Size: px
Start display at page:

Download ""

Transcription

1

2

3 2002 7

4

5 i (mean time to failure) (mean time between failures)

6 iv %

7 v substandard standard FMEA (failure Mode and Effects Analysis) FTA (Failure Test Analysis)

8 vi A 145 A A A A

9 vii A A A

10

11 R(t), (t) a prior probability of failure m > M m < M

12 x 7.3 T substandard standard SC

13 xi

14

15 C C C C S

16

17 1 AGREE(Advisory Group on Reliability of Electronic Equipment) Symposium on physics of failure in electronics IEC(International Electrotechnical Commission)

18

19 (Initial Failure) (Wearout failures) (Chance failures)

20 : 1. 2.

21 Reliability is the probability of a device performing its purpose adequately for the period of time intended under the operating conditions encountered 2.2 X Y P(A) = X X +Y P(B) = Y X +Y (2.1) (2.2)

22 : P(A) 0 (2.3) : P(S) = 1 S (2.4) : P ( ) A n = P(A n ) (2.5) N n = 1, 2,, N N S A m A n 0 m n F(x) = P(X x) (2.6)

23 F( ) = 0 (2.7) F( ) = 1 (2.8) 0 F(x) 1 (2.9) x 1 < x 2 F(x 1 ) F(x 2 ) (2.10) P(x 1 < X x 2 ) = F(x 2 ) F(x 1 ) (2.11) F(x + ) = F(x) (2.12) (2.7)(2.8)(2.10)(2.12) N s N f N 0 N 0 N s + N f = N 0 (2.13) N s N 0 + N f N 0 = 1 (2.14) N s N 0 = A 1, N f N 0 = A 2 (2.15) (2.3)(2.4)(2.5)

24 8 2 R(t) N 0 N s (t) R(t) = N s(t) N 0 (2.16) N s (t) N 0 R(0) = 1 (2.17) R( ) = 0 (2.18) N f (t) Q(t) = N f (t) N 0 (2.19) (2.14) R(t), Q(t) R(t) + Q(t) = 1 (2.20)

25 q(t) = dq(t) [ dr(t) ] dt dt (2.21) t Q(t) = q(t)dt (2.22) 0 (2.22) (2.7) (2.12) (2.22)

26 10 2 (2.21) Q(t + dt) Q(t) q(t) = dt = N f (t + dt) N f (t) N 0 dt (2.23) (2.21) t Q(t) = q(t)dt (2.24) 0 (2.22) t R(t) = 1 = = 0 t 0 q(t)dt q(t)dt t q(t)dt q(t)dt (2.25) t N s t +dt N s (t +dt) N s (t) N s (t + dt) t

27 : R(t), (t) t + dt λ λ = N s(t) N s (t + dt) dt N s (t) = dn s(t) dt N s (t) = dn f (t) dt N s (t) (2.26) t λ = λ 0 (2.26) dn s (t)/(n s dt) = λ 0 d (lnn s ) = λ 0 dt lnn s = λ 0 t +C t = 0 N s (t) = N 0 lnn s = λ 0 t + lnn 0 then λ 0 = 1 ln t ( Ns N 0 ) = 1 ln R(t) (2.27) t

28 12 2 (2.26) N 0 (2.16)(2.19)(2.21) λ(t) = q(t) R(t) (2.28) (2.21) (2.28) λ(t)dt = dr(t) R(t) R(t) = exp [ ] λ(t)dt (2.29) (2.30) (2.30) R(t) = exp( λt) (2.31) (2.27) (2.30) λ (mean time to failure) MTTF t N f (t) dt N f (t + dt) N f (t + dt) N f (t) t t + dt dt N f (t + dt) N f (t) dt t t t + dt t [ Nf (t + dt) N f (t) ] t

29 N 0 1 N 0 [ Nf (t + dt) N f (t) ] t d(mt T F) = [ Nf (t + dt) N f (t) ] [ t = N f (t) + dn ] f (t) dt N f (t) t dt N 0 d(mt T F) = t dn f (t) dt = tq(t)dt N 0 dt MTTF (MT T F) = tq(t)dt (2.32) 0 (2.16) (MT T F) = 0 R(t)dt = 1 N s (t)dt (2.33) N 0 (2.30) H(t) 0 R(t) = exp[ H(t)] (2.34) t H(t) = λ(t)dt (2.35) 0

30 t N s (t) t T = tn s (t)dt (2.36) (mean time between failures) MTBF (MT BF) = N s (t)dt N s (t) N s (t + dt) (2.37)

31 t N s (t) dt [N s (t) N s (t + dt)] MTBF (2.26) MTBF λ (MT BF) = 1 λ (2.38) MTBF (2.28) (2.21) (MT BF) = 1 λ = R(t) q(t) q(t) = dr(t) dt R(t) (MT BF) = 1 [ t ] 1 q(t)dt q(t) 0 (2.39) λ MTTF MTBF (2.33) (2.30) λ (MT T F) = 0 exp( λt)dt = 1 = (MT BF) (2.40) λ (2.33)(2.40) (MT BF) = R(t)dt (2.41) 0 useful life (2.30) R(t) = exp( λt)

32 16 2 m (2.41) ( R(t) = exp t ) m (2.42) t = m R = m m λ (2.42) R(t) = 1 t m (2.43) Q(t) = t m (2.44) (t) (R) (Q) m/ m/ m/1, m/10, m/100, m/1, 000, m/10, 000, : < > ,000, ,000

33 :

34 18 2 < > 10, < > 1 3 n MTBF m 3 ( R(t) = 1 t ) n m = 1 n m t (2.45) Q(t) = n m t (2.46) n MTBF (2.46) Q(t) = n m t, Q (t) = n m t (2.47) Q(t) = n n Q (t) (2.48) < > (2.45) (2.48)

35 t = m/ t = m/ (2.45) (2.48) < > 1 MTBF m MTBF (2.47) m system = m/100 t = m/100, (2.47) Q(t) = 100 ( ) m = m 100, 000 t = m/100, t = m/100,000 Q(t) = 10 ( ) m = m 100, m system = m/10 n m m/n 2.5

36 20 2 m mean number of cycles between failure failure rate per one operating cycles ( R(c) = exp( λc) = exp c ) m (2.49) λ R(c) = 1 λc (2.50)

37 (2.20) (2.31) Q(t) = 1 exp( λt) (3.1)

38 22 3 q(t) = λ exp( λt) (3.2) λ t λ t λ t +t R(t) = exp( λ t )exp( λ t ) = exp [ (λ t + λ t ) ] (3.3) < > (3.3) tq(t) (2.32) MTTF 0 tq(t)dt = (MT T F) (3.4) (MTBF)=(MTTF) (2.40)

39 MTBF (2.41) m = R(t)dt = exp( λt)dt = 1 (3.5) 0 0 λ (3.4) ( m = tq(t)dt = t dr ) dt (3.6) 0 0 dt m = [tr(t)] 0 + R(t)dt 1 ( ) R(t) = exp λdt 0 lim tr(t) t = t lim t exp ( t 0 λdt) = 0 λ 0 λ 1/m q(t) = λ exp( λt) = 1 ( m exp t ) m ( Q(t) = 1 exp t ) m ( R(t) = exp t ) m (3.7) (3.8) (3.9)

40 24 3 λ 1, λ 2 MTBF m 1, m 2 R(t) = R 1 (t) R 2 (t) = exp[ (λ 1 + λ 2 )t] [ ( 1 = exp + 1 ) ] t m 1 m 2 (3.4) 2 2 t = t +t R(t) = exp [ λ(t +t ) ] (3.10) λ(t) = at (3.11) (2.20)(2.30) ) R(t) = exp ( at2 2 ) Q(t) = 1 exp ( at2 2 (3.12) (3.13)

41 MTBF m m q(t) = Aexp [ a(t m) 2] (3.14) MTBF MTBF (3.14) σ (3.14) q(t) = 1 ] [ σ 2π exp (t m)2 2σ 2 (2.21) Q(t) = 1 σ 2π t 0 = 1 1 σ 2π exp [ t (t m)2 2σ 2 exp [ ] dt (t m)2 2σ 2 (3.15) ] dt (3.16) 1 R(t) = 1 σ exp [ 2π t 3.3 (t m)2 2σ 2 ] dt (3.17) exp( x) exp(x) = 1 (3.18)

42 26 3 n k ( ) n f (k) = p k (1 p) n k (3.19) k p m = np (3.19) n(n 1) [n (k 1)] ( m ) k ( f (k) = 1 m ) n k k! n n ( = mk 1 1 )( 1 2 ) ( 1 k 1 )[ ( 1 m ) n/m] m ( 1 m ) k k! n n n n n (3.20) n ( 1 1 n = exp n) lim n (3.20) f (k) = mk exp( m) (3.21) k! k (3.21) ) exp( m) (1 + m + m2 2! + m3 3! + = 1 (3.22) (3.18) (3.22) (3.21) k m A (3.22) exp( m) mexp( m)

43 ( m 2 /2! ) exp( m) λ t R(t) = exp( λt) (3.23) t Q 1 (t) = (λt)exp( λt) (3.24) 2 Q 2 (t) = (λt)2 2! exp( λt) (3.25) Q(t) Q = Q 1 + Q 2 + Q 3 + = 1 R = 1 exp( λt) (3.26) 3.4 (Weibull) [ ( ) t γ m ] R(t) = exp η m η = t 1/m 0 (3.27)

