Microsoft Word - Stattext07.doc

Similar documents
経営統計学

_KyoukaNaiyou_No.4

Microsoft Word - Stattext13.doc

第 3 回講義の項目と概要 統計的手法入門 : 品質のばらつきを解析する 平均と標準偏差 (P30) a) データは平均を見ただけではわからない 平均が同じだからといって 同一視してはいけない b) データのばらつきを示す 標準偏差 にも注目しよう c) 平均

データ解析

不偏推定量

<4D F736F F D208EC08CB18C7689E68A E F AA957A82C682948C9F92E82E646F63>

Microsoft PowerPoint - データ解析基礎4.ppt [互換モード]

Microsoft Word - mathtext8.doc

Microsoft PowerPoint slide2forWeb.ppt [互換モード]

(Microsoft Word - 10ta320a_\220U\223\256\212w\223\301\230__6\217\315\221O\224\274\203\214\203W\203\201.docx)

Microsoft Word - apstattext04.docx

Microsoft PowerPoint - 測量学.ppt [互換モード]

<4D F736F F D208EC08CB18C7689E68A E F193F18D8095AA957A C C839395AA957A814590B38B4B95AA957A2E646F63>

<4D F736F F D208EC08CB18C7689E68A E F1939D8C E82E646F63>

Microsoft PowerPoint - 基礎・経済統計6.ppt

Microsoft PowerPoint - stat-2014-[9] pptx

Python-statistics5 Python で統計学を学ぶ (5) この内容は山田 杉澤 村井 (2008) R によるやさしい統計学 (

Microsoft Word - Stattext12.doc

数値計算法

3章 度数分布とヒストグラム

モジュール1のまとめ

スライド 1

Probit , Mixed logit

Microsoft Word - Stattext11.doc

講義「○○○○」

母平均 母分散 母標準偏差は, が連続的な場合も含めて, すべての個体の特性値 のすべての実現値 の平均 分散 標準偏差であると考えてよい 有限母集団で が離散的な場合, まさにその意味になるが, そうでない場合も, このように理解してよい 5 母数 母集団から定まる定数のこと 母平均, 母分散,

森林水文 水資源学 2 2. 水文統計 豪雨があった時, 新聞やテレビのニュースで 50 年に一度の大雨だった などと報告されることがある. 今争点となっている川辺川ダムは,80 年に 1 回の洪水を想定して治水計画が立てられている. 畑地かんがいでは,10 年に 1 回の渇水を対象として計画が立て

振動学特論火曜 1 限 TA332J 藤井康介 6 章スペクトルの平滑化 スペクトルの平滑化とはギザギザした地震波のフーリエ スペクトルやパワ スペクトルでは正確にスペクトルの山がどこにあるかはよく分からない このようなスペクトルから不純なものを取り去って 本当の性質を浮き彫

ビジネス統計 統計基礎とエクセル分析 正誤表

Microsoft Word - apstattext05.docx

<4D F736F F D208D A778D5A8A778F4B8E7793B CC A7795D2816A2E646F6378>

3章 度数分布とヒストグラム

Microsoft PowerPoint - statistics pptx

スライド 1

EBNと疫学

DVIOUT

Microsoft PowerPoint - statistics pptx

DVIOUT

DVIOUT

情報工学概論

統計学 - 社会統計の基礎 - 正規分布 標準正規分布累積分布関数の逆関数 t 分布正規分布に従うサンプルの平均の信頼区間 担当 : 岸 康人 資料ページ :

Microsoft Word - 微分入門.doc

Microsoft Word - lec_student-chp3_1-representative

<4D F736F F D208D5C91A297CD8A7793FC96E591E631308FCD2E646F63>

講義ノート p.2 データの視覚化ヒストグラムの作成直感的な把握のために重要入力間違いがないか確認するデータの分布を把握する fig. ヒストグラムの作成 fig. ヒストグラムの出力例 度数分布表の作成 データの度数を把握する 入力間違いが無いかの確認にも便利 fig. 度数分布表の作成

