れの探索

τ-→K-π-π+ν τ崩壊における CP対称性の破れの探索 τ - K - π - π + ν τ 崩壊における CP 対称性の破れの探索 奈良女子大学大学院人間文化研究科 物理科学専攻高エネルギー物理学研究室 近藤麻由 1 目次 はじめに - τ 粒子の概要 - τ - K - π - π + ν τ 崩壊における CP 対称性の破れ 実験装置 事象選別 τ - K - π - π + ν τ 崩壊の不変質量分布 CP 非対称度の解析 - モンテカルロシミュレーションによるテスト

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

3-2 PET ( : CYRIC ) ( 0 ) (3-1 ) PET PET [min] 11 C 13 N 15 O 18 F 68 Ga [MeV] [mm] [MeV]

3-2 PET ( : CYRIC ) ( 0 ) (3-1 ) PET PET [min] 11 C 13 N 15 O 18 F 68 Ga [MeV] [mm] [MeV] 3 PET 3-1 PET 3-1-1 PET PET 1-1 X CT MRI(Magnetic Resonance Imaging) X CT MRI PET 3-1 PET [1] H1 D2 11 C-doxepin 11 C-raclopride PET H1 D2 3-2 PET 0 0 H1 D2 3-1 PET 3-2 PET ( : CYRIC ) ( 0 ) 3-1-2 (3-1

More information

untitled

untitled N0 N8 N0 N8 N0 * 49MeV/nuceon β 0.3c γ Hgh Z Target Pb Equvaent Photon Method 0 d σ dωde σ π γ γ π E 3 γ [!! ] dnπ σ dω π γ Eγ c h C.A.Bertuan and G.Baur Phys.Rep.63,99 988. J.D. Jackson Cassca Eectrodynamcs

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2 Hanbury-Brown Twiss (ver. 1.) 24 2 1 1 1 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 3 3 Hanbury-Brown Twiss ( ) 4 3.1............................................

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information