44 28 3 γ µ σ γ = 0 ( σ 2 (t) = η [Γ m ( µ(t) = ηγ ) m )] ) Γ 2 ( m (3.28) (3.29) Γ (3.27) m = 1 (3.27) 2 1 lnln R(T ) = m lnt lnt 0 = m(lnt ln η) (3.30) y = lnln 1 R(t) (3.31) x = lnt (3.32) a = lnt 0 = mlnη (3.33) (3.30) y = mx + a (3.34)

45 (3.32) x (3.31) y y x m a = lnt 0 = mlnη m x = 1, y = 0 y = m(x 1) x = 0 y lnt = 1 lnln1/r = 0 lnt = 0 lnln1/rt ln(t 0 ) η (3.33) m, η (3.28)(3.29)

46 30 3

47

48 P(A), P(B) A, B P(A B) = P(A) P(B) (4.1) 2. A, B AB P(A B) = P(A) + P(B) P(A) P(B) (4.2)

49 P(A B) = P(A) + P(B) (4.3) 4. A, B P(A) + P(B) = 1 (4.4) A, B A, B A, B P(A), P(B) A, B A, B N s N 0 1 N s /N 0 R + Q = 1 (4.5) (4.4)

50 34 4 R 1 R 2 t (4.1) R S (t) = R 1 (t)r 2 (t) (4.6) (4.2) Q S (t) = Q 1 (t) + Q 2 (t) Q 1 (t)q 2 (t) (4.7) (4.5) Q S (t) = [1 R 1 (t)] + [1 R 2 (t)] [1 R 1 (t)][1 R 2 (t)] = 1 R 1 (t)r 2 (2) = 1 R S (t) (4.8) (4.2) R p (t) = R 1 (t) + R 2 (t) R 1 (t)r 2 (t) (4.9) (4.2) Q p (t) = Q 1 (t)q 2 (t) (4.5) Q p (t) = [1 R 1 (t)][1 R 2 (t)] = 1 R p (t) (4.10) 4.2 R S (t) + Q S (t) = 1 (4.11)

51 R S (t), Q S (t) R p (t) + Q p (t) = 1 (4.12) R p (t), Q p (t) R S (t) = exp[ (λ 1 + λ 2 )t] (4.13) Q S (t) = 1 exp[ (λ 1 + λ 2 )t] (4.14) R p (t) = exp( λ 1 t) + exp( λ 2 t) exp[ (λ 1 + λ 2 )t] (4.15) Q p (t) = [1 exp( λ 1 t)][1 exp( λ 2 t)] (4.16) R S = R 1 R 2 R n (4.17) R i Q p = Q 1 Q 2 Q n (4.18)

52 36 4 < > λ t = λ d = λ r = λ c = : λ i = 4λ t + 10λ d + 20λ r + 10λ c = R S (t) = exp( t) 10 R S (10) = exp( ) = , m = 1/λ = 10,000 [ ] 10,000 10,000 e 1 = [%] 63 [%] 1) 1)

53 λ 1, λ 2 (4.15)(4.16) R p2 (t) = exp( λ 1 t) + exp( λ 2 t) exp[ (λ 1 + λ 2 )t] (4.19) Q p2 (t) = [1 exp( λ 1 t)][1 exp( λ 2 t)] (4.20) (3.5) m p2 = R p (t)dt = (4.21) 0 λ 1 λ 2 λ 1 + λ 2 λ 1, λ 2, λ 3 R p3 (t) = exp( λ 1 t) + exp( λ 2 t) + exp( λ 3 t) exp[ (λ 1 + λ 2 )t] exp[ (λ 2 + λ 3 )t] exp[ (λ 3 + λ 1 )t] + exp[ (λ 1 + λ 2 + λ 3 )t] (4.22) Q p3 (t) = [1 exp( λ 1 t)][1 exp( λ 2 t)][1 exp( λ 3 t)] (4.23) MTBF m p3 = 0 R p (t)dt = λ 1 λ 2 λ 3 λ 1 + λ 2 λ 2 + λ 3 λ 2 + λ 3 λ 3 + λ 1 1 (4.24) λ 1 + λ 2 + λ 3

54 R 1 = exp( λ 1 t), R 2 = exp( λ 2 t), R 3 = exp( λ 3 t) (4.25) Q 1 = 1 exp( λ 1 t), Q 2 = 1 exp( λ 2 t), Q 3 = 1 exp( λ 3 t) (4.26) (4.19)(4.20) R p2 + Q p2 = 1 = R 1 + R 2 R 1 R 2 + Q 1 Q 2 = R 1 (R 2 + Q 2 ) + R 2 (R 1 + Q 1 ) R 1 R 2 + Q 1 Q 2 = R 1 R 2 + R 1 Q 2 + R 2 Q 1 + Q 1 Q 2 = (R 1 + Q 1 )(R 2 + Q 2 ) (4.27) (4.22)(4.23) 1 = (R 1 + Q 1 )(R 2 + Q 2 )(R 3 + Q 3 ) (4.28) n 1 = (R 1 + Q 1 )(R 2 + Q 2 )(R 3 + Q 3 ) (R n + Q n ) (4.29) R p2 = 1 Q p2 = 1 [1 exp( λt)] 2 = 2 exp( λt) exp( 2λt) (4.30) Q p2 = Q 1 Q 2 = Q 2 = [1 exp( λt)] 2 (4.31)

55 m p2 = 1 λ 1 2λ = 3 2λ (4.32) R p3 = 1 Q p3 = 3exp( λt) 3exp( 2λt) + exp( 3λt) (4.33) Q p3 = Q 3 = [1 exp( λt)] 3 (4.34) MTBF m p3 = 3 λ + 3 2λ + 1 3λ = 29 6λ (4.35) n (4.29) (R + Q) n = R n + nr n 1 Q + n(n 1) R n 2 Q Q n = 1 (4.36) 2! (4.36) (R + Q) 3 = R 3 + 3R 2 Q + 3RQ 2 + Q 3 = 1 (4.37) Q 3 Q p = Q 3 (4.38) R p = R 3 + 3R 2 Q + 3RQ 2 (4.39)

56 40 4 < > Q p = 3RQ 2 + Q 3 (4.40) R p = R 3 + 3R 2 Q (4.41) λ = R = exp( 0.1) = Q = 1 R = = Q p = Q 3 = ( ) 3 = R p = 1 Q p = = m p = 3 λ + 3 2λ + 1 3λ = = < >

57 : λ i λ = λ i = R = exp( ) = R p = R 3 + 3R 2 Q = 3R 2 2R 3 =

58 : % n+1

59 ] exp( λt) [1 + λt + (λt)2 + (λt)3 + = 1 (4.42) 2! 3! exp( λt) exp( λt) (λt) 1 exp( λt)(λt) 2 /2! R 2 (t) = exp( λt) + exp( λt) (λt) (4.43) Q 2 (t) = 1 R(t) = exp( λt) (λt)2 2! + exp( λt) (λt)3 3! + (4.44) R 3 (t) = exp( λt) + exp( λt) (λt) + exp( λt) (λt)2 2! Q 3 (t) = 1 R(t) = exp( λt) (λt)3 3! + exp( λt) (λt)4 4! (4.45) (4.46) MTBF 2 m 2 = R 2 dt = 1 0 λ + λ λ 2 = 2 λ (4.47) 3 m 3 = 1 λ + 1 λ + 1 λ = 3 λ (4.48)

60 44 4 ] R n (t) = exp( λt) [1 + (λt) + (λt)2 + + (λt)n 1 (4.49) 2! (n 1)! [ ] (λt) n Q n (t) = exp( λt) + (λt)n+1 (4.50) n! (n + 1)! < > m n = n λ (4.51) λ = 0.01 R b = exp( λt) + exp( λt) (λt) = = R P = 1 ( ) 2 = (2.21) q = dr(t) dt (4.52) q(t) = λ exp( λt) (4.53) λ 1, λ 2 2 λ 1 λ 2 t 1

61 t 2 = t t 1 2 q 1 (t 1 ) = λ 1 exp( λ 1 t 1 ) (4.54) 2 q 2 (t 2 ) = λ 2 exp[ λ 2 (t t 1 )] (4.55) (2.21) dr = q(t)dt (4.54) dr 1 = q 1 (t 1 )dt 1 (4.55) dr 2 = q 2 (t 2 )dt 2 dr dr = dr 1 dr 2 = q 1 (t 1 )dt 1 q 2 (t 2 )dt 2 dr(t) = q 1 (t 1 )q 2 (t t 1 )dt 1 (dt dt 1 ) = q 1 (t 1 )q 2 (t t 1 )dt 1 dt q(t) = dr(t) = q 1 (t 1 )q 2 (t t 1 )dt 1 (4.56) dt t 1 2 t q(t) = q 1 (t 1 )q 2 (t t 1 )dt 1 (4.57) 0 q 1, q 2 q(t) 5 2

62 46 4 t q(t) = λ 1 λ 2 exp( λ 1 t 1 )exp[ λ 2 (t t 1 )]dt 1 = 0 λ 1 λ 2 λ 2 λ 1 [exp( λ 1 t) exp( λ 2 t)] (4.58) MTBF (2.25)(2.41) R b (t) = m p = t q(t)dt = exp( λ 1 t) + λ 1 [exp( λ 1 t) exp( λ 2 t)] (4.59) λ 2 λ 1 0 R b (t)dt = 1 λ λ 2 = m 1 + m 2 (4.60) (4.59)(4.60) λ 1 λ, λ 2 λ + x x (4.43)(4.47) q 1 (t 1 ) = λ 1 exp( λ 1 t 1 ) q 2 (t 2 ) = λ 2 exp( λ 2 t 2 ) (4.61) q 3 (t 3 ) = λ 3 exp( λ 3 t 3 ) t 2 = t t 1 0 t 1 t 2 (4.62) t 3 = t t 2 0 t 2 t 3 (4.63) q(t) = λ 1 λ 2 λ 3 t t 2 =0 t2 t 1 =0 exp( λ 1 t 1 )exp[ λ 2 (t 2 t 1 )]exp[ λ 2 (t t 2 )]dt 1 dt 2 (4.64)