Microsoft Word - thesis.doc

<4D F736F F D2090B695A8939D8C768A E F AA957A82C682948C9F92E8>

学習指導要領

<4D F736F F D208EC08CB18C7689E68A E F193F18D8095AA957A C C839395AA957A814590B38B4B95AA957A2E646F63>

様々なミクロ計量モデル†

日心TWS

Microsoft PowerPoint saitama2.ppt [互換モード]

Microsoft PowerPoint - Statistics[B]

Microsoft Word - mstattext02.docx

Microsoft Word - 補論3.2

スライド 1

統計的データ解析

untitled

<4D F736F F D A CF95AA B B82CC90CF95AA8CF68EAE2E646F63>

統計学 Ⅱ8-9 章 確率分布 確率の条件 8 ページ p: 確率関数 p は の関数とみなせる 確率分布 : すべてのに関する = または p の分布 グラフや表で表わすことが多い サイコロの例 : 計 縦軸は p または = 棒の幅は 線 確率 p.. = / / / / / / サイコロの目の

平成 30 年度 前期選抜学力検査問題 数学 ( 2 時間目 45 分 ) 受検番号氏名 注 意 1 問題は, 表と裏にあります 2 答えは, すべて解答欄に記入しなさい 1 次の (1)~(7) の問いに答えなさい (1) -3 (-6+4) を計算しなさい 表合計 2 次の (1)~(6) の問

. 角の二等分線と調和平均 平面上に点 を端点とする線分 と を重ならないようにとる, とし とする の二等分線が線分 と交わる点を とし 点 から に垂直に引いた直線が線分 と交わる点 とする 線分 の長さを求めてみよう 点 から に垂直な直線と および との交点をそれぞれ, Dとする つの直角三

RSS Higher Certificate in Statistics, Specimen A Module 3: Basic Statistical Methods Solutions Question 1 (i) 帰無仮説 : 200C と 250C において鉄鋼の破壊応力の母平均には違いはな

Microsoft PowerPoint - zairiki_3

PowerPoint Presentation

Microsoft PowerPoint - H21生物計算化学2.ppt

測量士補 重要事項「標準偏差」

散布度

Microsoft PowerPoint - Inoue-statistics [互換モード]

Excelによる統計分析検定_知識編_小塚明_1_4章.indd

Microsoft PowerPoint - 第3回2.ppt

PowerPoint プレゼンテーション

ベイズ統計入門

情報量と符号化

Excelによる統計分析検定_知識編_小塚明_5_9章.indd

Microsoft Word - å“Ÿåłžå¸°173.docx

Microsoft Word - Chap17

ギリシャ文字の読み方を教えてください

基礎統計

<4D F736F F D F2095A F795AA B B A815B837D839382CC95FB92F68EAE2E646F63>

平成 7 年度数学 (3) あるゲームを 回行ったときに勝つ確率が. 8のプレイヤーがいる このゲームは 回ごとに独 立であるとする a. このゲームを 5 回行う場合 中心極限定理を用いると このプレイヤーが 5 回以上勝つ確率 は である. 回以上ゲームをした場合 そのうちの勝ち数が 3 割以上

Microsoft Word - mstattext03.docx

ダンゴムシの 交替性転向反応に 関する研究 3A15 今野直輝

多変量解析 ~ 重回帰分析 ~ 2006 年 4 月 21 日 ( 金 ) 南慶典

周期時系列の統計解析 (3) 移動平均とフーリエ変換 nino 2017 年 12 月 18 日 移動平均は, 周期時系列における特定の周期成分の消去や不規則変動 ( ノイズ ) の低減に汎用されている統計手法である. ここでは, 周期時系列をコサイン関数で近似し, その移動平均により周期成分の振幅