63 (2.25) R b = λ 2 λ 3 exp( λ 1 t) (λ 2 λ 1 )(λ 3 λ 1 ) + λ 1λ 3 exp( λ 2 t) (λ 1 λ 2 )(λ 3 λ 2 ) + λ 1λ 2 exp( λ 3 t) (λ 1 λ 3 )(λ 2 λ 3 ) n (4.65) R b = λ 2 λ 3 λ n exp( λ 1 t) (λ 2 λ 1 )(λ 3 λ 1 ) (λ n λ 1 ) λ 1 λ 3 λ n exp( λ 2 t) + (λ 1 λ 2 )(λ 3 λ 2 ) (λ n λ 2 ) + λ 1 λ 2 λ n 1 exp( λ n t) + (λ 1 λ n )(λ 2 λ n ) (λ n 1 λ n ) (4.66) MTBF m p = 1 λ λ λ n (4.67) [%] 100 [%] R ss 1 R b (t) = exp( λt) + R ss exp( λt) λt (4.68) 2 R b (t) = exp( λ 1 t) + R ss λ 1 λ 2 λ 1 [exp( λ 1 t) exp( λ 2 t)] (4.69)

64 48 4 λ 1 λ 2 λ 3 2 R b (t) = exp( λ 1 t) + λ 1 λ 1 + λ 3 λ 2 {exp( λ 2 t) exp[ (λ 1 + λ 3 )t]} (4.70) R b (t) = exp( λt) + R ss λ 1 λ 1 + λ 3 λ 2 {exp( λ 2 t) exp[ (λ 1 + λ 3 )t]} (4.71) < > λ 1 = λ 2 = R ss = : t = R b = exp( t) [exp( t) exp( 0.001t)] = = ,000 2 R = 1 [1 exp( t)] 2 =

65 MTBF m b = = 0 0 R b dt { } λ 1 exp( λ 1 t) + exp( λt) [exp( λ 1 t) exp( λ 2 t)] dt λ 2 λ 1 ( 1 λ 1 + λ 1 ) (4.72) λ 2 + λ = 1 λ 1 + λ 1 λ 2 λ 1 λ MTBF , λ = ln = MTBF N λ n N (n + 1) λ Nλ MTBF 1/(Nλ) n n MTBF 1/(Nλ) n + 1 (n +1)/Nλ

66 50 4 ( R S (t) = exp Nλ ) n + 1 t (4.73) < > 30 λ = R = exp( ) = (4.73) ( ) R = exp 10 =

67 A C B C A A B B A-A C-A C-B B-B 5.2 A B C A B 4

68 : 5.2: R = [1 (1 R A )(1 R B )(1 R C )][1 (1 R A )(1 R B )] P(A) = P(A B i )P(B i ) + P(A B j )P(B j ) (5.1)

69 P(system f ailure i f component X is good) P(X is good) + P(system f ailure i f component is bad) P(X is bad) (5.2) Q S R x X Q x (5.2) Q S = Q S (i f X is good) R x + Q S (i f X is bad) Q x (5.3) R S = 1 Q S (5.4) 5.1 X C Q S = Q S (i f C is good) R C + Q S (i f C is bad) Q C (5.5) C A, B A, B C Q S (i f C is good) = (1 R A )(1 R B ) (5.6) C A A, B B C Q S (i f C is bad) = (1 R A R A )(1 R B R B ) (5.7) Q S = (1 R A )(1 R B ) R C + (1 R A R A )(1 R B R B ) Q C (5.8)

70 : 5.2 (5.3) 5.3 R 1, R 2 1 X R 2 Q S = (1 R 1 ) R (1 R 2 ) (5.9) X 2 X X X 1 (1 R 2 ) R 1 + Q 1 (5.9) (1 R 1 ) R (1 R 2 ) = R 2 R 1 R R 2 = 1 R 1 R 2 (5.10)

71 : Q S = 0 R 2 + (1 R 1 )(1 R 2 ) (5.11) 0 R (5.11) R 1, R 2, R 3, R 4

72 :

73 Q S = Q S (i f 1 is good) R 1 + Q S (i f 1 is bad) Q 1 (5.12) Q S (i f 1 is good) Q S (i f 1 is bad) 2 Q S (i f 1 is bad) = Q S (i f 2 is good) R 2 + Q S (i f 2 is bad) Q 2 (5.13) 1 (5.13) Q S (i f 1 is bad) = Q S (i f 2 is bad) Q 2 (5.14) 1 (5.13) Q S = Q S (i f 2 is bad) Q 2 Q 1 (5.15) Q S = Q 1 Q 2 Q 3 Q 4 (5.16) Q S = Q S (i f 1 is good) R 1 + Q S (i f 1 is bad) Q 1 (5.17) 1 1

74 Q S = 1 R 1 R 2 R 3 R 1 R 2 R 4 R 1 R 3 R 4 R 2 R 3 R 4 + 3R 1 R 2 R 3 R 4 (5.20) main : 2005/4/26(22:28) 58 5 (5.17) Q S (i f 1 is good) = Q S (i f 2 is good) R 2 + Q S (i f 2 is bad) Q 2 = (1 R 3 )(1 R 4 ) R 2 + (1 R 3 R 4 ) Q 2 (5.18) Q S (i f 1 is bad) Q S (i f 1 is bad) = Q S (i f 2 is good) R 2 + Q S (i f 2 is bad) Q 2 = (1 R 3 R 4 )R Q 2 (5.19) (R 1 + Q 1 )(R 2 + Q 2 )(R 3 + Q 3 )(R 4 + Q 4 ) = 1

75

76 DFR(decreasing failure rate) 2. CFR(constant failure rate) 3. IFR(increasing failure rate) :

77 q(t ) = 1 ] [ σ 2π exp (T M)2 2σ 2 (6.1) M σ T M MTBF MTBF MTBF MTBF 6.2 MTBF MTBF 63 [%] 37 [%]

78 :

79 T t 6.2 a priori probability of failure t 1 t 2 T 1 T 2 P t2 t 1 = P T2 T 1 = t2 t 1 q(t)dt (6.2) T2 T 1 q(t )dt (6.3) t t Q(t) = q(t)dt (6.4) (6.1) [%] 2.14[%] T = 0 T = M 3σ [%] T = 0 T = M + 3σ [%] 2.14 [%] 2.14 [%] [%]

80 :

81 :

82 : a prior probability of failure

83 T 2 T 1 T 2 T 1 a prior probability of failure T = 0 T 1 T 1 F T2 T 1 = P T 2 T 1 R(T 1 ) = Q(T 2) Q(T 1 ) R(T 1 ) (6.5) T 1 T 2 a posterori probability of failure < > 2.14 [%] 2.14 [%] R T2 T 1 (t) = 1 F T2 T 1 (6.6) F M 3σ, M 2σ = / = R M 3σ, M 2σ = 1 F = F M+3σ, M+2σ = / = R M+3σ, M+2σ = 1 F = ϕ(t ) = σq(t ) (6.7)

84 68 6 (6.1) (6.1) (6.7) ϕ(t ) (6.1) r(t ) = ϕ(t ) R W (T ) (6.8) λ W (T ) = q(t ) R W (T ) = ϕ(t ) σr W (T ) = r(t ) σ (6.9) 6.6 z R W (T ) (6.9) (M<3σ) T = 0 q(t ) = 0 q(t ) = 1 ] [ σ 2π exp (logt M)2 2σ 2 (6.10)

85 :

86 70 6 M logt σ logt T = 0 T T Q(T ) = q(t )dt (6.11) 0 1 T 1 Q(T ) = 1 q(t )dt (6.12) R(T ) = T T q(t )dt (6.13) T W T W Q(t) (wearout failure) W < > T W = M 3σ T = T W = M 3σ

87 Q W = T W = M 4σ Q W = T W = M 5σ Q W = ,000 10,000 < > 1 T W = M 3σ 2 q w = T W = M 2σ Q W = T T T +t a prior probability of failure T +t λ exp( λt)dt = exp( λt) exp[ λ(t +t)] T exp( λt) [ λ(t +t)] F(t) = exp( λt) = 1 exp( λt) (6.14) T = 0 T = t

88 72 6 F(t) = Q(t) = 1 exp( λt) T t T T t t Q(t) = Q C (t) + F W (t) Q C (t)f W (t) (6.15) C W Q C (t) = 1 exp( λt) T F W (t) (6.5)(6.13) F W (t) = 1 σ T +t 2π T 1 σ 2π exp [ (T M) 2 /2σ 2] dt T exp[ (T M)2 /2σ 2 ]dt (6.16) T t R W (t) = 1 F W (t) R(t) = exp( λt) exp( λt) F W (t) = exp( λt) R W (t) (6.17) (6.16) R W (t) = 1 σ 2π 1 σ 2π T +t exp[ (T M) 2 /2σ 2] dt T exp[ (T M)2 /2σ 2 ]dt (6.18)

89 T T + t T +t, T t (6.1) (6.13) R W (t) = R W (T +t) R W (T ) (6.19) t (6.19) R(t) = exp( λt) R W (T +t) R W (T ) (6.20) < > R S (t) = exp( λ i t) R W i (T i +t) R Wi (T i ) (6.21) [R Wi (T i +t)/r Wi (T i )] T W t T Wi R W i (T i ) (6.22) R Wi (T Wi ) R Wi (T i ) R Wi (T Wi ) T Wi t T Wi (6.20) (2.28) λ C λ W

90 74 6 λ = λ C + λ W (6.23) (6.20) R(t) = exp( λ C t) R W (T +t) R W (T ) ( T +t ) = exp λdt T (6.24) 6.6 λ W = r/σ (6.24) λ = λ C +λ W T T +t T +t T λdt = T +t T = λ C t + (λ C + λ W )dt T +t T λ W dt t λ W = 1 2 [λ W T + λ W (T +t)] (2.28) λ W = 1 [ ] q(t ) q(t +t) + 2 R(T ) R(T +t) (6.25) T +t λ W dt = λ W t (6.26) T R(t) = exp[ (λ C + λ Wm )t] (6.27)

91 7 7.1 T = 0 (6.20) t = T R(T ) = exp( λt) R W (0 + T ) R W (0) = exp( λt)r W (T ) (7.1) 1 R W (0) = 1 (2.21) (6.1) R W (T ) = 1 σ 2π ] (T M)2 exp [ 2σ 2 dt (7.2)

92 76 7 T M exp( λt) R W (T ) m 7.1: m > M 7.2: m < M (7.1) T = 0 T 0 R(t) = exp( λt) R W (T 0 +t) R W (T 0 ) (7.3) 7.3 t = 0 (7.3) 1 (T =0) 7.1 M 9 4 T 0 = 0.4M 7.3

93 : T 0 t = T 2 M 3.5σ M 3σ (6.23) 7.4 n = 1000 m = 1,000,000, M = 10,000, σ = 2,000 1,

94 : m = m/1000 = 1000 [ ] 1,000 < > , : 5,400 [ ] 9,000 [ ] 9,970 [ ]

95 : 2 2M = 14,400 σ 2 = 2σ 1 = 1,200 10,000 [ ] M=21,600 λ r = 1/M = λ S = N λ r λ r wearout replacement rate T = nm (n = M/3σ 1 ) n = 7200/1800 = 4 T = 4M = 28, < >

96 : M 6σ 1 = 3,600 [ ] 10,000 [ ] 3,600 7,200 7,200 10, ,000 [ ] 10,000 [ ] [ ] ,200 [ ] 100,000 [ ] λ S = 1 (7.4) M i M i R S (t) = exp( λ S t) = exp ( 1 ) t M i (7.5)

97 R S (t) = n R W i (T i +t) R Wi (T i ) (7.6) n t (6.13) R Wi (t) = R W i (T i +t) R Wi (T i ) T = i +t q i(t)dt T i q i (t)dt q i i T i i T Wi T Wi = T i +t R S (t) = R W i (T Wi ) R Wi (T Wi t) (7.7) T W (7.7) R S (t) = R W i (T W ) R Wi (T W t) (7.8)

98 82 7 (7.7) (7.8) λ S = λ Ci + 1 M i (7.9) R S (t) = exp [ ) ] (λ Ci + 1Mi t (7.10) λ r = 1/M λ = λ C + λ r (7.10) R S (t) = exp [ (λ Ci + λ r ) i t ] (7.11) λ i (7.11)

99 8 8.1 substandard components MTBF

100 84 8 N N E substandard N E N substandard MTBF m e ( Q = 1 exp t ) (8.1) m e ( Q = 1 exp N ) Et m e (8.2) 100 [%] N ( R = exp N ) Et m e (8.3) substandard < > 10 m e = R = exp( 1) = [ ] R = exp( 10) = R = exp( 10 1 ) = R = exp( ) = N E MTBF m e N E m e N E 1 m e (4.67) ( E(t) = m e ) (8.4) N E

101 E(t) = 3m e = 30 [ ] substandard substandard standard : substandard standard T max T max 1

102 : N B N B /N N N E 1 (N B /N) ( N 2 = N E N E 1 N ) B N = N EN B N (8.5)

103 (8.5) ( N 2 = N E N E 1 N ) E N = N2 E N (8.6) N 2 N 3 = N E N N 2 = N3 E N 2 (8.7) 1 (N E /N) [%] λ g N G λ e N E λ g λ e λ S = N G λ g + N E λ e (8.8) N = N G + N E (8.9) N

104 88 8 λ S = Nλ g (8.10) (8.10) (8.8) λ S = Nλ g n n G (8.11) n G n n n n G = n E (8.12) (8.12) (8.11) ( λ S = Nλ g 1 + n ) E (8.13) n G n E /n G the incremental failure rate factor n G /n repair efficiency 8.3 N E N G λ e λ g

105 : N E λ e substandard N G λ g substandard N E = N E N E + N G N T [ λ = λ g + λ 0 exp T ] E(t) (8.14) (8.15) λ 0 = (λ e λ g ) N E N (8.16) E(t) (8.4) T = 0 λ i = λ g + λ 0 = λ gn G + λ e N E N (8.17)

106 90 8 λ = λ g (8.18) 1 [ T ] R(T ) = exp λdt = exp 0 { T = exp 0 [ λ g + λ 0 E(t)exp ( T [ λ g T λ 0 E(t) + λ 0 E(t)exp )] E(t) ( T E(t) } dt )] (8.19) 8.2 (8.15) λ W [ λ L = λ g + λ 0 exp T ] + λ W (8.20) E(t) λ W = q(t ) R(T ) = ] (T M)2 [ 2σ 2 exp ] T [ exp (T M)2 dt 2σ 2 (8.21) λ W = q(t ) R(T ) = q(t ) T q(t )dt (8.22) λ L = λ g + λ 0 exp [ T ] E(t) + + q(t ) T q(t )dt (8.23)

107 L(T ) T = 0 L(T ) = exp [ T ] λ L dt 0 L(T ) T (8.24) T T +t t [ T +t ] R(t, T ) = exp λ L dt T (8.25) T R(t) = exp( λ g t) (8.26) (8.24)(8.25) L(T ) = R C (T )R e (T )R W (T ) = exp( λ C T )exp [ T exp 0 R(t, T ) = R C (T )R e (T )R W (T ) = exp( λ C t)exp [ T +t exp T { λ 0 [1 exp( αt )] α ] q(t ) T q(t )dt dt { λ 0 α } } exp( αt )[1 exp( αt)] ] q(t ) T q(t )dt dt α = 1/E(t) (8.19) n (8.27) (8.28) R S (t) = R i (t, T i ) (8.29) (8.28)

108

109 9 9.1 (off-schedule maintenance) (schedule maintenance)

110 94 9 T p m t t m = t + t + m 1 m 2 = = n t i=1 m i n i=1 λ i t (9.1) T i H o = t m 1 T 1 + t m 2 T 2 + = = n T i i=1 n i=1 m i t (λ i T i )t (9.2) T i H o T o T p t

111 T m = T p + T o (9.3) T r system utilization factor U = t T p + T o + T r +t (9.4) maximum possible system utilization factor U = = t T p + T o +t t T m +t (9.5) (9.1) (9.2) 1) 3/2λ 2) 3/2λ 1/λ 1/2λ 1) 2) (4.32)

112 96 9 τ 1 e λτ m = 0 L(t)dt (9.6) L(t) 8 (8.27) (r + q) 3 = r 3 + 3r 2 q + 3rq 2 + q 3 (9.7) T n (9.7)

113 r 3 n 3r 2 qn 3rq 2 n q 3 n n N N = n(3r 2 q + 2 3rq q 3 ) = n(3r 2 q + 6rq 2 + 3q 3 ) (9.8) h 1 h total = Nh 1 (9.9) h 2 nh 2 h over all = Nh 1 + nh 2 (9.10) repair rate h over all /nt 9.2 maximum possible system utilization factor (9.5) m T m m T m = T m m t (9.11)

114 98 9 m, T m t, T m maximum possible system utilization factor U m system availability A A = m m + T m (9.12) m, T m t, T m maximum possible system utilization factor U m 100 [%] A + B = 1 complementary probability B B system unavailability T m B = m + T m (9.13) B 8760 [ ] T m T m (9.12) (9.13) A = 1 T m 8760 T m B = 8760 (9.14) (9.15) T m 9.3 system dependability D

115 off-schedule maintenance T o (9.12)(9.13) D = 1 T o 8760 (9.16) (9.2) t off-schedule maintenance T o (9.2) (9.2) H o t = n i=1 (λ i T i ) (9.17) off-schedule H o = T o r r = T o /t r = T o /t 0ff-schedule D = = = t T o +t T o /t r (9.18) D = (λ i T i ) (9.19)

116

117 FMEA (failure Mode and Effects Analysis)

118 102 10

119 10.1. FMEA (failure Mode and Effects Analysis) 103 (10.1) 10.4 C S = (C 1 C 2 C 3 C 4 C 5 ) 1/5 (10.1) C S C 1 C 2 C 3 C 4 C 5 C C C

120 : C : C 2

121 10.1. FMEA (failure Mode and Effects Analysis) : C 3 C S 7 C S < 10 4 C S < 7 2 C S < 4 C < : C S

122 FTA (Failure Test Analysis) (Fault Tree diagram)

123 10.2. FTA (Failure Test Analysis) Q A, Q B 1 (1 Q A )(1 Q B ) = Q A + Q B Q A Q B = Q A + Q B (10.2) (10.2) OR AND OR AND