0415

相関係数と偏差ベクトル

2013年度 信州大・医系数学

Microsoft Word - Time Series Basic - Modeling.doc

CAEシミュレーションツールを用いた統計の基礎教育 | (株)日科技研

ファイナンスのための数学基礎 第1回 オリエンテーション、ベクトル

Microsoft Word - NumericalComputation.docx

禁無断転載 第 3 章統計的手法に用いられる分布 All rights reserved (C) 芳賀 第 1 節我々の身の回りにある代表的分布と性質 1. 分布の表わし方我々の身の回りにある全てのものは ばらつきを持っています 収集したデータを分析していくためには このばらつきがどのような分布にな

Hara-statistics

第7章

Microsoft Word - 16wakui

最小二乗法とロバスト推定

経済統計分析1 イントロダクション

Microsoft PowerPoint ppt

Transcription:

7 章正規分布 正規分布 (ormal dstrbuto) は 偶発的なデータのゆらぎによって生じる統計学で最も基本的な確率分布です この章では正規分布についてその性質を詳しく見て行きましょう 7. 一般の正規分布正規分布は 平均と分散の つの量によって完全に特徴付けられています 平均 μ 分散 の正規分布は N ( μ, ) 分布とも書かれます ここに N は ormal の頭文字を 表わしています 確率変数 X がこの分布に従うとき X ~ N( μ, ) 分布のように表わされます 平均 μ 分散 f (x は 以下の式で与えられることが 知られています の正規分布の確率密度関数 ) ( x μ ) f ( x) = e π この章で説明する正規分布の性質は 上の式からすべて導かれますが この本ではあまりこの式にこだわらないように話を進めます この関数のグラフを描くと 図 7- のようになります 0.4/ 0./ μ-3 μ- μ- μ μ+ μ+ μ+3 図 7- N(μ, ) 分布の密度関数 ここに左右対称の山の中央が平均値 μ となり 中間値も最頻値も平均値に一致します 山の高さは 確率密度関数の重要な性質 全面積が であるというところから求まります その値 f ) は 標準偏差の を用いて 以下のように表わされます (μ 7-

0.3989L f ( μ) = = π 確率密度関数の全面積の値は に決まっていますので 分布の拡がりを表わす標準偏差が大きくなると 確率密度関数の山の高さは当然低くなります さてこのグラフから 確率変数 X が a の値以下となる確率を考えてみます これは図 7- のグラフでは x = a の位置から左側の面積に相当します P (X a ) a x 図 7- 正規分布の確率面積は積分で表わされる話はしましたので 確率は以下のように表わされます 確率 a P ( X a) = f ( x) dx この値は一般に数式による積分では求められず コンピュータ等による数値計算で値が求められます 平均と分散が与えられた場合のこの確率の計算は Excel の関数を用いて求めることができますが 次に学ぶ標準正規分布に従う場合の計算の方がより覚え易いので ここでは説明しないことにします 全確率はグラフの全範囲の積分ですから 以下のようになります 全確率 P ( < X < ) = f ( x) dx = 平均と分散がそれぞれ μ, で表わされるということは 式で表現すると 以下のよ うになります 確率変数の平均 確率変数の分散 E ( X ) = xf ( x) dx V = μ ( X ) = E(( X μ ) ) = ( x μ) f ( x) dx = これらの全確率や平均 分散の計算は f (x) として上で表わした式を用いると 計算 に慣れた人なら簡単に示すことができますが この本では省略します 7. 標準正規分布ここでは 正規分布の中で特によく利用される特別なものを紹介しましょう これ 7-