124 :

125 10.2. FTA (Failure Test Analysis) : (X 1 + X 2 )(X 1 + X 3 ) = X 1 + X 1 X 3 + X 1 X 2 + X 2 X 3 = X 1 + X 1 X 2 + X 2 X 3 = X 1 + X 2 X 3 (10.3) 10.3: 10.4:

126 Z 8115

127

128

129

130 114 11

131 : 1) C A B C A 11.2: man 2. machine 1)

132 method

133 [%] SC

134 :

135 :

136 :

137 :

138 main : 2005/4/26(22:28) 122 第 11 章 品質保証体系 図 11.5: 信頼性試験試験結果

139 : (a) (b) (c) (d) (e) (f) (g) 2. (a) (b) (c) 3. (a) (b) (c)

140 : 2SC1815

141 SC1815 1

142 V CBO 60 [V ] V CEO 50 [V ] V EBO 5 [V ] I C 150 [ma] I B 50 [ma] P C 400 [mw] T j 125 [ ] T stg [ ] 12.1: N 1 N 1 N 2 N 0

143 N 0 + N 0 N 1 + N 0 N 1 N 2 + N 0 N 1 N2 2 [ + = N N1 (1 + N 2 + N2 2 + N2 3 ( ) + )] 1 = N N 1 1 N 2 = N N 1 N 2 1 N 2 (12.1) N 2 1 I = I s 1 + N 1 N 2 1 N 2 (12.2) : M M = 1 1 αdx (12.3)

144 M = V B n (V /V B ) n (12.4) [V /cm] Ψ 0 Ψ 0 = kt ( ) q ln NA N D n 2 i (12.5)

145 V (BR)CBO >V (BR)CEO >V (BR)CES >V (BR)CEX V B I CBO V (BR)CBO β µa β 12.2

146 : V (BR)CBO V (BR)CEO V (BR)CES V (BR)CER V (BR)CEX

147 T = R P (12.6) T R [ /W] P < > J.Fourie q x = ka x dt dx q x k [m /w] A x x (12.7) x (12.6) (12.7) (12.6)

148 : 12.4

149 : P R i R o T j T c T a R T = R i + R o (12.8) R T = R i + R o(r s + R c + R f ) R o + R s + R c + R f (12.9) R o R T = R i + R s + R c + R f (12.10)

150 : R s R c R f

151 [mv/deg] : 12.7 r t r t = t ( 1 R j + 1 t ) 1 r t (t +t 1 ) r t (t) + r t (t 1 ) t 0 t 12.8 R s + R c 12.2

152 : 12.8:

153 θ C + θ S [deg/w] TO ( µ) TO 66 ( µ) ( µ) TO H1A TO 220AB ( µ) TO TO 3P BIA ( µ) CIA ( µ) TO 3P(L) F1A ( µ) TO 3P(H) D2A ( µ) TO 3P(H) E2A 12.2: ( K = Aexp φ ) kt K (12.11)

154 : A φ k T a τ = a/k A = a/a (12.11) ( ) φ τ 1 = A exp (12.12) kt (12.12) ( ) ( ) φ φ τ 1 = A exp, τ 2 = A exp kt 1 kt 1 (12.13) lnτ 1 lna lnτ 2 lna = T 2 (12.14) T 1 [ ( φ 1 1 )] (12.15) k T 2 T 1 α = τ 2 τ 1 = exp

155 α [ev ] SiO Si SiO : ln(τ) = A + B α ln(s) (12.16) T A, B S 12.4

156 :

157

158

159

160

161 A A.1 1. (a) (b) 2. (a) (b)

162 146 A (c) (d) (e) (f) 3. (a) (b) (c) (d) X 1, X 2,, X n m = E(X 1 ) = E(X 2 ) = = E(X n ) (A.1) σ = σ(x 1 ) = σ(x 2 ) = σ(x n ) (A.2)

163 A E(aX + by ) = ae(x) + be(y ) (A.3) V (ax + by ) = a 2 V (X) + b 2 V (Y ) (A.4) X 1, X 2,, X n X = X 1 + X 2 + X n n (A.5) S 2 = [ (X 1 X) 2 + (X 2 X) 2 + (X n X) 2] (A.6)

164 148 A 7. (a) (b) 8. (a) (b) A.2 X 1, X 2,, X n (A.5) ( ) X1, X 2,, X n E( X) = E n = 1 n (X 1, X 2,, X n ) = m (A.7)

165 A ( ) X1, X 2,, X n V ( X) = V = 1 n n 2V(X 1, X 2,, X n ) = 1 n 2 (σ 2 + σ 2 + σ 2 ) = σ 2 2. ( ) X1, X 2,, X n V ( X) = V n = 1 n 2V(X 1, X 2,, X n ) n (A.8) = σ 2 n N n N 1 (A.9) E(S 2 ) = { 1 [ E (X1 X) 2 + (X 2 X) (X n X) 2]} n = 1 { n E [(X 1 m) X m)] 2 + [(X 2 m) X m)] [(X n m) X m)] 2} = 1 n E [ (X 1 m) 2 + (X 2 m) 2 + (X n m) 2] {[ ] } 1 E n (X 1 + X 2 + X n ) ( X m) + E [ ( X m) 2] = 1 n (σ 2 + σ 2 + σ 2 ) σ 2 n = n 1 n σ 2 (A.10) (n 1)/n 3. 1

166 150 A 1 m σ 2 n X n ( ) N m, σ 2 n 0 1 W N = Y N Y N = N i=1 (X i X i ) = 1 N σ Y N N i=1 σ X 2 NσX i X) i i=1(x W N Φ WN (ω) = E [exp( jωw N )] { [ ]} N jω = E exp NσX i X) i=1(x = [ { [ ]}] jω N E exp NσX (X i X) { [ ]} jω E exp = NσX (X i X) [ E 1 jω ( ) jω (Xi X) (X i X) R ] N = 1 ω2 NσX NσX 2 N 2N + E [R N] N ln[φ WN (ω)] = N ln [1 ω2 2N + E [R ] N] N ln[φ WN (ω)] = ω2 2 + E [R N] N [ ω 2 2 2N E [R ] 2 N] + N

167 A N 1 A.3 ) lim φ WN(ω) = exp ( ω2 N 2 (A.11), A.3.1,, X s 2, m σ 2 m = X = 1 n (x 1 + x x n ) (A.12) σ 2 = s 2 = 1 n 1 n i=1 (x i X) 2 (A.13) < > R.A.Fisher x 1, x 2,, x n n F = f (x 1 ) f (x 2 ) f )x n ) (A.14) x 1, x 2,, x n θ F theta theta theta F θ = 0 (A.15)

168 152 A, ln θ = 0 (A.16) A.3.2 θ Θ 1 Θ 2 γ Θ 1, Θ 2 P(Θ 1 θ Θ 2 ) = γ γ 0.90, 0.95, 0.99, 0.999,,,,, ( ) 2 X 1, X 2, X n m 1, m 2, m n σ 1, σ 2, σ n m = M 1 + m m n (A.17) σ = σ1 2 + σ σ 2 (A.18) 3 X 1, X 2, X n m σ X = 1 n (X 1 + X 2 + X n ) (A.19) m σ 2 /n

169 A X 1, X 2, X n m σ T = n X m Σ (A.20) n 1 t Y = (n 1) Σ2 σ 2 (A.21) n 1 Σ 2 = 1 n 1 n i=1 (X i X) 2 X = 1 n (X 1 + X 2 + X n ) 1. γ 2. γ c 3. X 4. k = cn/ n X k m X + k 1. γ 2. n 1 t, c F(c) = 1 (1 + γ) 2 3. X σ 2 4. k = cσ/ n X k m X + k 1. γ

170 154 A 2. n 1 t, c 1, c 2 F(c 1 ) = 1 2 (1 γ), F(c 2) = 1 (1 + γ) 2 3. σ 2,(n 1)σ 2 4. k 1 = (n 1)σ 2 /c 1, k 2 = (n 1)σ 2 /c 2 k 2 Σ 2 k 1 (A.11) P( Z < k) = P( X m σ n ) < k (A.22) (A.22) k = k 0 P P 0 1 P 0 (A.22) ( ) σ σ P X k 0 n < m < X + k 0 n = P 0 (A.23) σ X k 0 n σ < m < X +k 0 n P 0 (.A.10) P 0

171 A A.3.3 B(n, p) E(X) = np, V (X) = np(1 p) (A.24) Z = X np np(1 p) (A.25) P 0 Z < k 0 ) X np P( < k 0 = P 0 (A.26) np(1 p) p = X n (A.27) (A.26)(A.27) ( p(1 p) P p k 0 n ) p(1 p) < p < p + k 0 = P 0 (A.28) n p = p (A.28) ( ) p(1 p) p(1 p) P p k 0 < p < p + k 0 = P 0 (A.29) n n

172 156 A P 0 p k 0 < p < p+k 0 p(1 p) n p(1 p) n A.4 < > σ n X Z = X m σ n N(0, 1) 0.05 P( Z 1.96) = 0.05 X m 1.96 σ n

173 A < > (A.24. A.25)

174

175 IEEE VA QC VA QC VA QC VA QC

176

177 [1] Igor Basovsky Reliability Theory and Practice Prentice-Hall Inc. [2] [3] Peyton Z. Peebles, Jr. [4] Erwin Kreyszig

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k : January 14, 28..,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k, A. lim k A k = A. A k = (a (k) ij ) ij, A k = (a ij ) ij, i,

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/085221 このサンプルページの内容は, 初版 1 刷発行時のものです. i +α 3 1 2 4 5 1 2 ii 3 4 5 6 7 8 9 9.3 2014 6 iii 1 1 2 5 2.1 5 2.2 7

More information

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46..

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46.. Cotets 6 6 : 6 6 6 6 6 6 7 7 7 Part. 8. 8.. 8.. 9..... 3. 3 3.. 3 3.. 7 3.3. 8 Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3.

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

5 36 5................................................... 36 5................................................... 36 5.3..............................

5 36 5................................................... 36 5................................................... 36 5.3.............................. 9 8 3............................................. 3.......................................... 4.3............................................ 4 5 3 6 3..................................................

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

橡Taro11-卒業論文.PDF

橡Taro11-卒業論文.PDF Recombination Generation Lifetime 13 9 1. 3. 4.1. 4.. 9 3. Recombination Lifetime 17 3.1. 17 3.. 19 3.3. 4. 1 4.1. Si 1 4.1.1. 1 4.1.. 4.. TEG 3 5. Recombination Lifetime 4 5.1 Si 4 5.. TEG 6 6. Pulse

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 1 1 1.1 ɛ-n 1 ɛ-n lim n a n = α n a n α 2 lim a n = 1 n a k n n k=1 1.1.7 ɛ-n 1.1.1 a n α a n n α lim n a n = α ɛ N(ɛ) n > N(ɛ) a n α < ɛ

More information

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0 A c 2008 by Kuniaki Nakamitsu 1 1.1 t 2 sin t, cos t t ft t t vt t xt t + t xt + t xt + t xt t vt = xt + t xt t t t vt xt + t xt vt = lim t 0 t lim t 0 t 0 vt = dxt ft dft dft ft + t ft = lim t 0 t 1.1

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

4

4 4 5 6 7 + 8 = ++ 9 + + + + ++ 10 + + 11 12 WS LC VA L WS = LC VA = LC L L VA = LC L VA L 13 i LC VA WS WS = LC = VA LC VA VA = VA α WS α = VA VA i WS = LC VA i t t+1 14 WS = α WS + WS α WS = WS WS WS =

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

CRA3689A

CRA3689A AVIC-DRZ90 AVIC-DRZ80 2 3 4 5 66 7 88 9 10 10 10 11 12 13 14 15 1 1 0 OPEN ANGLE REMOTE WIDE SET UP AVIC-DRZ90 SOURCE OFF AV CONTROL MIC 2 16 17 1 2 0 0 1 AVIC-DRZ90 2 3 4 OPEN ANGLE REMOTE SOURCE OFF

More information

6. [1] (cal) (J) (kwh) ( 1 1 100 1 ( 3 t N(t) dt dn ( ) dn N dt N 0 = λ dt (3.1) N(t) = N 0 e λt (3.2) λ (decay constant), λ [λ] = 1/s 1947 2

6. [1] (cal) (J) (kwh) ( 1 1 100 1 ( 3 t N(t) dt dn ( ) dn N dt N 0 = λ dt (3.1) N(t) = N 0 e λt (3.2) λ (decay constant), λ [λ] = 1/s 1947 2 filename=decay-text141118.tex made by R.Okamoto, Emeritus Prof., Kyushu Inst.Tech. * 1, 320 265 radioactive ray ( parent nucleus) ( daughter nucleus) disintegration, decay 2 1. 2. 4 ( 4 He) 3. 4. X 5.,

More information

1 1 3 1.1 (Frequecy Tabulatios)................................ 3 1........................................ 8 1.3.....................................

1 1 3 1.1 (Frequecy Tabulatios)................................ 3 1........................................ 8 1.3..................................... 1 1 3 1.1 (Frequecy Tabulatios)................................ 3 1........................................ 8 1.3........................................... 1 17.1................................................

More information

a, b a bc c b a a b a a a a p > p p p 2, 3, 5, 7,, 3, 7, 9, 23, 29, 3, a > p a p [ ] a bp, b p p cq, c, q, < q < p a bp bcq q a <

a, b a bc c b a a b a a a a p > p p p 2, 3, 5, 7,, 3, 7, 9, 23, 29, 3, a > p a p [ ] a bp, b p p cq, c, q, < q < p a bp bcq q a < 22 9 8 5 22 9 29 0 2 2 5 2.............................. 5 2.2.................................. 6 2.3.............................. 8 3 8 4 9 4............................. 9 4.2 S(, a)..............................

More information

Copyrght 7 Mzuho-DL Fnancal Technology Co., Ltd. All rghts reserved.

Copyrght 7 Mzuho-DL Fnancal Technology Co., Ltd. All rghts reserved. 766 Copyrght 7 Mzuho-DL Fnancal Technology Co., Ltd. All rghts reserved. Copyrght 7 Mzuho-DL Fnancal Technology Co., Ltd. All rghts reserved. 3 Copyrght 7 Mzuho-DL Fnancal Technology Co., Ltd. All rghts

More information

1 1 ( ) ( 1.1 1.1.1 60% mm 100 100 60 60% 1.1.2 A B A B A 1

1 1 ( ) ( 1.1 1.1.1 60% mm 100 100 60 60% 1.1.2 A B A B A 1 1 21 10 5 1 E-mail: qliu@res.otaru-uc.ac.jp 1 1 ( ) ( 1.1 1.1.1 60% mm 100 100 60 60% 1.1.2 A B A B A 1 B 1.1.3 boy W ID 1 2 3 DI DII DIII OL OL 1.1.4 2 1.1.5 1.1.6 1.1.7 1.1.8 1.2 1.2.1 1. 2. 3 1.2.2

More information

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9 1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n 1-2. 0 m n m n 0 2 = 1.41421356 π = 3.141516 1-3. 1 0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c),

More information

H22環境地球化学4_化学平衡III_ ppt

H22環境地球化学4_化学平衡III_ ppt 1 2 3 2009年度 環境地球化学 大河内 温度上昇による炭酸水の発泡 気泡 温度が高くなると 溶けきれなくなった 二酸化炭素が気泡として出てくる 4 2009年度 環境地球化学 圧力上昇による炭酸水の発泡 栓を開けると 瓶の中の圧力が急激に 小さくなるので 発泡する 大河内 5 CO 2 K H CO 2 H 2 O K H + 1 HCO 3- K 2 H + CO 3 2- (M) [CO

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

untitled

untitled 10 log 10 W W 10 L W = 10 log 10 W 10 12 10 log 10 I I 0 I 0 =10 12 I = P2 ρc = ρcv2 L p = 10 log 10 p 2 p 0 2 = 20 log 10 p p = 20 log p 10 0 2 10 5 L 3 = 10 log 10 10 L 1 /10 +10 L 2 ( /10 ) L 1 =10

More information

30 (11/04 )

30 (11/04 ) 30 (11/04 ) i, 1,, II I?,,,,,,,,, ( ),,, ϵ δ,,,,, (, ),,,,,, 5 : (1) ( ) () (,, ) (3) ( ) (4) (5) ( ) (1),, (),,, () (3), (),, (4), (1), (3), ( ), (5),,,,,,,, ii,,,,,,,, Richard P. Feynman, The best teaching

More information

,..,,.,,.,.,..,,.,,..,,,. 2

,..,,.,,.,.,..,,.,,..,,,. 2 A.A. (1906) (1907). 2008.7.4 1.,.,.,,.,,,.,..,,,.,,.,, R.J.,.,.,,,..,.,. 1 ,..,,.,,.,.,..,,.,,..,,,. 2 1, 2, 2., 1,,,.,, 2, n, n 2 (, n 2 0 ).,,.,, n ( 2, ), 2 n.,,,,.,,,,..,,. 3 x 1, x 2,..., x n,...,,

More information

JMP V4 による生存時間分析

JMP V4 による生存時間分析 V4 1 SAS 2000.11.18 4 ( ) (Survival Time) 1 (Event) Start of Study Start of Observation Died Died Died Lost End Time Censor Died Died Censor Died Time Start of Study End Start of Observation Censor

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

2 3 1 2 Fig.2.1. 2V 2.3.3

2 3 1 2 Fig.2.1. 2V 2.3.3 2 2 2.1 2000 1800 1 2.2 1 2 2.3 2.3.1 1 1 2 2.3.2 2 3 1 2 Fig.2.1. 2V 2.3.3 2 4 2.3.4 2 C CmAh = ImA th (2.1) 1000mAh 1A 1 2 1C C (Capacity) 1 3Ah 3A Rrate CAh = IA (2.2) 2.3.5 *1 2 2 2.3.6 2 2 *1 10 2

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

4.2.................... 20 4.3.................. 21 4.4 ( )............... 22 4.5 ( )...... 24 4.6 ( )........ 25 4.7 ( )..... 26 5 28 5.1 PID........

4.2.................... 20 4.3.................. 21 4.4 ( )............... 22 4.5 ( )...... 24 4.6 ( )........ 25 4.7 ( )..... 26 5 28 5.1 PID........ version 0.01 : 2004/04/16 1 2 1.1................. 2 1.2.......................... 3 1.3................. 5 1.4............... 6 1.5.............. 7 2 9 2.1........................ 9 2.2......................