は 平均が 0 で分散が の正規分布です 平均と分散の記号を使うと μ = 0, = となります これは N (0,) 分布とも表示され 特別に標準正規分布 (stadard ormal dstrbuto) と呼ばれています 一般的な正規分布の確率密度関数を表わす式の中で μ = 0, = とおくと 標準正規分布に対する以下のような確率密度関数が得られま す x f ( x) = e π この関数をグラフで表わすと 図 7-3 のようになります 0.4 0. -3 - - 0 3 図 7-3 標準正規分布のグラフすぐ分かるように この関数の最大値は f ( 0) = π = 0.3989L です 一般の正規分布では確率の具体的な計算を省略しましたが ここでは確率変数 X の値 x と図 7-4 で与えられる確率 p = P( X x) との関係を Excel によって求めてみます P (X a ) a x 図 7-4 標準正規分布の確率これらの関係は 以下の つの関数で与えられます p = ormsdst(x) x = ormsv( p) この関数は 正規 ormal 標準 stadard 分布 dstrbuto 逆 verse という言葉の合成で名前が付けられています 具体的な計算は次のでやってみて下さい 標準正規分布に対して以下の確率を求めよ 7-3

) P ( X ) ) P ( X ) 3) P ( X ) 4) P ( X, X ) 5) P ( X ) 解答 ) P ( X ) = ormsdst() = 0.9775 ) P ( X ) = ormsdst() = 0.075 3) P ( X ) = ormsdst() = 0.58655 4) P ( X, X ) = ormsdst( ) = 0.373 5) P ( X ) = ormsdst() ormsdst( ) = 0.68689 7.3 正規分布の性質 7.3. 確率の概数正規分布は平均と分散によって分布が完全に決まる確率分布です 例えば平均 μ から標準偏差 以内に含まれる確率 P( μ X μ + ) は μ や の大きさに関係な くすべて同じ大きさになります この性質を利用して 平均から標準偏差で測って区切りの良い距離までの確率の概数を覚えておくと おおよその確率を推測するのに便利です 区切りの良い距離としては 標準偏差の 倍 倍 3 倍がとられています その様子を図 7-5 に表わしてみました 0.4/ 0./ α/ α/ μ-3 μ- μ- μ μ+ μ+ μ+3 図 7-5 正規分布と確率これらの範囲に含まれる確率及び両端の確率の合計 α の概数は以下で与えられます P ( μ X μ + ) = 0.683 α = 0.37 P ( μ X μ + ) = 0.954 α = 0.046 7-4

P ( μ 3 X μ + 3 ) = 0.997 α = 0.003 細かいところは大変でしょうから 指定された範囲の両端の確率として以下のように覚えておきましょう までなら 3% までなら 5% 3 までなら 0.3% この数値はいろいろな場面で役に立つはずです ある集団の身長の分布は 平均 70cm 標準偏差 0cm の正規分布であった 以下の 確率の概数を求めよ ) P ( 60 X 80) ) P ( 50 X 90) 3) P ( X 90) 解答 ) 00-3 = 68% ) 00 5 = 95% 3) 5 / =.5% 7.3. 偏差値について [Skp OK] ここでは 試験などでよく利用される偏差値について説明します データの平均と分散が x, s のとき x の偏差値を以下で定義します x x 偏差値 = 50 +0 s これは暗黙の前提として正規分布に近い分布を想定しています x の値が平均点 x に 等しいなら 試験の点数に似た得点として偏差値 50 点とします そして 3 離れた ら外側には 0.3% であるということから 計算式が簡単で 試験の点数風に見えるように 標準偏差の幅を 0 点となるように決めています そうすると 偏差値の範囲は ほぼ 0 点と 80 点の間に収まるはずです もちろん 得点の分布は正規分布から外れることもありますので 以下で述べる順位等を考える際には つの目安として偏差値を利用すべきでしょう この偏差値を利用すると 正規分布の場合 受験生の中での自分の位置が比較的容 易に分かります 例えば 000 人中偏差値 70 の人の場合 上位に ずれているわけ ですから 上側には約.5% の人がいます 即ち 上には 5 人程度の人がいることが分かります 具体的に以下のをやってみて下さい 000 人が受験した試験の成績の分布は 平均 60 点 標準偏差 5 点の正規分布であ 7-5

った A, B, C 君の点数がそれぞれ 75 点,90 点,45 点であるとき以下の問いに答えよ ) A 君の偏差値を求めよ ) B 君の偏差値を求めよ 3) C 君の偏差値を求めよ 4) B 君の順位はおよそ何番か 5) C 君の順位はおよそ何番か 解答 ) 60 ) 70 3) 40 4) およそ 5 番 5) およそ 840 番 7.3.3 標準正規分布への変換以前 6.3 節で 確率変数の平均と分散の性質について述べましたが ここでは確率 変数が正規分布に従うときの性質について見てみましょう 確率変数 X の平均が μ 分散が のとき 新しい確率変数 X = cx + d の平均は c μ + d 分散は c で与えられることは 分布の形によらない性質でしたから X が 正規分布でももちろん成り立ちます では X の分布を正規分布に限るとどこが違うのでしょうか それは X が平均 c μ + d 分散 c の正規分布になるというところ です 一般の分布では 次式によって新しい確率変数を作った場合 新しい確率変数がどのような分布に従うか 簡単な公式はありません しかし 正規分布の場合 変換後もやはり正規分布になるところが特徴的です このことを記号を使って表現すると以下のようになります X ~ N( μ, ) 分布ならば X = cx + d ~ N( cμ + d, c ) 分布 この関係を利用すると 一般の正規分布から簡単に標準正規分布に従う確率変数を作り出すことができます X μ X ~ N( μ, ) 分布ならば X = ~ N(0,) 分布 この表式は 6.3 節のにもなっていました ここで述べた性質は 数式を使って比較的簡単に証明することができますが 積分を用いますので省略することにします このように正規分布する確率変数は どんなものでも標準正規分布する確率変数に変えられることは 確率の計算の際に非常に便利です 例えば身長のデータで 平均 7cm, 標準偏差 6cm の集団から 人選び出したとき その人が 80cm 以上である確 7-6

X μ 80 7 率を求める場合 X = の変換から x = =.333333 とすると この 6 値は標準正規分布する確率変数の値に変わっています そこで Excel の標準正規分布の確率を求める関数を利用して 以下のようになります P ( X 80) = P( X.333333) = ormsdst(.333333) = 0.09 0.09 コンピュータを利用できないとき 正規分布の確率を求めるには数表を用います そのため殆どの統計学の教科書の巻末には正規分布の数表が付いています しかし 表は平均や分散の大きさごとに用意することはできませんので 標準正規分布の場合の値が掲載されています ここで述べた確率変数の性質は すべての正規分布でこの数表が利用できることを保証しています X ~ N(67., 46.35) 分布のとき 以下の確率を求めよ ) P ( X 60) ) P ( X 80) 3) P ( 60 X 70) 解答 ) 0.457 0.45 ) 0.030046 0. 030 3) 0.54438 0.54 7.3.4 正規分布の合成ここでは正規分布する確率変数の和について考えます 一般の確率変数 X, X について 平均と分散がそれぞれ μ, 及び μ, で与えられるとき 新しい確 率変数 X = X + X の平均と分散は それぞれ μ + μ, + で与えられます これは 6.3 節で述べた一般的性質です 正規分布の場合 和を取った確率変数もやはり正規分布になるというところが重要です これを記号を用いて表わしてみましょう X ~ N( μ, ) 分布, X ~ N( μ, ) 分布のとき X = X + X ~ N( μ + μ, + ) 分布 正規分布する確率変数はいくつ足してもやはり正規分布します 互いに独立な確率変数 X, X が X ~ N(0,9) 分布, X ~ N(7,6) 分布である 7-7