More information

3 3.3. I 3.3.2. [ ] N(µ, σ 2 ) σ 2 (X 1,..., X n ) X := 1 n (X 1 + + X n ): µ X N(µ, σ 2 /n) 1.8.4 Z = X µ σ/ n N(, 1) 1.8.2 < α < 1/2 Φ(z) =.5 α z α

3 3.3. I 3.3.2. [ ] N(µ, σ 2 ) σ 2 (X 1,..., X n ) X := 1 n (X 1 + + X n ): µ X N(µ, σ 2 /n) 1.8.4 Z = X µ σ/ n N(, 1) 1.8.2 < α < 1/2 Φ(z) =.5 α z α 2 2.1. : : 2 : ( ): : ( ): : : : ( ) ( ) ( ) : ( pp.53 6 2.3 2.4 ) : 2.2. ( ). i X i (i = 1, 2,..., n) X 1, X 2,..., X n X i (X 1, X 2,..., X n ) ( ) n (x 1, x 2,..., x n ) (X 1, X 2,..., X n ) : X 1,

More information

June 2016 i (statistics) F Excel Numbers, OpenOffice/LibreOffice Calc ii *1 VAR STDEV 1 SPSS SAS R *2 R R R R *1 Excel, Numbers, Microsoft Office, Apple iwork, *2 R GNU GNU R iii URL http://ruby.kyoto-wu.ac.jp/statistics/training/

More information

tokei01.dvi

tokei01.dvi 2. :,,,. :.... Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 3. (probability),, 1. : : n, α A, A a/n. :, p, p Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN

More information

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,, 2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).

More information

46 Y 5.1.1 Y Y Y 3.1 R Y Figures 5-1 5-3 3.2mm Nylon Glass Y (X > X ) X Y X Figure 5-1 X min Y Y d Figure 5-3 X =X min Y X =10 Y Y Y 5.1.2 Y Figure 5-

46 Y 5.1.1 Y Y Y 3.1 R Y Figures 5-1 5-3 3.2mm Nylon Glass Y (X > X ) X Y X Figure 5-1 X min Y Y d Figure 5-3 X =X min Y X =10 Y Y Y 5.1.2 Y Figure 5- 45 5 5.1 Y 3.2 Eq. (3) 1 R [s -1 ] ideal [s -1 ] Y [-] Y [-] ideal * [-] S [-] 3 R * ( ω S ) = ω Y = ω 3-1a ideal ideal X X R X R (X > X ) ideal * X S Eq. (3-1a) ( X X ) = Y ( X ) R > > θ ω ideal X θ =

More information

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2 1 6 6.1 (??) (P = ρ rad /3) ρ rad T 4 d(ρv ) + PdV = 0 (6.1) dρ rad ρ rad + 4 da a = 0 (6.2) dt T + da a = 0 T 1 a (6.3) ( ) n ρ m = n (m + 12 ) m v2 = n (m + 32 ) T, P = nt (6.4) (6.1) d [(nm + 32 ] )a

More information

(1) (2) (3) (4) 1

(1) (2) (3) (4) 1 8 3 4 3.................................... 3........................ 6.3 B [, ].......................... 8.4........................... 9........................................... 9.................................

More information

N88 BASIC 0.3 C: My Documents 0.6: 0.3: (R) (G) : enterreturn : (F) BA- SIC.bas 0.8: (V) 0.9: 0.5:

N88 BASIC 0.3 C: My Documents 0.6: 0.3: (R) (G) : enterreturn : (F) BA- SIC.bas 0.8: (V) 0.9: 0.5: BASIC 20 4 10 0 N88 Basic 1 0.0 N88 Basic..................................... 1 0.1............................................... 3 1 4 2 5 3 6 4 7 5 10 6 13 7 14 0 N88 Basic 0.0 N88 Basic 0.1: N88Basic

More information

I ( ) 2019

I ( ) 2019 I ( ) 2019 i 1 I,, III,, 1,,,, III,,,, (1 ) (,,, ), :...,, : NHK... NHK, (YouTube ),!!, manaba http://pen.envr.tsukuba.ac.jp/lec/physics/,, Richard Feynman Lectures on Physics Addison-Wesley,,,, x χ,

More information

2 p T, Q

2 p T, Q 270 C, 6000 C, 2 p T, Q p: : p = N/ m 2 N/ m 2 Pa : pdv p S F Q 1 g 1 1 g 1 14.5 C 15.5 1 1 cal = 4.1855 J du = Q pdv U ( ) Q pdv 2 : z = f(x, y). z = f(x, y) (x 0, y 0 ) y y = y 0 z = f(x, y 0 ) x x =

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6 1 1 1.1 64 A6, 1) B1, 1) 65 C A, 1) B, ) C 66 + 1 = 0 A1, 1) B, 0) P 67 A, ) B1, ) C4, 0) 1) ABC G ) A B C P 64 A 1, 1) B, ) AB AB = 1) + 1) A 1, 1) 1 B, ) 1 65 66 65 C0, k) 66 1 p, p) 1 1 A B AB A 67

More information

i 1 1 1.1... 1 1.1.1... 2 1.1.2... 7 1.2... 9 1.3... 1 1.4... 12 1.4.1 s... 12 1.4.2... 12 1.5... 15 1.5.1... 15 1.5.2... 18 2 21 2.1... 21 2.2... 23

i 1 1 1.1... 1 1.1.1... 2 1.1.2... 7 1.2... 9 1.3... 1 1.4... 12 1.4.1 s... 12 1.4.2... 12 1.5... 15 1.5.1... 15 1.5.2... 18 2 21 2.1... 21 2.2... 23 2 III Copyright c 2 Kazunobu Yoshida. All rights reserved. i 1 1 1.1... 1 1.1.1... 2 1.1.2... 7 1.2... 9 1.3... 1 1.4... 12 1.4.1 s... 12 1.4.2... 12 1.5... 15 1.5.1... 15 1.5.2... 18 2 21 2.1... 21 2.2...

More information

確率論と統計学の資料

確率論と統計学の資料 5 June 015 ii........................ 1 1 1.1...................... 1 1........................... 3 1.3... 4 6.1........................... 6................... 7 ii ii.3.................. 8.4..........................

More information

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100 positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) 0.5 1.5MeV : thermalization 10 100 m psec 100psec nsec E total = 2mc 2 + E e + + E e Ee+ Ee-c mc

More information

記号と準備

記号と準備 tbasic.org * 1 [2017 6 ] 1 2 1.1................................................ 2 1.2................................................ 2 1.3.............................................. 3 2 5 2.1............................................

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

地域総合研究第40巻第1号

地域総合研究第40巻第1号 * abstract This paper attempts to show a method to estimate joint distribution for income and age with copula function. Further, we estimate the joint distribution from National Survey of Family Income

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

DSGE Dynamic Stochastic General Equilibrium Model DSGE 5 2 DSGE DSGE ω 0 < ω < 1 1 DSGE Blanchard and Kahn VAR 3 MCMC 2 5 4 1 1 1.1 1. 2. 118

DSGE Dynamic Stochastic General Equilibrium Model DSGE 5 2 DSGE DSGE ω 0 < ω < 1 1 DSGE Blanchard and Kahn VAR 3 MCMC 2 5 4 1 1 1.1 1. 2. 118 7 DSGE 2013 3 7 1 118 1.1............................ 118 1.2................................... 123 1.3.............................. 125 1.4..................... 127 1.5...................... 128 1.6..............

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

5 n P j j (P i,, P k, j 1) 1 n n ) φ(n) = n (1 1Pj [ ] φ φ P j j P j j = = = = = n = φ(p j j ) (P j j P j 1 j ) P j j ( 1 1 P j ) P j j ) (1 1Pj (1 1P

5 n P j j (P i,, P k, j 1) 1 n n ) φ(n) = n (1 1Pj [ ] φ φ P j j P j j = = = = = n = φ(p j j ) (P j j P j 1 j ) P j j ( 1 1 P j ) P j j ) (1 1Pj (1 1P p P 1 n n n 1 φ(n) φ φ(1) = 1 1 n φ(n), n φ(n) = φ()φ(n) [ ] n 1 n 1 1 n 1 φ(n) φ() φ(n) 1 3 4 5 6 7 8 9 1 3 4 5 6 7 8 9 1 4 5 7 8 1 4 5 7 8 10 11 1 13 14 15 16 17 18 19 0 1 3 4 5 6 7 19 0 1 3 4 5 6 7

More information

z z x = y = /x lim y = + x + lim y = x (x a ) a (x a+) lim z z f(z) = A, lim z z g(z) = B () lim z z {f(z) ± g(z)} = A ± B (2) lim {f(z) g(z)} = AB z

z z x = y = /x lim y = + x + lim y = x (x a ) a (x a+) lim z z f(z) = A, lim z z g(z) = B () lim z z {f(z) ± g(z)} = A ± B (2) lim {f(z) g(z)} = AB z Tips KENZOU 28 6 29 sin 2 x + cos 2 x = cos 2 z + sin 2 z = OK... z < z z < R w = f(z) z z w w f(z) w lim z z f(z) = w x x 2 2 f(x) x = a lim f(x) = lim f(x) x a+ x a z z x = y = /x lim y = + x + lim y

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

renshumondai-kaito.dvi

renshumondai-kaito.dvi 3 1 13 14 1.1 1 44.5 39.5 49.5 2 0.10 2 0.10 54.5 49.5 59.5 5 0.25 7 0.35 64.5 59.5 69.5 8 0.40 15 0.75 74.5 69.5 79.5 3 0.15 18 0.90 84.5 79.5 89.5 2 0.10 20 1.00 20 1.00 2 1.2 1 16.5 20.5 12.5 2 0.10