とするとき 以下の確率変数 X の分布を求めよ ) X = X + X ) X = X + X 3) X = X X 解答 ) X ~ N(7,5) 分布 ) X ~ N(7,5) 分布 3) X ~ N(3,5) 分布 互いに独立な確率変数 X ( =,, L, ) が それぞれ N ( μ, ) 分布に従うとき 以下の変数の分布を求めよ x = ( X + X + L + X 解答 x ~ N( μ, ) 分布 ) ある商品の製造は3つの工程からなり 各工程に要する日数は 以下のような正規 分布に従うとする 平均 標準偏差 第 工程 3 第 工程 0 3 第 3 工程 5 ) 完成までに要する時間の平均と標準偏差を求めよ ) 納期を 0 日とするとき 納期に遅れる確率を求めよ 解答 ) 平均 8 日, 標準偏差 3.74 日 ( 分散 4 日 ) 0 8 ) x = = 0.5345 より 3.74 p = ormsdst(0.5345) = 0.9649 0.96 7.3.5 中心極限定理 [Skp OK] 正規分布に関する性質として 最後に最も重要で利用範囲の広い中心極限定理と呼ばれるものについて説明します これは簡単に言うと どんな分布の確率変数でも十分多くの平均を取ると その平均の分布は正規分布になるという驚くべき定理です このことが これまで正規分布を統計の基本と言ってきた理由であり 正規分布の重 7-8

要性を示す性質です 以下にこの定理を書いておきましょう 中心極限定理独立な確率変数 X ( =,, L, ) が 平均 μ 分散 の一般的な確率分布に従 うとき 容易に満たされるある条件のもとで以下となる lm = ( X μ ) Σ ~ N(0,) 分布 = まず 確率変数 X について X なります それを合計した = す さらに ( X μ ) Σ = = μ にすると平均は 0 分散はもとのとおりの に ( X μ ) については 平均が 0 分散が になりま = とすると 平均が 0 分散が になります これは 一般的性質です 中心極限定理はここからが重要で この を十分大きくすると これが正規分布になるというところです もう少し実用的な表示法を考えてみましょう 独立な確率変数 X, X, L, X から 新しい確率変数として X = X を作ります 一般的性質として 確率変数 X の平 = 均は μ 分散は = となることは容易に分かると思います 中心極限定理 = は を十分大きくすると X が正規分布になるというところです = = + + + X X ( X X L X ) ~ N μ, 分布 = = = 直感的に理解し易い特別な場合として 各確率変数の平均と分散が等しい場合を考えてみましょう 標本の 個のデータの平均を求めるときが これに相当します 独立な確率変数 X, X, L, X が 平均 μ 分散 の確率分布に従うとき 確率変 μ 数 X = X の平均は = μ 分散は = = 標準偏差はとなりま す X = X = ( X + X + L + X ) ~ N( μ, ) 分布 = 7-9

この確率変数 X は標本平均を表わしています 実験データで 個の測定データの平均を取って つのデータとするとき このばらつきの統計量 ( 標準誤差 ) としてここで与えた標本平均の標準偏差が用いられます 以上のことから たくさんのデータの平均を取るという操作には つの意味があることが分かります つは一般的な性質として 分散の値がデータの個数に反比例して小さくなり測定の精度が上がるということ もう つは分布の形の分からないデータでも平均化したものは性質が完全に分かっている正規分布に従うということです 後者こそが中心極限定理の本質です 最後に ここで述べたたくさんのデータというのはどの程度でしょうか データの分布にもよりますが 6 個程度の平均でもかなり正規分布に近付くようなものもあります 資料の重さ (mg) を 0 回測定したところ 測定誤差があり以下の結果を得た 平均と標準偏差を求め それから平均の標準偏差 ( 標準誤差 ) を求めよ 7.5, 7.3, 70.8, 7., 70.9, 7., 7.4, 7.5, 70.9, 7.3 解答平均 7.9, 標準偏差 0.558 0.558, 平均の標準偏差 0.080898 0.08090 つの処理に平均 3.54 分 標準偏差 0.47 分かかるとする 同じ処理を 0 回繰り返すとき 38 分以上かかる確率を求めよ 解答 0 回の処理で 平均 35. 4 分 分散.09 標準偏差.4867 38 35.4 x = =.749345.4867 p = ormsdst(.749345) = 0.0406 0.040 7-0