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

calibT1.dvi

calibT1.dvi 1 2 flux( ) flux 2.1 flux Flux( flux ) Flux [erg/sec/cm 2 ] erg/sec/cm 2 /Å erg/sec/cm 2 /Hz 1 Flux -2.5 Vega Vega ( Vega +0.03 ) AB cgs F ν [erg/cm 2 /s/hz] m(ab) = 2.5 logf ν 48.6 V-band 2.2 Flux Suprime-Cam

More information

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

( )/2   hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1 ( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S

More information

3 - { } / f ( ) e nπ + f( ) = Cne n= nπ / Eucld r e (= N) j = j e e = δj, δj = 0 j r e ( =, < N) r r r { } ε ε = r r r = Ce = r r r e ε = = C = r C r e + CC e j e j e = = ε = r ( r e ) + r e C C 0 r e =

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980 % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2006.11.20 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2 ガウス 型 関 数 1.2 1 関 数 値 0.8 0.6 0.4 0.2 0 15 10 5 0 5 10

34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2 ガウス 型 関 数 1.2 1 関 数 値 0.8 0.6 0.4 0.2 0 15 10 5 0 5 10 33 2 2.1 2.1.1 x 1 T x T 0 F = ma T ψ) 1 x ψ(x) 2.1.2 1 1 h2 d 2 ψ(x) + V (x)ψ(x) = Eψ(x) (2.1) 2m dx 2 1 34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2

More information

第85 回日本感染症学会総会学術集会後抄録(III)

第85 回日本感染症学会総会学術集会後抄録(III) β β α α α µ µ µ µ α α α α γ αβ α γ α α γ α γ µ µ β β β β β β β β β µ β α µ µ µ β β µ µ µ µ µ µ γ γ γ γ γ γ µ α β γ β β µ µ µ µ µ β β µ β β µ α β β µ µµ β µ µ µ µ µ µ λ µ µ β µ µ µ µ µ µ µ µ

More information

0 (18) /12/13 (19) n Z (n Z ) 5 30 (5 30 ) (mod 5) (20) ( ) (12, 8) = 4

0   (18) /12/13 (19) n Z (n Z ) 5 30 (5 30 ) (mod 5) (20) ( ) (12, 8) = 4 0 http://homepage3.nifty.com/yakuikei (18) 1 99 3 2014/12/13 (19) 1 100 3 n Z (n Z ) 5 30 (5 30 ) 37 22 (mod 5) (20) 201 300 3 (37 22 5 ) (12, 8) = 4 (21) 16! 2 (12 8 4) (22) (3 n )! 3 (23) 100! 0 1 (1)

More information

vp

vp 130803020304080905010203 080103010605060002 0302 0603090106 チ030508020007 04030107090604020008010607 06 00030604020902010606 010800060201080905010407 0506080102080406 04020505060705080207 080302030408000606

More information

genron-3

genron-3 " ( K p( pasals! ( kg / m 3 " ( K! v M V! M / V v V / M! 3 ( kg / m v ( v "! v p v # v v pd v ( J / kg p ( $ 3! % S $ ( pv" 3 ( ( 5 pv" pv R" p R!" R " ( K ( 6 ( 7 " pv pv % p % w ' p% S & $ p% v ( J /

More information

[] x < T f(x), x < T f(x), < x < f(x) f(x) f(x) f(x + nt ) = f(x) x < T, n =, 1,, 1, (1.3) f(x) T x 2 f(x) T 2T x 3 f(x), f() = f(t ), f(x), f() f(t )

[] x < T f(x), x < T f(x), < x < f(x) f(x) f(x) f(x + nt ) = f(x) x < T, n =, 1,, 1, (1.3) f(x) T x 2 f(x) T 2T x 3 f(x), f() = f(t ), f(x), f() f(t ) 1 1.1 [] f(x) f(x + T ) = f(x) (1.1), f(x), T f(x) x T 1 ) f(x) = sin x, T = 2 sin (x + 2) = sin x, sin x 2 [] n f(x + nt ) = f(x) (1.2) T [] 2 f(x) g(x) T, h 1 (x) = af(x)+ bg(x) 2 h 2 (x) = f(x)g(x)

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

IS-LM (interest) 100 (net rate of interest) (rate of interest) ( ) = 100 (2.1) (gross rate of interest) ( ) = 100 (2.2)

IS-LM (interest) 100 (net rate of interest) (rate of interest) ( ) = 100 (2.1) (gross rate of interest) ( ) = 100 (2.2) 1 2 2 2 2.1 IS-LM 1 2.2 1 1 (interest) 100 (net rate of interest) (rate of interest) ( ) = 100 (2.1) (gross rate of interest) ( ) = 100 (2.2) 1 1. 2. 1 1 ( ) 2.3. 3 2.3 1 (yield to maturity) (rate of return)

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1 67 A Section A.1 0 1 0 1 Balmer 7 9 1 0.1 0.01 1 9 3 10:09 6 A.1: A.1 1 10 9 68 A 10 9 10 9 1 10 9 10 1 mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1 A.1. 69 5 1 10 15 3 40 0 0 ¾ ¾ É f Á ½ j 30 A.3: A.4: 1/10

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

資料 5 品質管理分野テキスト

資料 5 品質管理分野テキスト 資料 5 品質管理分野テキスト 資料 5: 品質管理分野テキスト () 04/0/05 9 調査研究報告書 No6 04/0/05 Shinji Yokogawa 0 65 Full 65 percent of toda s grade-school kids ma end up doing work that hasn t been invented et Cath N Davidson, New

More information

4 4. A p X A 1 X X A 1 A 4.3 X p X p X S(X) = E ((X p) ) X = X E(X) = E(X) p p 4.3p < p < 1 X X p f(i) = P (X = i) = p(1 p) i 1, i = 1,,... 1 + r + r

4 4. A p X A 1 X X A 1 A 4.3 X p X p X S(X) = E ((X p) ) X = X E(X) = E(X) p p 4.3p < p < 1 X X p f(i) = P (X = i) = p(1 p) i 1, i = 1,,... 1 + r + r 4 1 4 4.1 X P (X = 1) =.4, P (X = ) =.3, P (X = 1) =., P (X = ) =.1 E(X) = 1.4 +.3 + 1. +.1 = 4. X Y = X P (X = ) = P (X = 1) = P (X = ) = P (X = 1) = P (X = ) =. Y P (Y = ) = P (X = ) =., P (Y = 1) =

More information

untitled

untitled 3,,, 2 3.1 3.1.1,, A4 1mm 10 1, 21.06cm, 21.06cm?, 10 1,,,, i),, ),, ),, x best ± δx 1) ii), x best ), δx, e,, e =1.602176462 ± 0.000000063) 10 19 [C] 2) i) ii), 1) x best δx

More information

example2_time.eps

example2_time.eps Google (20/08/2 ) ( ) Random Walk & Google Page Rank Agora on Aug. 20 / 67 Introduction ( ) Random Walk & Google Page Rank Agora on Aug. 20 2 / 67 Introduction Google ( ) Random Walk & Google Page Rank

More information

A B 5 C 9 3.4 7 mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3

A B 5 C 9 3.4 7 mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3 π 9 3 7 4. π 3................................................. 3.3........................ 3.4 π.................... 4.5..................... 4 7...................... 7..................... 9 3 3. p

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

( 9 1 ) 1 2 1.1................................... 2 1.2................................................. 3 1.3............................................... 4 1.4...........................................

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

, , 3.5. 縺1846 [ ィ , ィ , ,

, , 3.5. 縺1846 [ ィ , ィ , , 13459178 1998 3. 753 168, 2 11 86 タ7 9 998917619 4381 縺48 縺55 317832645 タ5 縺4273 92257547 2 7892571 5.4. 458352849274, 3.5. 725219, 3.5. 縺148 5883597547 9225499 9 67525887, 82984475 8 6525454953 チ22575452

More information

Note5.dvi

Note5.dvi 12 2011 7 4 2.2.2 Feynman ( ) S M N S M + N S Ai Ao t ij (i Ai, j Ao) N M G = 2e2 t ij 2 (8.28) h i μ 1 μ 2 J 12 J 12 / μ 2 μ 1 (8.28) S S (8.28) (8.28) 2 ( ) (collapse) j 12-1 2.3 2.3.1 Onsager S B S(B)

More information

168 13 Maxwell ( H ds = C S rot H = j + D j + D ) ds (13.5) (13.6) Maxwell Ampère-Maxwell (3) Gauss S B 0 B ds = 0 (13.7) S div B = 0 (13.8) (4) Farad

168 13 Maxwell ( H ds = C S rot H = j + D j + D ) ds (13.5) (13.6) Maxwell Ampère-Maxwell (3) Gauss S B 0 B ds = 0 (13.7) S div B = 0 (13.8) (4) Farad 13 Maxwell Maxwell Ampère Maxwell 13.1 Maxwell Maxwell E D H B ε 0 µ 0 (1) Gauss D = ε 0 E (13.1) B = µ 0 H. (13.2) S D = εe S S D ds = ρ(r)dr (13.3) S V div D = ρ (13.4) ρ S V Coulomb (2) Ampère C H =

More information

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1,

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1, 17 ( ) 17 5 1 4 II III A B C(1 ) 1,, 6, 7 II A B (1 ), 5, 6 II A B (8 ) 8 1 I II III A B C(8 ) 1 a 1 1 a n+1 a n + n + 1 (n 1,,, ) {a n+1 n } (1) a 4 () a n OA OB AOB 6 OAB AB : 1 P OB Q OP AQ R (1) PQ

More information